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Abstract 
Parallel/distributed processing is a solution for providing scaling computing power for computational-intensive 
applications. Parallel/distributed applications are commonly based on the fork-join model, where precedence 
constraints have to be considered on the development of an adequate timing analysis. Moreover, as the main 
difference with multicore architectures, distributed systems entail the transfer of messages upon a 
communication network that should be integrated in the timing analysis. In this context, this paper presents the 
current status of the work towards holistic analysis for fixed priority fork-join parallel/distributed tasks. This 
analysis takes into consideration the interactions between parallel threads and their respective messages. These 
considerations will be helpful for the improvement of the combination of existing results for computing the worst-
case response time and the specific case of fork-join parallel/distributed real-time tasks. 
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Abstract—Parallel/distributed processing is a solution for 

providing scaling computing power for computational-intensive 

applications. Parallel/distributed applications are commonly 

based on the fork-join model, where precedence constraints have 

to be considered on the development of an adequate timing 

analysis. Moreover, as the main difference with multicore 

architectures, distributed systems entail the transfer of messages 

upon a communication network that should be integrated in the 

timing analysis. In this context, this paper presents the current 

status of the work towards holistic analysis for fixed priority 

fork-join parallel/distributed tasks. This analysis takes into 

consideration the interactions between parallel threads and their 

respective messages. These considerations will be helpful for the 

improvement of the combination of existing results for computing 

the worst-case response time and the specific case of fork-join 

parallel/distributed real-time tasks. 

Keywords—Real-time; parallel execution; distributed systems; 

holistic analysis. 

I.  INTRODUCTION 

Modern real-time applications are increasingly complex 
requiring the use of more powerful computing resources. The 
current trend of using parallel processing in the embedded 
domain seems a promising solution to cope with the 
requirements of such demanding applications. Therefore, the 
real-time community has been making efforts to extend 
traditional real-time tools and scheduling algorithms to 
consider parallel task models. However, in some embedded 
applications, the use of powerful enough multi-core processors, 
is prohibited due to Size, Weight, and Power (SWaP) 
constraints. But it is also possible to comply with the 
requirements of computational-intensive applications by 
allowing single-core embedded devices connected through a 
local real-time network, to distribute its workload to remote 
neighbour nodes and execute the applications in parallel. 

In this work we consider fork-join distributed real-time 

applications [1] which are composed of a set of fork-join 

Parallel/Distributed real-time tasks (P/D tasks), executing in a 

distributed system. When considering such tasks, the 

processing of tasks and messages must comply with their 

associated time constraints. A P/D task starts by a master 

thread executing sequentially; and then forks to be executed in 

parallel on remote processors. When the parallel execution has 

completed on each of the remote processors, the results are 

aggregated by performing a join operation and the execution 

of the sequential thread is resumed within the master thread. 

We call to those operations, the Distributed-Fork (D-Fork) and 

Distributed-Join (D-Join).  

We also consider that P/D tasks are scheduled with the 

Partitioned/Distributed - Deadline Monotonic Scheduling 

(P/D-DMS) algorithm, proposed in [2]. The P/D-DMS 

algorithm can be used for partitioning a set of threads onto 

uniprocessor nodes connected through a real-time network. 

The algorithm makes use of the Distributed Stretch 

Transformation (DST) [2]. After applying the DST, a set of 

P/D threads have to be assigned onto the nodes of the 

distributed systems, which is done by using the Fisher Baruah 

Baker - First Fit Decreasing (FBB-FFD) algorithm [3].  

Goal of this work. In a previous work, Axer et al. [4] 

presented a method for computing the response time of fixed-

priority parallel tasks on multiprocessors, which considers the 

synchronization effects of fork-join tasks. In this paper, we 

extend the existing holistic analysis for the computation of the 

Worst-Case Response Time (WCRT) of sequential tasks in a 

distributed system, to parallel distributed (P/D) tasks. When 

considering P/D tasks, the transmission delays due to the 

messages exchanged by communicating threads within a P/D 

task cannot be considered negligible as it is the case on 

multiprocessor platforms. Furthermore, we consider the 

specific structure of the P/D tasks after applying the P/D-DMS 

algorithm, and its impact when computing their WCRT. 

II. SYSTEM MODEL 

Formally, we consider that a distributed real-time application 

is composed of a set             of   P/D tasks [2]. Figure 

1 shows an example of a P/D task   . A P/D task    is 

activated periodically every    time units and is characterised 

by an implicit end-to-end deadline   . Also, it is considered 

that all P/D tasks are released synchronously. A P/D task    

(           ) is composed of a sequence of sequential and 

parallel/distributed (P/D) segments        with             . 

Where,    represents the number of segments composing   , 

   is assumed to be an odd integer, as a P/D task should 

always start and finish with a sequential segment. Therefore, 

odd segments           identify sequential segments and even 

segments         identify P/D segments. Each segment       is 

composed of a set   of threads        with               , 

where        for sequential segments and           

threads for P/D segments.    is the number of P/D threads in 



each P/D segment, and it is considered to be the same for all 

P/D segments within a P/D task   .   is the number of 

distributed nodes.  

All sequential segments within a P/D task    must execute 

within the same processor. This means that the processor that 

performs a D-Fork operation (invoker processor) is in charge 

of aggregating the result by performing a D-Join operation. 

Threads within a P/D segment are possibly executed on 

remote processors. Consequently, for each thread         

belonging to a P/D segment (P/D thread), two P/D messages 

          and         are considered for realizing the 

communication between the invoker and remote processors. 

That is, P/D threads and messages that belong to a P/D 

segment and execute on a remote processor, have a 

precedence relation:                          . For each 

sequential and P/D segment, there exists a synchronisation 

point at the end of each segment, indicating that no thread that 

belongs to the segment after the synchronisation point can 

start executing before all threads of the current segment have 

completed execution. P/D threads are preemptive, but 

messages packets are non-preemptive, although large 

messages can be divided in several non-preemptive packets. 

Also, each sequential thread           has a Worst-Case 

Execution Time (WCET) of          . A P/D thread         has 

a WCET of        , and each message        has a Worst-Case 

Message Length (WCML)       . It is assumed that for a task 

  , every P/D thread         and their respective messages        

within a P/D segment       , have identical WCETs         and 

identical WCMLs       , respectively. However, the WCET 

and the WCML of P/D threads and their messages can vary 

between different P/D segments. Also, P/D threads and P/D 

messages within a task   , share the same period   . 

To summarise, it is possible to describe a P/D task as: 

                                              
        , 

where: 

    is the total number of segments of a task   , 

      is the WCET of each sequential segment        ,  

      is the WCML of a single messages (all    P/D 

messages on the same P/D segment have the same 

WCML), 

       is the WCET of a single P/D thread within a segment 

       (all    P/D threads on the same P/D segment have 

exactly the same WCET), 

    is the number of P/D threads (two messages are created 

for each P/D thread within a P/D segment       ) in each 

P/D segment, 

    is the period of a task, which is equal to its deadline 

(      . 

A. Preliminaries 

For notational convenience we introduce some definitions that 

will simplify the explanation of the P/D-DMS [2] algorithm. 

Definition 1. (Master thread). The master thread of a P/D task 

   is the collection of all threads         belonging to all 

segments     . A master thread can be represented as: 

   
       {                                           

}              

Definition 2. (Minimum execution length). The minimum 

execution length    represents the minimum execution time a 

P/D task    needs to execute, if all P/D threads are executed in 

parallel. This is equal to the sum of the WCET of all the 

threads described in the master thread: 

   (∑        

    
 

   
)  ∑        

    
 

   
                        

Definition 3. (Maximum execution length). The maximum 

execution length   , represent the maximum execution time a 

P/D task    needs to execute when all P/D threads are 

executed sequentially on the invoker processor. This is equal 

to the sum of WCET of all threads in a task   : 

   (∑        

    
 

   
)  (∑        

    
 

   
)                

Definition 4. (Slack time). The positive slack time    is the 

temporal difference between the task’s deadline    and the 

minimum execution length   : 

                                                     

If the slack    is a negative number, it means that    is larger 

than its deadline (     ). Therefore, such a task is not 

schedulable on any number of processors with a speed of  . 

 
Fig. 1. The fork-join parallel/distributed periodic real-time tasks (P/D task) model. 



Definition 5. (Task Capacity). The task capacity    is defined 

as the capacity of the master thread of a task    to execute 

extra P/D threads from all P/D segments without missing its 

deadline: 

   
  

∑        

    
 

   

                                                  

III. THE P/D-DMS ALGORITHM 

P/D-DMS algorithm [2] is a dispatching algorithm for 

partitioning a set   of P/D tasks    onto the elements of the 

distributed system. The P/D-DMS algorithm realizes the 

dispatching by: (i) applying the DST [2] to each P/D task    in 

 , and (ii) partitioning the set of remaining P/D threads after 

applying the DST onto processors according to the FBB-FFD 

algorithm [3]. P/D messages        
    are scheduled according 

to the fixed priority scheduling policy of the network. 

The DST was inspired by the SST transformation model [5]. 

The DST also opts for the formation of a stretched master 

thread   
          for each P/D task   . However, the DST 

addresses some specific constraints that are related to 

distributed systems. For example, when realising a D-Fork 

operation, it implies that some messages will be transmitted 

within the network, affecting the execution length of the P/D 

tasks. Let us illustrate the DST transformation with an 

example. Consider two tasks:                     , and 

                      to be scheduled on 3 processors. The 

DST transformation is illustrated in Figure 2. By calculating 

the maximum execution length (Definition 3) of tasks    and 

  , we obtain      and      . Then, by looking at Figure 

2, it is possible to observe two cases: 

1.      . This is the case of    in our example; whenever 

such a case appears for a task   , the task    is fully 

stretched into a master thread and handled as a sequential 

task with execution time equal to   , a task period of   , and 

an implicit deadline equal to   . Therefore, no messages are 

generated for transmission on the network. 

2.      . This is the case of    in our example; for such 

tasks, the DST transformation inserts (coalesces) as many 

P/D threads of    into the master thread as possible. To do 

so, it is first needed to calculate the available slack and 

capacity of task    as indicated in Eq. (4) and (5). For   , it 

gives           and,      ⁄ . Thus, the number of 

P/D threads that each P/D segment can fully insert into the 

master thread without causing    to miss its deadline is 

given by: 

       ⌊  ⌋                                               

In the case of   ,       ⌊  ⌋   . Figure 2 shows that    

executes two P/D threads per P/D segment on the invoker 

processor rather than only one when considering the non-

stretched master thread. 

The number       of the remaining P/D threads that have not 

been coalesced into the master thread is given by: 

                                                       

The slack    of task    is equally distributed between all the 

P/D segments of a P/D task   . Thus, the maximum scheduling 

length for the subset of P/D threads and their respective P/D 

messages is determined by defining a set of P/D intermediate 

deadlines      : 

                          
     

 
                 

Thus, at the end of the DST transformation, a P/D task    will 

be composed of: (i) a single stretched master thread   
         , 

and a set of constrained deadline P/D threads        
   , and their 

respective constrained deadline messages       
   ; per each P/D 

segment       , or (ii) a single fully stretched sequential task. 

The stretched master thread   
          is assigned to its own 

processor. The remaining single fully stretched sequential 

tasks and P/D threads    
    are assigned to processors with 

the FBB-FFD algorithm [3]. Messages       
    are assigned to 

the real-time network and scheduled accordingly.  

 

Fig. 2. A task scheduled by the P/D-DMS algorithm. 

IV. HOLISTIC ANALYSIS FOR P/D TASKS 

The holistic analysis has been conceived as a solution for the 

analysis of the interaction of a system composed by a set of 

different processing devices (e.g. processors and networks) 

[6]. One of the main goals of the holistic analysis approach is 

to calculate the so called end-to-end delay. The end-to-end 

delay is the WCRT associated to a chain of tasks executing on 

the same processor or different processors and interchanging 

messages for communication purposes. A holistic approach 

considers the analysis of such a chain of dependencies, which 

implies higher degree of difficulty when compared to the 

analysis of components in isolation. However, since the 

parameters in a holistic analysis are dependent but monotonic, 

it is possible to formulate a recurrence and progressively 

iterate until finding a stable solution. 

The holistic analysis relies on a simple concept of attribute 

inheritance, for instance, the activation (release) of a P/D 

message or P/D thread is based on the response time of 

previous processing event (e.g. P/D threads or P/D message, 

respectively). It is possible to observe in Figure 2, that after 

thread        has completed execution, the transmission of the 

message        is triggered, and in turn this message triggers 

the execution of the P/D thread       . 



Fully stretched tasks: when considering tasks that are fully 

stretch into a sequential task, no transmissions are required 

(Case 1, Section III). Therefore, their WCRT only depends on 

the suffered interference caused by other higher priority 

threads executing on the same processor. 

Non-fully stretched tasks: when considering non-fully 

stretched tasks, it is necessary to consider the sequential and 

parallel segments independently. Let us recall that for each 

sequential and P/D segment, there exist a synchronisation 

point at the end of each segment, in which threads of the next 

segment can only continue their execution whenever all 

threads of the current segment have completed their execution. 

Therefore, the WCRT of a task    is computed based on the 

sum of the maximum execution paths of each segment     : 

         ∑   
 

            

  

   

                       

Sequential segments         within a P/D task, are executed on 

their own processor, therefore, they do not suffer any 

interference from other threads. Thus, the maximum WCRT is 

equal to the WCET (           of the corresponding thread 

         : 

    (       )                                            

For parallel segments       within a P/D task, the maximum 

WCRT is given by the maximum WCRT of two possible 

scenarios: 

1. the sum of all coalesced P/D threads (denoted as         ) 

within the master thread which are executed sequentially: 

               ∑        

                             

         

2. or, the           

   , which is the maximum WCRT of the   

distributed execution paths (denoted as         ); per each 

P/D segment. A distributed execution path is the execution 

of a P/D thread that has not been coalesced with the master 

thread and their respective P/D messages that have a 

precedence relation:                          . For 

calculating WCRT of a distributed execution path, it is 

possible to use the following equation: 

                   (         )      (      )        

                                                 

Then, it is needed to find the maximum                as: 

          

       
 

                                  

Thus, for each P/D segment       within a P/D task, the 

maximum WCRT is equal to: 

    (     )                                

            

Also, it is important to note that the WCRT of threads and 

messages depend on the characteristics of the processing 

elements, and on the particular method to calculate the WCRT. 

For example, for computing the WCRT of a P/D thread, it is 

needed to consider the characteristics of the computing nodes 

(e.g. uniprocessor nodes, multicore nodes, etc.). Likewise for 

computing the WCRT of P/D messages, it is needed to 

consider the specific characteristics of the real-time networks 

(e.g. CAN, FTT-SE, etc.). However, when considering the P/D 

task model and using a task transformation as the DST, the 

reasoning of our generic holistic analysis can be used. 

V. CONLUSIONS AND FUTURE WORK 

In this paper, we presented a generic holistic analysis 

approach. This analysis studies the specific structure of the 

P/D tasks after applying the P/D-DMS algorithm, and its 

impact when computing their WCRT. Although the methods to 

compute the WCRT of P/D tasks depend on the specific 

characteristics of computing resources and networks, the 

holistic analysis reasoning presented in this paper is completely 

generic. Hence, we are currently working on extracting some 

characteristics of the P/D task model along with properties of 

specific communication protocols such as the Flexible Time 

Triggered protocol, with the intention of improving the 

computation of the WCRT for parallel tasks in a distributed 

environment. 

ACKNOWLEDGMENTS 

This work was partially supported by National Funds through FCT (Portuguese 

Foundation for Science and Technology) and by ERDF (European Regional 

Development Fund) through COMPETE (Operational Programme 'Thematic Factors 
of Competitiveness'), within project FCOMP-01-0124-FEDER-037281 (CISTER); 

by FCT and the EU ARTEMIS JU funding, within projects ENCOURAGE 

(ARTEMIS/0002/2010, JU grant nr. 269354), ARROWHEAD 

(ARTEMIS/0001/2012, JU grant nr. 332987), CONCERTO (ARTEMIS/0003/2012, 

JU grant nr. 333053); by FCT and ESF (European Social Fund) through POPH 

(Portuguese Human Potential Operational Program), under PhD grant 

SFRH/BD/71562/2010. 

REFERENCES 

[1]  R. Garibay-Martinez, L. L. Ferreira and L. M. Pinho, “A framework for 

the development of parallel and distributed real-time embedded systems,” 

in Proc. of 38th EUROMICRO Conference on Software Engineering and 
Advanced Applications (SEAA 2012), 2012.  

[2]  R. Garibay-Martínez, G. Nelissen, L. L. Ferreira and L. M. Pinho, "On the 

Scheduling of Fork-Join Parallel/Distributed Real-Time Tasks," in Proc. 
of the 9th IEEE International Symposium on Industrial Embedded Systems 

(SIES'14), to appear, 2014.  

[3]  N. Fisher, S. Baruah and T. P. Baker, "The partitioned scheduling of 
sporadic tasks according to static-priorities," in Proc. of the IEEE 18th 

Euromicro Conference on Real-Time Systems (ECRTS'06), 2006.  

[4]  P. Axer, S. Quinton, M. Neukirchner and R. Ernst, "Response-Time 
Analysis of Parallel Fork-Join Workloads with Real-Time Constraints," in 

Proc. IEEE 25th Euromicro Conference on Real-Time Systems 

(ECRTS'13), 2013.  

[5]  M. Qamhieh, F. Fauberteau and S. Midonnet, "Performance Analysis for 

Segment Stretch Transformation of Parallel Real-time Tasks," in 

Proceedings of the 5th Junior Researcher Workshop on Real-Time 
Computing (JRWRTC 2011), 2011.  

[6]  K. Tindell and J. Clark, "Holistic schedulability analysis for distributed 

hard real-time systems," Microprocessing and Microprogramming, vol. 
40, no. 2-3, pp. 117 - 134 , 1994.  

 




