7~ SN~ 1

IPP HURRAY!

‘ y 4
www.hurrav.pt /

Technical Report

Uniprocessor EDF Scheduling with Mode
Change

Bjorn Andersson

HURRAY-TR-081001
Version: O
Date: 10-01-2008

Technical Report HURRAY-TR-081001 Uniprocessor EDF Scheduling with Mode Change

Uniprocessor EDF Scheduling with Mode Change

Bjorn Andersson

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. Anténio Bernardino de Almeida, 431
4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509
E-mail: bandersson@dei.isep.ipp.pt

http://www.hurray.isep.ipp.pt

Abstract

Consider the problem of scheduling sporadically-arriving tasks with implicit deadlines using Earliest-Deadline-First
(EDF) on a single processor. The system may undergo changes in its operational modes and therefore the characteristics
of the task set may change at run-time. We consider a well-established previously published mode-change protocol by
Sha et al. and we show that if every mode utilizes at most 50% of the processing capacity then all deadlines are met. We
also show that there exists a task set that misses a deadline although the utilization exceeds 50% by just an arbitrarily
small amount. Finally, we present, for a relevant special case, an exact schedulability test for EDF with mode change.

© IPP Hurray! Research Group 1
www.hurray.isep.ipp.pt

Uniprocessor EDF Scheduling with Mode
Change

Bjorn Andersson

IPP Hurray Research Group,
Polytechnic Institute of Porto, Portugal

Abstract. Consider the problem of scheduling sporadically-arriving tasks
with implicit deadlines using Earliest-Deadline-First (EDF) on a single
processor. The system may undergo changes in its operational modes
and therefore the characteristics of the task set may change at run-time.
We consider a well-established previously published mode-change proto-
col by Sha et al. and we show that if every mode utilizes at most 50%
of the processing capacity then all deadlines are met. We also show that
there exists a task set that misses a deadline although the utilization
exceeds 50% by just an arbitrarily small amount. Finally, we present, for
a relevant special case, an exact schedulability test for EDF with mode
change.

1 Introduction

Many real-time systems need to reconfigure themselves during operation and
thereby change the characteristics of their tasks. There are four common rea-
sons for the need to reconfigure. First, a distributed computer system may suffer
from a permanent fault in one of its computer nodes and as a result it is nec-
essary that the software system reconfigures itself (to use less resources) on the
non-faulty computer nodes in order to run the software tasks that were residing
on the computer node that suffered from a fault. For example, algorithms that
perform feedback control of physical objects can often be implemented in dif-
ferent ways with some implementations offering high performance (for example
low error in the measured variable) at the cost of a long execution time whereas
other implementations offer less performance but with a smaller execution time.
The second reason for the need to reconfigure is that the physical operating
environment is changed. For example, the software that needs to execute when
an aircraft is taking off is not the same as the software needed when the air-
craft is flying at high altitude. The third reason for the need to configure is
that the computer system offers service to many users/objects and the number
of users/objects varies at run-time. For example, consider a computer system
for tracking objects, such as aircrafts and helicopters [1]. When the number of
objects increases, it may not be possible to perform tracking with the highest
accuracy for all tasks and hence the software must reconfigure to use a lower ac-
curacy for some of its tracking tasks. The fourth reason for the need to configure
is that the software system must be updated during operation.

Reconfiguration requires that decisions are taken on (i) which configuration
should be used and (ii) once a configuration has been selected, how to transition
the software to this new configuration. The former is application-dependent and
therefore resulted in a large number of studies (see for example [1-4]). The
latter involves the problem of ensuring that all computer nodes agree on the
new configuration and ensuring that software in the new configuration does
not misinterpret data structures that were written to in the old configuration.
These issues are application dependent as well. Another issue is that the software
in the old configuration as well as the new configuration may be proven to
meet deadlines if run in isolation but the reconfiguration may cause software
tasks to arrive in a pattern which was not analyzed in each of the individual
configurations and hence a deadline can be missed. It is therefore crucial to
(i) design a protocol (called a mode-change protocol) that prescribes how tasks
are allowed to arrive during the reconfiguration and (ii) design a method (a
schedulability test) for proving that deadlines are met during the reconfiguration.
This is often called the mode-change problem.

The research literature offers solutions to the mode-change problem. Tradi-
tionally, mode changes in table-driven time-triggered systems were performed
by letting all tasks switch to a new mode in the beginning of the table. This ap-
proach is simple to understand, implement and it does not constrain the schedu-
lability of the system. But unfortunately, it may take a long time from when
a request is made to switch the task set to a new mode until all tasks have
switched to the new mode. For event-triggered systems, it has been found for
static-priority scheduling that switching to the new mode when a processor be-
comes idle does not jeopardize the timeliness guarantees proven for the respective
configuration [5]. But it has the same drawback as the mode-change approach
for table-driven time triggered systems; it may take a long time to perform the
mode change. A mode-change protocol which allows a much faster mode change
has been proposed [6] by Sha et al.; when a mode change request occurs, the
currently released job of a task continues to execute according to its old configu-
ration but the future released jobs will be given parameters (execution time and
minimum inter-arrival time) by the new configuration. A correct schedulability
analysis for this mode change protocol was later proposed as well [7] but only for
static-priority scheduling. In fact, the research literature offers no mode-change
protocol and corresponding schedulability analysis for a processor scheduled by
the algorithm Earliest-Deadline-First (EDF) [8]. This is unfortunate because
EDF is capable of scheduling workloads that static-priority scheduling is unable
to schedule [8].

Therefore, in this paper, we present a new solution to the mode change prob-
lem. We use the previously known, and well established, mode-change protocol
designed by Sha et al. [6]. But we use EDF and we present a schedulability
analysis for EDF with mode changes. The schedulability analysis is simple; if
the utilization of every mode is at most 50% then all deadlines are met. We also
show that there exists a task set that misses a deadline although the utiliza-

The system is in steady state The system is in steady state The system is in steady state
and all tasks are and all tasks are and all tasks are
in the mode mode’ in the mode mode’ in the mode mode’

N E R R

: : : : © time
0 100 300 400

r{1]1=0 1[2]=100 r{31=300
newmode[1=mode’ newmode[2]=mode’ newmode[3]=mode’
Fig.1. An example of a task set 7 = {71,772} and mode set modes =

{mode*, mode? mode®} and how the task set 7 undergoes mode changes. During the
time interval [0,100), all tasks are in mode®. During the time interval [165,300), all
tasks are in mode'. During the time interval [325,400), all tasks are in mode?. The
vertical lines with arrows pointing upwards show the arrivals of tasks. In this partic-
ular example, tasks arrive as frequently as possible given by their specified minimum
inter-arrival times. The minimum inter-arrival time of task 7o is different in different
modes; in mode® it is 50, whereas in mode® it is 20 and in mode? it is 30. It can be
seen that although a mode change is requested at time 100, task 7 has to wait until
time 130 until it changes to mode® and 71 has to wait until time 165 until it switches
to mode'. It can also be seen that although 7 changes its modes, in this particular
example, the minimum inter-arrival time of 71 remains the same in all modes.

tion exceeds 50% by just an arbitrarily small amount. Finally, we present, for a
relevant special case, an exact schedulability test for EDF with mode change.

The remainder of this paper is organized as follows. Section 2 gives the system
model. Section 3 presents the utilization bound (50%) and shows that the bound
derived is tight. Section 4 presents a new schedulability test. Section 5 gives
conclusions.

2 System model

Figure 1 illustrates concepts that we use. Consider a task set 7 = {7y, 72, 73,...}
and a mode set modes = {mode', mode?, mode?, .. .}. Also, consider a sequence
of times of transition requests < tr[1],¢r[2],tr[3],... > and corresponding new
modes < newmode[l], newmode[2], newmode[3], ... > where each of those modes
are in the set modes. These two sequences have the interpretation that the
current mode of the task set 7 is requested to become newmode[j] at time tr[j].
We assume that the request of the transition of the task set to mode newmode][j]
at time tr[j] is unknown to the scheduling algorithm and mode change protocol
before time tr[j].

A task 7; generates a (potentially infinite) sequence of jobs. We consider the
sporadic model, that is, the time of the arrival of a job is unknown before the
job arrives and the arrival time of a job cannot be controlled by the scheduling
algorithm. A task 7; has a current mode at time ¢; this mode is one of the modes
in the set modes. A task 7; is characterized by the minimum inter-arrival time
of task 7; in mode k (denoted T}) and the execution time of task 7; in mode k
(denoted CF). The parameters T} and CF have the following interpretation. If
task 7; is in mode mode® at time t and s denotes the latest time not exceeding t
when task 7; has arrived then it holds that the next arrival of task 7; occurs at
time s + Tik or later. If task 7; is in mode mode® at time t and task 7; has never
arrived before time ¢ then it is possible for 7; to arrive at time ¢. Let us consider
a job of task 7; that arrives at time s and the job is in mode & at that time, time
5. Then the deadline of the job is s + DF. If the job performs CF time units of
execution by its deadline then we say that the job meets its deadline; otherwise
it misses its deadline. A task 7; is said to meet its deadlines if all of its jobs meet
their deadlines; otherwise the task 7; is said to miss a deadline. A task set 7 is
said to meet its deadlines if all tasks in 7 meet their deadlines otherwise we say
that the task set 7 misses a deadline. We assume the implicit deadline model,
that is, Vi, k : DF = TF.

We assume that preemptive Earliest-Deadline-First (EDF) scheduling is used
to schedule jobs on a single processor. It operates as follows. At time ¢, the
processor selects for execution the job with the earliest deadline among the tasks
for which both of the following conditions are true: (i) the arrival time of the job
is no later than time ¢ and (ii) the remaining execution time of the job at time
t is strictly greater than zero. If two or more jobs have the same deadline then
any of those jobs can be selected; the tie-breaking of priorities between jobs is
arbitrarily and this tie-breaking does not need to be consistent throughout time.

We say that the system is in steady state at time ¢ if it holds that all tasks
are in the same mode at time t. We say that the system is in transient state at
time ¢ if it is not in steady state at time t. We let latest_arrival(t, ;) denote the
maximum time such that (i) this time is no greater than ¢ and (ii) task 7; arrives
at time ¢. If task 7; has not yet arrived at time ¢, then latest_arrival(t, ;) is
undefined. Let us assume that the system has a variable pending_mode_changes,
a set which is initialized to the empty set when the system boots.

If the system is in steady state at time ¢ and all tasks are in mode k and
t is one of the elements in the sequence < tr[1],¢r[2],... >, say tr[j], then a
mode change protocol will switch the mode of the tasks from mode k to mode
newmodelj]. The tasks do not necessarily switch to the new mode immediately.
Figure 1 shows that although the tasks are required to switch to mode! at time
100, task 7 switches to mode mode! a little bit later, namely at time 130 simply
because it has to continue the execution of its current job before it can switch to
the new mode. The general rule for mode change when the system is in steady
state at time ¢ is as follows. If task 7; arrives at time ¢r[j] then task 7; switches
from mode k to newmode[j] immediately on its arrival; otherwise task 7; switches
from mode k to newmode[j] at time latest_arrival(t, ;) + TF.

The system is in steady state The system is in steady state and all The system is in steady state
and all tasks are tasks are in mode mode' for just one and all tasks are
in mode mode’ instant at time 165. in mode mode’
A
~ N
o it 4 4 4 4 4
w4 4 I e
H >
>
: time
0 100
tr[1]=0 tr[2]=100
newmode[]=mode’ newmode[2]=mode’

w[3]=110
newmode[3]=mode’

Fig. 2. An example showing the behavior of the system when a mode change is re-
quested to be performed when the system is in a transient state. The example differs
from the example in Figure 1 only in that a mode change is request at time 110 instead
of at time 300.

Figure 2 illustrates another scenario showing the behavior of the system when
a mode change is requested to be performed when the system is in a transient
state. The example differs from the example in Figure 1 only in that a mode
change is request at time 110 instead of at time 300.

The rule for the mode change protocol is as follows. If the system is in tran-
sient state at time t and the task set 7 is in mode k and t is one of the elements
in the sequence < tr[1],tr[2],... >, say tr[j], then no mode change is performed
when the system is in a transient state; instead the tuple (¢r[j], newmode[j])
becomes member of the set pending-mode_changes and then immediately when
the system enters steady state, the run-time system selects one (the application
developer can choose which one) of the tuples in pending-mode_changes (let us
say that (tr[g], newmode[q]) was selected) and then acts as if it was requested
that the system changes to mode newmodelg] at the time when the system
entered steady state. And then the set pending_mode_changes is assigned the
empty set. The reason for this behavior is that we do not want to perform a mode
change when the previously requested mode change has not yet been completed.

With this behavior in mind, let us revisit Figure 2. At time 100, it is requested
that the system switches to model. Task 75 has to wait until time 130 until
it can switch to mode! and task 7; has to wait until time 165 until it can
switch to mode'. But in the meantime, just a little bit later, it is requested
that the system switches to mode?. Therefore, the set pending_mode_changes
becomes {mode?}. At time 130, task 7o arrives again and hence switches to
mode mode'. But the system is still in transition state. At time 165, task 7
switches to mode! and then the system becomes in steady state. Immediately,
when the system becomes in steady state, at time 165, the mode change request
that were originally made at time 110 (because tr[3]=110) is requested now

(it is taken from pending mode_changes) and the system acts as if there was
a mode change request at time 165 with the new mode mode?. Then the set
pending_mode_changes becomes the empty set.

We assume that Vi, k : 0 < Cf < Tik and Cf and Tf are real numbers.
We also assume that task switching takes no time and a task needs no other
resources than the processor.

The assumptions stated so far in this section are based on previously pub-
lished work in the real-time literature [6, 7] with some clarification made but we
also use the sporadic model which is more general than the periodic model used
in [6,7].

3 The utilization bound of EDF with mode change

In proofs, we will find it useful to discuss an algorithm called Processor-Sharing
(PS). It operates as follows. Consider a time interval of duration ¢ > 0 and
assume that task 7; is in the mode k during the entire time interval. Then it
holds that 7; executes for (CF/TF) - € time units during the time interval of
duration e.

Lemma 1. Let current-modes(i,7) denote the set of modes of tasks in the task
set T at time t. It holds that ¥t : current_modes(i,) < 2.

Proof. The lemma follows from the fact we do not (as stated in Section 2) allow
a mode change when the system is in transient state.

Lemma 2. If Vmodes® € modes it holds that:

>

Tj;ET

oy

ki
J

N =
—
—
SN—

and PS is used to schedule tasks then all deadlines are met.
Proof. From Lemma 1 and Equation 1 it follows that P.S meets all deadlines.
Theorem 1. If Vmodes® € modes it holds that:

ct 1
S <3 @
Tf 2

T;ET
and EDF is used to schedule tasks then all deadlines are met.

Proof. Follows from Lemma 2 and the fact that EDF is an optimal scheduling
algorithm for a set of jobs [9]. (A scheduling algorithm is said to be optimal if
it meets deadlines when it is possible to do so.)

The utilization bound expressed by Theorem 1 is tight; Example 1 shows
that.

The system is in steady
state and all tasks are
in the mode mode’

: : : ; time
0 L L+172 L+1 2L+1
r[1]=0 tr[2]=L+1/2

newmode[1]=mode’ newmode[2]=mode’

Fig. 3. An example showing the deadlines can be missed although the utilization ex-
ceeds 50% by just an arbitrarily small amount.

Ezxample 1. The example is illustrated by Figure 3. Consider a task set 7 =
{71, 72} with minimum inter-arrival times given as:

TI=L T?=L+1
=L+1T2=1L

and execution times given as

Ct=L/2+2-L/)(L+1)C}=1
Ci=1 C3=L/2+2-L/(L+1)

where L is an integer > 4. It is easy to verify that:

(3)

hlw

I EDI EEE

TiET J TiET

Figure 3 shows the run-time behavior. Both tasks are in mode® at time zero
and both tasks release jobs at that time. At time L, the task 7 has arrived for
the second time and the execution time of this job is L/2+2 — L/(L 4+ 1) which
is greater than 2. And hence the processor will be busy during the time interval
[L,L + 2) and potentially longer. At time L + 1/2, the system is requested to
change to mode?; the processor is busy at this time. At time L+1, task 7 changes
from mode' to mode?. Task 7 must wait until it arrives again; therefore at time
2L + 1, task 71 changes from mode® to mode?. Let us calculate the amount of
execution that must be performed during the time interval [L + 1,2L + 1) in
order to meet deadlines. Clearly, 7o needs to execute 022 time units. 7, needs
to execute Cll — 1 time units. Therefore the two tasks 71 and 75 must execute

C% 4+ C] — 1 during the time interval [L 4+ 1,2L +1). That is, L/2+2 — L/(L +
1)+ L/242—L/(L+1)— 1 units of execution must be performed during a time
interval of duration L. Rewriting gives us that L +4 — 2L /(L + 1) time units of
execution must be performed during a time interval of duration L. Since L > 4,
this is impossible and hence a deadline is missed.

We can repeat this argument for every L > 4. Letting L — oo gives us that
there exists a task set that misses a deadline although the utilization exceeds
50% by just an arbitrarily small amount.

4 Schedulability analysis of EDF with mode change

Although the utilization bound expressed by Theorem 1 is tight, there are task
sets that can be scheduled with EDF under mode change although the utilization
of a mode exceeds 50%. It is therefore of interest to design a schedulability
analysis that can offer pre-run-time guarantees without checking the utilization.

The recurring task model [10] was developed to allow designers to model
tasks with many blocks of instructions and the block of instructions selected for
execution was depending on the outcome of an "if-statement”. The model can
be used for modeling task sets that undergo mode changes but only when the
minimum inter-arrival time of tasks do not change across mode changes. For
the case where minimum inter-arrival times are requested to be changed across
mode changes, we are forced to develop a new schedulability analysis. We will
study the special case where (i) [modes|=2 and (ii) T}},C}, T?,C? and tr[1] are
integers and arrivals occur only at times which are integers and (iii) only one
mode change request can occur during a busy interval. (A busy interval is an
interval such that the processor is busy during this interval and just before the
interval, the processor is idle and just after the interval, the processor is idle as
well.) We believe this limitation is reasonable for systems where reconfiguration is
performed not too often but when reconfiguration is required, the reconfiguration
must be completed quickly, for example reconfiguration after the occurrence of
a fault.

The notion of processor demand has played an important role in previous
work [11] on schedulability analysis for uniprocessor EDF; we will use that notion
in our analysis as well. Let R denote an assignment of arrival times to all jobs.
Let dbf(7, [to,t1), R) denote the processor demand of all jobs released by
task 7; in the time interval [to,t1) for the assignment R, assuming that the
assignment R satisfies the constraint of the minimum inter-arrival times of ;.
More specifically, dbf(7, [to,t1), R) is defined as the sum of execution time of
all jobs which satisfy the constraint of the minimum inter-arrival times of 7; and
that satisfy the following two conditions (i) the job arrives no earlier than ¢y and
(ii) the deadline of the job is no later than ¢;. Let dbf(7, [to,t1)) denote the
maximum of dbf(7, [to,t1), R) over all R such that R satisfies the constraint of
the minimum inter-arrival times of 7;. Let dbf(74, L) denote the maximum of
dbf(7i, [to,t1)) over all time intervals [to,t1) such that ¢t; — to = L. Finally, let
us define dbf(7, L) as:

dbf(r,L) =Y dbf(r;,L) (4)

TjET

The usefulness of the notion of processor demand follows from the fact [11]
that:

If jobs are released from tasks in a task set 7 and jobs are scheduled
with EDF and for every L > 0, it holds that if dbf(7, L) < L then all
deadlines are met.

This result was originally applied to sporadically arriving tasks [11] where
equations were given on how to compute processor demand from task param-
eters. Such equations have also been developed for other task models, such as
the multiframe model [12], the generalized multiframe model [13] and the recur-
ring model [10]. Unfortunately, the research literature offers no such result for
sporadic tasks with mode change. We will now address it.

Consider a time interval [t,t1) with ¢; — tg = L. The system is in mode®
at time to and at time tr[1], there is a request to change to newmode[l]. Let
transition; denote the time when task 7; switches to mode tr[1]. We have that:

dbf(r,L)= max dbf(r,L,tr[1]) (5)

to<tr[1]<t:

where

transition; — tg t1 — transition;
b (r, L, rfi]) = 3 (|T =T o | BSOS | 2 ()
T;ET J 7

and
Vit tg < transition; < t; (7)

and
Vj : tr[l] < transition; (8)

and
Vj : transition; < tr[1] + T} 9)

and
to <tr[l] <t (10)

Intuitively, Inequality 5 states that the processor demand in a time interval
of duration L is the maximum of all scenarios of times for requesting a mode
change. Inequality 6 states that the processor demand of a task can be computed
by adding the amount of execution before the task performs the transition and

10

the amount of execution after the task performs the transition. Inequality 7
states, for each task, that the transition occurs in the busy interval. Inequality 8
states that the transition of a task 7; must not be earlier than the time when
the mode change was requested and Inequality 9 states that when a task 7; is
in mode! and task 7; is requested to perform a mode change, it will perform a
mode change with a delay of at most le. Note that there is a strict inequality
in Inequality 9. Inequality 10 states that the time when the mode change is
requested is during the busy interval.

It is possible to compute dbf (7, L) for a fixed L by solving the optimization
problem expressed by Inequality 5 - Inequality 10. But recall that we need to
calculate dbf(r, L) for all positive values of L. For uniprocessor scheduling of
EDF without mode change, it was shown [11] that if the utilization of the task
set is known then one can find an upper bound on L such that values of L above
this bound does not need to be checked. We will now develop a similar approach
for EDF with mode change.

We will first state lemmas which express an upper bound on dbf (7, L) (Lemma 3
and Lemma 4 do that) and then use these lemmas to derive an upper bound on
the values of L that must be checked. (Lemma 5 does that).

Lemma 3. It holds that:

avf(r.Ltrl)) < (Y C}) + L maX(ZTl,ZTQ) (11)

JET JET JET

Proof. From Inequality 6,Inequality 8 and Inequality 9 it follows that:

T 1— 1 —tr
dof(r, Ltr[l]) < Y (LWJ Ol + LtTié[l]J 3 (12

TiET

For every x > 0 it holds that |z| < x. Using that on Inequality 12 gives us:

tr[l] + le —t ol t1 — tr[1] ' Cz) (13)
J

dbf(r.Lrl]) < 3 (- ; =
J J

T;ET

Using the fact that t1=to+L on Inequality 13 yields:

1_ _
abf(r, Ltr1])) < 3 (tr[l] +Tfj o t°+LT? tr[1] @)
J J

TjET

Rewriting Inequality 14 yields:
Cl 02 C

dbf(r, L, tr[1]) < (tr[l]—to)-(Z(——f) +(Y_Ch+L-(Y %) (15)

T; €T TiET T;ET]

11

Consider the term

G _9) (16)

(F-7

TiET

If it is negative or zero then Inequality 15 is maximized for tr[1] = ¢, and
hence for that case, an upper bound on Inequality 15 is:

C?
(Y ch+1- (3 75 (17)

T;ET TET T

If Inequality 16 is positive then Inequality 15 is maximized for ¢r[1] = to + L
and hence for that case, an upper bound on Inequality 15 is:

C1 02
L-(Z(F——) o Ch+L-(3 =) (18)
T;ET T;ET TeT " J
which can be rewritten to:
Cl
(D CH+L- (Y 7 (19)
TjET T;ET J

Combining these cases gives us that:

dbf(r, L,tr[1] (ZCl)—i—L max(z I’ZT2) (20)

JET JET

This states the lemma.
Lemma 4. It holds that:
dbf(r.1) < (dch)+1L- maX(ZTl,ZTQ) (21)
JeET JET JET

Proof. Follows from Inequality 5 and Lemma 3.

Lemma 5. If
C
max (Z T Z) (22)
JjeT JjeT
then for all L > 0 such that
E:jET'Cg

Y’ &2
1 — max (ZjGT T—jyz]g F)

it holds that:

dbf(r,L) < L (24)

12

Proof. Rewriting Inequality 23 gives us:

(ZC})—}—L-maX(Z%,;g—;)SL (25)

JET JET

Using Lemma 4 on Inequality 25 gives us:

dbf(r,L) < L (26)

This states the lemma.

We now know that only values of L that do not exceed the left-hand side
of Inequality 23 must be checked. We can enumerate all values of L from 1 up
to this bound. We can also assume (with no loss of generality) that to = 0 and
t1 = L and hence enumerate tr[1] from 0 up to L. For each of these we would like
to compute dbf(7,L,tr[1]), using Inequality 6. This can be done by iterating,
for each task 7;, through all values of transition; from tr[1] to tr[1] + T} — 1
and compute the term in the sum of Inequality 6; for convenience this term is
stated below.

transition; — to 1 t1 — transition;
7 R TR
J J

|-z (27)

Based on these ideas we obtain the schedulability test expressed by Figure 4.

5 Conclusions

We have presented the first result on uniprocessor EDF scheduling with mode
change. We used the previously known, and well established, mode-change pro-
tocol designed by Sha et al. [6]. The schedulability analysis is simple; if the
utilization of every mode is at most 50% then all deadlines are met. We also
show that there exists a task set that misses a deadline although the utilization
exceeds 50% by just an arbitrarily small amount. Finally, we presented, for a
relevant special case, an exact schedulability test for EDF with mode change.
We left open the problem of designing an exact schedulability test for the case
where minimum inter-arrival times and execution times are real numbers.

Acknowledgements

This work was partially funded by the Portuguese Science and Technology Foun-
dation (Fundagao para a Ciéncia e a Tecnologia - FCT) and the ARTIST2 Net-
work of Excellence on Embedded Systems Design.

13

References

[1] Lee, C.-G., Shih, C.-S., Sha, L: Service class based online QoS management in
surveillance radar systems. IEEE Real-Time Systems Symposium, London, UK, 2001.

[2] Rajkumar, R. Lee, C. Lehoczky, J. Siewiorek, D.: A Resource Allocation Model
for QoS Management. Proceedings of the IEEE Real-Time Systems Symposium, San
Francisco, CA, USA, 1997.

[3] Rosu, D., Schwan, K., Yalamanchili, S., Jha, R.: On adaptive resource allocation
for complex real-time application. Proceedings of the IEEE Real-Time Systems Sym-
posium, San Francisco, CA, USA, 1997.

[4] Abdelzaher, T.F., Atkins, E.M., Shin, K.: QoS Negotiation in Real-Time Systems
and its Application to Automated Flight Control. IEEE Transactions on Computers,
vol. 49, 2000.

[5] Real, J. and Crespo, A.: Mode Change Protocols for Real-Time Systems: A Survey
and a New Proposal. Real-Time Systems, vol. 26, pp. 161 - 197, 2004.

[6] Sha, L. Rajkumar, R. Lehoczky, J. and Ramamritham, K.: Mode Change Protocol
for Priority-Driven Preemptive Scheduling. Carnegie-Mellon University Pittsburgh,
Pennsylvania, Software Engineering Institute November 1988.

[7] Tindell, K. Burns, A. Wellings, A.J.: Mode Changes In Priority Pre-Emptively
Scheduled Systems. IEEE Real-Time Systems Symposium, Phoenix, Arizona, USA,
1992.

[8] Liu, C. L., Layland, J.W.: Scheduling Algorithms for Multiprogramming in a Hard-
Real-Time Environment. Technical Report, Department of Computer Science, Uni-
versity of York, UK YCS 189., 1992. Journal of the ACM, vol. 20, pp. 46 - 61, 1973.

[9] Dertouzos, M.L: The Procedural Control of Physical Processes. IFIP Congress,
Stockholm, Sweden, 1974.

[10] Baruah, S.: Dynamic- and static-priority scheduling of recurring real-time tasks.
Real-time Systems, vol. 24, pp. 93-128, 2003.

[11] Baruah, S. Howell, R., Rosier, L.: Algorithms and complexity concerning the pre-
emptive scheduling of periodic, real-time tasks on one processor. Real-Time Systems,
vol. 2, pp. 301-324, 1990.

[12] Mok, A.K, Chen, D.: A multiframe model for real-time tasks. IEEE Real-Time
Systems Symposium, Washington, DC, USA, 1996.

[13] Baruah, S. Chen, D., Gorinsky, S. Mok, A.: Generalized multiframe tasks. Real-
Time Systems, vol. 17, pp. 5-22, 1999.

14

Input: a task set 7

Output: "unschedulable”, ”cannot decide” or ”schedulable”

Assumptions:

- |modes|=2 and

- T}HC}, T?,C? and tr[1] are integers and arrivals occur only at
times which are integers and only one mode change request
can occur during a busy interval.

- only one mode change request can occur during a busy interval.

1. Let U denote the left-hand side of (22)
2. if U>1 then
3. declare ”unschedulable”
4. else
5. if U=1 then
6. declare ”cannot decide”
7. else
8. UBL := left-hand side of (23)
9. for L in 1..UBL do
10. to: =0
11. t1:=L
12. for tr[1] in 0..L do
13. sum := 0
14. for V7; € 7 do
15. sumj := 0
16. for transitionj in tr[1]..min(t1,tr[1]+7}-1) do
17. if evaluation of (27) > sumj then
18. sumj := evaluation of (27)
19. end if
20. end for
21. sum := sum -+ sumj
22. end for
23. if sum>L then
24. declare ”unschedulable”
25. end if
26. end for
27. end for
28. declare ”schedulable”
29. end if
30. end if

Fig. 4. A schedulability test for EDF for checking whether changing from mode® to
mode? can be performed and meet deadlines.

