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Abstract 
The ratio between the number of cores and memory subsystems (i.e. banks and controllers) in many-core 
platforms is constantly increasing, leading to non-negligible latencies of memory operations. Thus, in order to 
study the worst-case execution time of an application, it is no longer sufficient to only take into account its 
computational requirements, but also have to be considered latencies related to its memory operations. 

In this paper we study a limited migrative model applied upon many-core platforms. This approach is based on a 
multi-kernel paradigm – a promising step towards scalable and predictable many-cores, which are essential 
prerequisites for the integration of such systems into the real-time embedded domain. Under that assumption, we 
present two analytical methods to obtain the worst-case memory traffic delays of individual applications. Through 
experiments we test the applicability of the proposed approaches to different scenarios, and draw practical 
conclusions concerning routing mechanisms and a distribution of memory operations across memory controllers. 
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Abstract—The ratio between the number of cores and memory

subsystems (i.e. banks and controllers) in many-core platforms

is constantly increasing, leading to non-negligible latencies of

memory operations. Thus, in order to study the worst-case

execution time of an application, it is no longer sufficient to only

take into account its computational requirements, but also have

to be considered latencies related to its memory operations.

In this paper we study a limited migrative model applied upon

many-core platforms. This approach is based on a multi-kernel

paradigm [3] – a promising step towards scalable and predictable

many-cores, which are essential prerequisites for the integration

of such systems into the real-time embedded domain. Under

that assumption, we present two analytical methods to obtain

the worst-case memory traffic delays of individual applications.

Through experiments we test the applicability of the proposed

approaches to different scenarios, and draw practical conclusions

concerning routing mechanisms and a distribution of memory

operations across memory controllers.

I. INTRODUCTION

The miniaturisation process in the semiconductor tech-
nology hit the limit [19]. In order to cope with the con-
stantly increasing requirements for more powerful computa-
tional devices, chip manufacturers took a design paradigm
shift [14], [26]; instead of enhancing the capabilities of single-
core devices, they opted to integrate multiple cores within
a single chip. Platforms consisting of several cores (multi-
cores) and more than a dozen of cores (many-cores) have
became nowadays the mainstream in many scientific areas,
most notably high performance computing, while are the new
frontier technology in others like real-time embedded systems.
This paper focuses on the latter.

In order to apply many-core platforms into the real-time
embedded domain, an OS paradigm is required such that it
allows to exploit the full potential of the underlying archi-
tecture, and yet assures scalability and predictability, which
are essential prerequisites for deriving execution guarantees.
Limited Migrative Model (LMM ) [22] builds on top of the
foundations and principles of the multi-kernel paradigm [3],
which offers both scalability and predictability, and hence
promises to be a suitable approach towards deriving execution
guarantees for many-cores.

This work was partially supported by National Funds through FCT (Por-
tuguese Foundation for Science and Technology) and by ERDF (European Re-
gional Development Fund) through COMPETE (Operational Programme ’The-
matic Factors of Competitiveness’), within SMARTS project, ref. FCOMP-01-
0124-FEDER-020536 and by FCT and ESF (European Social Fund) through
POPH (Portuguese Human Potential Operational Program), under PhD grant
SFRH/BD/81087/2011.

Development trends associated to many-cores suggest that
the ratio between the number of cores and available memory
subsystems (i.e. banks and controllers) is constantly rising.
This causes an increase in contentions, both within memory
controllers and the interconnect medium. Consequently, the
latencies of memory operations are rising as well. Thus, in
order to derive the worst-case execution times of applications,
it is no longer sufficient to only analyse computational re-
quirements, but latencies of memory operations also have to
be considered [23].

In many-cores, Network-on-Chip architecture (NoC [4])
became a predominant interconnect medium, due to its scala-
bility potential [16]. The majority of currently available NoC-
based many-core platforms (e.g. [14], [26]) perform data
transfer via wormhole switching technique [20], due to its good
throughput and small buffering requirements [16].

In this paper we study the worst-case memory traffic
delays of applications residing within a NoC-based, wormhole-
switched many-core platform encompassing LMM . Specifi-
cally, we propose two methods to obtain upper bound esti-
mates on the worst-case traversal delays of memory operations
related to individual applications. This approach allows to
divide the problem and study only the contention of memory
operations within NoC, while abstracting away the laten-
cies occurring within memory controllers, which are out of
scope of this paper, and were extensively studied (e.g. [23],
[27]). Through experiments we investigate the suitability of
the proposed methods to specific scenarios. Additionally, we
draw practical conclusions concerning routing policies and a
distribution of memory operations across memory controllers,
which may impact the design of future real-time many-core
systems, from both hardware and software perspectives.

II. MOTIVATION AND CONCEPTS OF LMM

Scalability, unpredictability and pessimism are some of
the issues which make real-time analysis of many-cores a
challenging subject. Thus, before these architectures can be in-
tegrated into the real-time embedded domain, an OS paradigm
is needed, which will allow to exploit the full potential of
the underlying platform, and yet assure predictability and
scalability, such that the execution guarantees can be derived.

Current state-of-the-art approaches which address many-
cores from the real-time perspective can be broadly classified
into two categories: Non-Migrative Approaches and Migrative
Approaches. We firstly introduce these categories and then
position LMM in that context.

Non-migrative approaches [18] are in the literature also
known as Fully-Partitioned Approaches. Each application is



migrationless, and statically assigned to a specific core where
it has to execute. Such schemes are inflexible, and can be very
inefficient in scenarios with substantial load changes where
run-time load balancing is required for energy and thermal
management, performance enhancements or fault tolerance
reasons.

Migrative approaches are further classified into Semi-
Partitioned Approaches and Global Approaches. The first
group ([5], [15]) assumes a static assignment of an application
to a particular core (or cores if it migrates). A migrative
application also obeys to design-time decisions, i.e. always
has to execute the prescribed fraction of work on each of
assigned cores. Hence, these methods are very similar to fully-
partitioned approaches and the same observations regarding
inflexibility to perform run-time load balancing also hold in
this context. Conversely, global approaches [2] allow every
application to execute on any core within the platform. How-
ever, this amount of flexibility comes with the price. Due to
necessity to maintain global structures (e.g. ready-queue) and
have a centralised entity, scalability issues arise [3], and serious
challenges occur when attempting real implementations [12].

LMM [22] is an approach that builds on top of the
fundamental concepts of the multi-kernel paradigm [3], which
presents a promising step towards deriving execution guaran-
tees for many-cores. One well known example of a multi-
kernel OS is Barrelfish [3], and many LMM concepts are
inspired by it. LMM poses a realistic constraint that each
application may execute only on a subset of cores, which are
decided during design time. During runtime, an application has
the flexibility to migrate between candidate cores and execute
on any of them. This removes the necessity to maintain global
structures, which contributes the scalability [3], and yet gives
the possibility to perform run-time load balancing.

III. RELATED WORK

The wormhole switching technique [20] is not a novelty in
academia, nor industry, but was introduced more than twenty
years ago. However, it was neglected by chip manufacturers,
as an alternative - store and forward switching technique was
providing satisfactory results [16]. Recently, buffering within
routers became more challenging [16], due to the constant
increase in the amount of data that has to be transferred. This
brought wormhole switching back into focus, resulting in the
commodity of present many-core architectures (e.g. [14], [26])
employing that technique. Additionally, in the aforementioned
platforms the packets are predominantly routed via a static,
dimension-ordered XY routing policy and a round-robin arbi-
tration scheme is used within routers.

If a platform provides a single virtual channel, complex
interference patterns may occur [17]. Several methods have
been proposed to obtain upper-bounds on worst-case latencies
([8], [10], [11]), but they yield either pessimistic results [10],
[11], or have complexity and scalability issues [8]. Conversely,
if a platform contains multiple virtual channels ([6], [7]),
the benefits are twofold: (i) by avoiding idle routers, the
performance of the wormhole switching technique is signif-
icantly improved ([6], [7]) and (ii) preemptions can be imple-
mented [24]. Shi and Burns employ this, and several additional
assumptions, namely per-priority virtual channels ([6], [7]),
flit-level preemptions [25] and per-packet distinctive priorities,

Fig. 1: TILEPro64 Platform
and also present the worst-case analysis for NoCs with worm-
hole switching [24].

All the aforementioned analyses provide upper-bounds on
the latency of a single packet occurrence, or what we further
call per-packet analysis. However, LMM brings additional
challenges due to path uncertainty (discussed later), thus ren-
dering none of the proposed methods directly applicable to the
model. We recognised that problem, introduced placement con-
straints and reroutings to make paths more deterministic, and
proposed a per-packet analysis for intra- and inter-application
traffic [21], which can be efficiently applied to LMM .

However, in practical scenarios, instead of a single occur-
rence of a packet, sometimes it is more important to bound the
latency of the sequence of packet occurrences. In that vein,
for intra- and inter-application traffic we presented a path-
abstracting method of computing the cumulative delay of all
packet occurrences, happening within minimum inter-arrival
period of an application [22]. We call this per-pattern analysis,
where pattern in this case corresponds to an application’s
minimum inter-arrival period.

Although these two per-packet and per-pattern approaches
were initially derived for intra- and inter-application traffic
(i.e. core-to-core communication), they can be also applied to
core-to-memory traffic. However, in many cases applications
communicate with memory controllers far more frequent than
with other applications. Thus, in order to be considered as
applicable, a prerequisite is that an approach is deemed scal-
able as well. As will be discussed later, that is not the case
with the previously mentioned approaches. Therefore, in this
paper we firstly formulate modifications and restrictions which
are necessary in order to make the per-packet and per-pattern
approaches applicable to memory traffic, and consequently
propose such methods.

IV. MODEL

A. Hardware

The system under consideration is a NoC-based many-core
platform, comprising of n⇥n tiles T = {t1, t2, ..., t

n

2�1, tn2},
and 4 memory controllers M = {mc0,mc1,mc2,mc3}, where
the first two are accessible from the topmost row of tiles,
while the other two from the bottommost (see Figure 1).
Additionally, each controller provides a concurrent access to n

2
tiles from its access row, e.g. top-left controller to n

2 leftmost
tiles of the topmost row, etc. Memory accesses on a depicted
platform (Figure 1) are organised in this manner.
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Although in some platforms a tile contains multiple
cores [14], without loss of generality in this paper we assume
that each tile comprises of a single core and a single router,
like in the illustrated system (Figure 1). Furthermore, the
platform employs a XY routing policy, which is deadlock and
livelock free [13]. Such policy assumes that packets firstly
traverse along the x-axis, and upon reaching the x-coordinate
of the destination, traverse along the y-axis. Data transfer
involves wormhole switching. This means that each data packet
that has to be transferred is divided into small elements of
fixed size, called flits [20]. The first flit establishes the route,
and the other flits follow in a pipeline manner. Packets are
prioritised, and there exist per-priority virtual channels. These
are used to perform flit-level preemptions [24]. Virtual chan-
nels are implemented as per-priority flit-sized buffers within
each router. Furthermore, core-to-core and core-to-memory
traffic use separate physical links [14], [26], thus mutually
do not contend, i.e. the existing intra- and inter-application
communication does not influence the memory traffic analysis.

B. Software layers in LMM

As mentioned in Section II, LMM encompasses a multi-
kernel paradigm. Thus, each core runs an independent micro-
kernel instance. Kernels are mutually interacting and form the
basic communication infrastructure. Each kernel exposes some
of its functionalities to applications residing on its core and
allows them to communicate with applications located on the
same, or other cores. Furthermore, each kernel is responsible
for the scheduling process on its core.

As discussed (Section II), an application may execute
only on a subset of cores which are decided at design-time.
On each of corresponding cores, the execution code of that
application exists, encapsulated within an entity called dis-
patcher. Dispatchers of the same application (each located on a
different core) communicate among themselves via agreement
protocols [22], and discuss temporal and spatial properties of
the application’s next execution, i.e. will the migration occur,
and if so, which core (dispatcher) will be the destination.

Applications are single-threaded and implemented as tasks.
Multi-threaded applications can be implemented as multiple
applications with dependencies. A dispatcher elected via agree-
ment protocol is termed master dispatcher, and it is responsible
for releasing the job of its application on its core. A job
has to complete the execution on the master’s core, it can
not migrate (i.e. job-level migrations are not allowed). Other
dispatchers that participate in the protocol are called slave
dispatchers. After a job execution is completed, the master
initiates another instance of the agreement protocol. If the
outcome is that a migration occurs – the master changes; the

. . .

. . .
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Fig. 3: Example of memory operations

previous master becomes the slave, while the newly elected
slave becomes the master. Perceived from application’s per-
spective, its dispatchers exchange one master token, which
position is decided during runtime. Thus, being a master is a
temporary role for a dispatcher. We call this master volatility
phenomenon and it has several implications which will be
discussed in Subsection V-B. The architectural structure of
LMM is illustrated in Figure 2, where master dispatchers are
distinguished by dots over their names.

An application-set A comprises of m applications
A = {a1, a2, ..., am�1, am}, where each application
ahT

a

, C
a

,W
a

, P
a

,D
a

,R
a

i is characterised by its minimum
inter-arrival period T

a

, the execution time C
a

 T
a

, the worst-
case protocol duration W

a

 T
a

, a unique priority P
a

, a set
of dispatchers D

a

and a set of memory operations R
a

.

C. Memory operations

A memory operation r
a

hreq, res, oi 2 R
a

of an applica-
tion a consists of a request req sent from its master dispatcher
d to one memory controller mc, and a consequent response
res from mc to d. req can be a read request rreqmc

d

, or a
write request wreqmc

d

. Similarly, res can be a read or a write
response – rresd

mc

and wresd
mc

, respectively. o(r
a

) defines the
maximum number of occurrences of a given memory operation
within T

a

, i.e. one minimum inter-arrival period of a.

Requests and responses are implemented as packets. Each
packet pj

i

2 P traverses a static, XY routed path from
the source i to the destination j in a wormhole-switched
manner. For requests, i is a dispatcher and j is a memory
controller, while for responses i denotes memory controller,
and j symbolises a dispatcher. Each packet is characterised
by the priority it inherits from its application, the amount of
transferred content – size(p), the distance between i and j
expressed in hops – nhops(p), the traversed path – path(p),
and the maximum number of occurrences o(p), inherited
from its memory operation. Memory operations are executed
sequentially, so at any time instant an application can have
only one packet within the network. This prevents a concurrent
existence of same-priority packets and their mutual blocking.

A request is considered as delivered when all flits of a
packet reach the tile that provides an access to the targeted
memory controller. As said in Section I, contentions occurring
inside memory controllers are out of scope of this paper.
Similarly, the response is considered as delivered when all flits
of a packet reach the tile of the master dispatcher which issued



that memory request. The destination tile of the request packet
is the source tile of the response packet, and vice versa.

An illustrative example is given if Figure 3, where a master
dispatcher d (located on the shaded core) performs a read
operation with the controller i and a write operation with the
controller j. Solid lines depict requests, while dashed lines
symbolise responses.

The latency of an individual occurrence of a packet p when
traversing in isolation – l(p) is in the literature known as basic
network latency [9]. It is equivalent to the time needed for
the first flit to reach the destination router, augmented by the
processing rate of all flits at the destination router (Equation 1).
d
sw

and d
t

are mesh latencies to switch the crossbar and route
the flit, while size(f) represents the size of the flit.

l(p) = nhops(p) ⇥ (dsw + dt) +

⇠
size(p)

size(f)

⇡
⇥ dt (1)

V. PROPOSED APPROACH

A. Interferences

Equation 1 expresses the traversal latency of a packet in
isolation. Additionally, a packet may suffer interference from
other higher priority packets encountered on its path. In order
to provide an upper-bound on the worst-case traversal delay
of a packet, all possible interferences have to be considered.

Definition 1 (Directly interfering packet): If a packet p0 of
an application a0 shares a part of the path with the packet under
analysis p of an application a, and has a higher priority than
p, it is considered as a directly interfering packet and belongs
to the set P

D

(p). Formally:
8p0 2 P : p0 2 Da0^Pa0 > Pa^path(p0)\path(p) 6= ; ) p

0 2 PD(p) (2)

The packet under analysis p can be preempted by a directly
interfering packet p0, and consequently suffer interference. The
delay caused to p by a single occurrence of p0 is equivalent to
the traversal latency of p0 (Equation 3).

Ip(p
0
, 1) = l(p0) = nhops(p0) ⇥ (dsw + dt) +

⇠
size(p0)

size(f)

⇡
⇥ dt (3)

Definition 2 (Indirectly interfering packet): If a packet p00
of an application a00 does not share a part of the path with
the packet under analysis p of an application a, but shares it
with some other packet p0 of an application a0, which is either
directly or indirectly interfering packet of p, and has a higher
priority than p0, it is considered as an indirectly interfering
packet and belongs to the set P

I

(p). Formally:
8p00 2 P : p00 2 Da00 ^ p

00 62 PD(p)^ 9p0 2 Da0 ^ p

0 2 {PD(p)[PI(p)}^
Pa00 > Pa0 ^ path(p00) \ path(p0) 6= ; ) p

00 2 PI(p) (4)

When the NoC infrastructure contains only a single virtual
channel, complex interference patterns may occur [17], causing
the packet under analysis to be blocked by both directly
and indirectly interfering packets. However, when per-priority
virtual channels and flit-level preemptions exist, a packet can
suffer interference only from directly interfering packets (see
Theorem 1).

Theorem 1: In wormhole-switched NoCs with per-priority
virtual channels and flit-level preemptions, any packet p with
a unique priority can not suffer interference from indirectly
interfering packets.

p
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p
i

p
j

p
k

p
i

p
j

p
k

p
i

t1

t2

0 5 10 15

(5,20)

(1,4)

(1,3)

p
j

Fig. 4: Example of interferences
Proof: Proven by contradiction. Consider that p00 is a

directly interfering packet of p0, which is a directly interfering
packet of p, and that p00 and p do not share a common part of
the path. Thus, by Definition 2, p00 is an indirectly interfering
packet of p. Assume that p00 can cause an interference to p. By
initial assumption, p is preempted. Furthermore, as p00 causes
an interference it is traversing. Due to the traversal of p00,
a packet p0 is either preempted or does not exist at that time
instant. In either case, it is not progressing. Thus, the routers on
the path of p are idle. Due to per-priority virtual channels, p can
uninterruptedly reach its destination, even though preempted
packets of p0 may exist on its path (which would not be the
case in a scheme with a single virtual channel, where p would
have to wait until p0 passes). Contradiction reached.

In spite of the fact that indirectly interfering packets can not
cause interference, they can influence occurrence patterns of
directly interfering packets. Thus, considering periodic appear-
ances of directly interfering packets is an unsafe assumption.
This is illustrated with an example given in Figure 4, where a
packet p

i

suffers direct interferences from two packets – p
j

and
p
k

. Values in brackets represent a traversal time of a packet and
a minimum inter-arrival period of its application, respectively.
For the sake of simplicity, consider that each packet occurs
only once in the inter-arrival period of its application, i.e.
o(p

i

) = o(p
j

) = o(p
k

) = 1. In case of periodic appearances of
all packets (upper part of Figure 4), the worst-case traversal
delay of p

i

is 12 time units. However, if p
j

and p
k

suffer
interference from their directly interfering packets, they may
exhibit occurrence patterns like in the lower part of Figure 4.
Consequently, the delay of p

i

can additionally increase.

Note, that occurrences of the same packet p associated to
distinctive minimum inter-arrival periods of its application a
have to be separated by at least W

a

, which is the duration of
the agreement protocol that has to be executed between two
job instances. For clarity reasons, W = 0 was assumed in
this example, for all depicted packets and their applications.
Therefore, in order to compute the worst-case traversal delay of
a packet, it is necessary to assume the worst-case occurrence
pattern for each of its directly interfering packets. Shi and
Burns provide a method [24], as a function of all direct and
indirect interferences. However, that approach is not applicable
to LMM , as it includes hundreds of applications, and hence
packets, which can cause combinatorial explosion and render
the analysis intractable when constructing interference trees.
We dramatically reduce the complexity by taking a more
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pessimistic approach; we assume the theoretically worst-case
occurrence pattern for every directly interfering packet, and
make the analysis independent of indirect interferences. Specif-
ically, we consider that the first occurrence of every directly
interfering packet happened as late as possible, while all others
happened as early as possible. An illustrative example is given
in Figure 5. ✏ represents infinitesimally small, but finite value,
during which all o(p) occurrences of a given packet p may
happen. The safe assumption is that ✏ ! 0.

In order to compute the maximum interference that a packet
under analysis might suffer within the observed time interval t,
firstly the maximum number of occurrences of every directly
interfering packet within t has to be derived (Theorem 2).

Theorem 2: The number of occurrences of a packet p,
belonging to an application a, within the time interval t can
be at most o(p)⇥

⇣
1 +

l
t�Wa
Ta

m⌘
.

Proof: Proven by contradiction. Let us assume that in total
o(p)⇥

⇣
1 +

l
t�Wa
Ta

m⌘
+1 packet occurrences happened within

the time interval t. As o(p) represents the maximum number
of occurrences of p within one minimum inter-arrival period
(MIP) of its application, according to the initial assumption
2+

l
t�Wa
Ta

m
MIPs occurred within t. Consider

l
t�Wa
Ta

m
MIPs,

surrounded by the first and the last and we refer to them
as to inner MIPs. All the inner MIPs contribute to t with
their entire duration, therefore require time interval of at leastl
t�Wa
Ta

m
⇥ T

a

where only these can execute, and where only

o(p)⇥
l
t�Wa
Ta

m
packet occurrences could happen. Additionally,

assume that ✏ is infinitesimally small value, representing the
shortest possible fraction of MIP, when all o(p) packet occur-
rences can happen. Consider that the first such interval was
delayed as much as possible and hence completed just before
the interval of the inner MIPs started. Finally, the last packet
occurrence could not happen before the protocol of duration
W

a

completed (see Figure 5).
✏ +

l
t�Wa

Ta

m
⇥ Ta + Wa � ✏ +

⇣
t�Wa

Ta

⌘
Ta + Wa = ✏ + t > t

Contradiction reached.

This coincides with Theorem 1 of our previous work [22],
where we computed the maximum number of protocol oc-
currences within a given time interval, which is a problem
orthogonal to the one we solve here.

Now we can compute the maximum interference that a
packet under analysis p might suffer from a directly interfering
packet p0 within the time interval t (Equation 5). It is equal
to the product of the maximum number of occurrences of p0

within t (Theorem 2) and the latency of a single interference
(Equation 3). a

p

0 stands for the application of p0.

Ip(p
0
, t) =

single interference
z }| {
Ip(p

0
, 1) ⇥

maximum number of occurrences
z }| {

o(p0) ⇥
 
1 +

&
t � Wap0

Tap0

'!
(5)

We extend this reasoning, and compute the maximum
interference a packet p might suffer from all directly interfering
packets P

D

(p) within the time interval t (Equation 6).

Ip(t) =
X

8p02PD(p)

Ip(p
0
, t) (6)

Due to flit-level preemptions, a packet of interest can be
additionally blocked by one lower priority packet within each
router on its path for at most one flit traversal time (d

sw

+d
t

).
The blocking delay of a single occurrence of a packet p is
expressed with Equation 7.

Bp = nhops(p) ⇥ (dsw + dt) (7)

B. Challenges of LMM: Pessimism and Intractability

Each memory operation between an application and a
particular memory controller renders 2 packets – a request
and a response. If both read and write operations are included,
the number of packets is 4. Each additional memory controller
may render 4 new packets. However, in LMM , applications do
not have fixed locations, but a set of dispatchers. Thus, the total
number of distinctive packets associated with each application
can be at most 4⇥ |d|⇥ |mc|, where |d| stands for the number
of dispatchers of an application, while |mc| represents the
number of accessed memory controllers. Moreover, as only
one dispatcher can be a master at any time instance, all packets
can not exist during the same inter-arrival period and some
of them are mutually exclusive. An illustrative example of
a 4-dispatcher application accessing one memory controller,
only with a read operation, is given in Figure 6. Of all 8
depicted packets, during any application’s minimum inter-
arrival period, only 2 may exist (one read request and one
read response, involving the dispatcher which is the master
during the observed interval). Performing the analysis on
such a model can be either overly pessimistic (considering
concurrent existence of all mutually exclusive packets), or
computationally expensive (analysing all possible scenarios
arising from the fact that every dispatcher can be a master).

C. Inapplicability of the existing method

The problem mentioned in Section V-B also occurs when,
instead of memory traffic, intra- and inter-application traffic
is considered [21]. In that case, the number of distinctive
packets was significantly reduced by enforcing placement and
communication constraints, formally introduced below.

Constraint 1: [21] Dispatchers of an application can be
placed only on the edges of a rectangular a⇥ b structure, such
that no corner is left unoccupied and a, b 2 N. The special case
is a line-like shape, which occurs when one or both dimensions
of a shape are equal to “1”.

Constraint 2: [21] Intra-application messages travel only
on the edge of the shape its application is forming, and re-
routing occurs where needed to comply with the global XY
routing policy. An individual message rotation (i.e. clockwise
or counterclockwise) is chosen such that the traversal distance
is minimised.
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Assuming said restrictions, similar approach could be ap-
plied to memory traffic. One dispatcher is chosen for each
memory controller that an application communicates with,
called proxy dispatcher. It is responsible for mediating the
communication between the current master dispatcher and
the memory controller. An example is depicted in Figure 7,
where proxy dispatcher d

j

is emphasized with a darker color.
In this scenario, a master sends the request (read or write)
to its proxy. Then, proxy issues the request to the memory
controller on behalf of its master. Upon receiving the response,
the proxy forwards it to the master. Even though there exist
hardware mechanisms which can be instrumented to efficiently
perform rerouting operations (e.g. HardwallTM feature of Tilera
platforms [26]), the number of memory requests that an appli-
cation issues within its minimum inter-arrival period can reach
thousands, which would create a substantial overhead on proxy
cores and lead towards poor performance. Thus, although
applicable to intra- and inter-application communication, this
approach does not have sufficient scalability potential to be
applied to memory traffic as well.

D. Placement constraints, access constraints and superpackets

In order to make the analysis tractable, in this subsection
we propose the method to (i) decrease the total number of
considered packets and (ii) solve the problem of mutually
exclusive packets. We assume dispatcher placement constraints
given by Constraint 1. Furthermore, we define constraints
regarding tiles via which packets access memory controllers.

Constraint 3: If an application accesses a memory con-
troller, all dispatchers access it from the same tile, which is
(i) for the leftmost controllers (i.e. top and bottom) chosen
such that it is either in the column of the application’s leftmost
dispatcher, or left from it, and (ii) for the rightmost controllers,
chosen such that it is either in the column of the application’s
rightmost dispatcher, or right from it.

In other words, on a platform with n⇥n tiles, if an applica-
tion’s leftmost and rightmost dispatchers occupy columns i and
j respectively, then the leftmost controllers can be accessed
via columns 1 : i and the rightmost via columns j : n.
This was done with an intention to cause overlapping paths
of mutually exclusive packets (notice the visual difference
between Figure 8 and Figure 6). Now we define superpackets
– a generalisation of overlapped, mutually exclusive packets.

Definition 3 (Superpacket): Superpacket bp is a packet that
exists for each memory operation that an application performs,

and for each row and column of its shape, where it has
dispatchers. It connects a memory controller, and a dispatcher
from a given row/column, with the furthest distance from it.

The per-row superpacket is directed from the tile to the
memory controller, and represents a generalisation of over-
lapped, mutually exclusive requests from its row. The per-
column superpacket is directed from the memory controller to
the tile, and depicts a generalisation of overlapped, mutually
exclusive responses from its column. An example is given in
Figure 8. An application with 4 dispatchers has 4 superpackets:
2 per-row – cp

x

and cp
w

and two per-column – bp
y

and bp
z

.

The benefits of superpackets can be shown by considering
all possible read request packets that might be generated
from the row w (bottom row in the example of Figure 8),
i.e. the ones generated by dispatchers d

k

and d
n

– rreqi
k

and rreqi
n

. These read requests are mutually exclusive, as
they belong to different dispatchers of the same application.
Additionally, both share a part or entirely the path with
the superpacket cp

w

. Thus, assuming that cp
w

has identical
packet characteristics as rreqi

k

and rreqi
n

(i.e. size, priority
and number of occurrences), the maximum delay of rreqi

k

and rreqi
n

has an upper-bound, which is equivalent to the
maximum possible delay of the cp

w

. Therefore, a superpacket
can substitute all mutually exclusive read request packets from
the same row, targeting the same controller. The same applies
for write requests. Similarly, a superpacket can substitute all
mutually exclusive read and write responses from the same
controller, targeting the same column (e.g. bp

y

can substitute
rresj

i

and rresk
i

). Instead on packets, the worst-case analysis
can be performed on superpackets, which number is smaller.
If a superpacket fulfils posed time constraint, all substituted
packets also fulfil it.

In order to estimate the reduction in the computational
complexity, let us compute the amount of superpackets. Con-
sider a single memory operation of an application with a and
b dispatchers on horizontal and vertical edges of its shape,
respectively. Thus, an application has 2⇥(a+b�2) dispatchers
and hence 4⇥ (a+b�2) packets, but only a+b superpackets.
In the aforementioned example in Figure 8, an application
with a = b = 2 and 4 dispatchers has 8 packets, but only
4 superpackets. On the application-set level, the total number
of superpackets is

⇣
4⇥(a+b�2)

a+b

⌘
m

⇡ 4m times less than
the number of packets, where m symbolises the number of
applications in the application-set. That is, the analysis on
superpackets is O(4m) times computationally less complex



than the analysis on packets. In many practical cases this can
make a difference between the tractability and intractability.

Note, it may appear that the analysis on superpackets
inherently brings pessimism, since many packets may share
only a fraction of the path with the superpacket, which delay
they will assume as the corresponding upper-bound. But it is
not so. Timing constraints are posed on groups of mutually
exclusive packets and not individual packets. Thus, the only
matter is whether all possible mutually exclusive packets
(arising from different dispatcher positions) meet a certain
constraint, while the tightness of the estimate of individual
packets is irrelevant.

Also note, a superpacket exists for every memory opera-
tion. Therefore, if an application performs both read and write
operations with a memory controller, similarly to distinctive
read and write packets, there will also be distinctive super-
packets, for both operations.

E. Solution to mutually exclusive superpackets

Superpackets substitute mutually exclusive requests from
the same row, and mutually exclusive responses from the same
column. However, mutually exclusive superpackets still exist.
For instance, in Figure 8, cp

x

and cp
w

are mutually exclusive,
the same applies for bp

y

and bp
z

.

In this subsection we propose the method to solve this
problem. Let cP

E

(bp) be a set of all mutually exclusive super-
packets of bp, including bp. As during one minimum inter-arrival
of a only one dispatcher can be a master, consequently only
one of mutually exclusive superpackets may exist. Observe
that all of them have the same packet properties (i.e. size,
priority, number of occurrences), only differ in the traversal
latency, and hence interference delay they can cause per
single occurrence (Equation 3). Thus, when a superpacket has
multiple mutually exclusive superpackets in its list of directly
interfering superpackets, only one of them with the maximum
traversal latency can be assumed. The conclusion reached
for cP

E

(bp) is also valid for every set of mutually exclusive
superpackets of every application.

F. Approach one: Per-packet analysis

In this approach, of interest is the maximum delay of a
single occurrence of a superpacket bp. This delay consists of
a sum of: an isolation latency (Equation 1), a blocking delay
(Equation 7), and an interference delay (Equation 6). However,
as discussed in Subsection V-E, not all directly interfering
superpackets P

D

(bp) should be considered, as some of them
are mutually exclusive. Thus, we define a reduced set of
directly interfering superpackets as follows. If two or more
superpackets from P

D

(bp) are mutually exclusive, only one
with the highest traversal latency is added to the set P

R

(bp).

Formally:

8bp0 2 PD(bp) : 6 9cp00 2 PD(bp) ^cp00 2dPE(bp0) ^ l(cp00) > l(bp0) ) b
p

0 2 PR(bp)
(8)

Equation 9 presents the maximum delay of a single oc-
currence of a superpacket bp. Note, that Equation 9 has a
recursive notion, hence is solved iteratively, until reaching a
fixed conversing point (if one exists).

Dbp(1) =

isolation
z}|{
l(bp) +

blocking
z}|{
Bbp +

interference
z }| {
X

8cp02PR(bp)

l(bp0) ⇥ o(bp0) ⇥
 
1 +

&
Dbp(1) � Wabp0

Tabp0

'!
(9)

The total delay of a superpacket bp within a minimum inter-
arrival period of its application is equivalent to the delay of
a single occurrence, multiplied by the number of occurrences
o(bp) (Equation 10).

Dbp = Dbp(1) ⇥ o(bp) (10)

Upon obtaining the worst-case delays of superpackets
within application’s minimum inter-arrival period, it is possible
to derive the worst-case delay of an entire application within
that time. For an application a we define the reduced set of
superpackets P

R

(a) as follows. From each set of mutually
exclusive superpackets of a only one with the maximum delay
is added to P

R

(a). Formally:
8bp 2 Ra : 6 9bp0 2dPE(bp) ^ Dbp0 > Dbp ) bp 2 PR(a) (11)

Theorem 3: The worst-case memory traffic delay of an
application within one minimum inter-arrival period is defined
with Equation 12.

Da =
X

8bp2PR(a)

Dbp (12)

Proof: Follows directly from Equations 8-11.

G. Intermediate step: Partial per-pattern analysis

Obtaining the worst-case delay of a single occurrence of a
superpacket, and consequently multiplying it with the number
of occurrences might be a beneficial approach for computation-
intensive applications, where few memory requests occur.
However, memory-intensive applications have hundreds, if
not thousands of memory requests per job execution. Thus,
assuming the worst-case for every occurrence of a memory
operation might be a very pessimistic approach. In this sub-
section we present the method to compute the worst-case
delay of superpackets, not per single occurrence, but per group
of occurrences, i.e. per pattern. Specifically, the goal is to
compute the worst-case delay of a superpacket, but assuming
all occurrences that happen within one minimum inter-arrival
period of an application.

Similarly to the previous approach, for the superpacket
under analysis bp, we define a reduced set of directly interfering
superpackets P

R

(bp), i.e. a set where only one of mutually
exclusive superpackets exists. Consequently, the worst-case
delay of bp is given by Equation 13. Note that, as occurrences
of bp might be spread within the entire minimum inter-arrival
period of its application, excluding protocol duration, the
interference has to be computed within that period: T

abp�W
abp .

Due to that fact, Equation 13 does not have a recursive notion.

Dbp =

isolation
z }| {
l(bp) ⇥ o(bp)+

blocking
z }| {
Bbp ⇥ o(bp)+

interference
z }| {
X

8cp02PR(bp)

l(bp0) ⇥ o(bp0) ⇥
 
1 +

&
Tabp � Wabp � Wabp0

Tabp0

'!
(13)

Now, Equations 11-12 are used to compute the worst-case
memory traffic delay of an application.



H. Approach two: Full per-pattern analysis

We refer to the previous method as partial per-pattern
analysis. It is strictly worse than or equal or this approach,
so we consider it as an intermediate step. Here we present a
method which we call full per-pattern analysis.

As described in Section V-D, distinctive superpackets ex-
ist for each memory operation. Therefore, if an application
performs read and write operations with a memory controller,
distinctive superpackets will be generated for a read request, a
read response, a write request and a write response. Although
superpackets of read and write requests have different sizes and
number of occurrences, they have the same priority and some
of them share same paths. In such cases they have the same list
of directly interfering superpackets. Therefore, the idea behind
this approach is to merge superpackets forming read and write
requests which share the same path, and compute their grouped
delay. The same observation hold for read and write responses.

Consider bp1 and bp2, which are superpackets of a read and a
write request of an application abp, and which share the same
path. Thus, their joined restricted list of directly interfering
superpackets P

R

(cp12) is equivalent to their individual lists,
i.e. P

R

(cp12) = P
R

( bp1) = P
R

( bp2). Their worst-case grouped
delay Ddp12

can be expressed by Equation 14. Due to the same
reasons as for the partial per-pattern analysis, Equation 14 does
not have a recursive notion. Note that, this approach behaves
identically as the partial per-pattern analysis in cases where
no superpackets that can be merged exist, i.e. Equation 14
becomes Equation 13. On the other hand, intuitively, this
approach should provide tighter estimates than the partial per-
pattern analysis in cases where superpackets can be merged,
i.e. both read and write operations are performed with the same
controller. This is further investigated in Section VI.

Ddp12 =

isolation
z }| {
l(cp1) ⇥ o(cp1) + l(cp2) ⇥ o(cp2)+

blocking
z }| {
Bcp1 ⇥ o(cp1) + Bcp2 ⇥ o(cp2)+

interference
z }| {

X

8bp02PR(dp12)

l(bp0) ⇥ o(bp0) ⇥
 
1 +

&
Tabp � Wabp � Wabp0

Tabp0

'!
(14)

Again, Equations 11-12 can be used to derive the worst-
case memory traffic delay of an application.

VI. EVALUATIONS

In this section we evaluate the efficiency of the proposed
approaches. Specifically, we compare the tightness of the
results derived with all three methods, and investigate how
these trends change with different application parameters, e.g.
priority, minimum inter-arrival period, number of memory
operations. Furthermore, we draw practical conclusions con-
cerning routing policies and a distribution of memory accesses
across memory controllers.

A. Analysis parameters

Analysis parameters are given in Table I. An asterisk
sign denotes a randomly generated value, assuming a uniform
distribution.

TABLE I: Analysis parameters
Platform size 8⇥8

Application-set size 200

Router switch latency 1 cycle

Router transfer latency 3 cycles

Mesh width 16B

Control packet size (read request and write response) 32B

Content packet size (read response and write request) 1kB

Minimum inter-arrival periods of applications [30-1000]* mS

Dispatchers per application [2-10]*

Memory requests of computation-intensive applications [1-50]*

Memory requests of memory-intensive applications [100-1000]*

Different memory controllers accessed by one application [1-4]*

B. Experiments

Experiment 1: Overall comparison

In this experiment we conducted the overall comparison of
the proposed approaches. Each application of an application-
set was randomly mapped on the grid, assuming dispatcher
placement constraints (Constraint 1). Consequently, packets
of memory operations were generated. Then, the worst-case
memory traffic delay was computed for each application, with
all three methods. Finally, we compared the obtained values.
The process was repeated for 1000 application-sets.

Figure 9 shows the improvements of the partial per-pattern
analysis over the per-packet analysis. It is visible that the
per-packet analysis renders tighter estimates only for 3.64%
of applications. This receives additional attention in Experi-
ment 4. In 0.53% of the cases, both methods derive the same
results, while in all other cases the partial per-pattern analysis
performs better. Specifically, for more than half of applications,
the improvements are greater than 90%, which means that the
estimates are tighter 10 times or more.

Figure 10 compares the full per-pattern analysis and the
partial per-pattern analysis. For 4.20% of applications both
methods derive the same values. As concluded in Subsec-
tion V-H, these are the cases when an application performs
only one (read or write) operation with every memory con-
troller that it communicates with. In the rest of scenarios, the
full per-pattern analysis provides improvements, which in this
case grow until 50%. Additional conclusion is that the full
per-pattern analysis dominates the partial per-pattern analysis
(strictly better or equal). This coincides with the intuitive
assumption from Subsection V-H.

Experiment 2: Distribution of accesses across controllers

In this experiment we investigated how the distribution of
memory accesses across memory controllers might impact the
analysis. Thus, we assume that all data that an application
needs is fetched from only one memory controller. Similarly,
we derived worst-case delays for each application of the
application-set, and repeated the process for 1000 application-
sets, assuming the full per-pattern analysis. We compared the
obtained values with the results from the previous experiment
for the full per-pattern analysis, where every application may
access multiple memory controllers.

The improvements achieved by a scheme where each
application accesses only a single controller are demonstrated
in Figure 11. Surprisingly, this approach does not always
yield better results. In fact, for 9.27% of applications this
scheme renders worse estimates. The explanation is that, when
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an application accesses only a single controller, the path is
”greedily” consumed by its entire traffic. Consequently, some
links of the NoC infrastructure are extensively used, causing a
substantial interference to any lower priority application which
utilises that path. Oppositely, when each application accesses
multiple memory controllers, the traffic is more equally dis-
tributed, thus making it possible for lower priority applications
to suffer less interference. However, the rest of applications
benefit from the new scheme and have tighter estimates. Thus,
we conclude that the distribution of memory accesses plays an
important role in the analysis and we consider it as a potential
topic for the future research.

Experiment 3: Different memory operations and packets

In this experiment the objective is to quantify the fraction of
the total application delay spent in each individual component,
namely read requests, read responses, write requests and write
responses. In order to investigate that, we performed the per-
packet analysis. Of interest were only applications that contain
all 4 components, i.e. perform both read and write operations
with the memory controller. The analysis was performed for
each such application in the application-set, and repeated for
1000 application-sets. Upon obtaining the delays of single
packet occurrences, we estimated the contributions of individ-
ual delays in the cumulative delay of all 4 packets.

The results are presented in Figure 12. It is visible that read
and write request packets are almost overlapping. Furthermore,
both packets share the same path and only differ in the packet
size. The same is also true for both response packets. Thus,
the first conclusion is that the packet size almost does not have
any influence on the delay. Additionally, responses have signif-
icantly higher delays than the requests, each averaging at 27%
of the total cumulative delay. Requests consume less, around
23% each. The explanation for this surprising conclusion is that
XY routing experiences problems with memory responses [1].
Specifically, each response packet is injected into the NoC
either in the topmost row or in the bottommost. Firstly, a packet
traverses on the x-axis. However, all other responses also do
the same. This can cause large amount of contention within
the topmost and the bottommost row. The effects in Figure 12
are substantially mitigated, due to the existence of per-priority
virtual channels which prevent indirect interferences. However,
in scenarios with a single virtual channel, this can cause more
significant impacts on delays of response packets, thus further
motivating the research in the area of routing mechanisms. We
also see this topic as a potential future work.

Experiment 4: Computation-intensive applications

In this experiment we investigated the applicability of the
proposed methods to computation-intensive applications. For

each such application we varied the number of memory oper-
ations and the minimum inter-arrival period. Consequently, we
performed the per-packet and the full per-pattern analysis, and
compared the obtained values. The computation was repeated
for 1000 application-sets.

The results are depicted in Figure 13. It is visible that the
per-packet analysis renders tighter estimates for applications
with few memory operations and long periods. As the number
of operations increases, the improvements over the full per-
pattern analysis decline. Additional increase favours the full
per-pattern analysis, which outperforms the per-packet analysis
on the rest of the domain. Similar trends apply to minimum
inter-arrival periods of applications, where any decrease also
decreases the benefits of the per-packet analysis.

Experiment 5: Memory-intensive applications

It is obvious that the full per-pattern analysis is the most
suitable method for memory-intensive applications, thus that
aspect is not investigated. In this experiment we again focus
on the distribution of memory accesses across memory con-
trollers. Experiment 2 demonstrated the positive and negative
sides of having the data of each application fetched from a sin-
gle memory controller. However, in some cases an application
has to be mapped on a platform which already has an existing
application-set. In such cases, dedicating only one memory
controller to it might be a good decision from the perspective
of that application, but might have a negative impact on the
already existing workload (as shown in Experiment 2). Thus,
in order to minimise the effects of the new application on
the existing system it might be more beneficial to distribute
its memory accesses across multiple memory controllers. Mo-
tivated by this reasoning, in this experiment we quantified
the individual, per-application overheads of having its mem-
ory content fetched from multiple memory controllers. For
each memory-intensive application we varied the priority and
performed the full per-pattern analysis assuming its memory
operations are equally spread across: (i) only one controller, (ii)
two controllers, (iii) three controllers and (iv) four controllers.
Consequently, we estimated the penalty of accessing multiple
controllers, when compared to the schemes where only one
controller is accessed. The experiment was repeated for all
1000 application-sets.

Figure 14 shows the penalty of having the data fetched
from multiple memory controllers. Surprisingly, the priority
has a very small impact on the results. For higher priorities
(smaller numbers), applications suffer fewer contentions, thus
the penalty of accessing multiple controllers is predominantly
composed of increased traversal distances. As priority de-
creases, schemes with multiple controllers suffer the interfer-
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ence, due to the spread traffic across the grid. Oppositely,
scenarios with single controller accesses consume less NoC
infrastructure, and in many cases still manage to avoid the
interference. This causes the increase in the penalty. Around
the priority level 10, the interference becomes predominant, re-
sulting in significant delays even for single controller accessing
schemes, thus a slight drop in the penalty is visible. Finally, the
penalty stays constant on the rest of the domain. As is visible,
the same trends apply for all scenarios involving accesses
to multiple controllers. Moreover, the results suggest that
the distribution of application’s data accesses among multiple
controllers is very ”expensive”. Thus, one of the strategies
when adding new application might be to distribute its accesses
among as much different memory controllers as possible, such
that its temporal constraints are still fulfilled. In this way the
impact on the existing system would be minimised. This falls
into the domain of application mapping, which is also a very
investigated area and promising for the future work.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we elaborate on a Limited Migrative Model,
which is a promising approach towards integrating many-core
platforms into the real-time embedded domain. Assuming such
model, we propose two methods to obtain the upper-bound
estimates on the worst-case memory traffic delays of indi-
vidual applications. Through experiments we investigated the
applicability of the proposed methods to specific application
types, and also drew practical conclusions regarding routing
policies and a distribution of memory accesses across memory
controllers. The future work was already mentioned, we aim
to investigate (i) different routing policies, (ii) memory access
distribution strategies and (iii) application mapping strategies.
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