

Towards Holistic Analysis for Fork-Join
Parallel/Distributed Real-Time Tasks

Technical Report

CISTER-TR-140707

Version:

Date: 7/9/2014

Ricardo Garibay-Martinez

Luis Lino Ferreira

Geoffrey Nelissen

Luis Miguel Pinho

Technical Report CISTER-TR-140707 Towards Holistic Analysis for Fork-Join Parallel/Distributed Real-Time Tasks

© CISTER Research Unit
www.cister.isep.ipp.pt 1

Towards Holistic Analysis for Fork-Join Parallel/Distributed Real-Time Tasks
Ricardo Garibay-Martinez, Luis Lino Ferreira, Geoffrey Nelissen, Luis Miguel Pinho

CISTER Research Unit

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail: rgmaz@isep.ipp.pt, llf@isep.ipp.pt, grrpn@isep.ipp.pt, lmp@isep.ipp.pt

http://www.cister.isep.ipp.pt

Abstract
Parallel/distributed processing is a solution for providing scaling computing power for computational-intensive
applications. Parallel/distributed applications are commonly based on the fork-join model, where precedence
constraints have to be considered on the development of an adequate timing analysis. Moreover, as the main
difference with multicore architectures, distributed systems entail the transfer of messages upon a
communication network that should be integrated in the timing analysis. In this context, this paper presents the
current status of the work towards holistic analysis for fixed priority fork-join parallel/distributed tasks. This
analysis takes into consideration the interactions between parallel threads and their respective messages. These
considerations will be helpful for the improvement of the combination of existing results for computing the worst-
case response time and the specific case of fork-join parallel/distributed real-time tasks.

Towards Holistic Analysis for Fork-Join

Parallel/Distributed Real-Time Tasks

Ricardo Garibay-Martínez
1
, Luis Lino Ferreira

1
, Geoffrey Nelissen

1
, Paulo Pedreiras

2
, Luís Miguel Pinho

1

1
CISTER/INESC-TEC, ISEP, Porto, Portugal

2
DETI/IT/University of Aveiro, Aveiro, Portugal

1
{rgmaz, llf, grrpn, lmp}@isep.ipp.pt;

2
pbrp@ua.pt

Abstract—Parallel/distributed processing is a solution for

providing scaling computing power for computational-intensive

applications. Parallel/distributed applications are commonly

based on the fork-join model, where precedence constraints have

to be considered on the development of an adequate timing

analysis. Moreover, as the main difference with multicore

architectures, distributed systems entail the transfer of messages

upon a communication network that should be integrated in the

timing analysis. In this context, this paper presents the current

status of the work towards holistic analysis for fixed priority

fork-join parallel/distributed tasks. This analysis takes into

consideration the interactions between parallel threads and their

respective messages. These considerations will be helpful for the

improvement of the combination of existing results for computing

the worst-case response time and the specific case of fork-join

parallel/distributed real-time tasks.

Keywords—Real-time; parallel execution; distributed systems;

holistic analysis.

I. INTRODUCTION

Modern real-time applications are increasingly complex
requiring the use of more powerful computing resources. The
current trend of using parallel processing in the embedded
domain seems a promising solution to cope with the
requirements of such demanding applications. Therefore, the
real-time community has been making efforts to extend
traditional real-time tools and scheduling algorithms to
consider parallel task models. However, in some embedded
applications, the use of powerful enough multi-core processors,
is prohibited due to Size, Weight, and Power (SWaP)
constraints. But it is also possible to comply with the
requirements of computational-intensive applications by
allowing single-core embedded devices connected through a
local real-time network, to distribute its workload to remote
neighbour nodes and execute the applications in parallel.

In this work we consider fork-join distributed real-time

applications [1] which are composed of a set of fork-join

Parallel/Distributed real-time tasks (P/D tasks), executing in a

distributed system. When considering such tasks, the

processing of tasks and messages must comply with their

associated time constraints. A P/D task starts by a master

thread executing sequentially; and then forks to be executed in

parallel on remote processors. When the parallel execution has

completed on each of the remote processors, the results are

aggregated by performing a join operation and the execution

of the sequential thread is resumed within the master thread.

We call to those operations, the Distributed-Fork (D-Fork) and

Distributed-Join (D-Join).

We also consider that P/D tasks are scheduled with the

Partitioned/Distributed - Deadline Monotonic Scheduling

(P/D-DMS) algorithm, proposed in [2]. The P/D-DMS

algorithm can be used for partitioning a set of threads onto

uniprocessor nodes connected through a real-time network.

The algorithm makes use of the Distributed Stretch

Transformation (DST) [2]. After applying the DST, a set of

P/D threads have to be assigned onto the nodes of the

distributed systems, which is done by using the Fisher Baruah

Baker - First Fit Decreasing (FBB-FFD) algorithm [3].

Goal of this work. In a previous work, Axer et al. [4]

presented a method for computing the response time of fixed-

priority parallel tasks on multiprocessors, which considers the

synchronization effects of fork-join tasks. In this paper, we

extend the existing holistic analysis for the computation of the

Worst-Case Response Time (WCRT) of sequential tasks in a

distributed system, to parallel distributed (P/D) tasks. When

considering P/D tasks, the transmission delays due to the

messages exchanged by communicating threads within a P/D

task cannot be considered negligible as it is the case on

multiprocessor platforms. Furthermore, we consider the

specific structure of the P/D tasks after applying the P/D-DMS

algorithm, and its impact when computing their WCRT.

II. SYSTEM MODEL

Formally, we consider that a distributed real-time application

is composed of a set of P/D tasks [2]. Figure

1 shows an example of a P/D task . A P/D task is

activated periodically every time units and is characterised

by an implicit end-to-end deadline . Also, it is considered

that all P/D tasks are released synchronously. A P/D task

() is composed of a sequence of sequential and

parallel/distributed (P/D) segments with .

Where, represents the number of segments composing ,

 is assumed to be an odd integer, as a P/D task should

always start and finish with a sequential segment. Therefore,

odd segments identify sequential segments and even

segments identify P/D segments. Each segment is

composed of a set of threads with ,

where for sequential segments and

threads for P/D segments. is the number of P/D threads in

each P/D segment, and it is considered to be the same for all

P/D segments within a P/D task . is the number of

distributed nodes.

All sequential segments within a P/D task must execute

within the same processor. This means that the processor that

performs a D-Fork operation (invoker processor) is in charge

of aggregating the result by performing a D-Join operation.

Threads within a P/D segment are possibly executed on

remote processors. Consequently, for each thread

belonging to a P/D segment (P/D thread), two P/D messages

 and are considered for realizing the

communication between the invoker and remote processors.

That is, P/D threads and messages that belong to a P/D

segment and execute on a remote processor, have a

precedence relation: . For each

sequential and P/D segment, there exists a synchronisation

point at the end of each segment, indicating that no thread that

belongs to the segment after the synchronisation point can

start executing before all threads of the current segment have

completed execution. P/D threads are preemptive, but

messages packets are non-preemptive, although large

messages can be divided in several non-preemptive packets.

Also, each sequential thread has a Worst-Case

Execution Time (WCET) of . A P/D thread has

a WCET of , and each message has a Worst-Case

Message Length (WCML) . It is assumed that for a task

 , every P/D thread and their respective messages

within a P/D segment , have identical WCETs and

identical WCMLs , respectively. However, the WCET

and the WCML of P/D threads and their messages can vary

between different P/D segments. Also, P/D threads and P/D

messages within a task , share the same period .

To summarise, it is possible to describe a P/D task as:

 ,

where:

 is the total number of segments of a task ,

 is the WCET of each sequential segment ,

 is the WCML of a single messages (all P/D

messages on the same P/D segment have the same

WCML),

 is the WCET of a single P/D thread within a segment

 (all P/D threads on the same P/D segment have

exactly the same WCET),

 is the number of P/D threads (two messages are created

for each P/D thread within a P/D segment) in each

P/D segment,

 is the period of a task, which is equal to its deadline

(.

A. Preliminaries

For notational convenience we introduce some definitions that

will simplify the explanation of the P/D-DMS [2] algorithm.

Definition 1. (Master thread). The master thread of a P/D task

 is the collection of all threads belonging to all

segments . A master thread can be represented as:

 {

}

Definition 2. (Minimum execution length). The minimum

execution length represents the minimum execution time a

P/D task needs to execute, if all P/D threads are executed in

parallel. This is equal to the sum of the WCET of all the

threads described in the master thread:

 (∑

) ∑

Definition 3. (Maximum execution length). The maximum

execution length , represent the maximum execution time a

P/D task needs to execute when all P/D threads are

executed sequentially on the invoker processor. This is equal

to the sum of WCET of all threads in a task :

 (∑

) (∑

)

Definition 4. (Slack time). The positive slack time is the

temporal difference between the task’s deadline and the

minimum execution length :

If the slack is a negative number, it means that is larger

than its deadline (). Therefore, such a task is not

schedulable on any number of processors with a speed of .

Fig. 1. The fork-join parallel/distributed periodic real-time tasks (P/D task) model.

Definition 5. (Task Capacity). The task capacity is defined

as the capacity of the master thread of a task to execute

extra P/D threads from all P/D segments without missing its

deadline:

∑

III. THE P/D-DMS ALGORITHM

P/D-DMS algorithm [2] is a dispatching algorithm for

partitioning a set of P/D tasks onto the elements of the

distributed system. The P/D-DMS algorithm realizes the

dispatching by: (i) applying the DST [2] to each P/D task in

 , and (ii) partitioning the set of remaining P/D threads after

applying the DST onto processors according to the FBB-FFD

algorithm [3]. P/D messages
 are scheduled according

to the fixed priority scheduling policy of the network.

The DST was inspired by the SST transformation model [5].

The DST also opts for the formation of a stretched master

thread
 for each P/D task . However, the DST

addresses some specific constraints that are related to

distributed systems. For example, when realising a D-Fork

operation, it implies that some messages will be transmitted

within the network, affecting the execution length of the P/D

tasks. Let us illustrate the DST transformation with an

example. Consider two tasks: , and

 to be scheduled on 3 processors. The

DST transformation is illustrated in Figure 2. By calculating

the maximum execution length (Definition 3) of tasks and

 , we obtain and . Then, by looking at Figure

2, it is possible to observe two cases:

1. . This is the case of in our example; whenever

such a case appears for a task , the task is fully

stretched into a master thread and handled as a sequential

task with execution time equal to , a task period of , and

an implicit deadline equal to . Therefore, no messages are

generated for transmission on the network.

2. . This is the case of in our example; for such

tasks, the DST transformation inserts (coalesces) as many

P/D threads of into the master thread as possible. To do

so, it is first needed to calculate the available slack and

capacity of task as indicated in Eq. (4) and (5). For , it

gives and, ⁄ . Thus, the number of

P/D threads that each P/D segment can fully insert into the

master thread without causing to miss its deadline is

given by:

 ⌊ ⌋

In the case of , ⌊ ⌋ . Figure 2 shows that

executes two P/D threads per P/D segment on the invoker

processor rather than only one when considering the non-

stretched master thread.

The number of the remaining P/D threads that have not

been coalesced into the master thread is given by:

The slack of task is equally distributed between all the

P/D segments of a P/D task . Thus, the maximum scheduling

length for the subset of P/D threads and their respective P/D

messages is determined by defining a set of P/D intermediate

deadlines :

Thus, at the end of the DST transformation, a P/D task will

be composed of: (i) a single stretched master thread
 ,

and a set of constrained deadline P/D threads
 , and their

respective constrained deadline messages
 ; per each P/D

segment , or (ii) a single fully stretched sequential task.

The stretched master thread
 is assigned to its own

processor. The remaining single fully stretched sequential

tasks and P/D threads
 are assigned to processors with

the FBB-FFD algorithm [3]. Messages
 are assigned to

the real-time network and scheduled accordingly.

Fig. 2. A task scheduled by the P/D-DMS algorithm.

IV. HOLISTIC ANALYSIS FOR P/D TASKS

The holistic analysis has been conceived as a solution for the

analysis of the interaction of a system composed by a set of

different processing devices (e.g. processors and networks)

[6]. One of the main goals of the holistic analysis approach is

to calculate the so called end-to-end delay. The end-to-end

delay is the WCRT associated to a chain of tasks executing on

the same processor or different processors and interchanging

messages for communication purposes. A holistic approach

considers the analysis of such a chain of dependencies, which

implies higher degree of difficulty when compared to the

analysis of components in isolation. However, since the

parameters in a holistic analysis are dependent but monotonic,

it is possible to formulate a recurrence and progressively

iterate until finding a stable solution.

The holistic analysis relies on a simple concept of attribute

inheritance, for instance, the activation (release) of a P/D

message or P/D thread is based on the response time of

previous processing event (e.g. P/D threads or P/D message,

respectively). It is possible to observe in Figure 2, that after

thread has completed execution, the transmission of the

message is triggered, and in turn this message triggers

the execution of the P/D thread .

Fully stretched tasks: when considering tasks that are fully

stretch into a sequential task, no transmissions are required

(Case 1, Section III). Therefore, their WCRT only depends on

the suffered interference caused by other higher priority

threads executing on the same processor.

Non-fully stretched tasks: when considering non-fully

stretched tasks, it is necessary to consider the sequential and

parallel segments independently. Let us recall that for each

sequential and P/D segment, there exist a synchronisation

point at the end of each segment, in which threads of the next

segment can only continue their execution whenever all

threads of the current segment have completed their execution.

Therefore, the WCRT of a task is computed based on the

sum of the maximum execution paths of each segment :

 ∑

Sequential segments within a P/D task, are executed on

their own processor, therefore, they do not suffer any

interference from other threads. Thus, the maximum WCRT is

equal to the WCET (of the corresponding thread

 :

 ()

For parallel segments within a P/D task, the maximum

WCRT is given by the maximum WCRT of two possible

scenarios:

1. the sum of all coalesced P/D threads (denoted as)

within the master thread which are executed sequentially:

 ∑

2. or, the

 , which is the maximum WCRT of the

distributed execution paths (denoted as); per each

P/D segment. A distributed execution path is the execution

of a P/D thread that has not been coalesced with the master

thread and their respective P/D messages that have a

precedence relation: . For

calculating WCRT of a distributed execution path, it is

possible to use the following equation:

 () ()

Then, it is needed to find the maximum as:

Thus, for each P/D segment within a P/D task, the

maximum WCRT is equal to:

 ()

Also, it is important to note that the WCRT of threads and

messages depend on the characteristics of the processing

elements, and on the particular method to calculate the WCRT.

For example, for computing the WCRT of a P/D thread, it is

needed to consider the characteristics of the computing nodes

(e.g. uniprocessor nodes, multicore nodes, etc.). Likewise for

computing the WCRT of P/D messages, it is needed to

consider the specific characteristics of the real-time networks

(e.g. CAN, FTT-SE, etc.). However, when considering the P/D

task model and using a task transformation as the DST, the

reasoning of our generic holistic analysis can be used.

V. CONLUSIONS AND FUTURE WORK

In this paper, we presented a generic holistic analysis

approach. This analysis studies the specific structure of the

P/D tasks after applying the P/D-DMS algorithm, and its

impact when computing their WCRT. Although the methods to

compute the WCRT of P/D tasks depend on the specific

characteristics of computing resources and networks, the

holistic analysis reasoning presented in this paper is completely

generic. Hence, we are currently working on extracting some

characteristics of the P/D task model along with properties of

specific communication protocols such as the Flexible Time

Triggered protocol, with the intention of improving the

computation of the WCRT for parallel tasks in a distributed

environment.

ACKNOWLEDGMENTS

This work was partially supported by National Funds through FCT (Portuguese

Foundation for Science and Technology) and by ERDF (European Regional

Development Fund) through COMPETE (Operational Programme 'Thematic Factors
of Competitiveness'), within project FCOMP-01-0124-FEDER-037281 (CISTER);

by FCT and the EU ARTEMIS JU funding, within projects ENCOURAGE

(ARTEMIS/0002/2010, JU grant nr. 269354), ARROWHEAD

(ARTEMIS/0001/2012, JU grant nr. 332987), CONCERTO (ARTEMIS/0003/2012,

JU grant nr. 333053); by FCT and ESF (European Social Fund) through POPH

(Portuguese Human Potential Operational Program), under PhD grant

SFRH/BD/71562/2010.

REFERENCES

[1] R. Garibay-Martinez, L. L. Ferreira and L. M. Pinho, “A framework for

the development of parallel and distributed real-time embedded systems,”

in Proc. of 38th EUROMICRO Conference on Software Engineering and
Advanced Applications (SEAA 2012), 2012.

[2] R. Garibay-Martínez, G. Nelissen, L. L. Ferreira and L. M. Pinho, "On the

Scheduling of Fork-Join Parallel/Distributed Real-Time Tasks," in Proc.
of the 9th IEEE International Symposium on Industrial Embedded Systems

(SIES'14), to appear, 2014.

[3] N. Fisher, S. Baruah and T. P. Baker, "The partitioned scheduling of
sporadic tasks according to static-priorities," in Proc. of the IEEE 18th

Euromicro Conference on Real-Time Systems (ECRTS'06), 2006.

[4] P. Axer, S. Quinton, M. Neukirchner and R. Ernst, "Response-Time
Analysis of Parallel Fork-Join Workloads with Real-Time Constraints," in

Proc. IEEE 25th Euromicro Conference on Real-Time Systems

(ECRTS'13), 2013.

[5] M. Qamhieh, F. Fauberteau and S. Midonnet, "Performance Analysis for

Segment Stretch Transformation of Parallel Real-time Tasks," in

Proceedings of the 5th Junior Researcher Workshop on Real-Time
Computing (JRWRTC 2011), 2011.

[6] K. Tindell and J. Clark, "Holistic schedulability analysis for distributed

hard real-time systems," Microprocessing and Microprogramming, vol.
40, no. 2-3, pp. 117 - 134 , 1994.

