

Using Quicktrace to collect runtime execution
traces easily and automatically

Conference Paper

CISTER-TR-151208

Vincent Nelis

Luís Miguel Pinho

Conference Paper CISTER-TR-151208 Using Quicktrace to collect runtime execution traces easily ...

© CISTER Research Center
www.cister.isep.ipp.pt

1

Using Quicktrace to collect runtime execution traces easily and automatically

Vincent Nelis, Luís Miguel Pinho

CISTER Research Center

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail:

http://www.cister.isep.ipp.pt

Abstract

Using Quicktrace to collect runtime execution traces

easily and automatically

Vincent Nelis

CISTER/INESC-TEC, ISEP

Porto, Portugal

Email: nelis@isep.ipp.pt

Luı́s Miguel Pinho

CISTER/INESC-TEC, ISEP

Porto, Portugal

Email: lmp@isep.ipp.pt

In many application domains, it is an elementary step in

the design of a software, typically before its deployment,

to exercise parts of its functionality by running some of its

code on the target platform and collect informations about

its runtime behaviour. Those informations may be used for

debugging purpose or to assess the responsiveness of the

application for example.

Taking measurements and collecting runtime data and is

typically a tedious process that comprises many smaller but

more specific tasks such as, e.g. (1) upload the source code to

be tested on the target device, (2) compile the code remotely,

(3) parametrize the device and set up the execution conditions,

(4) run the compiled program to be analysed, (5) download

the collected information (called traces hereafter), (6) process

and analyse those traces, and (7) display the results of the

analysis. Those are just a few example steps that are typically

found as part of a testing process.

Besides the tremendous time that it takes to execute all these

subtasks, it is also very difficult to automatize the whole pro-

cess, mostly because all those steps are generally implemented

using different programming languages. For example it is not

uncommon that all the remote operations such as compiling,

linking, and running the program to be analysed are basic

shell scripts run on the target device through SSH, whereas

the scripts used to analyse and display the traces are typically

written in Matlab, R, or any human-friendly language capable

of generating nice-looking plots. As a result, each time new

measurements are needed it is required to manually re-execute

the whole chain of subtasks, which may be very tedious, error-

prone, and time-consuming.

This paper introduces and show-cases our new and in-

novative tool called “Quicktrace”. Quicktrace has been de-

veloped in the scope of the Eurpoean FP7 STREP project

P-SOCRATES1 to ease the process of collecting runtime

execution traces. However, the tool can be used for many other

purposes as it offers a generic interface to easily implement,

connect, and run together a set of scripts. Those scripts may be

written in different programming languages and yet they can

share common variables. Quicktrace is based on three main

concepts: commands, actions, and variables.

1The P-SOCRATES Consortium, P-SOCRATES (Parallel Software Frame-
work for Time-Critical Many-core Systems): http://p-socrates.eu

1) The commands are the basic blocks of the tool. A

command is defined in a specific programming language and

has a pre-defined type. A command is typically a small script

that is used to perform a very specific task and its type

describes how it must be executed. For example, one can

define the commands “Upload the source code to the testing

device” or “Compile the code remotely”. The former is of

type “SFTP – Put” and its code lists the files to be uploaded

(following a pre-defined syntax), whereas the latter can be a

Shell script of type “SSH - Remote command[s]”. The current

version of the tool supports scripts written in R as well as in

any shell script supported by the machine running the script.

The next version will provide support for running scripts

written in python and matlab. Files can be sent and received

through SSH or SFTP and Shell scripts can be executed

remotely through SSH. Figure 2 shows the “Commands” panel

of the tool.

2) The Variables are defined by the user. They are simply

characterised by a name, a type, and a value. Before a

command is executed, Quicktrace performs a simple “search

and replace” on the code of the command to replace every

reference to a variable with its value. Therefore, variables

can be used and accessed by every command, irrespective

of its programming language, simply by referring to it as

“@{variable name}” in the command’s code. Figure 1 shows

the “Variables” panel of the tool.

3) The Actions are the mean to connect the commands

together. They are defined by a set of commands and exe-

cuting an action simply runs all its commands in the order

defined by the user. Note that Quicktrace also provides special

control-flow commands that allow to implement loops and if-

statements. Those control-flow commands are kept relatively

simple as the ambition of the tool is (for now) not to design

a new programming language. Figure 3 shows the “Actions”

panel of the tool.

ACKNOWLEDGEMENT

This work was partially supported by National Funds through FCT/MEC

(Portuguese Foundation for Science and Technology) and co-financed by

ERDF (European Regional Development Fund) under the PT2020 Partnership,

within project UID/CEC/04234/2013 (CISTER Research Centre); also by the

European Union under the Seventh Framework Programme (FP7/2007-2013),

grant agreement n◦ 611016 (P-SOCRATES).

Fig. 1. In the “Variables” panel, the user can define all the variables that will then be shared by all the commands, irrespective of their programming language.
Note that variables can be used within variables to allow for more flexibility.

Fig. 2. In the “Commands” panel, the user defines all the basic blocks/subtasks that will later be assembled to compose an action.

Fig. 3. In the “Actions” panel, the user defines new actions, the set of commands that compose them, and how they are sequenced within each action.

