pd

CISTER

Research Centre in

Computing Systems

PhD Thesis

Towards Timing Analysis of Multi-core
Platforms for Hard Real-Time Systems

Syed Aftab Rashid

CISTER-TR-210403

2021/04/09

PhD Thesis CISTER-TR-210403 Towards Timing Analysis of Multi-core Platforms for Hard ...

Towards Timing Analysis of Multi-core Platforms for Hard Real-Time Systems

Syed Aftab Rashid

CISTER Research Centre

Polytechnic Institute of Porto (ISEP P.Porto)

Rua Dr. Ant6nio Bernardino de Almeida, 431
4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159
E-mail: syara@isep.ipp.pt

https://www.cister-labs.pt

Abstract

Modern processors provide enhanced performance with reduced power, size and cost in average case
and are becoming mainstream in almost all application domains including real-time embedded
systems. However, the use of modern computing platforms in hard real-time systems, i.e., systems with
stringent timing requirements, is still under scrutiny of the real-time systems community due to their
unpredictable nature. This is mainly due to resources such as, caches and the memory bus that are
shared among several tasks executing on the processor. As tasks can run concurrently on the
processor, consequently, simultaneous use of any of these shared resources can result in inter-task
resource contention which can significantly affect the timing behavior of the executing tasks. To safely
conclude that any task executing on the platform may or may not fulfill its timing requirements, it is
essential to first compute accurate bounds on the shared resource contention that may be experienced
by that task.

The main objective of this dissertation is to provide software-based solutions that can be used to
accurately quantify the shared resource contention between tasks due to two main resources, i.e.,
caches and the memory bus.

We start by identifying the pessimism in the existing analysis that focus on bounding intertask cache
contention for direct-mapped caches. We show that this pessimism mainly comes from a unidirectional
focus on the negative perspective of caches, i.e., derived from a preempting task invalidating cache
lines useful to the preempted task, thereby extending a preempted task’s execution time. In contrast,
we identify a different positive perspective of caches, i.e., cache persistence, which refers to the re-use
of cache content between different job executions of a task, leading to a tighter bound on the total
memory access demand of the task. We propose a new preciser analysis that accounts for both the
negative and the positive perspective of caches when computing inter-task cache contention, and
results in significantly improving task’s schedulability.

We then extend our analysis to set-associative caches and show that the previously developed analysis
for direct-mapped caches cannot be used as is for set-associative. We present several different
approaches to bound inter-task contention considering set-associative caches. Our analysis accurately
determines cache blocks that may suffer additional cache reloads due to inter-task cache conflicts even
in the presence of cache persistence and eliminates substantial pessimism with respect to former
analyses.

We highlight additional challenges that stem from analyzing inter-task cache conflicts in the presence of
a cache hierarchy and propose an analysis to bound inter-task cache contention considering multilevel
caches. We identify the sources of overestimation in a preceding analysis that focus on bounding inter-
task contention for multilevel caches and propose solutions to minimize that overestimation.

Finally, we present a holistic analysis that considers the interdependence between cache contention
and memory bus contention and evaluate their cumulative impact on the timing requirements of tasks.
We show that the analysis that tightly bounds the inter-task cache contention may also result in
significantly reducing the memory bus contention suffered by the tasks, thereby, improving
schedulability.

© 2021 CISTER Research Center 1
www.cister-labs.pt

IBPORTO

FEU FACULDADE DE ENGENHARIA
UNIVERSIDADE DO PORTO

Towards Timing Analysis of Multi-core
Platforms for Hard Real-Time Systems

Syed Aftab Rashid

Supervisor: Prof. Eduardo Manuel Medicis Tovar
Co-Supervisor: Prof. Geoffrey Nelissen

Co-Supervisor: Prof. Luis Miguel Pinho de Almeida

Programa Doutoral em Engenharia Electrotécnica e de Computadores

April, 2021

© Syed Aftab Rashid: April, 2021

Faculdade de Engenharia da Universidade do Porto

Towards Timing Analysis of Multi-core Platforms for
Hard Real-Time Systems

Syed Aftab Rashid

Dissertation submitted to Faculdade de Engenharia da Universidade do Porto

to obtain the degree of

Doctor Philosophiae in Electrical & Computer Engineering

President: Dr. José Alfredo Ribeiro da Silva Matos
External Referee: Dr. Sebastian Altmeyer

External Referee: Dr. Claire Maiza
Internal Referee: Dr. Jodo Paulo de Castro Canas Ferreira
Internal Referee: Dr. Mario Jorge Rodrigues de Sousa

Supervisor: Dr. Eduardo Manuel Medicis Tovar

April, 2021

To my mother,
And for whom do we achieve extraordinary feats in our lives if not for our mothers?

Abstract

Modern processors provide enhanced performance with reduced power, size and cost in average
case and are becoming mainstream in almost all application domains including real-time embed-
ded systems. However, the use of modern computing platforms in hard real-time systems, i.e.,
systems with stringent timing requirements, is still under scrutiny of the real-time systems com-
munity due to their unpredictable nature. This is mainly due to resources such as, caches and the
memory bus that are shared among several tasks executing on the processor. As tasks can run con-
currently on the processor, consequently, simultaneous use of any of these shared resources can
result in inter-task resource contention which can significantly affect the timing behavior of the
executing tasks. To safely conclude that any task executing on the platform may or may not fulfill
its timing requirements, it is essential to first compute accurate bounds on the shared resource
contention that may be experienced by that task.

The main objective of this dissertation is to provide software based solutions that can be used
to accurately quantify the shared resource contention between tasks due to two main resources,
i.e., caches and the memory bus.

We start by identifying the pessimism in the existing analysis that focus on bounding inter-
task cache contention for direct-mapped caches. We show that this pessimism mainly comes
from a unidirectional focus on the negative perspective of caches, i.e., derived from a preempting
task invalidating cache lines useful to the preempted task, thereby extending a preempted task’s
execution time. In contrast, we identify a different positive perspective of caches, i.e., cache
persistence, which refers to the re-use of cache content between different job executions of a task,
leading to a tighter bound on the total memory access demand of the task. We propose a new
preciser analysis that accounts for both the negative and the positive perspective of caches when
computing inter-task cache contention, and results in significantly improving task’s schedulability.

We then extend our analysis to set-associative caches and show that the previously developed
analysis for direct-mapped caches can not be used as is for set-associative. We present several
different approaches to bound inter-task contention considering set-associative caches. Our anal-
ysis accurately determines cache blocks that may suffer additional cache reloads due to inter-task
cache conflicts even in the presence of cache persistence and eliminates substantial pessimism
with respect to former analyses.

We highlight additional challenges that stem from analyzing inter-task cache conflicts in the
presence of a cache hierarchy and propose an analysis to bound inter-task cache contention con-
sidering multilevel caches. We identify the sources of overestimation in a preceding analysis that
focus on bounding inter-task contention for multilevel caches and propose solutions to minimize
that overestimation.

Finally, we present a holistic analysis that considers the interdependence between cache con-
tention and memory bus contention and evaluate their cumulative impact on the timing require-

i

ments of tasks. We show that the analysis that tightly bounds the inter-task cache contention may
also result in significantly reducing the memory bus contention suffered by the tasks, thereby,
improving schedulability.

Keywords: Hard real-time systems, Shared resources, Cache Contention, Bus contention,
Timing analysis.

Resumo

Processadores modernos, em geral, fornecem desempenho aprimorado com energia, tamanho, e
custo reduzidos, e estdo a se tornar comuns em quase todos os dominios de aplicacdo, incluindo
sistemas embarcados em tempo real. No entanto, o uso de plataformas de computacdo modernas
em sistemas de tempo real rigidos, ou seja, sistemas com requisitos temporais rigorosos, ainda
estd sob escrutinio da comunidade de sistemas de tempo real devido a sua natureza imprevisivel.
Isso se deve principalmente a recursos como memdrias caches e o barramento de memoria que
sdo compartilhados entre vdrias tarefas em execug@o no processador. Como as tarefas podem
ser executadas simultaneamente no processador, consequentemente, o uso simultaneo de qualquer
um desses recursos compartilhados pode resultar em contengdo de recursos entre tarefas, o que
pode afetar significativamente o comportamento de temporizacio das tarefas em execugdo. Para
concluir com seguranca que qualquer tarefa em execucdo na plataforma pode ou ndo cumprir
seus requisitos de tempo, € essencial primeiro calcular limites precisos na contencio de recursos
compartilhados que pode ser experimentada por essa tarefa.

O principal objetivo desta dissertacdo é fornecer solucdes baseadas em programas que pos-
sam ser usadas para quantificar com precisdo a conten¢do de recursos compartilhados entre
tarefas devido a dois recursos principais, caches e o barramento de memdria.

Comecamos por identificar o pessimismo nas andlises existente que se concentram na lim-
itacdo da contencdo de cache entre tarefas para caches mapeados diretamente. Mostramos que
esse pessimismo vem principalmente de um foco unidirecional na perspectiva negativa de caches,
ou seja, derivado de uma tarefa preemptiva invalidando linhas de cache tteis para a tarefa in-
terrompida, estendendo assim o tempo de execucdo de uma tarefa interrompida. Em contraste,
identificamos uma outra perspectiva positiva de caches, chamada de persisténcia de cache, que se
refere a reutilizacdo do contetido do cache entre diferentes execugdes de trabalho de uma tarefa,
levando a um limite mais rigido na demanda total de acesso a memoria da tarefa. Propomos uma
nova andlise mais precisa que leva em conta as perspectivas negativa e positiva dos caches ao cal-
cular a conten¢do de cache entre as tarefas e resulta em uma melhora significativa na capacidade
de escalonamento da tarefa.

Em seguida, estendemos nossa andlise para memorias-caches de conjuntos associativos e
mostramos que a anélise desenvolvida anteriormente para memdrias cache diretamente mapeadas
ndo pode ser usada da mesma maneira para conjuntos associativos. Apresentamos véarias aborda-
gens diferentes para limitar a contengdo entre tarefas, considerando memorias cache de conjunto
associativo. Nossa andlise determina, com precisdo, os blocos de cache que podem sofrer recar-
regamentos de cache adicionais devido a conflitos de cache entre tarefas, mesmo na presencga de
persisténcia de cache, e elimina o pessimismo substancial em relacdo as andlises anteriores.

Destacamos desafios adicionais que resultam da anélise de conflitos de cache entre tarefas na
presenca de uma hierarquia de cache e propomos uma andlise para limitar a contencdo de cache

v

entre tarefas considerando caches multinivel. Identificamos as fontes de superestimacdo em uma
analise anterior que enfoca a contencéo de limites entre tarefas para caches multinivel e propomos
solugdes para minimizar essa superestimacao.

Finalmente, apresentamos uma andlise holistica que considera a interdependéncia entre a con-
tengdo do cache e a contengdo do barramento de memdria e avaliamos seu impacto cumulativo nos
requisitos de temporizacao das tarefas. Mostramos que a andlise que limita fortemente a contengdo
do cache entre tarefas também pode resultar na reducido significativa da contencdo do barramento
de memoria sofrida pelas tarefas, resultando assim em uma melhora na escalonabilidade.

Acknowledgments

PhD is a roller coaster ride and no worthwhile roller coaster provides a smooth ride. But this does
not mean it cannot be enjoyed, especially, when you are surrounded by a bunch of exceptional
people to help, motivate and encourage you. I would start by offering my heartfelt gratitude to
my supervisors, Prof. Eduardo Tovar and Dr. Geoffrey Nelissen, for their guidance and support at
every step during my PhD. Prof. Eduardo is the person who selected me for the PhD position at
CISTER and although it took me almost six months to join CISTER and start my PhD, he persisted
with me and allowed me to join. Without his understanding, things might have been very different.
He has been an amazingly supportive supervisor during the course of my PhD.

Dr. Geoffrey Nelissen my co-supervisor, is the main force in the transformation of my PhD
progress into a growth function. His dedication, sharp insights, attention to detail, and compre-
hensive assistance has really helped me throughout my research journey. He always strives for
perfection and expects the same from his students, which is very inspiring. I have learned a lot
from him. I would also like to thank Prof. Luis Almeida for helping with FEUP’s Administration.

I would also like to acknowledge the help of Damien Hardy, Benny Akesson, Isabelle Puaut,
Sebastian Altmeyer and Robert 1. Davis, with whom I have had the privilege of collaborating at
the early phase of my PhD.

My fellow students, researchers and administrative staff at CISTER have been supportive in
many ways. I would like to thank Giann Nandi for translating the abstract of the thesis in Por-
tuguese. I would also like to mention Harrison Kurunathan, my best lab mate and a very good
friend. His company is never boring and we always have great discussions on academic and non-
academic issues. During all these years, we have shared some very memorable moments. I would
also like to thank Muhammad Ali Awan for his valuable advices on professional and personal mat-
ters. I would like to add that I feel fortunate to have known Hazem Ismail Ali, Patrick Meumeu
Yomsi, Claudio Maia, Humberto Carvalho, Jodo Loureiro, Shashank Gaur, Mubarak Ojewale and
Ishfaq Hussain during these years. I would also like to extend my sincere gratitude to all the
administrative staff at CISTER.

I would also like to thank Niaz, Mushtaq, Zahid, Ajmal, Asif, Saad, Alam, and Saqlain for
creating an excellent social environment with great parties and delicious food.

Last and the most important, none of this would have been possible without the love, support
and patience of my family. My parents have always been an invariable support during my entire
educational career. Especially, my mother, Munazza Parveen, she is the motivation behind all my
achievements and I owe her what I am right now. I would also like to express my heartfelt gratitude
to my sisters for their continuous encouragement during my long research journey. I would also
like to thank my uncle Syed Asim Hussain and my aunt Nighat Firdous, who always supported
and encouraged me. Finally, I would like to thank my wife and my daughter, who bare with me
during the ups and downs of my PhD.

vi

This work was partially supported by FCT (Fundagdo para a Ciéncia e Tecnologia) under the
individual doctoral grant SFRH/BD/119150/2016.

Syed Aftab Rashid

List of Author’s Publications

The following list of publications reflects the results achieved during the development of this
dissertation. A significant part of this thesis is compiled from these publications.

Conference Publications

* Syed Aftab Rashid, Geoffrey Nelissen, Damien Hardy, Benny Akesson, Isabelle Puaut,
and Eduardo Tovar, “Cache-persistence-aware response-time analysis for fixed-priority
preemptive systems” (Outstanding Paper Award) in ECRTS, 2016, pp. 262-272.
https://ieeexplore.ieee.org/document/7557886

* Syed Aftab Rashid, Geoffrey Nelissen, Sebastian Altmeyer, Robert I. Davis, and Eduardo
Tovar, “Integrated analysis of cache related preemption delays and cache persistence
reload overheads” in RTSS, 2017, pp. 188-198.
https://ieeexplore.ieee.org/document/8277292

* Syed Aftab Rashid, Geoffrey Nelissen, and Eduardo Tovar, “Trading Between Intra- and
Inter-Task Cache Interference to Improve Schedulability” in RTNS, 2018, pp. 125-136.
https://doi.org/10.1145/3273905.3273924

* Syed Aftab Rashid “Server Based Task Allocation to Reduce Inter-Task Memory
Interference in Multicore Systems” in FIT, 2019, pp. 322-327.
https://doi.org/10.1109/F1T47737.2019.00067

* Syed Aftab Rashid, Geoffrey Nelissen, and Eduardo Tovar, “Cache Persistence-Aware
Memory Bus Contention Analysis for Multicore Systems” in DATE, 2020, pp. 442—-447.
https://ieeexplore.ieee.org/document/9116265

* Syed Aftab Rashid, Geoffrey Nelissen, and Eduardo Tovar, “Bounding Cache Persistence
Reload Overheads for Set-Associative Caches” (Outstanding Paper Award) in RTCSA,
2020, pp. 1-10. https://ieeexplore.ieee.org/document/9203583

* Jatin Arora, Claudio Maia, Syed Aftab Rashid, Geoffrey Nelissen and Eduardo Tovar,
“Bus-Contention Aware Schedulability Analysis for the 3-Phase Task Model with
Partitioned Scheduling”in RTNS, 2021. https://easychair.org/publications/preprint/gdNJ

Journal Publications

* Syed Aftab Rashid, Geoffrey Nelissen, and Eduardo Tovar, “Tightening the CRPD Bound
for Multilevel non-Inclusive Caches” in IEEE Access (Under Submission).

viii

https://ieeexplore.ieee.org/document/7557886
https://ieeexplore.ieee.org/document/8277292
https://doi.org/10.1145/3273905.3273924
https://doi.org/10.1109/FIT47737.2019.00067
https://ieeexplore.ieee.org/document/9116265
https://ieeexplore.ieee.org/document/9203583
https://easychair.org/publications/preprint/gdNJ

1X

* Syed Aftab Rashid, Zeeshan Haider, S.M. Chapal Hossain, Kashan Memon, Fazil
Panhwar, Momoh Karmah Mbogba, Peng Hud, Gang Zhao, “Retrofitting low-cost heating

ventilation and air-conditioning systems for energy management in buildings” in Applied
Energy, 2019, volume. 236, pp. 648-661.

Work-in-Progress and Posters

* Syed Aftab Rashid, Geoffrey Nelissen, and Eduardo Tovar, “Poster Abstract: Cache
Persistence Aware Response Time Analysis for Fixed Priority Preemptive Systems” in
RTAS, 2016. https://ieeexplore.ieee.org/document/7461347

* Syed Aftab Rashid, Geoffrey Nelissen, and Eduardo Tovar, “Integrating the calculation of
preemption and persistence related cache overhead” in RTSS, 2016.
https://ieeexplore.ieee.org/document/7809873

* Syed Aftab Rashid, Geoffrey Nelissen, and Eduardo Tovar, “ResilienceP Analysis:
Bounding Cache Persistence Reload Overhead for Set-Associative Caches” in DCE, 2019.
https://cister.isep.ipp.pt/docs/resiliencep_analysis__bounding_cache_persistence_reload_
overhead_for_set_associative_caches/1528/view.pdf

* Syed Aftab Rashid, Geoffrey Nelissen, and Eduardo Tovar, “Towards Timing Analysis of
Multi-core Platforms for Hard Real-Time Systems” in CPS Week, 2018.
https://cister.isep.ipp.pt/docs/towards_timing_analysis_of_multi_core_platforms_for_
hard_real_time_systems/1362/view.pdf

* Syed Aftab Rashid, Geoffrey Nelissen, and Eduardo Tovar, “ResilienceP Analysis:
Bounding Cache Persistence Reload Overhead for Set-Associative Caches” in ECRTS,
2019. https://cister.isep.ipp.pt/docs/resiliencep_analysis__bounding_cache_persistence_
reload_overhead_for_set_associative_caches/1520/view.pdf

* Jatin Arora, Claudio Maia, Syed Aftab Rashid, Geoffrey Nelissen and Eduardo Tovar,
“Work-In-Progress: WCRT Analysis for the 3-Phase Task Model in Partitioned
Scheduling” in RTSS, 2016. https://ieeexplore.ieee.org/document/9355505

https://ieeexplore.ieee.org/document/7461347
https://ieeexplore.ieee.org/document/7809873
https://cister.isep.ipp.pt/docs/resiliencep_analysis__bounding_cache_persistence_reload_overhead_for_set_associative_caches/1528/view.pdf
https://cister.isep.ipp.pt/docs/resiliencep_analysis__bounding_cache_persistence_reload_overhead_for_set_associative_caches/1528/view.pdf
https://cister.isep.ipp.pt/docs/towards_timing_analysis_of_multi_core_platforms_for_hard_real_time_systems/1362/view.pdf
https://cister.isep.ipp.pt/docs/towards_timing_analysis_of_multi_core_platforms_for_hard_real_time_systems/1362/view.pdf
https://cister.isep.ipp.pt/docs/resiliencep_analysis__bounding_cache_persistence_reload_overhead_for_set_associative_caches/1520/view.pdf
https://cister.isep.ipp.pt/docs/resiliencep_analysis__bounding_cache_persistence_reload_overhead_for_set_associative_caches/1520/view.pdf
https://ieeexplore.ieee.org/document/9355505

Contents

List of Figures

List of Tables

List of Algorithms

List of Abbreviations

1 Introduction

1.1
1.2

Contributions of this Thesis
Thesis Structure e

2 Theoretical Background

2.1
2.2

2.3

24

Real-Time Systems
Basic Organization of a Real-Time System
2.2.1 Applications L.
2.2.2 Real-Time Operating System (RTOS)
2.23 Hardware Platform
Ensuring Temporal Correctnessof aRTS
2.3.1 Timing Analysis
2.3.2 Schedulability Analysis
2.3.3 Caches and Timing Analysis
2.3.4 System Bus and Timing Analysis
Chapter Summary L e e e

3 Related Work

3.1

3.2

33

Intra-task Cache Interference Analysis
3.1.1 MustAnalysis L
3.1.2 May Analysis
3.1.3 Persistence Analysis
3.1.4 Intra-task Cache Analysis for Multilevel Caches
Inter-task Cache Interference Analysis
3.2.1 CRPD Computation for Single-level Direct-mapped Caches
3.2.2 CRPD Computation for Single-level Set-associative LRU Caches

3.2.3 CRPD Computation for Multi-level Caches
324 From CRPD to Timing Analysis
Other Approaches to Handle Intra- and Inter-task Cache Interference
3.3.1 Cache Partitioning and Locking
3.3.2 Task Layout Optimization

xvi

Xvii

Xviii

XX

CONTENTS Xi

6

3.3.3 Enhanced SchedulingModels 43
3.4 Memory Bus Contention Analysis, 44
3.5 Different Perspectiveof Caches 46
Analysis of Single-level Direct-mapped Caches 48
Using Cache Persistence to Improve the Bounds on Inter-task Cache Interference 50
4.1 Assumptions on the System Model00 51
4.2 Problem Definitiono 53
4.2.1 Motivational Example o 53
4.2.2 Problem Formalization, 55
4.3 CPRO-union Approach 57
4.3.1 Computation of Cache Persistence Reload Overhead 57
432 WCRT Analysis i 58
4.4 CPRO Multi-Set Approach 60
4.4.1 Computation of p}?fi”l(t) 60
4.4.2 Improving the Accuracy of Mje-fli” 63
443 WCRT Analysis o o 63
4.5 Static Analysis 64
4.6 Experimental Evaluation 64
4.6.1 Total Utilization e 66
4.6.2 NumberofTasks 67
463 CacheSize e 68
477 Chapter SUMMATY v vttt e e e e e e e e 70

Integrated Analysis of Cache Related Preemption Delays and Cache Persistence Reload

Overheads 71
5.1 Problem Formalization 73
5.2 Integrated CRPD-CPRO Analysis 76
5.3 Multi-set Approach to Integrated CRPD-CPRO analysis 79
5.4 Experimental Evaluation, 83
54.1 CoreUtilization. i 84
542 Cachesize e e 87
5.4.3 BlockReload Time (dyierm) - - - - v v v o v v o e e e e e 87
5.4.4 Task Priority and Memory footprint 89
5.5 Chapter Summary 90
Evaluating the Impact of Memory Layout of Tasks on Schedulability 92
6.1 CacheColoring 93
6.2 Assumptions on the SystemModel oo 94
6.3 Cache Interference Aware WCRT Analysis 97
6.4 Bounding Intra-Task Cache Interference 98
6.5 Bounding Inter-task Cache Interference 99
6.5.1 Inter-Task Cache Interference duetoCRPDs 100
6.5.2 Inter-Task Cache Interference duetoCPROs 104
6.6 Optimizing Cache Color Assignment 107
6.6.1 Working Example 110
6.7 Experimental Evaluation 112

xii CONTENTS
6.8 Chapter Summary 116
II Analysis of Single- and Multi-level Set-associative Caches 117
7 CPRO Analysis for Set-associative Caches 119
7.1 Assumptions on the System Model 120
7.2 Finding PCBs for set-associative caches 122
7.3 CPRO Analysis for Set-Associative Caches 124
73.1 PCB-ECB Approach 124
7.3.2 ResilienceP Analysis 126
7.4 Multi-path ResilienceP Analysis 127
7.4.1 Buildingthe CPRO-table 129
74.2 Boundingthe CPRO 131
7.5 WCRT Analysis o i e e e e e e e 133
7.6 Experimental Evaluation 0 L. 133
7.7 Chapter SUumMmary o vt e e e e e e e e e 137
8 Tightening the Bound on Inter-task Cache Interference for Multilevel Caches 138
8.1 Assumptions on the SystemModel 139
8.2 State-of-the-Art CRPD Analysis for Multilevel Caches (Chattopadhyay and Roy-
choudhury, 2014) e 143
8.2.1 Calculating the Indirect Effect of Preemption 145
8.2.2 CRPD Computation 147
8.3 Multilevel Useful Cache Blocks 148
83.1 Finding LI/L2-UCBs i i 149
8.4 Tightening the Bound on the Indirect Effect of Preemption 150
8.4.1 Handling Nested/Multiple Preemptions 153
8.5 Improved CRPD Analysis for Multilevel caches 156
8.5.1 CRPDdue to Evictionof L1-UCBs 156
8.5.2 CRPD dueto Evictionof L2-UCBs 157
8.5.3 Computation of total CRPD and WCRT Analysis 163
8.6 Experimental Evaluation 164
8.6.1 Deriving Parameters for the Analyses 164
8.6.2 Experiments 165
8.7 Chapter Summary e e e e 173
IIT Extension to Multicore Platforms 174
9 Evaluating the Impact of Inter-task Cache Interference on Memory Bus Contention
in Multicore Systems 176
9.1 Assumptions on the System Model 177
9.2 CRPD-aware Memory Bus Contention Analysis 179
9.3 Cache Persistence-aware Memory Bus Contention Analysis 182
9.4 Bus Contention-Aware Worst-case Response Time (WCRT) Analyses 185
9.5 Experimental Evaluation 186
9.5.1 Multicore Platforms with Single-level Caches 187

9.5.2 Multicore Platforms with Multilevel Caches 190

CONTENTS

9.6 Chapter Summary

10 Thesis Summary, Limitations and Future Directions

10.1 Summary of Contributions
10.2 Limitations of Current Work and Future Directions
10.2.1 Cache Persistence Analysis for Multilevel Caches

10.2.2 Inter-task Cache Interference Analysis for Last-level Shared Caches . . .

10.2.3 Holistic Memory Contention Analysis for Preemptive Systems

10.2.4 Cache Persistence-aware Inter-task Cache Interference Analysis consider-

ing Dynamic Priority Scheduling

10.3 Conclusions o . e e

Bibliography

Xiil

194

195
195
196
196
197
198

198
199

200

List of Figures

2.1
22
23
24

25
2.6

2.7

3.1
32
33
34
3.5

3.6

3.7

4.1

4.2

4.3

4.4
4.5
4.6

Different components of a Real-time system 7
Common Memory Architecture L 12
Different types of cache associativity, 13
Example access sequence of memory blocks in a 4-way set-associative cache using

aLRUreplacementpolicy 14
Basic abstraction of the system Buso oo 15
Work flow between different components of a timing-analysis tool (Wilhelm et al.,

2008a) e e 19
Basic interface between timing and schedulability analysis 21

Intra-task ache analysis is one of the main components in the timing analysis (Pha-

vorinand Richard) e 25
Join and Update functions for the Must, May and Persistence analysis 27
Update function to handle U accesses for multilevel caches (Hardy and Puaut, 2008) 30
Visual representation of cache related preemption delay (CRPD) 31
[lustration of the maximum LRU-age of a UCB m;. The dashes (from left to right)

denote the sequence of memory accesses during the execution of task 7;. 36

Ilustration of the indirect effect of preemption suffered by a memory block m due
to eviction of another memory block A by preemption. Both L1 and L2 caches are
assumed to be two-way set-associative having only one cache set and the cache

replacement policy is LRU. oL oo 38
Example schedule to highlight re-usable cache blocks between different jobs of
task T; . . . e e e e 46

Schedule and cache contents for a taskset {7, 72} with C; = 100, C, = 400,
MD, =60, MD, =80, ECB, = {5,6,7,8,9,10}, ECB, = {1,2,3,4,5,6}, UCB; =
(6,7}, UCB, = {5,6}, PCB, = {5,6,7,8,10} and PCB, = {1,2}. The schedule

assumes that 7| releases its first job with an offset of 100 time units. 54
Ilustration of the pessimism associated with Equation (4.6) using the task set
{71,773} when 7| and 7, releasing their first jobs with an offset. 60

Illustration of the maximum number of times the tasks in aff(i, j) and hep(j) \
T; can execute between two successive jobs of 7;. When calculating p>3, 7| €
hep(2) \ 7> can release maximally 3 jobs (with each job loading all its ECBs in
the worst case). In contrast, the one job released by 13 € aff(3,2) can execute and

load its ECBs maximum 4 times.o 61
Number of tasksets that are deemed schedulable for a for a varying total utilizations. 67
Weighted schedulability measure by varying the number of tasks from 5to 25. . . 68
Weighted schedulability measure by varying the number of cache sets 69

X1V

LIST OF FIGURES

5.1

5.2

53
54

6.1
6.2

6.3

6.4

6.5

6.6
6.7

7.1

7.2
7.3
7.4
7.5
7.6

7.7

8.1

8.2

8.3

8.4
8.5

Schedules maximizing 73’s response time when C; =1, C, =2,(C3 =9, T} =6,
T, =6,T3=25,ECB, ={7,8,9,10}, ECB, = {7,8,9,10}, ECB; = {1,2,3,4,5},
UCB, ={7,8,9,10}, PCB, ={7,8,9,10} and UCB|, = UCB3 = PCB; = PCB; =
O e
Ilustrating the pessimism associated with the separate UCB-union multi-set and
CPRO multi-set analysis using the task set {7), 7, 73} withC; =1,C, =2, C3 =5,

....................

=3T=5 3=20..
g%:he(%ﬁla%ility ?%Illgo With Tespect to total core utilization & & & . 1ol
Weighted schedulability measure by varying cache utilization, block reload time
dmemand cache size L e

A visual representation of cache coloring (Kim et al.,2013)
Increase in execution demand and memory access demand of task 7; due to reduc-
tion in number of cache colors assignedto 7;.
Worst-case memory access demand MD;[k;] of task 7; w.r.t the number of cache
colorsassignedto T;.
Variation in the worst-case and residual memory access demand of task 7; w.r.t the
number of cache colors assigned.
Different cache color assignments of task setin Table 6.2.
Schedulability w.r.t core utilization and cache size
Schedulability w.r.t number of cache sets per color and number of tasks

Example execution of a task 7; (from left to right) considering (a) a direct-mapped
cache with 4 cache sets, i.e., {So,S51,52,53} and (b) a 4-way set-associative cache
having one cache set Sy using a Least-Recently-Used (LRU) cache replacement
policy. The LRU age of a block b refers to how many accesses were performed to
the cache set in which b is saved since the lastaccesstob.
Maximum LRU-age of memory blocks of task 7; (a) over the execution of two jobs
of 7;, and (b) under the assumption that 7;iscyclic.
Example scenario to highlight the pessimism in the PCB-ECB approach
Highlighting the pessimism in the ResilienceP analysis
Task sets schedulability by varying (a) total task set utilization and (b) the total
number of tasksinataskset o oo oL
Weighted schedulability results by varying (a) number of cache ways W and (b)
memory reload time dpem - -+« - o v e e e e e e e
Performance of ResilienceP and multi-path ResilienceP analysis w.r.t the number
ofexecutionpaths

Highlighting the pessimism in the calculation of indirect effect of preemption
by (Chattopadhyay and Roychoudhury, 2014).
Multiple preemption scenarios with collaborating and isolated preemptions. The
indirect effect of preemption suffered by memory block m due to consecutive pre-
emptions, i.e., at P; and P>, is higher than the indirect effect caused by individual
Preemptions. oo e e e e e e e e e e e e
Example scenario to demonstrate the pessimism of (Chattopadhyay and Roychoud-
hury, 2014) when calculating the CRPD due to L2 cache misses resulting from
Preemption. e e e e e e e e e e e e
Number of task set deemed schedulable by varying total task set utilization

Wighted schedulability measure by varying the total number of tasks in a task set

XV

75

94

98
102
106
112

114
115

120
124
126
128
132

134

136

150

155

158
167
168

XVi

8.6

8.7
8.8

8.9

8.10

9.1

9.2
9.3
94
9.5
9.6
9.7
9.8

9.9

10.1

10.2

LIST OF FIGURES

Weighted schedulability measure by varying number of ways in the L1 cache. The
number of ways in the L2 cache were setto 32,i.e., W, =32
Weighted schedulability measure by varying number of ways in the L2 cache

Weighted schedulability measure by varying number of sets in the L1 cache. The
number of sets in the L2 cache were fixed to 512, i.e., [So| =512
Weighted Schedulability measure by varying number of sets in the L2 cache. The
number of sets in the L1 cache were set to their default value, i.e., [S;| =32 . . .
Weighted schedulability results by varyingdr; anddr,

Execution of task 7; and 7, on core 7, and task 73 on core 7,. Task parameters
of interest are: PD1=PD3 =4, PD>=32, MD,=MD3 = 6, MD, = 8, MD|=MD}, = 1,

171
172

ECB,=ECB; ={5,6,7,8,9,10}, ECB, ={1,2,3,4,5,6}, PCB;=PCB; = {5,6,7,8, 10}

and UCBy ={5,6}.
Schedulability ratio of different bus arbitration policies by varying total core uti-
lizations
Wighted schedulability measure by varying the total number of cores
Wighted schedulability measure by varying the value of memory reload time d,ep,
Wighted schedulability measure by increasing cache size between 2kB to 32kB

Wighted schedulability measure by varying the RR/TDMA slot size (sl)
Schedulability ratio of different bus arbitration policies by varying total core uti-
lizations for multicore architectures with two-level caches.
Wighted schedulability measure by varying the total number of cores in multicore
platforms with two-level caches
Wighted schedulability measure by varying the RR/TDMA slot size (s/) for mul-
ticore platforms with two-level caches.

Cache persistence-aware analysis of multiple cache levels may lead more tighter
WCRT bounds.
Under preemptive scheduling, simultaneous analysis of intra- and inter-core cache
interference isachallenge.

182
186
187
188
189
190
191
192

193

197

List of Tables

3.1
3.2

4.1
4.2

5.1
5.2
53

6.1
6.2

7.1
7.2

8.1
8.2

9.1

Categorization of memory references 26
Computation of CAC of a memory reference r at cache level L (Hardy and Puaut,

2008) . .o e 29
List of important symbols used in Chapter4 52
Task parameters for a selection of benchmarks from the Milardalen Benchmark

Suite (Gustafssonetal.,2010), 66
List of important symbols used in Chapter 5 72
Task parameters for the benchmarks used during the experiments 85
Relative gain p{*" for the CRPD-CPRO union and multi-set approaches by in-

creasing the number of ECBsof 7y 90
List of important symbols used in Chapter 6 95
Task set parameters used in the working example 110
List of important symbols used in Chapter 7 121
CPRO-table for every PCBmjoftask 7; 129
List of important symbols used in Chapter 8 140
Benchmarks parameters from the Méalardalen Benchmark Suite (Gustafsson et al.,

2010) used during the experimental evaluation 166
List of important symbols used in Chapter9 178

XVii

List of Algorithms

6.1
7.1
7.2
8.1

8.2

8.3

Simulated annealing based algorithm to optimize cache color assignment of tasks
Building the CPRO-table for PCB mj oftask 7;
Computing the total CPRO of task 7; in a time interval of lengthr
Calculating the indirect effect of preemption caused due to preemption of task 7;
by TjataprogrampointP o oo oL o
Calculating the indirect effect of preemption that can be suffered by all memory
blocks used by task 7; when considering multiple preemptions by higher priority
tasks in € hp(i) w.r.t preemption point P L.
Algorithm to calculate the total CRPD cost due to eviction of L2-UCBs of task 7;
w.rtapreemptionpointPo oL

List of Abbreviations

Al Abstract Interpretation

ACS Abstract Cache State

ACU Air-bag Control Unit

AH Always-Hit

AM Always-Miss

CAST Certifications Authorities Software Team
CAC Cache Access Classification

CFG Control Flow Graph

CHCM Cache Hit/Miss Classification

COTS Commercially available Off-The-Shelf
CPRO Cache Persistence Reload Overhead
CPU Central Processing Unit

CRPD Cache Related Preemption Delay
CSTG Cache State Transition Graph
DC-UCB Definitely-Cache Useful Cache Block
DJP Dynamic Job Priority

DM Deadline Monotonic

DRAM Dynamic Random Access Memory
ECB Evicting Cache Block

EDDP Earliest Deadline Deferrable Portion
EDF Earliest Deadline First

FCFS First-Come First-Serve

FEUP Faculdade de Engenharia da Universidade do Porto
FIFO First-In First-Out

FJP Fixed Job Priority

FM First-Miss

FP Fixed Priority

FPPS Fixed Priority Preemptive System
FSB Front-side Bus

FTP Fixed Task Priority

HRTS Hard Real-Time System

HVAC Hard Ventilation and Air-conditioning

XiX

ILP
IMA
IPET
LLF
LLC
LRU
MCP
MIPS
MMU
MRTA
NC
nPCB
(0N
PCB
PLRU
PS
RAM
RM
ROM
RR

RT
RTES
RTOS
RTS
SA
SMART
SRTS
TDMA
UCB
WCET
WCRT
WSS

Integer Linear Programming
Integrated Modular Avionics
Implicit Path Enumeration Technique
Least Laxity First

Last Level Cache

Least Recently Used

Multi-Core Processor
Microprocessor without Interlocked Pipelined Stages
Memory Management Unit
Multicore Response Time Analysis
Not-Classified

non-Persistent Cache Block
Operating System

Persistent Cache Block

Pseudo Least Recently Used
Persistent

Random Access Memory

Rate Monotonic

Read Only Memory

Round Robin

Real Time

Real-Time Embedded System
Real-Time Operating System
Real-Time System

Simulated Annealing

Strategic Memory Allocation for Real-Time
Soft Real-Time System

Time Division Multiple Access
Useful Cache block

Worst-Case Execution Time
Worst-Case Response Time
Working Set Size

Chapter 1

Introduction

In recent years, embedded systems have become an integral part of our everyday lives. These
systems interact with the environment and perform a set of dedicated operations. An embedded
system can be formally defined as a system composed of hardware, software and/or mechanical
components to perform a dedicated function or a range of functions (Kamal, 2011). These dedi-
cated functions vary from a simple task of toasting a slice of bread to an air traffic control system
that involves numerous workstations, networks and radar sites. Nowadays, the use of embedded
systems span across several domains including consumer electronics, medical equipment, avion-

ics, automotive industry, banking, and defense industry etc.

An embedded system is different from a general purpose computer system that is designed
to satisfy a variety of end-user requirements. A general purpose computer is usually designed to
make the average case faster and is end-user configurable, whereas, the set of operations to be
performed by an embedded system are usually known a priori at design time. In this sense, an
embedded system is custom-made for a specific application and is subjected to concerns regarding

functional and non-functional requirements of that application.

The primary requirement of an embedded system is to correctly perform a desired function-
ality. However, there are embedded systems that have an additional constraint of temporal cor-
rectness to be met on top of the functional requirements of the system. In the scientific literature,
this kind of systems are refereed to as Real-Time Embedded Systems (RTES) or simply Real-Time
Systems (RTS). Real-time systems are defined as systems in which the correctness of the system
behavior depends not only on the logical result of the computation, but also on the time at which
the results are produced (Stankovic, 1988). Applications of RTS can be found in many indus-
trial domains where timeliness is important. For example, an airbag controller system in a car
is not only responsible to decide whether or not to inflate the airbags, but also to ensure that the
airbags will be inflated in a timely manner, i.e., before causing an injury to the driver. Similarly, in
airplanes the flight control system is responsible for a timely compensation of all external distur-
bances that may affect a stable flight operation (Davis et al., 2018a; Baufreton et al., 2020). Many
other examples of RTS can be found in space, transportation and control industry (Cecere et al.,
2016; Koo and Kim, 2018).

2 Introduction

Functionalities of a RTS are managed by a set of entities called processes or fasks. Each task
has a timing constraint associated to it which represents the time before which that task must
perform its assigned operations. As timing behavior is one of the most important property of a
RTS, ensuring timing correctness for every task in the system is of utmost importance in order to
prove the timing correctness of the complete system. However, due to the massive technological
advancements, tasks are often executed on complex performance oriented software and hardware
architectures. These modern software/hardware platforms often produce significant performance
improvements but at the cost of an increased complexity of tracing and analyzing the system. For
example, the use of cache memories significantly improve the performance of modern processors
however, in systems with cache memories, the completion time of tasks may vary depending on the
availability of content in the cache. Therefore, to ensure that a task satisfies its specified timing
requirements it is important to analyze the behavior of all software/hardware components, e.g.,
caches, pipelines, interconnects, main memory and I/O devices, that can impact the execution of
that task.

Indeed, analyzing the temporal behavior of all these performance oriented software/hardware
components is every challenging due to very brief design documentation provided by the hard-
ware vendors. The analysis complexity is even more amplified in multi-tasking systems where
different tasks executing on the platform may share resources such as cache, main memory, I/O
devices and interconnects. As a result, the temporal behavior of tasks is significantly affected due
to contention in accessing the shared resources. It has been identified in (Authority, 2016) that
sharing of resources, such as caches and interconnect (i.e., usually a bus) among tasks executing
on a modern processing unit makes the temporal and functional behavior of the system highly
complex and interdependent. This highlights the need of an analysis framework that provides a
holistic solution by considering the impact of shared resource contention on the timing behavior
of applications comprising a RTS. The analysis should also provide both safe and precise bounds
on the shared resource contention that may be experienced by all tasks in the system in order to

accurately conclude that the overall system may or may not fulfill its timing requirements.

A safe bound on the shared resource contention means that the values returned by the analysis
will always be larger than or equal to the shared resource contention that may occur at run-time
under any possible scenario. While a precise bound is the one whose values are as close as possible
to the actual shared resource contention that may be experienced at run-time. Unfortunately, most
of the existing works in literature that focus on bounding the shared resource contention prioritize
the safety aspect and often lead to the situation where the conclusion of the analysis is that the
system does not comply with its timing requirements, while in reality it indeed does. For exam-
ple, in systems where tasks are scheduled preemptively, i.e., task’s execution can be temporarily
interrupted, shared resources such as cache memory is viewed from an exclusively negative per-
spective, i.e., derived from a preempting task invalidating cache lines useful to the preempted task,
thereby extending a preempted task’s execution time. This increase in the execution time of the
preempted task is due to the inter-task cache interference suffered by the preempted task due to

cache conflicts with the preempting task and is often referred to as cache related preemption delay

1.1 Contributions of this Thesis 3

(CPRD). Several works have been proposed in literature (Lv et al., 2015; Maiza et al., 2019) that
account for CRPDs when analyzing systems that use preemptive task scheduling. However, a dif-
ferent positive perspective of cache memory is often overlooked in the existing literature, which
refers to the cache re-use between different job executions of a task. For example, considering
multiple jobs of a particular task; the next job of the task can benefit from the presence in cache of
memory blocks that were loaded by a previous job of the same task and that have remained in the
cache until the next job executes and can make use of those blocks. Analysis of cache re-use can
be used to significantly reduce pessimism in the computation of inter-task cache interference from
multiple jobs of a preempting task that can execute during the response time of the preempted task.

Another important problem that has not been fully addressed in the existing analysis on shared
resource contention is to consider the dependency between the behavior of different shared re-
sources. For example, most of the existing works in the state-of-the-art that focus on bounding
contention due to shared interconnects (or memory bus) are based on the assumption of non-shared
caches (Dasari et al., 2011a, 2016) or consider a fix number of memory bus requests (Schliecker
and Ernst, 2011; Kim et al., 2014, 2016) that can be generated by a task during its execution.
Both these approaches can lead to pessimistic/optimistic bounds considering the fact that the ac-
tual number of main memory (or bus) requests of tasks depend on the cache misses suffered by
the tasks which, in turn, depends on the inter-task cache interference experienced by tasks during
their executions. Therefore, to effectively bound memory bus contention, it is important to de-
velop holistic timing analysis techniques that consider the interference caused by both caches and
memory bus and evaluate their cumulative impact on the timing properties of tasks.

Building on the above observations, the high-level goal of this thesis is to provide solutions
that can be used to accurately quantify the shared resource contention between tasks due to two

main resources, i.e., caches and the memory bus.

1.1 Contributions of this Thesis

In support of this thesis, the following contributions are made.

* Accurately quantify inter-task cache interference for direct-mapped caches
We identify substantial pessimism in the existing analysis that focus on bounding inter-task
cache interference for direct-mapped caches. This pessimism mainly comes from a unidi-
rectional focus on the negative perspective of caches, i.e., CRPD. We propose a new preciser
model that accounts for both the negative perspective, i.e., CRPDs, and the positive perspec-
tive of caches, i.e., cache persistence, when computing the inter-task cache interference of
tasks. Cache persistence refers to the re-use of cache content between different jobs of the
same task. This allows to capture re-usable cache blocks between different job executions
and neutralizes the negative impact of CRPDs in systems that allow preemptive task exe-
cutions. We prove the correctness of this new model and propose a static program analysis

to derive the parameters required by the analysis. Furthermore, we also show how to in-

4 Introduction

corporate bounds on the total inter-task cache interference in the schedulability analysis for

fixed-priority preemptive systems (FPPS).

* Accurately quantify inter-task cache interference considering set-associative caches
We improve the bounds on inter-task cache interference for set-associative caches by adapt-
ing the notion of cache persistence to set-associative caches. First, we show that the previ-
ously developed analysis for direct-mapped caches can not be used as is for set-associative
caches and may lead to optimistic results. We then present a new analysis that accurately
determines cache blocks that may suffer additional cache reloads due to preemptions even
in the presence of cache persistence. We also provide an overview of the static program
analysis techniques that are used to derive the parameters needed to adapt persistence-aware

cache contention analysis to set-associative caches.

* Bounding inter-task cache interference for multilevel caches
We show that the literature on the computation of inter-task cache contention for multilevel
caches is relatively scarce due to the additional challenges that stem from analyzing inter-
task cache conflicts at different cache levels. Few existing analysis that focus on bounding
inter-task contention for multilevel caches are very pessimistic as they overestimate the
number of times cache blocks can be evicted from a particular cache level and therefore
needed to be reloaded from the main memory. We improve on the existing analysis by
accurately determining which cache blocks can be impacted due to inter-task conflicts at a
particular cache level and how many times these cache blocks can be evicted and reloaded
from the main memory. We also prove the correctness of the new analysis and provide a

static analysis approach to obtain parameters needed by the analysis.

* Cache interference-aware memory bus contention analysis
We present a holistic overview of the relationship between inter-task cache contention and
the memory bus contention suffered by the tasks. We show that the memory bus contention
that can be suffered by a task during its execution strongly depends on the number of cache
misses suffered by that task, which, in turn, depends on the inter-task cache interference
experienced by the task. Evaluations show that the analysis that tightly bound the inter-
task cache contention also results in a more accurate bound on the memory bus contention

suffered by tasks, which results in improving schedulability.

1.2 Thesis Structure

The thesis is organized as follows: Chapter 2 provides the necessary background needed for the
understanding of this thesis. The related work presented in Chapter 3 briefly explains the existing
approaches in the state-of-the-art that are in-line with the problems addressed in this dissertation.
The main contribution of the thesis are then divided into three parts.

Part I focus on the analysis of inter-task cache contention for single-level direct-mapped caches

and comprises Chapter 4, 5 and 6. In Chapter 4, we formally introduce the notion of cache per-

1.2 Thesis Structure 5

sistence and use it to compute a tighter bound on the inter-task cache interference for single-level
direct mapped caches. The key focus of Chapter 5 is to integrate the computation of CRPD with
the computation of persistence related cache overheads. The integrated analysis provides a tighter
bound on the total inter-task cache interference in comparison to the analysis in Chapter 4. In
Chapter 6, we evaluate the impact of memory layout of tasks on inter-task cache interference and
on schedulability.

Part II comprises Chapter 7 and 8 and focus on the analysis of inter-task cache interference
considering single-level and multilevel set-associative caches. Chapter 7 provides solutions that
analyze the impact of cache persistence on the schedulability of tasks considering set-associative
caches and presents different approaches to compute persistence related cache overheads for set-
associative caches. In Chapter 8, we present the CRPD analysis for multilevel caches that provides
a tighter bound than the existing analysis in the state-of-the-art.

In Part III we present a holistic overview of the shared resource contention in modern com-
puting platforms by focusing on the relationship between cache contention and memory bus con-
tention. It comprises Chapter 9 that evaluates how inter-task cache interference can impact the
contention due to sharing of memory bus in modern processors and what is their cuamulative affect
on schedulability. Finally, Chapter 10 concludes this thesis by providing some future research

directions.

Chapter 2

Theoretical Background

2.1 Real-Time Systems

Real-time systems fall into the category of embedded systems in which ensuring timing correct-
ness of the system is of utter importance. A real-time system runs several real-time processes that
are triggered in a sporadic/aperiodic fashion. A real-time process is a software entity that is exe-
cuted by the processing unit in a parallel/sequential fashion and has a timing constraint associated
to it (Buttazzo, 2011). This constraint on the timing is commonly known as the deadline, which
represents the time before which a process should complete its execution to not cause any damage
to the system (Buttazzo, 2011). It is important to note that in this thesis, the term zask is used as
synonym of process.

Depending on the consequences of a missed deadline, real-time systems are broadly catego-

rized in the following two categories:

* Hard Real-Time systems (HRTS) : Hard Real-Time systems are the class of RTS in which
missing the deadline may cause catastrophic consequences on the system under control,
surrounding environment or people. In HRT systems, the results obtained after a given time
interval (or deadline) are considered useless. One such example can be the air-bag control
unit (ACU) in modern cars. In case of an accident, the ACU must be able to inflate the air
bags within 60-80 milliseconds, otherwise the persons inside the car are at a risk of an injury

which can be severe.

* Soft Real-Time systems (SRTS) : In contrast to HRT systems, in soft real-time system,
missing a deadline might still have some utility for the system, although causing a perfor-
mance degradation. In SRT systems, missing a deadline does not have dire consequences.
For example, a degradation in the quality of the on-line audio/video streaming applications

is annoying but not life threatening.

This work focuses on HRT systems.

2.2 Basic Organization of a Real-Time System 7

2.2 Basic Organization of a Real-Time System

A basic RTS is composed of three main components, i.e., applications, software module to run the
applications (i.e., a real-time operating system (RTOS)) and the underlying hardware platform.
In the context of this work, we briefly discuss the basic functionality of the components involved
in the design of RTSs.

Applications

Real-Time Operating System
(RTOS)

Hardware Platform

Figure 2.1: Different components of a Real-time system

2.2.1 Applications

Real-Time applications are an abstract representation of the workload used while analyzing a
real-time system. The functionality of a RT application is usually modeled as a collections of
finite, simple and repetitive abstract entities called real-time tasks (Baruah and Goossens, 2004).
These real-time tasks are recurrent in nature where each instance of the task is called a job. All
jobs related to a particular task are semantically related and represents a basic unit of work that
executes on the physical hardware platform (Liu). In the context of this thesis, the functionality
of a RT application is represented as a set I of n tasks called a task set, i.e., I = {11, 72,..., Tn }.
Depending on the frequency with which a task releases its jobs, it can be categorized into the

following three types:

* Periodic Task: A task is periodic if it releases its jobs periodically, i.e., the time interval
between different jobs of the task is constant. The fixed time between two consecutive job

releases of the task is called the period of the task.

» Sporadic Task: A task that releases its jobs at some arbitrary time instant however, con-
secutive jobs of the task are separated by a minimum inter-arrival time is called a sporadic
task.

» Aperiodic Task: An aperiodic task can release its jobs at any arbitrary time instant and their

activations are not regularly interleaved.

8 Theoretical Background

In this work, we focus on sporadic tasks.

Any real-time task 7; € I' can be formally defined by several parameters that can be static, i.e., set
before executing the task and do not change during run-time of the system, or dynamic, i.e., task
parameters that may change during the execution of the task. In the context of this work, general

parameters used to define a task 7; are:

* C;: Worst-case execution time (WCET) — The maximum amount of time required by any

instance or job of task 7; to complete its execution without any interruptions.

o Ti: Minimum inter-arrival time or period — The minimum inter-arrival time between two

consecutive instances or jobs of task ;.

* D;: Deadline — The time before which task 7; should be completed in order to avoid any

damage to the system.

* U;: Utilization — Utilization of a task is defined as the fraction of the processor time required
by the task. Utilization U; of a task 7; is given by U; = C;/T;.

* R;: Worst-case response time (WCRT) — The maximum value of the difference between the

arrival time and completion time amongst all instances or jobs released by task 7;.

It is important to note that deadlines are relative to the nature of the application. For example, the
air-bag control application installed in a car might have a relative deadline of 60-80 milliseconds
to inflate the air-bags, whereas a room temperature monitoring application can have a relative
deadline of a few seconds to change the temperature on the HVAC thermostat. Depending on the
relation between the deadline D; and period of a task 7;, 7; can be categorized into following three

classes:

* Implicit deadline task: The deadline of a task 7; is equal to the minimum inter-arrival time

between two jobs of 7;, i.e., D; = T;.

* Constrained deadline task: The deadline of a task 7; is less than or equal to the minimum

inter-arrival time between two jobs of 7;, i.e., D; < T;.

* Arbitrary deadline task: The deadline of a task 7; can be less than, equal to, or greater

than the minimum inter-arrival time between two jobs of task ;.

In this work, we focus on tasks with constrained deadlines.

A RT application usually consists of one or more RT tasks working together to achieve a certain
functionality. However, these tasks can have precedence constraints and data dependencies be-
tween them. For example, in the air-bag control application, a sensor data acquisition task must
always be executed before the inflate air bags task in order to have the most recent value of the

intensity of the impact in case of an accident. Similarly, depending on the nature of the application

2.2 Basic Organization of a Real-Time System 9

different tasks can have different precedence constraints or data dependencies. However, in this
work, we only focus on independent tasks, i.e., tasks that can be executed without ensuring any
precedent constraints. Also, these tasks do not depend on the outcome of any other task in order

to initiate their execution.

In this work, we only focus on independent tasks.

2.2.2 Real-Time Operating System (RTOS)

In general, an operating system (OS) performs basic operations such as memory management,
process scheduling, inter-process communication and Input/Output management and a RT oper-
ating system (RTOS) is no different. However, the most important functionality of a RTOS is to
provide reliability and predictability in the system. Reliability refers to the ability of the system to
perform its required functions under stated conditions for a specified period of time (Deck, 1998).
Whereas, predictability means the ability of the system to guarantee the timing properties at design
time. Few examples of RTOS include RTEMS, VxWorks and PikeOS.

As discussed earlier a RTOS can perform many functionalities, however, in this section we
limit our discussion to task management or scheduling function of the RTOS.

Every RT task needs to use the hardware platform at some point in time to achieve its de-
sired functionality, which is mainly performed by requesting some execution resources from the
processing element (i.e., processor) present at the hardware level. When a single processor has
to execute a set of tasks that can overlap in time, the RTOS has to allocate the processor to each
task based on a predefined criteria. This functionality is achieved by a specialized service of the
operating system kernel called the scheduler. Scheduler is responsible for deciding which task (or
job of the task) should be executing at any particular time and the set of rules that determine the
order in which tasks are executed on the processor is called a scheduling algorithm. Scheduling
algorithms can be categorized into many classes based on different factors, i.e., off-line or on-line,
preemptive or non-preemptive, static or dynamics etc. However, in this thesis we primarily focus
on the priority driven scheduling algorithms.

When using priority driven scheduling algorithms tasks/jobs are executed based on their priori-
ties. These priorities can be assigned to tasks or jobs based on different criterion such as deadlines,
arrival rate, execution time and laxity etc. Priority driven scheduling algorithms can be further di-

vided into following categories:

* Fixed Task Priority (FTP): As the name suggests, in fixed task priority scheduling algo-
rithms, priorities are assigned to tasks and the priority of all instances of a task (i.e., all its
jobs) is the same and remains fixed throughout the execution of the task. Prominent exam-
ples of FTP based scheduling algorithms are Rate-Monotonic (RR) (Liu and Layland, 1973)
and Deadline-Monotonic(DM) (Leung and Whitehead, 1982) algorithms.

* Fixed Job Priority (FJP): In this category, priorities are assigned to jobs rather than tasks,
meaning that different jobs of the same task may execute on the processor with different

10 Theoretical Background

priorities. However, the priority of a job does not change between its release time and dead-
line. Examples of such algorithms include Earliest-Deadline First (EDF) (Liu and Layland,
1973), Earliest Deadline Deferrable Portion (EDDP) (Kato and Yamasaki, 2008) and EDF
with C = D (Burns et al., 2012).

* Dynamic Job Priority (DJP): In dynamic job priority based scheduling algorithms, prior-
ity of a job can change dynamically at any instant during its execution. Least-laxity first
(LLF) (Mok, 1983) is an example of DJP based scheduling algorithms. In LLF, priority of
a job depends on the job’s laxity (its deadline minus its remaining execution time). A job

with the minimum laxity is allocated the highest priority and vice versa.

This work focuses on priority based scheduling algorithms and in particular

use fixed task priority based algorithms such as RM and DM.

Independent of the priority assignment used, a scheduler can either be preemptive or non-preemptive.
In preemptive schedulers, a preemption occurs when the execution of a job on a processor is sus-
pended in order to execute another higher priority job. Whereas, non-preemptive schedulers allow
a job to complete its execution once started without any interruption. In preemptive scheduling,
the process of preempting the job of one task and activating the other involves a switch of the
job execution context potentially inducing an extra overhead as the preempted job has to save its
status to resume its execution later in time. In literature, this overhead is usually referred to as the
preemption overhead. Several techniques have been introduced in literature to effectively bound
preemption overheads and consider their affect when analyzing the system. Some prominent ap-

proaches presented in this context will be discussed later in Chapter 3.

This work focuses only on preemptive schedulers.

2.2.3 Hardware Platform

A hardware platform is a set of physical components on which a RT application executes to achieve
its desired functionality. In RTS, a basic hardware platform typically consists of a processing
unit or processor (to perform computations), memories (main memory and caches to load/store
instructions/data), I/O devices (to perform input/output operations) and an interconnect or system
bus (to transfer instructions/data between processor and the main memory). Below we briefly
explain the functionality of hardware components that are most relevant in the context of this

thesis.

2.2.3.1 Processors

The Central Processing Unit (CPU) or processor is the main electronic circuitry within a system
that executes instructions that make up a RT task. It performs basic arithmetic, logic, controlling,
and input/output (I/O) operations specified by tasks executing on the processor. A single-core

processor has only one on-chip CPU or processing core and is capable of executing only a single

2.2 Basic Organization of a Real-Time System 11

task at a time. A multi-core processor (MCP) is an integrated circuit with a set of independent
processors (or cores) fabricated on a single chip. Typically, a MCP can have two to eight cores on
a chip and is capable of executing multiple tasks in parallel.

On a MCP, the scheduler can schedule tasks on any of the available processors. Efficiently
scheduling tasks on a MCP is complex in comparison to scheduling them on a single processor
since different jobs of a task can be scheduled to execute on any one of the available processors.
This phenomenon of suspending the execution of a job from one processor and later resuming it
on another processor is called migration. Based on whether migration is allowed or not multi-

processor scheduling algorithms can be broadly categorized into three main classes.

* Global Scheduling Algorithms: In global scheduling, tasks/jobs are allowed to migrate
from one processor to another. All tasks within the system are maintained in a single global
ready queue and m high priority tasks in the ready queue are allocated to the m available
processors. Task assignment to processors is not static and hence, a task may start its ex-
ecution on one processor but as a result of preemptions may later resume its execution on

another processor.

* Partitioned Scheduling Algorithms: In partitioned scheduling migrations are not allowed.
A given task-set is distributed among the processors based on some criterion, e.g., first-
fit, best-fit, next-fit etc. This task to processor assignment is static and tasks/jobs can only
execute on the assigned processors. In partition scheduling, the most important phase is task
to processor mapping and once the mapping is done any uniprocessor scheduling algorithm

can be used to schedule tasks on individual processors.

* Semi-partitioned Scheduling Algorithms: Semi-partitioned scheduling algorithms are a
combination of global and partitioned scheduling approaches. At first, some tasks from a
given task-set are assigned to specific processors and are not allowed to migrate. Remaining
tasks (those that can not be mapped to a specific processor) are split between processors
effectively allowing them to migrate from one processor to another. Detailed survey on

multi-processor scheduling algorithms can be found in (Davis and Burns, 2011a).

In the context of this work, we use partitioned task-level fixed priority

scheduling algorithms to schedule tasks on a MCP.

2.2.3.2 Cache Memory

Memories are an essential components of an embedded RTS. Where processors are used to make
the computations fast and efficient, memories, e.g., off-chip Random Access Memories (RAM) or
non-volatile Read Only Memory (ROM), are required to effectively manipulate instructions and
data. However, the techniques in designing memory systems did not catch up with the processor
speeds and hence, memory access latencies were non-negligibly high leading to large processor
stalls. To bridge this gap between processor and main memory operating speeds, hardware plat-

forms used in modern RT embedded systems employ on-chip cache memories or caches.

12 Theoretical Background

Caches are high speed memories that reside between the processor and the main memory and
hold data/instructions that can be used by the processor in a speedy manner. Depending on the
kind of resources they store, caches can be categorized as, e.g., instruction caches, data caches
or unified caches. As the name suggests, instruction caches are used only to hold instructions,
similarly, data caches are used for data only. A unified cache can hold both data and instructions.
The rationale behind the need for caches is that frequently accessed data/instructions must be kept
closer to the processing source or in other words can be “cached", to reduce processor stall cycles.
Assuming an empty cache, the first access to a particular address results in a cache miss (when the
required data/instruction is not in the cache). Therefore, the required data or instruction is fetched
from the off-chip main memory and a copy is also stored on the local caches. On subsequent
accesses to the same address, the cache is checked and if the required data/instruction is found
(called a cache hit), it is retrieved from the cache itself without incurring the (high) latency to

fetch that data/instruction all the way from the main memory.

Cache Organization

In a basic RTS architecture, cache are organized in a stacked hierarchy. Figure 2.2 shows a basic
memory architecture that depicts a trade-off between size and speed. The processor is at the top
of the hierarchy with very high operating speeds followed by two layers of caches and then the
main memory. The cache that is closest to the processor is the fastest and it is called level one or
L1 cache. L1 caches can be further divided into independent instruction and data caches as shown
in Figure 2.2. L1 caches can have a typical capacity of upto 32 KB with an access latency of 1-2
cycles. Level two or L2 cache is only queried if the required data/instructions are not available
in L1 caches. L2 caches are usually unified caches, i.e., capable of holding both instructions and
data, with a storage capacity ranging from hundreds of KB to several MB. Access latency of an L.2

cache is typically around 10 cycles. Some modern high performance processors may also have a

Big Slow

Cache
L2

—

Data cache Instr. cache
L1 L1

Small Fast
Processor \/

Figure 2.2: Common Memory Architecture

level three, i.e., L3 cache, to further increase the storage capacity. If the required data/instructions

2.2 Basic Organization of a Real-Time System 13

are not available in the last level cache, it results in accesses to the main memory using the off-
chip bus as shown in Figure 2.2. These accesses to main memory can cause a delay in the order of
hundreds of cycles.

In most processors, the unit for cache access is called a cache line, i.e., the smallest unit of
data/instructions that can be transferred to or from a cache. Cache line size signify the minimum
amount of data the cache must read or write from the main memory or from the cache-level below
it. Accessing one element within a cache line causes the whole cache line to be loaded into the
cache. As a result, a following access to another element of the same cache line might also results
in a cache hit.

Caches are usually partitioned into different sets of equal sizes, i.e., cache sets, where each
cache set may contain one or more cache lines. A memory block, i.e., the smallest amount in
bytes which can be loaded at a time from the main memory, is first mapped onto a cache set and
then placed into one of the cache lines within that set. The number of memory blocks that can be
stored in each cache set is referred to as the number of cache ways or the associativity of the cache

and such a cache is called a ser-associative cache. There are two special cases of set-associative

caches:
blocks cache blocks cache
m—.Linc 0 T_ Line 0
1 |4\Linc 1 1] Line 1
_ﬂ—.Linc 2 [Z] Line 2
ﬂ4\Linc 3 i Line 3
Direct-mapped - Fully-associative Set-associative

Figure 2.3: Different types of cache associativity

* Direct-mapped caches: In direct-mapped caches, the number of cache ways or associativ-
ity is 1, i.e., each cache set consists of a single cache line, this means that a memory block

can reside in exactly one cache line.

« fully-associative caches: In fully-associative caches, the number of cache ways or associa-
tivity is equal to the number of sets in the cache, i.e., the cache consist of a single set, this

means that a memory block can reside in any cache line.

Figure 2.3 shows the different type of caches based on the mapping of cache lines to main memory
blocks.

Contents in the cache should be consistent with the main memory. This is usually done based
on the write policy used by the cache. Write policy determines at what time the modified cache line
will be written back into the main memory. Based on the write policy, caches can be categorized
as write-through or write-back. For a cache using the write-through policy, main memory is made
consistent with the cache immediately after a cache line is modified. Alternatively, in a write-back
cache the process of updating the main memory is differed to a later time, until the given cache

line is evicted.

14 Theoretical Background

Note that in this work we only focus on instruction references therefore, we do

not make any assumption on the write policy used by the caches.

Cache Replacement Policy

When loading a memory block from the main memory to cache, processor first determines the
cache set the block maps to. A lookup is performed to find the target cache set. If all the cache
ways of the targeted cache set are occupied, then the cache replacement policy determines which
old block can be evicted from that cache set to make room for the new block. Common examples
of cache replacement policies used in modern processors are Least-Recently-Used (LRU), First-
In-First-Out (FIFO) and Pseudo-Least Recently Used (PLRU). Note that direct-mapped caches do
not need any replacement policy as each cache set has only one way so each memory block maps
to a specific position in the cache. In the context of this thesis, we will only explain the working

of a LRU cache replacement policy.

* LRU replacement policy: LRU policy maintains a queue of memory blocks sorted in an
ascending order based on their age. Age of a memory block refers to its position in the
cache and is given by the number of accesses to different memory blocks from the last
use of that memory block. The most-recently used memory block is assigned an age 0
whereas the least-recently used memory block has an age given by cacheassociativity — 1.
In case of a cache miss, new element is added at the front of the queue (and assigned an age
0). However, if the cache is full, the last element of the queue, i.e., the element with age
cacheassociativity — 1, is removed to accommodate the new memory block. Similarly, at
a cache hit, the corresponding element is moved from its position in the queue to the front
and all younger elements are aged by one. Figure 2.4 shows a sequence of references in
a 4-way set-associative cache using a LRU replacement policy. Majority of the state-of-
the-art on cache analysis has focused on caches with LRU replacement strategy. This is
mainly because LRU replacement policy is predictable and easier to analyze in comparison
to non-LRU policies such as FIFO and PLRU (Guan et al., 2013, 2014).

Age

bihit) €(miss) a(hit) bihit)

»

O|Qjw (T
oW T

Q
=
=

olo|aw

o o (T

Q |T(O|Q
QT |L

0
1
2
3

Figure 2.4: Example access sequence of memory blocks in a 4-way set-associative cache using a
LRU replacement policy

In this work, we will focus on the analysis of direct-mapped caches and

set-associative caches that use a LRU replacement policy.

Caches with multiple levels are categorized into inclusive, exclusive and non-inclusive caches.

Inclusive caches require that the content in the higher cache levels should also be present in the

2.2 Basic Organization of a Real-Time System 15

lower level cache, i.e., if a memory block is available in the L1 cache it should also be loaded in the
L2 cache. In exclusive caches, the content in the higher cache levels must not be duplicated in the
lower cache levels, i.e., a memory block can be available only in L1 or L2. Non-inclusive caches
allow duplicated content at any cache level, however they do not strictly enforce the inclusion

property, i.e., a memory block can be available in only L1/L2 or in both.

In this thesis, when required we will assume a non-inclusive cache hierarchy.

2.2.3.3 System Bus

Off-chip memories like the random access memories (RAM) or non-volatile read only memory
(ROM) are very slow in comparison to the caches and are only accessed when the data/instructions
are not found in the caches. The processor is connected to the off-chip main memory (or a memory
controller) over a shared interconnection network usually called as the Front-Side Bus (FSB). The
FSB is also referred to as the processor system bus or simply the system bus.

In a MCP, system bus is used to communicate between processing cores and the main mem-
ory. Bus handles different types of communication traffic including interrupt messages, memory
requests, I/O traffic and coherency messages. Basic positioning of the system bus w.r.t the MCP

and the memory is shown in Figure 2.5.

‘
MCP

Figure 2.5: Basic abstraction of the system Bus

System Bus

”l“

Control bus

<«——»1 Memory
P
Controller

Address bus

P
P
+—P>

Data bus

As shown in Figure 2.5, system bus is composed of three components, i.e., an address bus, data
bus and control bus. These are separate channels used to transmit data, memory addresses from
where data is to be fetched from or written to and some control signals that are used to control the
overall functionality of the bus. Bus width defines the number of bits that can be transferred by the
data bus, e.g., 32 or 64 bits. Similarly width of the address bus represents the maximum amount of
addressable memory. Bus speed is an also important property which indicates the speed at which
the bus can transfer data. Bus speed is expressed as number of cycles per second or Hertz (Hz).

Another important characteristic of a bus is the bandwidth or the maximum amount of data
it can transfer per unit time. Bandwidth of the system bus is given by the product of the data
path width, bus clock frequency and the number of data transfers the bus can perform per clock
cycle (bus, 2017a), i.e.,

Bus Bandwidth = width X clock frequency x data transfers per cycle

16 Theoretical Background

For example, a 8-byte (64 bits) wide bus with an operating frequency of 100 MHz with a ca-
pacity to perform 4 transfers per cycle has a bandwidth of 3200 megabytes per second (MB/s) (bus,
2017a), 1.e.,

8B x 100 MHz x 4 transfers/cycle = 3200 MB/s

Bus perform communication using messages and transactions. A message is a logical unit
of information that holds the memory address at which the data must be written to or read from,
control signals and the data to be written (in case of a write operation). A transaction on the other
hand is a sequence of messages. For example, a read transaction contains a read message with the
memory address to read and a corresponding reply with the requested data. Bus transactions can

be performed in several ways.

* Atomic transactions: The word atomic implies to indivisibility or irreducibility, so an
atomic operation must be performed entirely or not performed at all. Similarly, an atomic
bus transaction is modeled as an indivisible request-reply pair. This means that no new re-
quest can be entertained unless the bus transmits the response to the prior request. Atomic
transactions are simpler to implement however, when using atomic transactions bus is un-

derutilized since only one request can be fulfilled at a given time.

* Pipelining: In a pipelined bus, transactions are divided into different stages, e.g., arbitration,
bus request, reply, data, error reporting etc. The basic idea is to combine any two phases of
a transaction that use different physical lines on the bus. For example, the data bus is only
responsible for transmitting the data written to or read from the memory and therefore only
use some physical lines on the bus. Similarly, the control bus only handles operations like
the arbitration, request, error reporting using independent bus lines. Therefore, multiple
transactions that do not use the bus components can be pipelined together to increase the
overall utilization of the bus. One example can be to overlap the address cycle of each
transaction with data cycles of the previous transaction since the data bus is not used during

address cycle and vice versa.

» Split transaction: In a bus that uses split transactions, a transaction is split into two compo-
nents a request transaction and a reply transaction. Both transactions are handled indepen-
dently of each other, where each transaction has to compete for an access to the bus. With
a split transaction bus once a memory request is made by a core, it immediately releases
the bus. In this way, other cores can also place there requests on the bus, increasing the
overall utilization of the bus. When the response to a memory request is ready, the memory
controller acquires the bus for the reply transaction and places the result on the bus. This
response is then delivered to the corresponding core by the bus controller. Bus controller

uses tags to identify the destination cores.

In split transaction buses, certain memory requests may be served out off order, i.e., the

responses may arrive in an order which does not match the order of requests issued. A split

2.2 Basic Organization of a Real-Time System 17

transaction bus is an example of an out-of-order bus whereas, both the atomic transaction

bus and the pipelined bus are an example of in-order buses.

In this work, we considering a multi-core platform, we will assume that the

bus is shared between cores and it uses an atomic transaction protocol.

Another important mechanism that is used to minimize the main memory overhead latency is
by using the hardware prefetching. Hardware prefetchers predict the next memory addresses to be
accessed and pro-actively fetch this data to the last-level caches from the main memory based on
the observed memory access patterns. However, in case of real-time tasks hardware prefetching
may results in non-deterministic delays in task executions time. For example, the prefetchers also
use the bus to perform transactions and hence may delay the requests issued by real-time tasks or
the prefetched cache lines might evict cache lines that were used by the real-time tasks. Hardware
prefetching is available in many commercial MCPs, with programmer having the facility to enable
or disable this feature (Hegde, 2008).

’ In this work, we assume that the hardware prefetching is disabled.

Bus arbitration protocols

Bus arbitration protocols define the order in which the devices attached to the bus can access the
bus. In a MCP, bus arbitration protocols control the access of multiple cores to the shared memory.
Simultaneous requests by different cores to access the main memory may result in conflicts at the
bus. These conflicts are resolved by the bus arbiter based on an arbitration policy.

Arbitration policies used in MCP can be mainly categorized as static or dynamic arbitration
policies. In a static arbitration policy bus access patterns are defined at design time and does not
change at run time. Whereas, in a dynamic arbitration policy the access patterns may change
dynamically depending on the conflicts between cores or based on any other criteria, e.g., task
priority or the arrival time of the requests etc. Time division multiple access (TDMA) is a promi-
nent example of static bus arbitration policy whereas, First-in First-out (FIFO) and Round-robin
(RR) arbiters are examples of the dynamic arbitration policies. Below we briefly describe the

functionality of some prominent arbitration policies used in modern MCPs.

* TDMA: TDMA bus arbitration uses a fixed schedule to provide different cores of a MCP,
access to the bus. This schedule or frame is periodic and is of a fixed size. At design time,
each core is assigned one or more fixed slots within the frame to access the bus. Requests
from a core are only entertained during the slots allocated to that core. Each core either
uses its allocated slots or these slots are not utilized. Therefore, TDMA bus arbiter can
under utilize the available bus capacity. However, TDMA arbitration is predictable and
composable. It is predictable because the maximum time required by a task running on one
core of a MCP to access the bus can be bounded at design time. Similarly, TDMA is also
composable since the access time of one task is independent of the requests issues by other

tasks running on other cores.

18 Theoretical Background

* FIFO: FIFO arbitration scheme works on the principle of first-in first-out. It maintains an
in-order list of requests issued by different cores. The core whose request is the earliest
is placed at the front of queue while later requests are subsequently added at the end of
the queue. FIFO arbitration may sometime result in starvation, since the core that has the

control of the bus may never complete hence, not allowing other cores to access the bus.

* Fixed priority (FP) arbitration: In FP arbitration policy, each request is assigned a priority
based on a certain criteria. The request with the highest priority is then granted access to the
bus. The drawback of FP arbitration is similar to that of FIFO arbitration, i.e., in case where
highly memory intensive tasks are assigned higher priorities by the arbiter, then requests
from lower priority tasks may need to wait indefinitely before receiving a response. Fixed
priority arbiters are neither composable nor predictable as the time for access to the bus
cannot be upper bounded without the knowledge about the access patterns of the higher

priority requesters.

¢ Round-robin (RR) arbitration: Round-robin (RR) arbiter is a fair arbiter that allows in-
order access of the bus to every requester. Fixed time slots of equal length are allocated to
each requester. RR arbiter follows a rotating policy, i.e., the requester who is most recently
granted the bus in one frame will be the last to receive the access in next frame. RR arbiter is
predictable but however not composable. It is predictable since the maximum time to access
the bus can be bounded but, as the access time to the bus of one requester depends on the

number of other active requesters RR arbiter is not composable.

2.3 Ensuring Temporal Correctness of a RTS

Proving timing correctness of a RTS is traditionally a two-step process:

1. Timing analysis: The process of computing the WCET of tasks in isolation, i.e., an upper
bound on the time that a given task can take to complete its execution under all feasible

system states.

2. Schedulability analysis: The process used to ensure the schedulability of tasks, i.e., all

tasks will meet their deadlines when deployed on the target hardware.

In the subsections below, we will provide a brief overview of the timing analysis and schedulability

analysis relevant for this thesis.

2.3.1 Timing Analysis

As stated earlier, timing analysis is the process of estimating the worst-case timing requirement,
e.g., WCET, of an isolated task. When computing the WCET of a task, activities other than the
ones related to the considered task e.g., interrupts, blocking, preemptions or any kind of inter-

ference from other tasks in the system, are ignored. Different approach have been presented in

2.3 Ensuring Temporal Correctness of a RTS 19

literature to bound the WCET of tasks. However, without disrespecting the variety of individual
approaches, three approaches are commonly applied nowadays, i.e., static analysis, measurement-
based analysis and hybrid analysis (Wilhelm et al., 2008a). In the context of this work, we will

only discuss the working of static timing analysis.

2.3.1.1 Static Analysis

In static analysis, a task is analyzed by constructing the control flow of the program (or task)
rather than executing the task on the real hardware or a simulator. An abstract model is used for
the target hardware and for the inputs to the program and an upper bound on the WCET of task
is obtained using this combination. Core components used by any static timing analysis approach

are explained as follows:

Analysis input | [Tool construction input
Executable User Instruction Abstract pro- 3=ﬂow.of information
program annotations| | semantics cessor model = tool input

2 ie na S

|

Qo3 local global

NS ;

gs Control- | Processor % Bound b&q‘; Visual-

Frontend anfg?)%is 'I? 2?,2?))/8'% calculation ization
c

FG + flow information q

Analysis steps

Figure 2.6: Work flow between different components of a timing-analysis tool (Wilhelm et al.,
2008a)

Value Analysis

Value analysis computes the effective address where a memory accesses goes. In case the exact
address of the referenced data cannot be determined, a range of addresses is conservatively pro-
vided. The analysis determines these addresses statically from a disciplined code (Thesing et al.,
2003) by computing ranges for the values in processor registers at every possible program point.

Value analysis can also compute the number of loop iterations and recursions (Martin et al., 1998).

Control-Flow Analysis

Control flow analysis use the parameters computed by the values analysis, e.g., ranges for the
input data and iteration bounds of some loops, along with the call graph or the control-flow graph
(CFG) of the task to gather information about possible execution paths. The result of the control
flow analysis are usually constraints on the dynamic behavior of the task, e.g., which functions
may be called, dependencies between different conditional operations and information relating to

feasibility or in-feasibility of paths, etc.

20 Theoretical Background

Processor-Behavior Analysis

Processor-behavior analysis is the most important phase when determining the WCET of tasks
under the static analysis based approaches. It uses a conservative timing model of the targeted
hardware architecture in particular, of the components that influence the execution times, such
as memory, caches, pipelines, and branch prediction along with the information provided by the
value and control-flow analysis to determine upper bounds on the execution times of instruc-
tions or basic blocks. Most approaches for processor-behavior analysis use techniques based on
the theory of Abstract Interpretation (Cousot and Cousot, 1977) to compute invariants about the
processor’s execution states at each program point. These invariants provide information about
the contents of caches, the occupancy of functional units and processor queues, and of states of
branch-prediction units. This information is then used to, e.g., exclude pipeline stalls and to clas-
sify memory accesses as cache hits/misses (detailed overview of the intra-task cache analysis is

presented in Section 3.1).

Bound Calculation

This phase computes an upper bound on the execution times of the whole task using the flow and
timing information derived in the previous phases. Different methods can be used to combine the
timing estimates determined in the previous phases into an end-to-end estimate. For example, in
approaches that use Implicit Path Enumeration Technique (IPET) (Li and Malik, 1997; Puschner
and Schedl, 1995; Theiling, 2002) techniques program flow and basic-block execution time bounds
are combined into set of arithmetic constraints. Each program flow edge in the task and basic-block
is assigned a time coefficient Zesy, i.€., an upper bound on the contribution of that entity to the
total execution time every time it is executed, and a count variable Xx,;ry, 1.€., an upper bound on
the number of times that entity is executed. An upper bound on the task’s WCET is then obtained
by maximizing the objective function Y ;c,,.isies Xi X ti» Where the value of x; is subject to constraints
reflecting the structure of the task and possible execution flows.

Many commercial and research prototype based static analysis tools are available today such
as Bound-T (Holsti and Saarinen, 2002), aiT (Ferdinand et al., 2007), Heptane (Colin and Puaut,
2001; Hardy et al., 2017), Chronos (Li et al., 2007) and SWEET (Ermedahl, 2003). For a detailed
survey on the computation of WCET of tasks readers are directed to (Wilhelm et al., 2008a).

2.3.2 Schedulability Analysis

The output of the timing analysis, i.e., WCET of tasks, along with other timing constraints, e.g.,
task’s period and deadline, are used by the schedulability analysis to determine if all tasks in
the system comply with their timing requirements. Several different approaches can be used
to perform the schedulability analysis depending on the scheduling algorithm and the priority
assignment of tasks. However, since in this work we focus on preemptive fixed-task priority
based scheduling algorithms such as RM and DM, we will use the traditional response time based

schedulability analysis (Liu and Layland, 1973; Joseph and Pandya, 1986). Under the response

2.3 Ensuring Temporal Correctness of a RTS 21

time based schedulability analysis, any task 7; is referred to as schedulable, i.e., the task meets its
timing constraints, if each of its instances or jobs complete their execution before the deadline,

i.e., R; < D;. The response time R; of a task 7; is computed as follows:

Ri=C+) Fﬂ x C; (2.1)
Vjehp(i) ' °J

where C; is an upper bound on the WCET of task 7;, hp(i) denotes the set of tasks with higher

priority than 7; and C; is an upper bound on the WCET of any task 7; € hp(i). Note that under

priority-driven preemptive scheduling task 7;