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Abstract 

Multicore platforms share the hardware resources such as caches, interconnects, and main memory among all 

the cores. Due to such sharing, tasks running on different cores compete to access these shared resources which 

increases the execution times of those tasks in a non-deterministic manner. This is problematic for systems that 
run applications with stringent timing requirements. To address this issue, we propose a holistic analysis to bound 

the maximum inter-core contention that can be suffered by tasks from tasks running on other cores. 
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I. INTRODUCTION

Commercial-off-the-shelf (COTS) multicore processors

have become a preferable choice for modern systems to

meet the increasing functionalities and computational demand

of modern applications. However, the adoption of multicore

platforms in hard real-time systems, i.e., systems that run

applications with stringent timing requirements, is still under

scrutiny. The main challenge that hinders the use of COTS

multicore platforms in hard real-time systems is their unpre-

dictability, which originates from the sharing of different hard-

ware resources. A task executing on one core of a multicore

platform has to compete with other co-running tasks (running

on other cores) to access hardware resources such as the last-

level cache (LLC), the interconnect (e.g., memory bus), and the

main memory. This competition leads to inter-core contention

which can significantly impact the Worst-Case Execution Time

(WCET) and Worst-Case Response Time (WCRT) of tasks.

Considering the impact of shared resource contention on

the WCET/WCRT of tasks, several works have been proposed

in the literature that focus on analyzing cache contention

(see [8]), memory bus contention (see Sections 2.2 and 4.1

of [12]) and main memory contention (see Section 4.2 of [12]).

However, most of these works mainly focus on only one

shared resource and make assumptions about the behavior

of other resources that can lead to sometimes optimistic,

sometimes pessimistic WCET/WCRT bounds. For example,

most works that focus on analyzing bus/memory contention

assume that each job of each task that executes during a

given time interval will always have the worst-case memory

access demand, i.e., the maximum number of main memory

accesses issued during the execution of one job of a task in

isolation. However, this assumption can be quite pessimistic

since the LLC should allow for data re-use and thus reduce the

overall number of accesses to main memory [13]. Similarly,

works that focus on cache contention [14] assume a constant
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FEDER-045912 (FLOYD), financed in the scope of the CMU Portugal, by
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service time for each access to the memory bus and the

main memory. This assumption can result in pessimistic or

optimistic results if all factors that can affect the service time,

e.g., bus arbitration policy, number and type of competing

requests, memory controller behavior, etc., are not considered.

In multicore platforms, when a task executing on one core

needs code/data, it first checks the local cache or LLC. If the

requested code/data is not available in the cache, i.e., cache

miss, a memory bus request is initiated. Depending on the

arbitration policy at the memory bus, the code/data request will

then be forwarded to the memory controller, which then serves

the request from the main memory depending on its type, i.e.,

read or write, and the memory arbitration policy. As a con-

sequence of this hierarchy of shared resources, the inter-core

contention caused by each shared resource is interdependent.

For example, the inter-core bus contention depends on the

number of bus requests issued by tasks, which in turn depends

on the number of cache misses. Similarly, the main memory

contention suffered by tasks can be directly influenced by the

number of cache misses, bus arbitration policy and the type

of memory request. This highlights the importance to analyze

the inter-core contention at each shared resource considering

their interdependence on other shared resources. Few existing

works [9], [14] have already considered the interdependence

between shared resources when analyzing multicore systems.

[9] proposed a multicore response time analysis framework

that analyzes contention due to caches, memory bus and the

main memory. However, the main focus of [9] is the memory

bus, and the models considered for cache and main memory

are coarse-grained. Similarly, [14] considers a relatively fine-

grained cache and memory bus model, but abstracts the main

memory contention by assuming a constant service time for

each memory request.

This work follows the footsteps of [9], [14] by providing a

holistic approach to multicore WCRT analysis (see Figure 1

for a high-level overview) but uses a fine-grained analysis to

bound the inter-core contention at the LLC, memory bus and

the main memory. We start by considering a more predictable

task execution model, i.e., the 3-phase task model (see Sec-

tion II for details), in comparison to the generic task model

considered by [9], [14]. We then model the cache behavior of

tasks to bound the worst-case number of LLC misses of tasks.

The bus contention analysis uses the LLC misses as input and

computes the maximum bus contention of tasks considering

the arbitration policy at the bus and the type of LLC misses,
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Fig. 1: Holistic WCRT Analysis

i.e., read/write. The memory contention analysis also uses LLC

misses as input, however, it also considers the underlying

arbitration policy used by the memory controller to bound

memory contention. Finally, the WCRT of tasks is computed

by considering contention at all the shared resources. This

WiP mainly focuses on deriving tighter bounds on the number

of bus/memory requests generated during the execution of 3-

phase tasks. A quick discussion on how those bounds can be

integrated into a holistic analysis is provided in Sections IV

and V. The actual integration is left as future work.

II. SYSTEM MODEL

We assume a multicore system with m identical cores, i.e.,

π1, π2, . . . , πm. All cores share the Last-Level Cache (LLC),

the memory bus, and the main memory. The LLC is assumed

to be partitioned among cores such that each core has a

non-overlapping cache partition. We assume that the cache

partition of each core is sufficiently large to store the code

and data of the task with the largest memory footprint among

all tasks assigned to that core. The cache employs a write-

back policy and the memory bus arbitration policy is round-

robin. Similarly to [2], [4], [7], [10], we assume that the main

memory is a DRAM which is composed of several ranks. Each

rank consists of multiple banks and each bank contains rows

and columns to store the data/code. The per-bank scheduling

policy is First-Ready First-Come-First-Serve (FR-FCFS) and

the inter-bank scheduling policy is round-robin.

Task Model: In the considered 3-phase task model [3], the

execution of each task is divided into three phases: Acquisition

(A), Execution (E), and Restitution (R). During the A-phase,

the task prefetches the required code/data from the main

memory via the memory bus and stores it in a cache partition.

In the E-phase, the core executes the task by using the data

already available in its cache partition without accessing the

bus/main memory. Finally, during the R-phase, the task write-

back the modified data/code to the main memory. Note that

the task accesses the bus and main memory only during the

A- and R-phases (also called the memory phases). There is no

access to the bus or the main memory during the E-phase.

We consider a task set Γ comprising n sporadic tasks

partitioned among cores at design time. Each task τi is charac-

terized by Ti, i.e., the minimum inter-arrival time between two

jobs of τi, Ci, i.e., the Worst-Case Execution Time (WCET)

of τi in isolation, and Di, i.e., the relative deadline of τi.

We assume fixed-priority non-preemptive scheduling with task

priorities assigned using any fixed task priority algorithm

such as Rate/Deadline monotonic. The maximum number of

main memory accesses that can be generated during the A-

phase (resp. R-phase) of a task τi is termed as its worst-

case memory access demand and is denoted by MDA
i (resp.

MDR
i ). Similarly, the WCET of the E-phase is denoted by Ei.

The values of MDA
i , MDR

i , and Ei can be computed using

static and/or measurement based techniques. For notational

convenience, we define the sets of tasks: hep(i), hp(i), and

lp(i) as those containing the tasks with priorities higher or

equal, higher, and lower than that of τi, respectively. For

clarity, throughout the document, we refer to the core on which

task τi (i.e., the task under analysis) executes as the local core,

denoted by πl. Any core other than the local core is referred

to as a remote core, usually denoted by πr.

III. CACHE ANALYSIS

For a task τi scheduled using fixed-priority non-preemptive

scheduling, the WCRT is observed during the longest level-i

busy window [1]. Formally, the level-i busy window is defined

as [11] "a time interval (a, b) in which the pending workload

of tasks with priorities higher than or equal to that of task τi
is positive for all t ∈ (a, b) and 0 at the boundaries a and b".

In this section, we present the cache analysis to bound the

maximum number of bus/main memory accesses (i.e., LLC

misses) that can be generated during the A-phases and R-

phases of the tasks executed in a level-i busy window (remem-

ber there is no main memory access during the E-phases).

Most of the existing works [2], [6] that analyze the bus/main

memory contention for the 3-phase task model assume that the

bus/main memory accesses generated during the A-phase and

the R-phase of every job of each task τi is equal to MDA
i and

MDR
i , respectively. This implies that, whenever it executes

a new job, a task must load all its Evicting Cache Blocks

(ECBs), i.e., "the set of all memory blocks that a task τi can

use during its execution" [8]. This assumption is pessimistic

as there can be some ECBs that will not be evicted from the

caches between the execution of two jobs. Consequently, the

number of ECBs to be loaded from the main memory by the

subsequent jobs of the same task can be less than its worst-case

memory access demand. This issue can be addressed using the

concept of Persistent Cache Blocks (PCBs) [13], i.e., "memory

blocks that once loaded in the cache by the task, will never

be evicted or invalidated by the task itself ". This implies that

if one job of a task has loaded all its PCBs, the maximum

number of bus/main memory accesses that can be generated

during the subsequent jobs of the task when it executes in

isolation can be less than its worst-case memory demand. This

memory demand is known as the Residual Memory Demand

and is defined as [13] "the worst-case memory access demand

of any job of a task when assuming all its PCBs are already

loaded in the cache". The residual memory demand is defined

for a task executing in isolation. However, a task τi will likely

have to share the core on which it executes with other tasks.

Consequently, the PCBs that were loaded by one job of τi can

be evicted by those other tasks. This phenomenon is known as

Cache Persistence Reload Overhead (CPRO) [13], i.e., "the

overhead suffered by a task τh during the response time of

another task τi executing on the same core due to evictions of

its PCBs by tasks in hep(i) \ τh".

Even though the concept of cache persistence was initially

proposed for the generic task model, the 3-phase tasks can
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also use it to tightly bound the number of bus/main memory

accesses that can be generated during the memory phases.

A. Upper Bounding Memory Accesses by the Local Core

To upper bound the maximum number of bus/main memory

accesses generated by all the tasks that execute on the local

core πl during the level-i busy window Wi,l, we first need to

bound the maximum number of bus/main memory accesses

during the A- and R-phases of those tasks.

The total number of bus/main memory accesses that can be

generated during the A-phases of all the jobs of task τi when

it executes in isolation during any time interval of length Wi,l

is given by the following equation.

|PCBi|+M̄D
A
i + (

⌈

Wi,l

Ti

⌉

− 1)× M̄D
A
i (1)

where PCBi is the set of PCBs of task τi and M̄D
A

i is the

residual memory demand of the A-phase of task τi.

Proof sketch: τi releases at most
⌈

Wi,l

Ti

⌉

jobs in the level-i

busy window of length Wi,l, and the A-phase of the first job of

τi must load all its ECBs, i.e., |PCBi|+M̄D
A

i . Furthermore,

by definition of the residual memory demand M̄D
A

i , the

subsequent jobs of τi can make at most (
⌈

Wi,l

Ti

⌉

−1)×M̄D
A

i

bus/memory accesses. Thus, Equation 1 bounds the maximum

number of bus/memory accesses generated during all the A-

phases of task τi when it executes in isolation during Wi,l.

As discussed earlier, other tasks that can execute on the

same core as τi can evict the PCBs of τi. Thus, we also need

to account for the maximum CPRO that can be suffered by

task τi, when computing its memory accesses.

The maximum CPRO that can be suffered by the A-phase of

one job of task τi is upper bounded by the following equation

(See Theorem 1 of [13] for a formal proof)

ρi = PCBi ∩

(

⋃

∀τh∈hep(i)\τi

ECBh

)

(2)

where PCBi is the set of PCBs of task τi, and
⋃

∀τh∈hep(i)\τi
ECBh is the set union of the ECBs of all tasks

in hep(i) \ τi that can potentially evict the PCBs of τi.

The key insight for Equation 2 is that a task τh ∈ hep(i)
can only evict the PCBs of task τi if the ECBs of τh shares

the same cache lines as the PCBs of τi.

Note that a lower priority task cannot evict the PCBs of τi as

it can only execute at the start of the level-i busy window.

Lemma 1. The maximum number of bus/main memory ac-

cesses that can be generated during all the A-phases of all

the jobs released by task τi during any time window of length

Wi,l is denoted by ˆMDA
i (Wi,l), where

ˆMDA
i (Wi,l) = min

(

⌈

Wi,l

Ti

⌉

×MDA
i ,

|PCBi|+M̄D
A
i + (

⌈

Wi,l

Ti

⌉

− 1)× (M̄D
A
i + |ρi|)

)

(3)

Proof. From Equation 1, we know that |PCBi|+M̄D
A

i +

(
⌈

Wi,l

Ti

⌉

− 1)× M̄D
A

i upper bounds the maximum number of

bus/main memory accesses generated during the A-phases of

τi during Wi,l when it executes in isolation. From Equation 2,

we know that ρi bounds the maximum CPRO that can be

suffered by the A-phase of one job of τi. In the worst-case, the

CPRO can be suffered by the A-phases of all the jobs except

the A-phase of the first job of τi (as it loads all its ECBs)

that execute during Wi,l. Consequently, (
⌈

Wi,l

Ti

⌉

− 1) × |ρi|

bounds the maximum CPRO that can be suffered by task τi
during Wi,l. Finally, by definition of MDA

i , the maximum

number of bus/main memory accesses that can be generated

during the A-phases of
⌈

Wi,l

Ti

⌉

jobs of τi cannot be greater than
⌈

Wi,l

Ti

⌉

×MDA
i . Thus, Equation 3 upper bounds the maximum

number of bus/main memory accesses that can be generated

during all the A-phases of all jobs of task τi during Wi,l.

Using Lemma 1, the maximum number of bus/main memory

accesses that can be generated during all the A-phases of all

the tasks that can execute on the local core πl during any time

window of length Wi,l is given by αA
i,l(Wi,l), where

αA
i,l(Wi,l) = max

∀τj∈lp(i)
{MDA

j }+
∑

∀τh∈hep(i)

ˆMDA
h
(Wi,l) (4)

Proof sketch: In Equation 4, max
∀τj∈lp(i)

{MDA
j } upper bounds

the bus/memory requests generated during the A-phase of one

job of a lower priority task that can execute at the start of

a level-i busy window. Furthermore, by applying Lemma 1

to each task τh ∈ hep(i), the maximum number of bus/main

memory requests generated during the A-phases of all the tasks

in hep(i) during Wi,l is given by
∑

∀τh∈hep(i)
ˆMDA

h (Wi,l).
Therefore, Equation 4 upper bounds the maximum number of

bus/main memory accesses that can be generated during all

the A-phases of all tasks that can execute during Wi,l.

Having bounded the number of bus/main memory accesses

that can be generated during the A-phases, we can use a similar

approach to bound the number of bus/main memory accesses

during the R-phases of tasks. However, we know that in the

3-phase task model, an E-phase always precedes an R-phase.

So, all cache lines that are dirty at the end of the E-phase

of a task, will be written-back (and invalidated) during the

R-phase. Therefore, all such cache lines can not hold PCBs.

Consequently, the memory access demand of an R-phase of

a task will only account for write-backs due to non-persistent

memory blocks and is given by MDR
i . Building upon this,

the maximum number of bus/main memory accesses that can

be generated during the R-phases of all tasks executing on the

local core during Wi,l is upper bounded by

αR
i,l(Wi,l) = max

∀τj∈lp(i)
{MDR

j }+
∑

∀τh∈hep(i)

⌈

Wi,l

Th

⌉

×MDR
h (5)

where
∑

∀τh∈hep(i)

⌈

Wi,l

Th

⌉

× MDR
h bounds the maximum

number of bus/main memory requests issued by the R-phases

of all the tasks in hep(i) during Wi,l; and max
∀τj∈lp(i)

{MDR
j }

bounds the maximum number of bus/main memory requests

generated by the R-phase of one job of a lower priority task.
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B. Upper Bounding Memory Accesses by the Remote Core

As discussed in Section III-A, the maximum number of

bus/main memory accesses of tasks depends on the PCBs,

residual memory demand and CPRO. The notion of PCBs and

residual memory demand can be applied to the tasks running

on the remote core identically to the tasks of the local core

(using Equation 1). However, the upper bound on the CPRO

given by Equation 2 does not hold for a task that executes

on the remote core because unlike the local core, we cannot

estimate the set of tasks that execute on a remote core during

any time interval of length Wi,l. Considering this, a task that

executes on the remote core can suffer the CPRO from any task

that can execute on that remote core. Therefore, the maximum

CPRO that can be suffered by the A-phase of one job of task

τu that executes on a remote core πr is given by ρ̄u, where

ρ̄u = PCBu ∩

(

⋃

∀τk∈Γr\τu

ECBk

)

(6)

where Γr is the set of all tasks running on a remote core πr,

PCBu is the set of PCBs of task τu, and
⋃

∀τk∈Γr\τu
ECBk

is the set union of all ECBs of all tasks in Γr except τu.

The maximum number of bus/main memory accesses that can

be generated during all the A-phases of a task τu running on a

remote core πr during Wi,l is given by the following lemma.

Lemma 2. The maximum number of bus/main memory ac-

cesses that can be generated during all the A-phases of all

the jobs of a task τu running on the remote core πr during

any time window of length Wi,l is given by ˆMDA
u (Wi,l) where

ˆMDA
u (Wi,l) = min

(

⌈

Wi,l

Tu

⌉

×MDA
u ,

|PCBu|+M̄D
A
u + (

⌈

Wi,l

Tu

⌉

− 1)× (M̄D
A
u + |ρ̄u|)

)

(7)

Proof. The proof directly follows from Lemma 1 except that

the computation of ρ̄u is given by Equation 6.

Applying Lemma 2 to all tasks of the remote core, the

maximum number of bus/main memory accesses that can be

generated during all the A-phases of all tasks released on the

remote core πr during any time window of length Wi,l is upper

bounded by βA
i,r(Wi,l) =

∑

∀τu∈Γr
ˆMDA

u (Wi,l).
Finally, we can compute the maximum number of bus/main

memory accesses generated during the R-phases of all tasks

running on the remote core πr assuming that all non-persistent

cache blocks will be written-back and invalidated during the

R-phase is given by βR
i,r(Wi,l) =

∑

∀τu∈Γr

⌈

Wi,l

Tu

⌉

×MDR
u .

IV. BUS CONTENTION ANALYSIS

The existing works [5], [6] that analyze the bus contention

for the 3-phase task model does not consider cache persistence

and assume the maximum number of bus requests issued by

all the A/R-phases of tasks. Furthermore, they assume the

maximum service time for each request and do not take into

account the type of request, i.e., read/write. To mitigate this

pessimism, we will use the persistence-aware cache analysis

presented in Section III to tightly upper bound the number of

bus requests and will model the memory bus at a fine-grained

level by considering the bus transaction time to serve the read

and write requests. The main insight is that a read request may

incur two bus transactions, i.e., 1) incoming read request from

the core to the main memory; and 2) outgoing read response

from the main memory to the core, whereas the write request

only incurs one bus transaction, i.e., write request from the

core to the memory. The bus contention can then be computed

by considering the number of bus transactions, service time for

each bus transaction, bus arbitration policy, etc.

V. MAIN MEMORY CONTENTION ANALYSIS

The existing work [2] that analyzes the main memory

contention for the 3-phase task model does not consider the

cache persistence and assumes the worst-case memory access

demand for each memory phase. Furthermore, it is tailored

for a specific architecture that: 1) facilitates point-to-point

connection between cores and memory; and 2) employs write-

batching, i.e., memory controller prioritize read requests over

write requests. To address these open issues, we will bound

the main memory contention by incorporating the persistence-

aware cache analysis and by considering different possible

configurations of the memory controller, e.g., with/without

write-batching, and its impact on the main memory contention.

VI. CONCLUSION

This work presents the idea for a holistic WCRT analysis

for the 3-phase task model by considering the inter-core con-

tention at shared resources such as caches, memory bus, and

main memory. We show how the notion of cache persistence

can be used to tightly bound the number of bus/main memory

accesses of 3-phase tasks. We will be using these results to

compute bus/main memory contention in our future work.
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