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Abstract 

Caches help reduce the average execution time of tasks due to their fast operational speeds. However, caches 
may also severely degrade the timing predictability of the system due to intra- and inter-task cache interference. 
Intra-task cache interference occurs if thememory footprint of a task is larger than the allocated cache space or 
when two memory entries of that task are mapped to same space in cache. Inter-task cache interference occurs 
when memory entries of two or more distinct tasks use the same cache space. State-of-theart analysis focusing on 
bounding cache interference or reducing it by means of partitioning and by optimizing task layout in memory either 
focus on intra- or inter-task cache interference and do not exploit the fact that both intra- and inter-task cache 
interference can be interrelated.In this work, we show how one can model intra- and inter-task cache interference 
in a way that allows balancing their respective contribution to tasks worst-case response times. Since the 
placement of tasks in memory and their respective cache footprint determine the intra- and inter-task interference 
tasks may suï¬€er, we propose a technique based on cache coloring to improve taskset schedulability. 
Experimental evaluation performed using a set of benchmarks show that our approach result in up to 14% higher 
taskset schedulability than state-of-the-art approaches. 
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ABSTRACT

Caches help reduce the average execution time of tasks due to their
fast operational speeds. However, caches may also severely degrade
the timing predictability of the system due to intra- and inter-
task cache interference. Intra-task cache interference occurs if the
memory footprint of a task is larger than the allocated cache space
or when two memory entries of that task are mapped to the same
space in cache. Inter-task cache interference occurs when memory
entries of two or more distinct tasks use the same cache space.
State-of-the-art analysis focusing on bounding cache interference or
reducing it by means of partitioning and by optimizing task layout
in memory either focus on intra- or inter-task cache interference
and do not exploit the fact that both intra- and inter-task cache
interference can be interrelated.
In this work, we show how one can model intra- and inter-task
cache interference in a way that allows balancing their respec-
tive contribution to tasks worst-case response times. Since the
placement of tasks in memory and their respective cache footprint
determine the intra- and inter-task interference that tasks may suf-
fer, we propose a technique based on cache coloring to improve
task set schedulability. Experimental evaluations performed using
Mälardalen benchmarks show that our approach results in up to
13% higher task set schedulability than state-of-the-art approaches.

1 INTRODUCTION

Caches bridge the performance gap between main memory and
processor. Program data and instructions loaded in the cache are
readily available to the processor and can be accessed in a few
clock cycles. In comparison, when data or instructions are not in
the cache and must be fetched from main memory, it results in a
penalty of tens or even hundred of clock cycles [13]. While the use
of caches can reduce the average execution time of tasks, it can
also cause large execution variations depending on whether the
instructions and data required by the tasks at run time are already
present in the cache (cache hit) or not (cache miss). Moreover, as
caches have a limited capacity, it is typical that not all data and
instructions of a task (or a set of tasks) may simultaneously reside
in the cache. This results in generating cache interference between
diferent code segments of a same task and between sets of tasks
sharing the same limited cache space. In the scientiic literature,
cache interference is broadly categorized into, (i) intra-task cache
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interference, that corresponds to main memory accesses when a
task self evicts its own instructions/data from the cache, e.g., when
instructions/data used by diferent code segments within a task are
mapped to the same cache space; and (ii) inter-task cache interference,
that corresponds to additional main memory reloads due to sharing
of cache space between two or more distinct tasks, e.g., task τ1 and
task τ2 may evict each others cache content if they use the same
cache space. This evicted content may need to be reloaded again
from the main memory resulting in extra main memory accesses.
To use caches in a predictable manner, many researchers have rec-
ognized and studied the problem of cache interference. Diferent
approaches have been presented in literature to bound the intra-
and inter-task cache interference and to integrate it into the schedu-
lability analysis of a set of real-time tasks [1, 2, 8, 18, 24, 27, 29].
However, most of these works focus on either the intra- or the inter-
task cache interference and do not exploit the fact that both intra-
and inter-task cache interference can be interrelated. Moreover, a
variety of approaches have also been presented in the literature
to reduce cache interference by eiciently partitioning the cache
among tasks [3, 7, 9, 15, 16, 30] or by optimizing the task layout in
memory [10, 21]. However, these existing cache partitioning and
task layout optimization approaches also mainly focus on reducing
the inter-task cache interference and hence are not always ben-
eicial in terms of task set schedulability. For example, the cache
partitioning approaches are subjected to one basic problem: the
available cache space may not be enough for each task to have
its own independent (i.e., non-overlapping) cache partition. Also
with cache partitioning, as the number of tasks increase, cache
space that can be used for each individual task becomes always
smaller. This reduced amount of cache space available to each task
potentially increases its intra-task cache interference (i.e., the task
may itself start to evict its own cache blocks) resulting in an in-
creased execution time due to an increase in the number of main
memory accesses. This may eventually cause the task to become
unschedulable even though it does not sufer any inter-task cache
interference. It has been identiied [10, 21] that the approaches fo-
cusing on optimizing the task layout in memory may perform better
in terms of schedulability in comparison to a full cache partitioning
approach [3, 4]. The existing approaches to optimize task layout in
memory [10, 21] changes task placements in memory to reduce the
inter-task cache interference while allowing tasks an unconstrained
use of the cache. However, we argue that even with an optimal
layout of tasks in memory, allowing tasks an unconstrained use
of cache may still result in higher inter-task cache interference,
e.g., the cache block evictions of lower priority tasks caused by a
higher priority task using the whole cache will be inevitable even
with an optimal layout of tasks unless the cache space used by
the higher priority task is reduced (i.e., potentially increasing the
intra-task cache interference of the higher priority task to decrease
the inter-task cache interference it may cause).

https://doi.org/10.1145/3273905.3273924
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In this work, we show how one can model intra- and inter-task
cache interference in a way that allows balancing their respective
contribution to tasks worst-case response times. We propose a
technique optimizing the task layout in memory that result in
improved task set schedulability. The main contributions of the
paper are as follows: (1) We use a cache coloring1 approach to
optimize task layout in memory such that cache colors assigned
to tasks are not strictly private but may be shared between tasks;
(2) we model the impact of a given cache color assignment on
diferent task parameters and show how intra- and inter-task cache
interference can be upper-bounded when using cache coloring; (3)
We present a simulated annealing algorithm to optimize the cache
color assignment to tasks by re-allocating and re-sizing the cache
colors assigned to tasks such that the task set’s schedulability is
achieved; and (4) we perform an experimental evaluation using a
set of benchmarks showing that our approach results in up to 13%
higher schedulability than state-of-the-art approaches.

2 SYSTEM MODEL AND NOTATIONS

We focus on single-core platforms with a single level of instruction

cache2. The cache is assumed to be direct-mapped with k total colors.

Each color is uniquely numbered between 1 to k total . The size of a
cache color is denoted by ksize and is equal the number of successive
sets in the cache that may be used by tasks assigned to that color. For
simplicity, in this work we assume that the size of every cache color
is the same. Note that this is a common practice in real systems [11].

We consider a ixed priority scheduling (e.g., Rate Monotonic
or Deadline Monotonic) of a set of sporadic tasks. The task set τ
comprises n tasks, i.e., τ = {τ1, ...., τn }. Each task τi is deined by

a triplet (Ci [ki ], Ti , Di ), where Ci [ki ] is a vector of length k total

that contains the worst-case execution time of task τi in isolation
assuming ki contiguous cache colors are assigned to τi . Note that
ki represents the number of cache colors used by τi , whereas the
set of cache colors assigned to τi is denoted by cki . The minimum
inter-arrival time of τi is Ti and Di is its relative deadline. We
assume that the tasks have constrained deadlines, i.e., Di ≤ Ti . We
further decompose each task’s WCET in two independent terms
bounding its processing and memory access demand, respectively.
The worst-case processing demand PDi denotes the worst-case
execution time of τi considering that everymemory access is a cache
hit. Consequently, it only accounts for execution requirements of
the task and does not include the time needed to fetch data and
instructions from the main memory. MDi [ki ] is the worst-case
memory access demand (in terms of time) of any job of task τi
executing in isolation and assuming that ki contiguous cache colors
are assigned to τi . It is usually assumed thatCi [ki ] is non-increasing
with ki , i.e., ki < ki +1 =⇒ Ci [ki ] ≥ Ci [ki +1]. However, we note
that since PDi is independent of the number of cache colors assigned
to τi , it is the worst-case memory access demand MDi [ki ] which
must be deined as a non-increasing function w.r.t. the number
of cache colors assigned to τi , i.e., ki < ki + 1 =⇒ MDi [ki ] ≥

MDi [ki + 1]. Note that PDi and MDi [ki ] may not necessarily be

1Cache coloring works by controlling the mapping between the physical addresses
referenced by tasks and their corresponding cache entries. Common bits between the
physical page number and the cache set index are designated as a cache color index.
This efectively divides the cache into diferent partitions based on their color index.
2Note that the cache level being considered here may not be the L1 but the L2 instead.
We then consider that the intra- and inter-task interference in L1 is factored in the
tasks’ worst-case execution times.

experienced on the same execution path of τi . Therefore, it holds
that Ci [ki ] ≤ PDi + MDi [ki ]. Furthermore, we assume that the
values of Ci [ki ], PDi and MDi [ki ] can be calculated using a static
timing analysis tool such as Heptane3.

The worst-case response time (WCRT) of task τi , denoted by Ri ,
is deined as the longest time between the arrival and the completion
of any job of τi . The worst-case reload time of a cache block from
main memory is denoted by dmem. For notational convenience, we
use hp(i) to denote the set of tasks with priorities higher than that
of τi . Similarly, lp(i) to denote the set of tasks with priorities lower
than that of τi and hep(i) denotes the set of tasks with priorities
higher than or equal to that of τi (i.e. hep(i) includes τi ). Finally,
af(i , j) = hep(i)∩lp(j) denotes the set of intermediate tasks that can
execute during the response time of τi but may also be preempted
by a given higher priority task τj .

3 BACKGROUND
WCRT based schedulability analysis for ixed priority preemptive
systems was irst presented in [14] and is given as

Ri = Ci +
∑

∀j∈hp(i )

⌈
Ri

Tj

⌉
×Cj (1)

Eq. (1) uses the worst-case execution time (WCET) of tasks in iso-
lation to account for the interference task τi may sufer due to
preemptions by all higher priority tasks in hp(i). However, Eq. (1)
did not explicitly consider cache interference except for the cache
analysis performed during the WCET calculation of tasks. Eq. (1)
has therefore been extended in several works (e.g., [1, 8, 25]) to
account for the inter-task cache interference due to Cache Related
Preemption Delays (CRPDs). CRPDs are delays in execution time
of a lower priority task τi due to preemptions by higher priority
tasks in hp(i), e.g., when a lower priority task τi is preempted by
a higher priority task τj ∈ hp(i), the preempting task τj may evict
cache blocks of the preempted task τi that has to be reloaded after
task τi resumes its execution. These extra cache reloads during the
execution of task τi are termed as CRPDs. CRPD of task τi due
to preemption by a higher priority task τj ∈ hp(i) is usually de-
noted by γi , j . The WCRT analysis accounting for inter-task cache
interference due to CRPDs is presented in [1] and is given by

Ri = Ci +
∑

∀j∈hp(i )

⌈
Ri

Tj

⌉
×

(
Cj + γi , j

)
(2)

where γi , j is usually calculated by categorizing the memory access
patterns of tasks into useful cache blocks (UCBs) and evicting cache
blocks (ECBs). These UCBs and/or ECBs are then used to upper-
bound the contribution of γi , j to the WCRT of τi . Lee et al. [18] irst
introduced the notion of useful cache blocks (UCBs) and deined it
as ła memory blockm is called a useful cache block (UCB) at program
point P , if it is cached at P and will be reused at program point Q that
may be reached from P without eviction ofm". Similarly, Busquets et
al. [8] introduced the notion of evicting cache blocks (ECBs) and
deined it as łany cache block accessed during the execution of a task
and which can then evict the memory block cached by another task is
called an evicting cache block (ECB)".

A number of methods have been proposed in the literature [1, 2,
8, 18, 25, 27, 28] for computing γi , j under ixed priority preemptive
scheduling (FPPS) using the set of UCBs and/or ECBs. However, the
ECB/UCB-union [1, 27] and the ECB/UCB multi-set approaches [2]
dominate all the state-of-the-art approaches for CRPD calculation.

3https://team.inria.fr/pacap/software/heptane/
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In recent work, Rashid et al. [23, 24] proposed that CRPDs may
not be enough to model the inter-task cache interference. They
showed that it is not only the lower priority task τi that may suf-
fer inter-task cache interference (i.e., CRPD) due to the execution
of higher priority tasks ∈ hp(i) but also the higher priority tasks
τj ∈ hp(i) that may sufer inter-task cache interference in terms
of Cache Persistence Reload Overhead (CPRO) due to the execution
of tasks in hep(i) \ τj . CPRO of a higher priority task τj ∈ hp(i)
executing during the response time of a lower priority task τi is
usually denoted by ρ j ,i and is formally deined as [24] łthe maxi-
mum memory reload overhead sufered by a task τj due to evictions
of its persistence cache blocks (PCBs) by tasks in hep(i) \τj while τj is
executing during the response time of τi " where PCBs are deined as
follows. łA memory block of a task τj is persistent if once loaded by τj ,
it will never be invalidated or evicted from the cache when τj executes
in isolation". The set of PCBs and ECBs of tasks is used to calculate
CPRO ρ j ,i under the CPRO-union or the multi-set approaches [24].

Rashid et al. [23, 24] also showed that thanks to PCBs subsequent
jobs of a task may re-use most of the data and instructions that were
already loaded in the cache during the execution of its previous
jobs. Therefore, if all PCBs of a task τi were loaded in the cache
by a previous job of τi , the memory demand of subsequent jobs
of τi can be much lower than the worst-case memory demand of
τi in isolation. This type of memory demand is called the residual
memory demand of τi and is originally deined in [24] as łthe worst-
case memory demand of any job of a task assuming all its PCBs
are already loaded in the cache". As in this work, we propose a
cache coloring approach where the residual memory demand of
task τi also depends on the number of cache colors assigned to τi ,
i.e., ki . Hence, in the remaining of the paper we will denote the
residual memory demand of task τi by MDr

i [ki ]. Efectively, the

total memory demand M̂Di (t) of a task τi within a time window of
length t when τi executes in isolation is deined as [23, 24]

M̂Di (t ) = min
{ ⌈

t

Ti

⌉
×MDi [ki ] ;

⌈
t

Ti

⌉
×MDri [ki ] + |PCBi | ∗ dmem

}
(3)

Furthermore, Rashid et al. [23, 24] also presented the WCRT analy-
sis for FPPS that accounts for the inter-task cache interference due
to both CRPD and CPRO and showed that their WCRT dominates
the state-of-the-art WCRT analysis that only accounts for the inter-
task cache interference due to CRPDs. The WCRT of a task τi is
calculated in [23, 24] as

Ri = Ci+
∑

∀j∈hp(i )

(⌈
Ri

Tj

⌉
γi , j +min

{⌈
Ri

Tj

⌉
Cj ;

⌈
Ri

Tj

⌉
PD j + M̂Dj (Ri ) + ρ j ,i

})

(4)

where γi , j and ρ j ,i bounds the CRPD and CPRO considering the
pair of tasks τi and τj respectively. For more information on the
formulation of Eq. (3) and (4), readers are referred to [24].

4 CACHE INTERFERENCE AWARE WCRT
ANALYSIS

In this work, we calculate the WCRT of a task τi using a similar
equation as presented in [23, 24] (i.e., Eq. (4)). However, we explicitly
consider the intra- and inter-task cache interference sufered by
tasks during the response time Ri of task τi , i.e.,

Ri = Cmin
i + CI

intra,ki
i +

∑
∀j∈hp(i )

(
min

{ ⌈
Ri

Tj

⌉ (
Cmin
i + CI

intra,kj
j

)
;

⌈
Ri

Tj

⌉
PD j (5)

+ M̂Dj (Ri ) + CI
inter ,ρ
j, i (Ri)

}
+ CI

inter ,γ
i, j (Ri)

)

����� ������
�����

�����	
�,�� = ������  − �����

Figure 1: Increase in execution and memory demand of task
τi due to reduction in number of cache colors assigned to τi .

In Eq. (5), Cmin
i denotes the worst-case execution time of task τi in

isolation assuming τi is allocated a cache of ininite size (or more
practically, the total cache space assigned to task τi is greater or
equal to the size of τi in main memory). The intra-task cache in-
terference of τi w.r.t the number of cache colors ki assigned to τi

is denoted by CI intra,kii as intra-task interference impacts only the
execution time of τi itself. Similarly, the intra-task cache interfer-

ence CI
intra,kj
j of each higher priority task τj ∈ hp(i) executing

during the response time of τi is considered in the higher priority
interference term within the sum on higher priority tasks. More-

over, CI
inter ,γ
i, j (Ri) denotes the inter-task cache interference in terms

of CRPD that task τi may sufer during its response time due to

preemptions by all higher priority tasks in hp(i) and CI
inter ,ρ
j, i (Ri)

bounds the inter-task cache interference in terms of CPRO that
each higher priority task τj ∈ hp(i) may sufer during the response

time of τi . Note that M̂Dj (Ri ) in Eq. (5) is calculated in a similar

manner to Eq. (4) (i.e., using Eq. (3)). Since M̂Dj (Ri ) is a function of
MDj [kj ],MDr

j [kj ] and the number of PCBs of τj , which are in turn

functions of the number of cache colors kj assigned to τj therefore,

M̂Dj (Ri ) directly considers the intra-task interference of all jobs of
τj executing during the response time of τi .

In the following sections, we detail how the total intra- and inter-
task cache interference can be bounded under the cache coloring
approach presented in this paper.

5 INTRA-TASK CACHE INTERFERENCE

Intra-task cache interference represents contention between dif-
ferent code segments of a task that are mapped to the same cache
space. If the cache space allocated to a task is not suicient to hold
all its instructions/data, a task may self-evict its own cache content
resulting in higher main memory access demand even when the
task is executing in isolation.
For a task τi its intra-task cache interference depends on the cache
space or the number of cache colors ki assigned to τi . Consider
the plot of worst-case execution time (Ci [ki ]) and the worst-case
memory demand (MDi [ki ]) of task τi with respect to the number
of cache colors ki assigned to τi as shown in Fig. 1. The plot shows
the actual variation in the worst-case execution time and the worst-
case memory demand of the benchmark fdct of the Mälardalen
benchmark suite [12], when the number of cache colors ki assigned
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to that task are varied in a descending order from 8 to 1. The values
in Fig. 1 were obtained using Heptane for a cache with 8 cache
colors, each having a size of 512 Bytes.
Fig. 1 shows that when the number of cache colors (or cache space)
assigned to task τi is greater or equal to the size of τi in main
memory (i.e., for ki ≥ 4), the worst-case execution time (Ci [ki ])
and the worst-case memory demand (MDi [ki ]) of τi is minimum,
i.e.,Ci [ki ] = Cmin

i andMDi [ki ] = MDmin
i for ki ≥ 4, whereMDmin

i
represents the worst-case memory access demand of task τi in
isolation assuming τi is allocated an ininite cache size. Efectively,
for ki ≥ 4 τi will sufer no intra-task cache interference.
We can also observe from the plot in Fig. 1 that by decreasing the
number of cache colors ki assigned to τi , its worst-case execution
time (Ci [ki ]) and the worst-case memory demand (MDi [ki ]) tend to
increase. This increase inCi [ki ] andMDi [ki ] is due to an increase in
the intra-task cache interference of τi mainly because by reducing
the number cache colors ki , the number of UCBs of task τi may
also decrease, i.e., by decreasing the number of cache colors ki
(or the cache space) assigned to τi , cache blocks of τi that were
previously mapped to diferent cache sets and were reused more
than once before eviction may now map to the same cache set.
Consequently, loading one cache block will evict the other thus
resulting in reducing the number of cache blocks of τi that can
be reused, i.e., the number of UCBs. Efectively, this reduction of
the number of UCBs results in increasing MDi [ki ] of τi for ki < 4.
Therefore, the intra-task cache interference of a task directly relates
to it worst-case memory access demand in the following manner

CI intra,kii = MDi [ki ] −MDmin
i (6)

The resulting intra-task cache interference of τi for a given cache

color assignment ki , i.e., CI
intra,ki
i , is accounted for in the WCRT

of τi (i.e., Eq. (5)) by explicitly adding CI intra,kii to Cmin
i which

is the worst-case execution time of τi in isolation assuming τi is

allocated an ininite cache. However, we note that because CI intra,kii
depends on MDi [ki ] and since MDi [ki ] may not necessarily be
experienced on the same execution path of τi for diferent cache

color assignments cki , it holds thatCi [ki ] ≤ Cmin
i +CI intra,kii . Hence,

Eq. (6) provides a safe upper-bound on intra-task cache interference
even for multi-paths programs.

6 INTER-TASK CACHE INTERFERENCE

Under FPPS, the inter-task cache interference a task τi may sufer
due to higher priority tasks in hp(i) is mainly categorized into two
types, i.e., the inter-task cache interference due to CRPDs and the
inter-task cache interference due to CPROs.

The inter-task cache interference in terms of CRPD results from
the eviction of UCBs of τi due to preemptions by a higher priority

task τj in hp(i) and is denoted by CI
inter ,γ
i, j . Whereas, the inter-task

cache interference in terms of CPRO results from the eviction of
PCBs of the higher priority task τj ∈ hp(i) due to the executions of
all other tasks in the system (while τj executes during the response

time of τi ) and is denoted by CI
inter ,ρ
j, i . In the following subsections,

we explain how CI
inter ,γ
i, j and CI

inter ,ρ
j, i can be bounded under the

cache coloring approach proposed in this paper.

6.1 Inter-Task Cache Interference due to
CRPDs

As discussed in Section 3, a number of methods have been proposed
in the literature [1, 2, 8, 18, 25, 27, 28] for computing the CRPD cost
γi , j under FPPS using the set of UCBs and/or ECBs. However, in this
work, we focus on a UCB-union-like approach [27] to calculate the
CRPD cost due to sharing of cache colors between several tasks. The
UCB-union approach [27] uses intersection between the ECBs of
the preempting task τj and the UCBs of all tasks in af (i , j) possibly
afected by the preemption caused by τj to calculate γi , j . Formally,

γi , j = dmem ×

������
©­«

⋃
∀s∈af(i , j )

UCBs
ª®¬
∩ ECBj

������ (7)

where, ECBj and UCBs are the sets of ECBs and UCBs of task τj
and τs , respectively.

However, when cache colors are being assigned to tasks, Eq. (7)
cannot be used as is. This ismainly becausewhen coloring tasks, any
variation in the cache color of any task may potentially change the
set of UCBs and ECBs of all tasks in τ . Indeed, the actual mapping
of tasks within a cache color may not be known as it is handled by
the cache controller.4 Consequently, the actual set of ECBs/UCBs
of tasks may not be known as they depend on the actual cache
sets used by the tasks. For example, consider two tasks τi and τs
sharing the same cache color ck, where ck comprises 4 cache sets,
numbered from 1 to 4. If both τi and τs have 2 UCBs under this
cache assignment, these UCBs can be mapped to any of the four
cache sets depending on how τi and τs are mapped within ck by
the cache controller, i.e., UCBi = {1, 2} and UCBs = {3, 4} or any
other combinations with or without overlapping between UCBi and
UCBs . Since the actual set of UCBs of tasks might not be known,
using diferent set of UCBs of tasks in Eq. (7) may lead to diferent
pessimistic/optimistic value of γ .

In order to bound the CRPD γi , j under our cache coloring ap-
proach, we irst determine the cache colors that may be afected
when τi is preempted by a higher priority task τj ∈ hp(i). Assuming
that the cache color assignment of tasks has already been done, i.e.,
τi and τj are assigned a set of cki and ckj cache colors respectively.

We know from the UCB-union approach (Eq. (7)), that when a
task τi is preempted by a higher priority task τj , the set of UCBs of
all tasks in af(i , j) can be evicted. Similarly, when a task τi using
a set of cki cache colors is preempted by a higher priority task τj
whose assigned a set of ckj cache colors, the cache colors used by all
tasks in af(i , j) may be evicted. Therefore, the maximum number
of cache colors that may be afected due to a single preemption of
τi by τj is bounded by ki , j , where

ki , j =

������
©­«

⋃
∀s∈af(i , j )

cks
ª®¬
∩ ckj

������ (8)

Here, ki , j gives the worst-case number of cache colors that may
sufer evictions as a result of a single preemption of τi by τj . There-

fore, the product ki , j ×k
size can be used to upper bound the number

of cache sets that may be evicted due to a single preemption of
τi by τj . However, this bound can obviously be very pessimistic,
mainly because it does not consider the actual number of UCBs in

4Most cache controllers [19, 20, 26, 31] work at the granularity of a memory page and
can be controlled to make sure memory pages of a task map to the speciied cache
color. However, when sharing cache colors among tasks, memory pages of diferent
tasks may map to the same cache color so changing the mapping of one task may
afect the others, making it diicult to predict the actual placement of tasks in cache.
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those cache sets and hence the actual number of memory blocks
that must be reloaded from main memory after eviction.

To tightly bound the CRPD cost, both the number of potentially
evicted cache colors, i.e., ki , j , and the number of ECBs/UCBs of
tasks must be considered. We know that under cache coloring the
actual set of ECBs/UCBs, i.e., their mapping in cache, may not be
known as they depend on the actual cache sets assigned to tasks.
However, their number only depends on the number of cache colors
assigned to tasks rather than the actual cache sets assigned to those
tasks. Therefore, let UCBi (ki ) and ECBi (ki ) be deined as

• UCBi (ki ): The maximum number of UCBs5 of task τi when it is
assigned ki cache colors.
• ECBi (ki ): The maximum number of ECBs of task τi when it is
assigned ki cache colors.

Efectively, the CRPD cost due to a single preemption of τi by τj
can be bounded using the notion of UCBi (ki ) and ECBi (ki ).

Lemma 1. The CRPD cost due to a single preemption of a lower

priority task τi by a higher priority task τj is bounded by γ coli , j , i.e.,

γ coli , j = dmem ×min




∑
∀s∈af(i , j )

(
UCBs (ks ) ×Vs , j

)
; ECBj (ki , j )




(9)

where Vs , j = 1 if |cks ∩ ckj | > 0 and Vs , j = 0, otherwise.

Proof. We prove that both
∑
∀s ∈af(i , j)

(
UCBs (ks ) ×Vs , j

)
and

ECBj (ki , j ) are upper bounds on the CRPD cost γ coli , j . Therefore, the

minimum between the two is also an upper bound on γ coli , j .

(1). From the UCB-union approach (Eq. (7)), it follows that when
task τi is preempted by a higher priority task τj , the set of UCBs
of all tasks in af(i , j) may be evicted. However, when using cache
coloring the actual set of UCBs of a task τs ∈ af(i , j) may not be
known. Instead, we know the maximum number of UCBs of τs ,
i.e., UCBs (ks ), for a given cache color assignment cks with size
ks . Also due to cache coloring, τj can only evict UCBs of a task
τs ∈ af(i , j) only when |cks ∩ ckj | > 0 (i.e., Vs , j = 1). Hence, the
total number of UCBs among all tasks in af(i , j) that can be evicted
by τj is bounded by

∑
∀s ∈af(i , j)

(
UCBs (ks ) ×Vs , j

)
. Therefore, for a

single preemption of τi by τj ,
∑
∀s ∈af(i , j)

(
UCBs (ks ) ×Vs , j

)
upper

bounds the CRPD cost γ coli , j .

(2). The ECB-only approach [8, 28] implies that the number of ECBs
of the preempting task upper bounds the total CRPD cost that a
task may cause, i.e., for a single preemption of τi by τj the number
of ECBs of τj also upper bounds the CRPD cost. However, due to
cache coloring not all cache colors used by τj , i.e., kj , may overlap
with cache colors used by task τi (and by tasks in af(i , j)) except
for ki , j cache colors (i.e., Eq. (8)).

Hence, the maximum number of ECBs of τj in the ki , j overlap-
ping cache colors used by tasks in af(i , j), i.e., ECBj (ki , j ), upper

bounds the CRPD cost γ coli , j from τj ’s perspective.

The lemma follows. �

For a single preemption of τi by τj , the CRPD cost can be bounded
using Lemma 1. However as we will now prove, the actual time
taken to reload all UCBs of τi from themainmemory is also bounded

5The maximum number of ECBs, UCBs and PCBs of a task for a given cache color
assignment can be computed using any static timing analysis tool such as Heptane.
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Figure 2:Worst-casememory demandMDi [ki ] of task τi w.r.t
the number of cache colors assigned to τi .

by the change in the worst-case memory demand of task τi w.r.t
the number of cache colors ki assigned to τi .

To illustrate, let MDmax
i be the maximum worst-case memory

demand of τi when there is no cache assigned to τi (i.e., ki = 0).
Now, consider the example plot of main memory access demand
MDi [ki ] of a task τi shown in Fig. 2. The plot shows the normalized
worst-case memory access demand of the fdct benchmark of the
Mälardalen benchmark suite when the number of cache colors ki
assigned to that task varies. The values reported in Fig. 2 were
obtained using the same cache coniguration as in Fig. 1.

Fig. 2 shows that for ki = 0 the worst-case memory access
demand of τi is maximum, i.e., MDi [ki ] = MDmax

i . Also, for ki = 0
since no cache space is assigned to τi there cannot be any useful
cache blocks, i.e., UCBi = ∅. Moreover, since MDi [ki ] is a non-
increasing function w.r.t. the number of cache colors ki , we observe
that by increasing ki , MDi [ki ] is decreasing.

This decrease in MDi [ki ] of task τi is due to an increase in its
number of UCBs, i.e., by increasing the number of cache colorski (or
cache space) assigned to τi , more instructions/data of τi may remain
cached and therefore reused without having to reload them from
main memory. This efectively increases the number of UCBs of
τi , leading to a reduction in its worst-case memory access demand.
The change in the worst-case memory demand MDi [ki ] of τi due
to an increase in the number of cache colors ki assigned to τi can
be bounded by ∆MDi [ki ], where

∆MDi [ki ] = MDmax
i −MDi [ki ] (10)

As the change in worst-case memory demand of τi is due to an
increase in the number of accesses to UCBs of τi . Formally,

UCBi (ki ) × Ni × dmem ≤ ∆MDi [ki ] (11)

where Ni is the average number of times each UCB of τi is accessed
while it is cached.

Since ∆MDi [ki ] bounds the time to reload all UCBs of τi for a
given cache color assignment ki , it also bounds the total CRPD τi
can sufer due to eviction of its UCBs by tasks in hp(i). However,
we know from Lemma 1 that when task τi is preempted by a higher
priority task τj ∈ hp(i), UCBs of all tasks in af(i , j) can be evicted.
Therefore, to bound the total CRPD τi may sufer due to preemp-
tions by a task τj ∈ hp(i) the change in the worst-case memory
demand of all tasks in af(i , j) should be considered.
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Lemma 2. The total CRPD cost sufered by a task τi due to pre-
emptions by a higher priority task τj ∈ hp(i) is bounded by

∀j ∈ hp(i) : γ toti , j ≤
∑

∀s∈af(i , j )

∆MDs [ks ] (12)

Proof. Assuming tasks are assigned priorities in ascending or-
der such that task τi−1 has a higher priority than τi , we prove by
induction that Eq. (12) holds ∀j ∈ hp(i).
Base Case: Consider τi and τi−1 such that τi−1 has a priority just
above that of τi . Therefore, af(i , i − 1) = τi .

The total CRPD that τi may sufer due to task τi−1, i.e., γ
tot
i ,i−1,

can never be larger than the time to reload all UCBs of τi Ni times
from the main memory, i.e., the number of times UCBs of τi were
accessed in cache when τi executes in isolation. Whereas, Eq. (11)
implies that that time is bounded by ∆MDi [ki ]. Hence, for j = i − 1,
γ toti , j ≤ ∆MDi [ki ].

Induction step: Consider another task τs having a priority higher
than τi and assume that Eq. (12) holds for j = s , then Eq. (12) also
holds for j = s − 1.

For j = s − 1, af(i , s − 1) = {τi , ....τs }, so using Eq. (9) we
know that when τs−1 preempts task τi it may evict UCBs of all
tasks in af(i , s−1), i.e., {UCBi (ki ), ....UCBs (ks )}. Also, by the same
reasoning than above we know that the total CRPD every task in
af(i , s − 1) = {τi , ....τs } may sufer due to task τs−1 is bounded by
{∆MDi [ki ], ....∆MDs [ks ]} respectively.

Therefore, it follows that for j = s − 1, the total CRPD τi may
sufer due to τj is bounded such that γ toti , j ≤

∑
∀s ∈af(i , j) ∆MDs [ks ].

Therefore, by induction Eq. (12) holds for all j ∈ hp(i). �

Since a higher priority task τj ∈ hp(i) can release
⌈
t
Tj

⌉
jobs

during a time window of length t and the CRPD caused by each

of these jobs on τi can also be bounded using γ coli , j (i.e., Eq. (9)),

therefore the total CRPD τi may sufer due to τj , i.e., γ
tot
i , j , during a

time window of length t is bounded such that γ toti , j ≤
⌈
t
Tj

⌉
× γ coli , j .

Consequently, The total inter-task cache interference in terms
of CRPD sufered by τi due to a higher priority task τj ∈ hp(i) in a

time interval of length t is upper bounded by CI
inter ,γ
i, j (t), where

CI
inter ,γ
i, j (t) = min

©­«
⌈
t

Tj

⌉
× γ coli , j ;

∑
∀s∈af(i , j )

∆MDs [ks ]
ª®¬

(13)

6.2 Inter-Task Cache Interference due to
CPROs

Under FPPS, CPROs can be calculated using the CPRO-union or the
multi-set approaches presented in [24]. However, in this work we
will present a CPRO-union alike approach to bound CPRO under
the proposed cache coloring approach. To calculate the CPRO ρ j ,i
of a task τj ∈ hp(i) executing during the response time of τi , the
CPRO-union approach uses the set of PCBs of task τj and the set
of ECBs of all tasks in hep(i) \ τj , i.e.,

ρ j ,i = dmem ×

����PCBj ∩ ( ⋃
∀τs ∈hep(i )\τj

ECBs
) ���� (14)

However, as already discussed for the CRPD calculation (Sec-
tion 6.1), it is not possible to directly use the CPRO-union approach
(i.e., Eq.(14)) under the task coloring coniguration proposed in this

paper, mainly because the actual set, i.e., their accurate placement
in cache, of PCBs and ECBs may not be known.

Therefore, to bound the CPRO of a task τj (executing during the
response time of τi ) under our cache coloring approach, we use a
similar technique to the one used in Section 6.1. We irst bound the
worst-case number of cache colors that may be evicted between
two subsequent jobs of τj . Assuming τi and τj are assigned a set of
cki and ckj cache colors respectively, then the maximum number
of cache colors of τj that can be evicted between its successive jobs
due to the executions of all tasks in hep(i) \ τj during the response

time of τi can be bounded by k
′

j ,i calculated as follows.

k
′

j ,i =

������ckj ∩
( ⋃
∀τs ∈hep(i )\τj

cks
) ������ (15)

where k
′

j ,i bounds the number of cache colors that can be afected

by evictions between two successive jobs of τj . Therefore, the prod-

uct k
′

j ,i ×k
size bounds the maximum number of cache sets that can

be evicted between two successive jobs of τj .
However, that is obviously pessimistic and to have a tighter

bound on the CPRO in terms of the number of PCBs of τj that may
be evicted between its two successive jobs, we deine PCBi (ki ), i.e.,

• PCBi (ki ): The maximum number of PCBs of task τi when it is
assigned ki cache colors.

PCBi (ki ) can also be computed in a similar manner to ECBi (ki )
and UCBi (ki ) as detailed in Section 6.1. Furthermore, PCBj (kj ) and
ECBi (ki ) can be used to bound the CPRO of a task τj ∈ hp(i)

executing during the response time of τi using the following lemma

Lemma 3. ρcolj ,i bounds the CPRO or the maximum number of

PCBs of task τj that may be evicted between two successive jobs of

τj due to eviction of k
′

j ,i cache colors by tasks in hep(i) \ τj , where

ρcolj ,i = dmem ×min



PCBj (kj );

∑
∀τs ∈hep(i )\τj

(
ECBs (k

′

j ,i ) ×Vs , j

)


(16)

where Vs , j = 1 if |cks ∩ ckj | > 0 and Vs , j = 0, otherwise.

Proof. Weprove that both PCBj (kj ) and
∑
∀τs ∈hep(i)\τj (ECBs (k

′

j ,i )×

Vs , j ) are upper bounds on the CPRO cost ρcolj ,i . Therefore, a min

between the two is also an upper bound on ρcolj ,i .

(1). By deinition of PCBs, the CPRO of a task is upper bounded
by its number of PCBs. Hence, assuming τj is assigned kj cache
colors, the maximum number of PCBs of τj are given by PCBj (kj ).
Therefore, the maximum CPRO one job of τj can sufer during the
response time of τi is upper bounded by PCBj (kj ).
(2). The worst-case memory interference of any task τs ∈ hep(i)\τj
on τj is when it loads all its ECBs between two subsequent jobs of
τj . With cache coloring, if ks cache colors are assigned to a task
τs ∈ hep(i) \ τj , the maximum number of ECBs of τs that can be
loaded between two jobs of τj are bounded by ECBs (ks ).
(3).However, τs can only evict PCBs of task τj only if |cks ∩ckj | > 0

(i.e., Vs , j = 1) and not all cache colors used by τs (i.e., cks ) may

overlap with cache color used by τj except for k
′

j ,i cache colors (see

Eq. (15)). Efectively, ECBs (k
′

j ,i ) ×Vs , j bounds the number of ECBs

of τs that may overlap and potentially evict PCBs of τj .
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Figure 3: Variation in the worst-case and residual Memory
demand of task τj w.r.t the number of cache colors assigned.

Since all τs ∈ hep(i) \ τj may execute between two successive
jobs of τj potentially evicting its PCBs. The worst-case memory
interference of all τs ∈ hep(i) \ τj on PCBs of τj is bounded by∑
∀τs ∈hep(i)\τj ECBs (k

′

j ,i ×Vs , j ). So the lemma follows. �

The CPRO (i.e., ρcolj ,i ) sufered by a single job of a higher priority

task τj ∈ hep(i) executing during the response time of τi can be
bounded using Lemma 3. However, since the CPRO accounts for
the extra memory accesses of a task τj due to eviction of its PCBs,
it may also depend on the memory demand of τj given that τj is
assigned kj cache colors.

To further illustrate this point, consider the example plot (i.e.,
Fig. 3) of a task τj representing the same (i.e., fdct) benchmark from
the Mälardalen benchmark suite with the same cache coniguration
as used in Fig. 2. The plot in Fig. 3 shows two types of memory
demands of task τj with respect to the number of cache colors (i.e.,
kj ) assigned to τj , i.e., the worst-case memory demand (MDj [kj ])
and the residual memory demand (MDr

j [kj ]).

From Fig. 3, we observe that when the number of cache colors
assigned to τj are less than or equal to 3 , the worst-case memory
demand MDj [kj ] of τj is equal to its residual memory demand
MDr

j [kj ], showing that for kj ≤ 3, τj has no PCBs. However, by

further increasing the cache colors assigned to τj (i.e., for kj > 3),
we can see an increasing diference between the worst-case memory
demand MDj [kj ] and the residual memory demand MDr

j [kj ] of τj .

This diference is due to an increase in the number of PCBs of τj
and is denoted by ∆MDr

j [kj ], where

∆MDrj [kj ] = MDj [kj ] −MDrj [kj ] (17)

∆MDr
j [kj ] corresponds to the reduction in time to access main

memory due to an increase in the number of PCBs of τj . Therefore,
∆MDr

j [kj ] efectively bounds the number of PCBs of τj given that

τj is assigned kj cache colors, i.e.,

PCBj (kj ) × N
′

j × dmem ≤ ∆MDrj [kj ] (18)

where N
′

j is the average number of times each PCB of τj is ac-

cessed. Since ∆MDr
j [kj ] bounds the number of PCBs of task τj , it

also bounds the CPRO sufered by τj when it executes during the
response time of a lower priority task τi .

Lemma 4. The CPRO due to the eviction of PCBs of a job of task
τj ∈ hp(i) executing during the response time of a task τi , i.e., ρ

one
j ,i ,

is upper bounded by the diference between the worst-case and the
residual memory demand of τj , i.e.,

ρonej ,i ≤ ∆MDrj [kj ] (19)

Proof.

(1). Eq. (16) implies that the CPRO of one job of task τj ∈ hp(i)

executing during the response time of a task τi is upper bounded by

the time to reload all PCBs of τj from main memory given a cache
color assignment kj , i.e., ρ

one
j ,i ≤ PCBj (kj ) × dmem.

(2). Also, from Eq. (18) it follows that the time to reload all PCBs of
τj for a given cache color assignmentkj is bounded by the diference
between the worst-case and the residual memory demand of τj , i.e.,

PCBj (kj ) × N
′

j × dmem ≤ ∆MDr
j [kj ].

(3). By deinition of PCBs, N
′

j ≥ 1. So the lemma follows. �

Lemma 4 can be used to bound the CPRO of one job of task τj ∈
hep(i) executing during the response time of a task τi . However, we
know that task τj may execute several times during the execution
of τi therefore, the total inter-task cache interference in terms of
CPRO sufered by τj while executing during the response time of
τi can be bounded using the following theorem

Theorem 1. The total inter-task cache interference in terms of
CPRO sufered by a higher priority task τj ∈ hp(i) due to evictions
of its PCBs by tasks in hep(i) \ τj in a time interval of length t is

bounded by CI
inter ,ρ
j, i , where

CI
inter ,ρ
j, i (t) =

(⌈
t

Tj

⌉
− 1

)
×min

(
ρcolj ,i ;∆MDrj [kj ]

)
(20)

Proof.

(1). It is proved in [23] that in a time interval of length t at most(⌈
t
Tj

⌉
− 1

)
jobs of task τj can sufer CPRO.

(2). It implies that both ρcolj ,i (Eq. (16)) and ∆MDr
j [kj ](by Lemma 4

and Eq. (17)) upper bound the CPRO sufered by one job of τj
executing during the response time of τi . Therefore, the minimum
between the two bounds is also an upper bound on the CPRO
sufered by a single job of τj during the response time of τi .

The theorem directly follows from the two points above. �

7 OPTIMIZING CACHE COLOR ASSIGNMENT

In this section, we detail how we optimize the cache color assign-
ment of tasks to balance the intra- and inter-task cache interference
such that it results in improving task set schedulability. We have
used a Simulated Annealing (SA) approach to optimize cache color
assignment of tasks. Simulated annealing [17] is a meta-heuristic
that allows to ind a near optimal solution to an optimization prob-
lem in a reasonable computational time. Our SA-based cache color-
ing approach is given by Algorithm 1 (see Appendix A).

When allocating cache colors to tasks, the algorithm starts by
assigning sequential cache colors to all n tasks in a given task set τ .
Cache colors are assigned to tasks in priority order with the highest
priority task irst. Once the sequential cache color assignment is
done, the algorithm checks the schedulability of each task in τ . If all
tasks in task set τ are schedulable with the sequential cache color
allocation (i.e., τ is schedulable), no changes are made to the cache
color assignment of tasks and the algorithm returns true and exit.
However, if τ was not schedulable with the sequential cache color
allocation, cache color assignment of tasks is optimized using SA.
The SA algorithm uses the sequential cache color assignment of
tasks as the initial solution and then iteratively tries to improve it
by randomly performing one of the following operations:

• Re-allocate(): Swap the set of cache colors assigned to two dis-
tinct tasks. Namely two operations can be performed, (1) swap-
neighbors(): swapping the set of cache colors assigned to two



RTNS ’18, October 10ś12, 2018, Chasseneuil-du-Poitou, France Syed Atab Rashid, Geofrey Nelissen, and Eduardo Tovar

neighboring tasks. This swap is based on the order of tasks in
the main memory rather than their priorities ;(2) swap-random():
swap the set of cache colors of two randomly chosen tasks. These
tasks may or may not be adjacent in main memory. If the chosen
tasks are not adjacent in memory, cache color assignment of tasks
in between them is also updated.
• Shift-layout(): Increasing/decreasing the starting ofset of a ran-
domly chosen task in the main memory (i.e., shifting tasks right
or left). To avoid creating gaps between tasks in main memory
we essentially left/right shift all tasks in the main memory.
• Re-size(): Randomly choose a task and re-allocate the number
of cache colors assigned to that task, i.e., either by increasing or
decreasing the number of cache colors assigned to that task.
As we later show in Section 7.1, that re-sizing the cache space
assigned to tasks can be very beneicial especially when the
tasks have large cache footprints. Also, increasing/decreasing
the number of cache colors assigned to tasks efectively allows to
trade between the intra- and inter-task cache interference which
may result in improving task set schedulability.

To evaluate diferent cache color assignments, the WCRT analy-
sis (i.e., Eq. (5)) can be used at every iteration of the SA algorithm,
i.e., checking the schedulability of all tasks in τ after performing any
of the above mentioned operations. However, this may be computa-
tionally expensive. Also, the boolean result given by Eq. (5) can only
distinguish between schedulable/unschedulable cache color assign-
ments and does not provide any information about the impact of
diferent cache color assignments on the intra- and inter-task cache
interference sufered by the tasks. Therefore, to better quantify the
quality of a cache color assignment of tasks and to guide the SA
algorithm towards an optimal solution, we use the notion of slack.
Slack S of a task τi is denoted by Si and is deined as łthe diference
between the relative deadline and the WCRT of τi ž, i.e., Si = Di − Ri ,
where Ri is calculated by considering the worst-case interference
on τi by all higher priority tasks in hp(i), i.e., by setting Ri == Di

in Equation (5). The total slack Stot of task set τ is given as

S tot =

n∑
i=1

wi × Si (21)

wherewi is the weight assigned to every τi ∈ τ such that,

wi = 0 if Si ≥ 0 and wi = 1, otherwise.

Note that only the tasks with a negative slackwill be assigned a non-
zero weight, i.e.,wi = 1. This is mainly because these are the tasks
that were not schedulable for a given cache color assignment but
may become schedulable by changing their cache color assignment.
The total task set slack is calculated after randomly performing
any of the above mentioned moves during every iteration of the
SA algorithm. If the change in the total task set slack from the
last iteration is positive then the new cache color assignment of
tasks will always be accepted. However, even if the change in task
set slack is negative the new cache color assignment of tasks may
still be accepted depending on how negative the change is and the
current temperature of the SA algorithm, i.e., if a randomly chosen
probability between 0 and 1 is less than the probability of accepting

the negative change, i.e., e
−∆Slack

CurrentT emp (see Appendix A), then the
new cache color assignment for τ will be accepted. Otherwise,
the new cache color assignment will be discarded. After every
iteration, the temperature of SA is reduced by multiplying it with a
cooling factor until it reaches the desired temperature. The initial
temperature, desired temperature and the cooling factor deines the

maximum number of iterations for the SA algorithm. In general,
when the temperature is high, the SA algorithm is more open to
negative changes that may be useful to escape local minima.

7.1 Working Example

To evaluate the efectiveness of the SA-based cache color assign-
ment approach detailed in the previous section, we performed a
small experiment using a single task set comprised of 10 tasks
from the Mälardalen benchmark suite [12] shown in Table 1, i.e.,
τ1 =minmax to τ10 = bsort100, where τ1 has the highest priority.
The selection of tasks was purely random and although these tasks
may not represent a real task set, they do represent typical code
found in real-time systems. For each task, the WCET Ci [ki ], worst-
case memory demandMDi [ki ], worst-case processing demand PDi

and the number of ECBs (i.e., ECB(ki )), UCBs (i.e., UCB(ki )) and
PCBs (i.e., PCB(ki )) were extracted using the Heptane static WCET
analysis tool as presented in [23, 24]. Note that the values forCi [ki ],
MDi [ki ] and PDi in Table 1 are in clock cycles. The number of cache

colors used by each task, i.e., ki , were set such that ki =
⌈
ECBi (ki )
k size

⌉
.

The target architecture was MIPS R2000/R3000 assuming an instruc-
tion cache with line size of 32 Bytes and the total cache size of 16kB

such that the cache has a total of 32 cache colors, i.e., k total = 32

with each color having a size of 512 Bytes, i.e., ksize = 512 Bytes.
The block reload time dmem was set to 10µs.

Table 1: task set parameters used in the working example

Name Ci [ki ] PDi MDi [ki ] ki Ti
minmax 2522 122 2400 2 14315
lcdnum 3440 984 2740 2 73143
cnt 10090 7191 3818 2 85816
ns 30149 28149 6172 2 169744

statemate 43344 10586 35257 18 636613
insertsort 7574 5974 2343 1 734873
nsichneu 316409 22009 294400 32 1889824
qurt 26141 9241 17713 5 2899034
ft 157880 123681 45816 9 6550339

bsort100 712289 710289 90893 2 267271122

The task set was created by ixing the core utilization at 0.8, with
task utilizations generated using the UUnifast algorithm [6]. Task
periods were set such that Ti = Ci [ki ]/Ui . All tasks had implicit
deadlines with priorities assigned in deadline monotonic order. We
checked task set schedulability using the following approaches:

• No preemption cost: The WCRT analysis was performed as-
suming there is no preemption cost (i.e., Eq. (1)).
• SA-based cache color assignment: Cache color assignment of
tasks was optimized using the SA algorithm detailed in Section 7.
• SA-based cache color assignmentwithout re-sizing: The SA
algorithm was used to optimize cache color assignment of tasks
however, re-size() operation was not permitted.
• Sequential cache color assignment:Taskswere assigned cache
colors in a sequential manner with the highest priority task irst.
• Full cache partitioning: The cache partitioning algorithm pre-
sented in [3] was used to assign independent non-overlapping
cache colors (i.e., partitions) to all tasks.
• SA-based cache color assignmentwithout cache persistence
The SA algorithm was used to optimize cache color assignment
of tasks without considering cache persistence.

We observed that the task set was schedulable only with two ap-
proaches, i.e., no preemption cost and the SA algorithm with re-
sizing. All other approaches were not able to schedule the task
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(a) Sequential cache color assignment. (b) Full cache partitioning. (c) SA-based cache color assignment with re-sizing.

Figure 4: Diferent cache color assignments of task set in Table 1.

set. The inal cache color allocations for the sequential cache color
assignment, full cache partitioning and the SA algorithm with re-
sizing, are shown in Fig. 4a, 4b and 4c respectively.

The sequential cache color assignment of tasks (see Fig 4a) was
subjected to high inter-task cache interference (i.e., CRPD and
CPRO), mainly because most cache colors were shared among tasks.
This results in making the task set unschedulable. On the contrary,
with full cache partitioning (see Fig 4b) there is no inter-task cache
interference. However, the task set was still not schedulable due to
an increase in the intra-task cache interference of some tasks that
were assigned fewer cache colors than the actual number of cache
colors needed by those tasks. The layout of tasks in cache resulting
from the SA algorithm with re-sizing is shown in Fig 4c. The task
set was schedulable mainly because the overall cache interference
between tasks was reduced by trading between intra- and inter-task
cache interference, e.g., the inter-task cache interference caused by
τ7 on all lower priority tasks (i.e., τ8, τ9 and τ10) was reduced by
increasing the intra-task cache interference of τ7 (i.e., by reducing
the number of cache colors used by τ7). Note that the task set was
also not schedulable using the SA algorithm without re-sizing. This
shows that even with an optimized task layout, allowing tasks an
unconstrained use of the cache may still result in higher inter-task
cache interference that can make the task set unschedulable.

8 EXPERIMENTAL EVALUATION

In this section, we evaluate how our proposed SA-based cache col-
oring approach performs in terms of schedulability in comparison
to the state-of-the-art techniques. Experiments were performed
using the Mälardalen benchmark suite with parametersCi [ki ], PDi ,
MDi [ki ], MDr

i [ki ], UCBi (ki ), ECBi (ki ) and PCBi (ki ) extracted us-
ing Heptane for the same cache coniguration as used in Section 7.1.
The number of cache colors used by each task, i.e., ki , were set such

that ki =
⌈
ECBi (ki )
k size

⌉
. Each task was randomly assigned the values

Ci [ki ], PDi , MDi [ki ], MDr
i [ki ], UCBi (ki ), ECBi (ki ), PCBi (ki ) and

ki of one of the analyzed benchmarks. Other task set parameters
were randomly generated as follows. The default number of tasks
was 10 with task utilizations generated using UUnifast [6]. Task
periods were set such that Ti = Ci [ki ]/Ui . Task deadlines were
implicit and priorities were assigned in deadline monotonic order.

We conducted diferent experiments by varying core utilization,
number of cache colors and number of tasks. Schedulability analysis
was performed using the same task sets for all the approaches
detailed in Section 7.1 using their respective WCRT analysis.
1) Core Utilization: In this experiment, we randomly generated
1000 task set (each comprised of 10 tasks) at diferent core utiliza-
tions varied from 0.05 to 1 in steps of 0.05. Fig. 5a shows an average
number of task sets that were schedulable using all the analyzed
approaches against the total core utilization. The green line marked

~13% ~11%

(a) Varying core utilizations
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Figure 5: Schedulability w.r.t core utilization and cache size

as łNo preemption cost" is an upper bound on the maximum num-
ber of task sets that were schedulable without considering any
CRPD/CPRO. Fig. 5a shows that the proposed SA-based cache color
assignment with/without re-sizing was able to schedule more task
sets than all the other approaches. Also, we note that while initially
the full cache partitioning approach performs worst however, at
higher core utilizations it tends to outperform the sequential cache
color assignment and the SA-based cache color assignment (no
persistence) approach. This is mainly because at higher core utiliza-
tions, task periods become smaller resulting in higher inter-task
cache interference. It is due to higher inter-task cache interfer-
ence that at core utilizations of 0.85 and 0.9 the diference between
the full cache partitioning approach and the SA-based cache color
assignment without re-sizing is minimal. However, the SA-based
cache color assignment with re-sizing counters this increase in
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inter-task cache interference by trading intra-task cache interfer-
ence efectively resulting in much higher schedulability even at
higher core utilizations. For example at a utilization of 0.9, the SA-
based cache color assignment with re-sizing was able to schedule
around 11% more task sets than the SA-based cache color assign-
ment without re-sizing and around 13% more task sets than the full
cache partitioning approach.
2) Number of Cache Colors: In this experiment, we evaluate the
impact of cache size on the performance of the analyzed approaches
by varying the number of cache color from 4 to 64. As the size of
cache colors is constant (i.e., 512 B), increasing the number of cache
colors also increases the cache size. All parameters other than the
number of cache colors have the same values as used in the previous
experiment. We have used the weighted schedulability measure
deined by Bastoni et al. [5] to plot the results as shown in Fig. 5b.
We observe that initially increasing the number of cache colors (i.e.,
from 4 to 8) decreases the schedulability of all approaches except
the full cache partitioning approach. This is mainly because in this
interval most cache colors were shared between tasks resulting in
higher inter-task cache interference. However, even in this interval
the SA-based cache color assignment with re-sizing outperforms
all other approaches. A further increase in the number of cache
colors results in reducing the number of cache colors that are shared
among tasks. Therefore, we see an increase in the schedulability of
all approaches. Understandably, the performance of the full cache
partitioning approach is almost linear w.r.t the number of cache
colors. Moreover, when the number of cache colors is large (e.g., 64)
all approaches have similar results due to low cache interference.
3) Number of cache sets per cache color:We also performed an
experiment by increasing the of number cache sets per cache color
whilst keeping the cache size constant. We varied the size of one
cache color between 1 to 128 cache sets with all other parameters
set to default values. The resulting plot of task set schedulability
w.r.t the number of cache sets per cache color is shown in Fig. 6a.
We observe that when the size of a cache color is smaller all ap-
proaches were able to schedule more task sets. This is mainly be-
cause a smaller cache color size results in a tighter bound on the
CRPD/CPRO sufered by the tasks. Whereas, increasing the size of
a cache color decrease the total number of cache colors, potentially
increasing the number of shared cache colors and the CRPD/CPRO
sufered by the tasks. This results in decreasing task set schedula-
bility for all approaches. Note that since the full cache partitioning
approach uses the number of cache sets rather than cache colors,
its performance is not afected by the size of a cache color.
4) Number of Tasks: To analyze the performance of all approaches
w.r.t the number of tasks, we varied the number of tasks from 5 to
25 with all other parameters set to the same values as used in the
core utilization experiment. Fig. 6b shows the result of the experi-
ment. We observe that schedulability for all approaches decreases
as the number of tasks is increased. For the full cache partitioning
approach this decrease in schedulability is due to an increase in
intra-task cache interference, i.e., as the number of tasks increase,
less cache colors can be assigned to each individual task poten-
tially resulting in increasing its intra-task cache interference. For
the other approaches, the reduction in schedulability is due an
increase in inter-task cache interference due to sharing of cache col-
ors between several tasks. However, we observe that the SA-based
cache color assignment with re-sizing still achieves much higher
schedulability than all the other approaches.
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Figure 6: Schedulability w.r.t number of cache sets per color
and number of tasks

9 RELATED WORK

A wealth of publications have studied the problem of cache interfer-
ence. Wilhelm et al. [29] detailed static analysis and measurement-
based methods to bound the intra-task cache interference in order
to have deterministic bounds on the WCET of tasks. However, the
work in [29] only focuses on the WCET analysis and does not con-
sider the inter-task cache interference. Altmeyer et al. [2] presented
the ECB-union and multi-set based methods (ECB-Union Multi-set
and UCB-Union Multi-set) that dominate the state-of-the-art ap-
proaches to bound the inter-task cache interference (i.e., CRPD).
However, their methods does not account for cache persistence
between diferent jobs of a task and hence result in pessimistic
WCRT bounds. Rashid et al. [24] introduced the notion of cache
persistence and presented methods to bound the inter-task cache in-
terference considering both CRPD and CPRO. They also integrated
their approach in the WCRT analysis for FPPS, showing signii-
cant improvements in the accuracy of the response time analysis.
However, when calculating CRPD/CPRO they only considered a
sequential layout of tasks in memory, potentially overestimating
the inter-task cache interference. In other approaches, cache par-
titioning [3, 7, 9, 11, 15, 22, 30] has been proposed to reduce or to
completely mitigate the inter-task cache interference. Partitioning
techniques can be implemented either in hardware [16] or in soft-
ware [22, 30] and require specialized hardware/software (i.e., OS
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or compiler) support. However, most of these works only focus on
the implementation of cache partitioning [16, 22, 30] rather than
evaluating the efects of cache partitioning on task set schedulabil-
ity. Kim et al. [15] showed that the cache partitioning approaches
are subjected to the problem of limited number of cache partitions.
The authors then proposed a cache management scheme to assign
private and shared cache partitions to tasks. However, their ap-
proach did not account for the intra-task cache interference and
the method used to calculate the penalties due to sharing of cache
partitions between tasks resulted in pessimistic CRPD bounds since
it does not consider the actual ECBs/UCBs of tasks. Altmeyer et
al. [3, 4] presented a cache-partitioning algorithm that is optimal
under certain cache-modeling assumptions. However, the authors
concluded that the trade of between intra- and inter-task cache
interference often favors sharing the cache rather than partitioning
it. In other works, Busquets et al. [9] and Bui et al. [7] proposed hy-
brid cache partitioning, where a designated cache area was shared
between those tasks that are not allocated private cache partitions.
However, these approaches were also focused on the inter-task
cache interference and result in higher values of CRPDs when a
large number of tasks use the shared cache area/partition.

The only existing approaches we are aware of and that relates
to the work done in this paper was presented by Gebhard and Alt-
meyer [10] and later improved by Lunniss et al. [21]. Gebhard and
Altmeyer [10] proposed an approach to optimize task layout in
memory to improve task set schedulability by minimizing the inter-
task cache conlicts. Their approach showed that with diferent
task layouts in memory inter-task cache interference can be signii-
cantly reduced. However, their approach to bound the CRPDs was
pessimistic since all ECBs of a task were treated as UCBs. Lunniss
et al. [21] later improved the work done in [10] by using a more
tighter approach for CRPD calculation. They proposed a simulated
annealing based approach to optimize task layout in memory to
reduce the inter-task cache interference and efectively improve
schedulability. It has been identiied in [3, 4] that an optimized
layout of tasks in memory outperforms an optimal cache partition-
ing approach. However, in contrast to the work presented in this
paper the task layout optimization approach presented in [21] only
considered the inter-task cache interference (i.e., only CRPD) and
does not account for CPRO. Moreover, they do not allow re-sizing
the cache space assigned to tasks and only change task placements
in memory to reduce CRPD while allowing tasks an unconstrained
use of cache. This unconstrained use of the cache result in higher
CRPDs when higher priority tasks have large cache footprints.

10 CONCLUSION AND FUTUREWORK

In this work, we showed that intra- and inter-task cache interfer-
ence can be interrelated and balancing their respective contribution
to tasks WCRT may result in improving task set schedulability.
We use a cache coloring approach to optimize task layout in mem-
ory such that the trade-of between intra- and inter-task cache
interference can be balanced. We also showed how the intra- and
inter-task cache interference can be bounded under a cache color-
ing approach. Lastly, a simulated annealing algorithm is proposed
to optimize the cache color assignment to tasks by re-allocating and
re-sizing the cache colors assigned to tasks such that the task set’s
schedulability is achieved. Experiments were performed by varying
diferent parameters using values from the Mälardalen benchmarks.

Experimental results show that the proposed SA based cache color
assignment of tasks dominates the existing approaches used to
optimize task layout in memory.

The work presented assumed a direct mapped cache, future work
could include extending it to N-way set associative caches. We also
aim to extent this analysis to shared cache in multicore platforms.

A SIMULATED ANNEALING ALGORITHM

Algorithm 1 Simulated annealing based algorithm to optimize
cache color assignment of tasks

Input: task set τ = {τ1, τ2, ..., τn }; total cache colors k
total

Output: Cache color assignment {ck1, ck2, ..., ckn }; true if τ is
schedulable and f alse otherwise.

1: for i ← 1 to n do
2: {cki } = ∅
3: end for
4: AssignSequentialColors(τ ,k total );
5: if isSchedulable(τ ) then
6: return true;
7: else
8: SimulatedAnnealing(τ );
9: if isSchedulable(τ ) then
10: return true;
11: else
12: return false;
13: end if
14: end if
15: Function SimulatedAnnealing(τ )
16: CurrentTemp←400;DesiredTemp←0.001;CoolingRate←0.99;

17: while CurrentTemp ≥ DesiredTemp do
18: TaksetSlackOld = Calculatetasksetslack(τ );
19: SelectRandom(ReAllocate(), Shi f tLayout(),ReSize());

20: TaksetSlackNew = Calculatetasksetslack(τ );
21: ∆Slack←TaksetSlackOld −TaksetSlackNew

22: if ∆Slack ≥ 0 then
23: Accept new cache color assignment of τ ;
24: else
25: Randomprob ← rand(0, 1)

26: if Randomprob < e
−∆Slack

CurrentT emp then
27: Accept new cache color assignment of τ ;
28: else
29: Discard new cache color assignment of τ ;
30: end if
31: end if
32: CurrentTemp = CurrentTemp ∗CoolingRate;

33: end while
34: end function
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