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Abstract 

Growing at a fast pace, the adoption of embedded computing systems, capableof monitoring and controlling the 

physical environment around them, is spreadingacross different environments, from our houses to the industrial 

setting. Thislatest trend, induced by recent advancements in the information and communicationfields, craves for 

the new Wireless Sensor Network (WSN) concept, whichaims to enable an infrastructure that interconnects the set 

of widespread  1cintelligent 1ddevices, capable of wireless communications, constituting a network ofsensor 

nodes.On an Industrial context, the new Cyber-Physical Systems (CPS), promptedby the Industry 4.0 revolution, 

aim to correlate the present automated systemsto the new information technologies, such as cloud and cognitive 

computing,to compose a group of collaborative computing systems that enact the  1csmartfactory 1d. This new 

targeted model however, relies on certain time assurances andother QoS (Quality of Service) properties such as 

scalability, energy efficiencyand robustness, which WSN technologies intent to grant. Although a tenderparadigm, 

propositions such as the IEEE std. 802.15.4 protocol ambition toenable the WSN infrastructure and satisfy the 

QoS requirements.The IEEE std. 802.15.4 protocol provides several MAC (Medium Accesscontrol) behaviours to 

frame the communications stack, each aiming to meetthe set of requirements of distinct applications. For 

deterministic latency, highreliability and scalability QoS requirements, IEEE 802.15.4 standard provides 

theDSME(Deterministic Synchronous Multichannel Extension) MAC behaviour.Parallel to the phenomenon of the 

WSN technologies, real-time operatingsystems (RTOS) are emerging among the IoT(Internet of Things) community 

tohelp tackle QoS specifications for determinism and time-critical constraints.The use of a real-time OS in 

conjunction with a time reliable protocol suchas DSME is the key to enable a truly deterministic and time critical 

WSN.However, besides these settings, QoS at the computing platform must beguaranteed as well if these network 

infrastructures are to become a reality. Computationsmust be performed in a predictable way, as to support the 

QoS demandsin terms of latency these networks present. Hence, in this Thesis we propose torely on the FreeRTOS 

for a real-time operating system and a well known WSNplatform, such as the TelosB to implement the DSME time 

critical MAC behaviour.To achieve this defined goal, this Thesis presents a port of FreeRTOS tothe TelosB platform, 

wich includes an IEEE 802.15.4 compliant radio, as well as apreliminary study of the future implementation 

strategy of the network protocol.Hereby, this Thesis concludes with a successful implementation of the 

RTOS,FreeRTOS, for the TelosB platform, along with the necessary groundwork andtime requirements support for 

the DSME extension. Additionally the Thesisprovides a suggested model for the protocol stack to fit the FreeRTOS 

task system. 
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Abstract

Growing at a fast pace, the adoption of embedded computing systems, capable

of monitoring and controlling the physical environment around them, is spread-

ing across different environments, from our houses to the industrial setting. This

latest trend, induced by recent advancements in the information and communi-

cation fields, craves for the new Wireless Sensor Network (WSN) concept, which

aims to enable an infrastructure that interconnects the set of widespread “in-

telligent” devices, capable of wireless communications, constituting a network of

sensor nodes.

On an Industrial context, the new Cyber-Physical Systems (CPS), prompted

by the Industry 4.0 revolution, aim to correlate the present automated systems

to the new information technologies, such as cloud and cognitive computing,

to compose a group of collaborative computing systems that enact the “smart

factory”. This new targeted model however, relies on certain time assurances and

other QoS (Quality of Service) properties such as scalability, energy efficiency

and robustness, which WSN technologies intent to grant. Although a tender

paradigm, propositions such as the IEEE std. 802.15.4 protocol ambition to

enable the WSN infrastructure and satisfy the QoS requirements.

The IEEE std. 802.15.4 protocol provides several MAC (Medium Access

control) behaviours to frame the communications stack, each aiming to meet

the set of requirements of distinct applications. For deterministic latency, high

reliability and scalability QoS requirements, IEEE 802.15.4 standard provides the

DSME(Deterministic Synchronous Multichannel Extension) MAC behaviour.

Parallel to the phenomenon of the WSN technologies, real-time operating

systems (RTOS) are emerging among the IoT(Internet of Things) community to

help tackle QoS specifications for determinism and time-critical constraints.

The use of a real-time OS in conjunction with a time reliable protocol such

as DSME is the key to enable a truly deterministic and time critical WSN.

However, besides these settings, QoS at the computing platform must be

guaranteed as well if these network infrastructures are to become a reality. Com-

putations must be performed in a predictable way, as to support the QoS demands

in terms of latency these networks present. Hence, in this Thesis we propose to

rely on the FreeRTOS for a real-time operating system and a well known WSN

platform, such as the TelosB to implement the DSME time critical MAC be-

haviour. To achieve this defined goal, this Thesis presents a port of FreeRTOS to

the TelosB platform, wich includes an IEEE 802.15.4 compliant radio, as well as a

preliminary study of the future implementation strategy of the network protocol.



Hereby, this Thesis concludes with a successful implementation of the RTOS,

FreeRTOS, for the TelosB platform, along with the necessary groundwork and

time requirements support for the DSME extension. Additionally the Thesis

provides a suggested model for the protocol stack to fit the FreeRTOS task system.

Keywords

Wireless Sensor Networks; IEEE std. 802.15.4-2015; DSME MAC behaviour;

TelosB mote platform; FreeRTOS.
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Chapter 1

Introduction

1.1 Overview

Arguably the greatest technological leap of the modern society, the Internet con-

nected people and allowed for an unprecedented share of information worldwide.

As a consequence, the concept of Internet of Things (IoT), grew from the drive to

interconnect the available sensors and actuators, enabling “smart” devices, with

a growing presence in everyday items, demanded for the Wireless Sensor Net-

work (WSN) paradigm, which takes advantage of the recent advancements in

information and communication technology [1], to serve as the underlying com-

munications infrastructure.

Inspired by the new advents, we become ever eager to automate the world

around us, by monitoring and controlling everything, everywhere. The trend

spread to the industry context, triggering a revolution that lead to the fourth

iteration of the manufacturing world, the Industry 4.0 [2].

The new tendency to interconnect computational and physical entities from

the third industrial rendition, leading to the Cyber-Physical System (CPS) con-

ception. Coined from the newly bridged interaction between the physical sur-

roundings and accessible data for monitoring and control, the emerging CPS can

be applied throughout a variety of fields such as building automation (e.g., se-

curity, climate and lighting control, access control), industrial automation (e.g.

asset management, process control, environmental control, energy management,

preventive maintenance) and personal health care (e.g., body sensor networks).

These applications however, must be conceived in a way that the quality of

the service (QoS), appraised by either monitoring systems or through a direct

user interaction, meet the necessary requirements for either practicality or even

1



2 CHAPTER 1. INTRODUCTION

human safety.“QoS is thus usually associated with bit rate, network throughput,

message end-to-end delay and bit error rate” [1].

WSN technology aims to be a suitable solution to supply the CPS domain

with the support to cope with the stringent QoS properties.

To fulfil the QoS needs of industrial communication over the last decade, the

Institute of Electrical and Electronics Engineers Standards Association (IEEE-

SA) are continuously working on the IEEE 802.15.4 standard[7], for Low Rate

Wireless Personal Area Networks (LR-WPAN). The growing popularity of the

Industry 4.0 concept, which converges IoT, Cyber Physical Systems (CPS) and

Cloud technologies at an industry level, generated overgrowing demands by the

industrial domain and emerging CPS systems for low-power, low-range, and ro-

bust wireless communication. The IEEE 802.15.4 therefore provides several MAC

behaviours, such as deterministic communication and multi-channel frequency

hopping mechanisms, improving the predictability, reliability and latency of this

protocol. Targeting deterministic latency, high reliability and scalability QoS

requirements, IEEE 802.15.4 standard includes the DSME MAC behaviour.

To help conform these requirements, the IoT community has also pointed at

the emerging real-time operating systems (RTOS), with specialized schedulers to

meet the set time deadlines and provide determinism to demanding applications,

such as CPS derived. The use of a real-time OS along with time reliable protocol

such as the DSME will enable a truly deterministic WSN infrastructure.

However the required QoS at the computing platform must be met as well

to guarantee determinism for applications. Computations must be performed

in a predictable way, as to support the QoS demands in terms of latency these

networks present.

To tackle this issue, in this Thesis we propose to entrust FreeRTOS for the

real-time operating system as well as the TelosB for the target hardware platform

in order to implement the DSME time critical MAC behaviour. In order to carry

out the proposed task, this Thesis presents a port of FreeRTOS to the TelosB

platform, wich includes an IEEE 802.15.4 compliant radio. Additionally, the

envisaged architecture for the implementation of the IEEE 802.15.4 is provided,

detailing strategy to achieve the set goals.

1.2 Research Context

This Thesis is being carried out at the CISTER Research Centre in Real-Time

Embedded Computing Systems, aligned within several research efforts which aim

at improving the Quality of Service of the supporting communication infrastruc-

tures, to enable future Cyber-Physical systems, by relying as much as possible

on commercial off-the-shelf technology.
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1.3 Research Objectives

This Thesis aims at providing support for a reliable implementation of the IEEE

802.15.4 standard, namely the DSME MAC behaviour, on top of a real time op-

erating system, taking the first steps towards building a truly deterministic WSN

and enabling support for applications with time-critical, reliable and scalable QoS

requirements.

1.4 Research Contributions

The main contributions from this Thesis are the provided support grounds for the

implementation of the IEEE std. 802.15.4 over FreeRTOS; the provision TelosB

mote support and drivers for the FreeRTOS; additionally, this Thesis provides

the design plans for a modular, efficient and accessible implementation of the

IEEE 802.15.4 on FreeRTOS.

1.5 Structure of this thesis

The Thesis is composed of five chapters apart from the current, which are orga-

nized as follows: The second chapter introduces the IEEE std. 802.15.4 protocol,

detailing its most relevant features, taking a particular look into the DSME MAC

behaviour. Then, Chapter three presents the technologies required for the imple-

mentation, apart from the standard, including the TelosB hardware platform and

the real-time system FreeRTOS. Additionally, some support tools used during this

Thesis are described. Chapter 4 details the full implementation of the FreeRTOS

over TelosB including the code development structure built using GNU make for

developing applications with the OS for the TelosB platform, concluding with

a experimental validation in order to legitimize the implementation. Chapter 5

presents the planned approach for implementing the IEEE 802.15.4, including a

proposed application stack with all involved modules as well a study on how to

build the DSME-Superframe, concluding with expected results regarding the OS

scheduler. The Thesis concludes with Chapter 6, which summarizes the results

and presents the future plans for the protocol implementation.





Chapter 2

Overview of IEEE 802.15.4 and

DSME behaviour

This chapter presents the most important features of the IEEE 802.15.4-2015

protocol, and in particular of the DSME MAC behaviour. Even though the protocol

is not completely implemented in this Thesis, it is crucial to fully understand its

features and requirements to carry out the appropriate implementation.

2.1 Overview

There are several wireless communication protocols that accommodate different

types of applications like video, voice and general data communications. Each

one of these protocols sets a trade-off between properties such as throughput,

latency, energy efficiency and radio coverage targeting well defined application

scenarios. A wireless sensor network (WSN) consists of wirelessly communicat-

ing, spacially distributed, RF (radio frequency) devices, capable of monitoring

the physical properties of their set environment. A WSN usually does not impose

stringent requirements in terms of bandwidth, but does require minimized en-

ergy consumption so that the overall network lifetime is prolonged. Meeting the

Quality of Service (QoS) requirements such as energy efficiency and timeliness is

amongst the main objectives of WSN protocols and technologies [5].

To fulfil the QoS needs of industrial communication over the last decade, the

Institute of Electrical and Electronics Engineers Standards Association (IEEE-

SA), an organization within IEEE, tasked with developing global standards, pub-

lished in 2003, the IEEE 802.15.4 standard [8], for Low Rate - Wireless Personal

Area Networks (LR-WPAN).

5



6 CHAPTER 2. OVERVIEW OF IEEE 802.15.4 AND DSME BEHAVIOUR

Since then, the booming popularity of the Industry 4.0 concept, that con-

verges IoT (Internet of Things), Cyber Physical Systems (CPS) and Cloud tech-

nologies at an industry level, generated overgrowing demands by the industrial

domain and emerging CPS systems for low-power, low-range, and robust wireless

communication. In 2012, following the second revision of the standard (IEEE

Std 802.15.4-2011), the IEEE-SA published the IEEE 802.15.4e amendment[9],

aiming at enhancing and extending the functionalities of the original protocol.

It added various innovative features, grouped into different MAC behaviours,

such as deterministic communication and multi-channel frequency hopping mech-

anisms, improving the predictability, reliability and latency of this protocol. In

2016, the amendment was merged into the standard, bringing the new MAC

behaviours and their features into the IEEE Std 802.15.4-2015.

2.2 General Aspects

The standard [7] specifies the physical layer (PHY) and the medium access control

(MAC) sublayer, respective to the Physical and Data Link layers of the Open

Systems Interconnection (OSI) model, aiming at achieving wireless connectivity

with low complexity, low power consumption and low data rate, for portable and

moving devices.

Depending on the application requirements, IEEE 802.15.4 LR-WPAN devices

are inter-connected following one of two topologies, the star topology or a peer-

to-peer topology, represented in Figure 2.1.

Figure 2.1: Star and peer-to-peer topology examples[7]

In a star LR-WPAN, the communication is established between devices and a

single central a unique node(RF device), called the personal area network (PAN)

coordinator which is the primary controller of the LR-WPAN. Applications that
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benefit from a star topology include home automation, personal computer (PC)

peripherals, games, and personal health care, which typically take advantage of

the centralized formation.

The peer-to-peer topology also has a PAN coordinator, however, it differs

from the star topology in that any device is able to communicate with any other

device as long as they are in range of one another. Peer-to-peer topology allows

more complex network formations to be implemented, such as mesh networking

topology that benefit applications such as industrial control and monitoring WSN,

asset and inventory tracking, intelligent agriculture, and security would benefit

from such a network topology [7].

Devices on a LR-WPAN can be classified into Fully Function Devices (FFD)

and Reduced Function Devices (RFD).

The FFDs encompass all the capabilities such as routing, association and

formation of a network. The PAN coordinator is an FFD that acts as the main

controller to which other devices may be associated. It is responsible for the time

synchronization of the entire network. Any FFD can also act as a Coordinator

providing local synchronization services and routing to its neighbours. Every

coordinator must be associated to a PAN Coordinator and will form its own

network if it does not find one in its vicinity.

The Reduced Function Device (RFD) is typically the end node of an IEEE

802.15.4 network. A RFD is intended for applications that are extremely sim-

ple, such as actuators or sensing autonomous devices, typically synced with a

coordinator and not capable of routing functionalities [5].

Figure 2.2: LR-WPAN layered architecture

A LR-WPAN device requires a RF transceiver and the respective control

drivers for interaction with the PHY layer, along with a MAC sublayer that
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provides controlled access to the wireless medium via a layered architecture, such

as presented in the block diagram of 2.2.

An intermediate network layer (NWK) may allow support for a network layer

protocol, which provides network configuration, manipulation and a message

routing, else, the application may have direct access to the MAC sublayer. The

SAP (Service access provider) derivatives, function as interfaces to the respective

upper layers, allowing for both standardized control and data transfer.

On a IEEE 802.15.4 compliant network stack, the packet transfer between

both layers and devices, follows a encapsulating mechanism, where, depending if

“travelling”down or up the stack, the layer transporting the data unit, will respec-

tively add or remove the corresponding encapsulation, with elements like headers

and footers, designed to support each layer’s tasks. This is accomplished through

the data frame structures, defined in the standard and represented in Figure 2.3,

designed with a minimum complexity while maintaining essential elements for

the protocol operations.

Figure 2.3: 802.15.4 generic data unit encapsulation

A MAC frame, the MAC protocol data unit (MPDU), carrying the appli-

cation data, is passed to the PHY as the PHY service data unit (PSDU) and

encapsulated, forming the PHY protocol data unit (PPDU), as seen in Figure

2.3.

In what follows, we provide a description of the most prominent features of

each layer.

2.2.1 PHY

The required features from the physical layer are the activation and deactivation

control over the radio transceiver, measuring link quality through the Link Qual-

ity Indicator (LQI), energy detection (ED), receiving and transmitting packets

across the medium, perform a clear channel assessment (CCA) and channel se-

lection (). As represented in Figure 2.4, the IEEE 802.15.4 operates across three

frequency bands: 2.4 GHz (with 16 channels), 915 MHz (with 16 channels) and

868 MHz (single channel). The data rate also varies depending on the used bands.
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The 2.4 GHz band operates with a data rate of 250 kbps, the 915 MHz and the

868 MHz bands operate at 40 and 20 kbps, respectively.[6]

Figure 2.4: Physical layer reference model

The PHY provides an interface between the MAC sublayer and the physical

wireless channel, via the RF firmware and the RF hardware. As represented in

Figure 2.5, its design model includes a physical layer management entity (PLME)

that is responsible for maintaining a database of managed objects pertaining to

the PHY referred to as PHY PAN information base (PIB) [7].

Figure 2.5: Physical layer reference model

The PLME provides management service interfaces through which the PHY

data service, accessed via the PHY data service access point (PD-SAP), and the

PHY management service, accessed through the PLME-SAP.

However, neither of the interfaces is defined in the standard as they are not

expected to be exposed in a typical implementation. Instead the PHY PIB at-

tributes are accessed by the MAC sublayer management entity SAP (MLME-

SAP) through MLME-GET and MLME-SET primitives.

2.2.2 MAC

The MAC sublayer is responsible for the beacon processing, channel access, guar-

anteed time slot (GTS) management, frame validation, acknowledged frame de-

livery, as well as device association and disassociation from the WSN. In addition,
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the MAC sublayer provides support for implementing application-appropriate se-

curity mechanisms.

The MAC sublayer, as depicted in Figure 2.6, provides an interface between

the next higher layer and the PHY, built around a management entity called

the MLME. This manager provides the service interfaces through which layer

management may be invoked. The MLME is also responsible for maintaining a

database of managed objects pertaining to the MAC sublayer (MAC-PIB).

Figure 2.6: MAC sublayer reference model

The MAC sublayer, data and management services, can be respectively ac-

cessed through the MAC common part sublayer (MCPS) data SAP (MCPS-SAP)

the MLME-SAP. In addition to these external interfaces, an implicit interface also

exists between the MLME and the MCPS that allows the MLME to use the MAC

data service.

Additionally, “MAC performance metrics” [7] provide feedback to the upper

layers on the network performance, in particular, the link quality of the channel,

which may help a network layer to take efficient routing decisions, thereby re-

ducing the overall power consumption and latency of the network and the MAC

to better assign transmissions into available channels. The feedback information

includes: (1) the number of transmitted frames that required one or more re-

tries before acknowledgement, (2) the number of transmitted frames that did not

result in an acknowledgement, (3) the number of transmitted frames that were

acknowledged properly within the initial data frame transmission and (4) the

number of received frames that were discarded due to security concerns.

2.2.3 The Superframe

As defined in the IEEE Std 802.15.4-2015, in order to provide backward com-

patibility with the previous editions of the standard, the channel access of a

LR-WPAN may follow the model of the legacy Superframe wich is delimited by

beacons, hence referred as beacon-enabled mode WPAN. Else, the WPAN can

instead use a simpler approach based upon Carrier-sense multiple access with

collision avoidance (CSMA-CA).
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On a beacon-enabled PAN however, the present Superframe is bounded by

the transmission of a Beacon frame and, as represented in Figure 2.7, will have

an active and an optional inactive portion on which a device may enter a sleep

(low power) mode during the inactive period for better energy efficiency.

Figure 2.7: IEEE 802.15.4 legacy Superframe Structure example

The active period is divided into the Contention Access Period (CAP) and the

Contention Free Period (CFP). During the CAP, the nodes in the network contend

to access the channel using slotted CSMA-CA. Whereas, the CFP is composed by

Guaranteed Time Slots (GTS), which are used by nodes that require guaranteed

bandwidth, resulting on maximum reliability and bounded latency [5].

The structure of the Superframe can be designed to better suit the application

and network context and is constructed based on the Beacon Interval (BI), which

is the time between two consecutive beacon frames, (2) the Superframe Duration

(SD), defining the active portion of the BI, being divided into 16 equal-sized time

slots, during which frame transmissions are allowed. The inactive period can

be defined, if BI > SD. The BI and SD are determined by two parameters, the

Beacon Order (BO) and the Superframe Order (SO), respectively, as defined by

the standard and presented in Equation 2.1:

BI = aBaseSuperframeDuration ∗ 2BOSymbols

SD = aBaseSuperframeDuration ∗ 2SOSymbols

}
for 0 ≤ SO ≤ BO ≤ 14

(2.1)

The aBaseSuperframeDuration is defined by the Standard [7] in Table 8-80,

as the aBaseSlotDuration × numberofslots, whereas the aBaseSlotDuration it
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self, is defined as 60 Symbols. Some of the timing parameters in definition

of the MAC are in units of PHY symbols, which is a unit of time based on the

transmission duration of 4 bits. The base time varies with the bitrate, making the

unit universal for all bandwidths. Assuming 250 kbps in the 2.4 GHz frequency

band, a symbol represents 16 µs [5][10][12].

The beacon interval is delimited by beacon frames, which are standard defined

MPDU frames on [7] 7.3.1, that besides“drawing”the structure of the Superframe,

also serve as a syncing mechanism for the PAN elements, essential to meet the

QoS requirements of determinism and low-latency. On a beacon-enabled PAN,

a coordinator, that is not the PAN coordinator, shall maintain the timing of

both the Superframe of a received beacon (the incoming Superframe) and the

Superframe in which it transmits its own beacon (the outgoing Superframe),

ensuring a time synchronism throughout the network. The standard brought an

update to the beacon with the Enhanced Beacon (EB) frame format, represented

in Figure 2.8, which may now contain additional information elements (IE) fields,

used to transfer important management data to the devices.

Figure 2.8: Enhanced Beacon MPDU frame format

When present, the IE field length is variable, comprised of a Header and

Payload sub-fields containing one or more IE. Apart from the header and man-

agement layer based Information Elements, unique IE can support an extended

variety of Superframe options.

Different approaches to the Superframe structure and the 802.15.4 protocol

are categorized as MAC behaviours. From the 802.15.4e, five different MAC

behaviours were added, two being non time-critical namely the Radio Frequency

Identification (RFID) and Asynchronous Multi Channel Adaptation (AMCA).

RFID is commonly used for location tracking and “item and people” identi-

fication. Using a Blink mode that allows the device to communicate its ID while

using a multi-purpose “minimal” frame that consists only of the header fields nec-

essary for their operation. This helps in reducing the overall power consumption

in the network.

On a non-beacon enabled PAN, the AMCA behaviour can be used when a

single channel approach does not have the capability to handle densely popu-

lated networks, where channel quality may decrease. So, the AMCA behaviour
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makes use of the new Multichannel Access functionality,the device selects a MAC

Designated Channel based on the channel link quality.

In contrast to AMCA and RFID, the three other MAC behaviours are de-

signed for time critical applications which provide deterministic guarantees and

improved robustness.

The Low Latency Deterministic Network (LLDN) uses TDMA to provide

timing guarantees and is specifically devised for industrial applications requiring

low latency such as those found in manufacturing, robotics and other applications

that demand robustness because of the critical nature of the data [13]. LLDN

is a star topology exclusive MAC behaviour making it suitable for applications

that demand a centralized control, allowing for small round-trip time and com-

munication that has to be carried out in a periodic basis.

The Deterministic and Synchronous Multichannel Extension (DSME) and

Time Slotted Channel Hopping (TSCH) MAC behaviours, besides providing de-

terministic communication, are also designed to support multi-channel frequency

hopping mechanism.

TSCH provides very high reliability and time critical assurances. In order to

achieve collision-free transmissions, seeking reliability, TSCH uses TDMA based

slotframes, depicted in Figure 2.9, that replaces the traditional IEEE 802.15.4

superframe concept.

Figure 2.9: TSCH slotframes

Every slotframe is a collection of timeslots, where each has an Absolute Slot

Number (ANS) that increases globally and is used to compute the channel in

which a pair of nodes communicate, each accommodating a transmission and an

eventual acknowledgement. The slotframe size is defined by the number of times-

lots in the slotframe that is repeated in cyclic periods, forming a communication

schedule.

Communication in each timeslot can be either contention (i.e., using CSMA-

CA) or non contention based. Time-slotted communication greatly reduces the

unwanted collisions that would otherwise compromise reliability. TSCH can

therefore accommodate a dense network, and at the same time, maintain stringent

time constraints using fixed length timeslots and multichannel access.
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TSCH, along with DSME, supports the Frequency Hopping mechanism, rep-

resented in Figure 2.10, which improves the reliability of the network by effectively

mitigating the effects of interference at a considerable scale.

Figure 2.10: Channel hopping example

Channel hopping, used in radio communication systems for decades, is a

methodology by which, several devices hop over different channels in a prede-

fined channel order. TSCH can utilize 16 channels which are defined by a channel

offset. The link between two nodes is defined by [n, channel offset], a pairwise

assignment where the two nodes communicate and their respective offset. How-

ever, unlike DSME which has channel diversity mechanisms, the multichannel

communication of TSCH completely relies on channel hopping.

In what follows we focus on the DSME MAC behaviour in more detail, given

its importance in the context of this Thesis.

2.3 DSME - A time critical MAC behaviour

The Deterministic Synchronous Multichannel Extension MAC behaviour targets

applications with QoS requirements such as deterministic latency, high reliability

and scalability. To fulfil these requirements, DSME provides several enhancing

features to the native IEEE 802.15.4, namely: (1) multi-superframe; (2) CAP

reduction; (3) Group Acknowledgement; (4) distributed beacon scheduling and

(5) Channel diversity modes.

2.3.1 Multi-superframe

Devices in a DSME-enabled PAN are time synchronized and transmit frames

based on specific time structure called multi-superframe structure. The PAN

coordinator of a DSME network defines a cycle of repeated superframes that

will form the multi-superframe, as represented in the structure in Figure 2.11.
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Similar to IEEE 802.15.4, a superframe in the multi-superframe structure will

have a Contention Access Period and a Contention Free Period. However, in a

DSME-enabled PAN, the beacon interval consists only of multi-superframes with

no inactive period.

Figure 2.11: DSME Multi-superframe example

In a Multi-superframe, a single common channel is utilized for a successful

association, transmitting the EB frames and any frames transmitted during the

CAP. The number of superframes that a Multi-superframe accommodates is de-

termined by the PAN coordinator based on the number of data packets meant to

be transmitted within the time interval, and is conveyed to the nodes through an

Enhanced Beacon (EB).

During the CFP, any available GTS in a DSME-enabled PAN can be allo-

cated by a pair of node devices located within transmission distance to exchange

a data frame and a acknowledge frame. Thus, the network is not limited to

an hierarchical network topology, but can be also follow a mesh grid network

topology. This feature substantially decreases end-to-end latency in multi-hop

environments, since the number of hops can be minimized by selecting proper

neighbouring devices and scheduling DSME-GTS. Besides periodic data traffic,

urgent data or non-periodic data can be sent during the CAP [11].

The standard defines the structure of the Beacon Interval, following the legacy

IEEE 802.15.4 superframe, by the values of SO and BO, but now adding the

new variable introduced in DSME, the multi-superframe order (MO), integrated

on the equations in 2.2. Through MO the Multi-superframe Duration (MD) is
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determined.

SD = aBaseSuperframeDuration ∗ 2SOSymbols

MD = aBaseSuperframeDuration ∗ 2MOSymbols

BI = aBaseSuperframeDuration ∗ 2BOSymbols

 for 0 ≤ SO ≤MO ≤ BO ≤ 14

(2.2)

As seen in Figure 2.12, DSME enhances the functionality of the traditional

GTS by extending its number using the multi-superframe’s multi-channel commu-

nication. This enables the protocol to select better channels based on link quality

and to accommodate higher number of transmissions, increasing the overall reli-

ability and scalability of the network.

Figure 2.12: DSME Beacon interval structure for BO=5, MO=4 and SO=3

The horizontal axis of the grid represents the time, and the vertical axis of

the grid represents the frequency. This means that several GTS can be allocated

at a same time but only for different channels.

2.3.2 Beacon Scheduling

In order to build more complex networks topologies such as mesh, it is manda-

tory to carry out efficient beacon scheduling to avoid interference and collisions.

In a DSME network, all devices are time-synchronized, using the values of the

Timestamp field of the received beacons from the device they are associated with,

thus maintaining global time synchronization in the PAN.

When a node wants to join a network, it uses the MLME SCAN.request prim-

itive to initiate scanning over all the available channels in the network. During

this scanning process, the joining node searches for all coordinators transmitting

Enhanced Beacon frames. The neighboring devices send their beacon schedule

information to the new joining device by transmitting an Enhanced Beacon. This
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beacon schedule is updated as a bitmap sequence to the CFP. The new joining

device searches for a vacant beacon slot (GTS), and if available, will claim it for

sending its own beacons.

2.3.3 Fast Association

When a device wishes to join a network, Fast Association is an option for every

MAC behaviour of IEEE 802.15.4e. To carry out a fast association, the higher

layer of the device posts a “MLME ASSOCIATE.request” primitive, triggering

the procedure in the MAC sublayer. The request is sent to the PAN coordinator

which acknowledges its reception. Fast Association removes the wait time du-

ration “macResponseWaitTime”, which efficiently reduces association delay. The

request command contains an acknowledgement request, which the coordinator

confirms by sending the acknowledgement frame. If the coordinator has sufficient

resources, the higher layer allocates a 16 bit address to the device. The MAC

sublayer then generates a status indicating a successful Fast Association. The

device can then use the allocated “macShortAddress” for its association within

the PAN[5].

2.3.4 CAP reduction

It is possible for the PAN Coordinator to reduce the size of the CAP by only

enabling it during the first superframe of a multi-superframe. This technique is

denominated CAP reduction. This way, the remaining superframes only present

a longer CFP (Figure 2.13). It radically increases the number of DSME GTS that

are allocated to the neighbouring nodes, while saving energy, since there is no need

for a node to stay active during a CAP if no transmissions are expected to occur.

The mechanism is flexible, and can be configured along with the parameters in

Equation 2.2, to better accommodate a network and its needs.

Figure 2.13: CAP Reduction technique in DSME

With CAP reduction, similarly to TSCH, DSME becomes suitable for highly
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dense networks with stringent QoS requirements in terms of delay and reliability,

whilst providing a higher throughput due to the removal of the CAP.

2.3.5 Group Acknowledgement

Another important functionality of the DSME GTS is its Group Acknowledge-

ment (GACK) feature. This mechanism provides the capability of sending a

single acknowledgement for all guaranteed transmissions within the same multi-

superframe. The GACK reduces the latency and energy consumption by combin-

ing several acknowledgements into a single group acknowledgement. In case of a

failed transmission, a new DSME GTS will be assigned to carry out the process.

2.3.6 Channel Diversity

When RF devices operate on the same RF spectrum, sharing a network, inter-

ference and failed transmissions can occur, thus affecting the overall reliability of

the network. The Channel diversity feature helps overcoming this issue. DSME

MAC protocol provides two types of channel diversity mechanisms: (1) Chan-

nel Hopping, depicted in Figure 2.10, similar to TSCH behaviour, but also (2)

Channel Adaptation.

In channel adaptation, the PAN coordinator has the capability to allocate

the DSME guaranteed timeslots either in a single channel or through different

channels to an end device. This decision depends on the link quality of the current

channel. The link quality of the channel is conveyed to the PAN coordinator

through the MAC performance metrics. The PAN coordinator is also responsible

for deallocating a specific DSME GTS if the link quality of an allocated DSME

GTS becomes degraded.

2.4 Concluding Remarks

This chapter, presents an overview of the IEEE std. 802.15.4-2015, focusing on

the features of the standard, but leaving aside the defining instructions and rules.

This does not mean, however, that they are of any less relevance. Removing these

elements would defeat the purpose of a canon, whose main goal is to standardize

the technology for both industry and scientific community, promoting a joint

effort on the technology development and use. A goal of accessibility present

within this Thesis.



Chapter 3

Tools and Technologies

This chapter presents and describes the technologies used throughout this Thesis.

It starts by describing the the TelosB hardware platform, including an evalua-

tion that lead to selecting the device. Then, the Daintree Sniffer and MSPSIM

debugging tools are presented before the FreeRTOS analysis as the chosen RTOS.

3.1 TelosB Mote Platform

The implementation target is the TelosB [14] hardware platform (Figure 3.1),

which provides the following features:

- TI MSP430F1611 16-bit microcontroller[15];

- CC2420 2.4 GHz RF transceiver, IEEE 802.15.4 Compliant[18];

- 48 kB of Program memory (in-system reprogrammable flash);

- 10 kB of RAM;

- 32 kHz internal crystal;

- Low power consumption;

- Temperature, humidity, visible light and IR sensors;

- UART communication port (USB converter).

19
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Figure 3.1: TelosB mote and block diagram [14]

3.1.1 Choosing TelosB

The TelosB mote, unlike most WSN motes such as the MicaZ [19], does not

need any programmer interface, already having an USB port with drivers that

can be used for flashing applications as well as interfacing the mote with other

equipment, particularly useful for debugging applications. This facilitates an

implementation of the IEEE std. 802.15.4-2015. Although, TelosB will provide

challenges, both memory and time wise. With an internal crystal at 32 kHz,

capable of a time granularity of about two symbols at a 250 kb /s, the platform

will require a precise and time efficient implementation of the protocol. Also, as

it is an already 15 year old hardware mote, it is less flexible than newer devices

when it comes to memory, specially when the running application restricted to 10

kB of random access memory (RAM). However, TelosB is a widespread platform

among the IoT community [35][36][37], and being able to implement the IEEE

802.15.4 network stack on TelosB will prove itself a remarkable achievement, with

an optimized implementation capable of being ported onto newer WSN devices.

In what follows, the hardware components that constitute the TelosB platform

and are relevant for the context of this Thesis, are presented in a better detail.

3.1.2 MSP430F1611

The low power operation of the TelosB module is due to the ultra low power

Texas Instruments MSP430F1611 microcontroller featuring 10 kB of RAM, 48

kB of flash, and 128 B of information storage. This 16-bit processor features

extremely low active and sleep current consumption that allows TelosB to run

for years on a single pair of AA batteries.
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The MSP430 has an internal digitally controlled oscillator (DCO) that may

operate up to 8 MHz and be turned on from sleep mode in 6 µs. When the DCO

is off, the MSP430 operates off a second available clock source referred to as

LFXT1CLK, running on a 32768Hz watch crystal when on low frequency mode.

Although the DCO frequency changes with voltage and temperature, it may be

calibrated by using the 32 kHz oscillator.

Additionally, the MSP430 has 8 external ADC ports and 8 internal ADC

ports which may be used to read the internal thermistor or monitor the battery

voltage.

A variety of peripherals are available including SPI, UART, digital I/O ports,

Watchdog timer, and two Timers (A and B) with capture and compare function-

alities. The F1611 also includes a 2-port 12-bit DAC module, Supply Voltage

Supervisor, and 3-port DMA controller. The features of the MSP430F1611 are

presented in detail in the Texas Instruments MSP430x1xx Family User’s Guide

[16][17].

3.1.3 CHIPCON CC2420

TelosB features the Chipcon CC2420 [18] radio for supplying wireless communi-

cations. The CC2420 is an IEEE 802.15.4-2006 compliant radio, providing full

support for the PHY and MAC functions. With sensitivity exceeding the IEEE

802.15.4-2006 specification and low power operation, the CC2420 provides reliable

wireless communication. The CC2420 is highly configurable for many applica-

tions with the default radio settings necessary for the IEEE 802.15.4 compliance.

The RF transceiver is controlled by the TI MSP430 microcontroller through the

serial peripheral interface (SPI) port and a series of digital I/O lines and inter-

rupts (Figure 3.2) and may be shut off by the microcontroller for low power duty

cycled operation.

The CC2420 provides extensive hardware support for packet handling, data

buffering, burst transmissions, data encryption, data authentication, clear chan-

nel assessment, link quality indication and packet timing information, features

which reduce the load on the host controller and allow CC2420 to interface low-

cost microcontrollers, as is the case of the MSP430F1611.

The configuration interface and transmit/receive First In First Out (FIFO)

buffers of CC2420 are accessed via the SPI interface, a 4-wire Serial Configuration

and Data Interface [18, chapters 13 and 14], integrated as represented in Figure

3.2.

In order to achieve the best performance for each application, the radio is

configurable through a set of programmable configuration registers (listen on [18,

chapter 37]), allowing for the following setting tweaks:
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Figure 3.2: Functional Block Diagram of TelosB, MCU-Radio communication
[17]

(1) Switching between Receive and Transmit operation mode. In Receive

operation mode, the RF device will ”listen” to the physical medium until the

chip SFD pin ([18, chapter 7]) goes active, after detecting the start of frame

delimiter (SFD) field from the SHR header, staying active only with a successful

address recognition, allowing an hardware filter functionality for unwanted source

frames. The received frames will be stored on the RXFIFO activating the FIFO

pin that remains so until the buffer is empty. The FIFOP pin is active when

the number of unread bytes in the RXFIFO exceeds the programmed threshold.

When operating under Transmitting mode, the FIFO and FIFOP pins are still

only related to the RXFIFO, however the SFD pin will go active when the SFD

field has been transmitted, remaining so until the complete MPDU has been sent.

(3) The RF channel options allow selecting between 16 channels (11 to 26), as

specified by the IEEE std. 802.15.4-2015 for the 2.4 GHz band, in 5 MHz steps.

[18, chapter 26]

(4) The RF output power is programmable with 9 different Output Power

[dBm] modes, affecting the overall energy consumption of the device and the

residual energy left on the physical medium.
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(5) Power-down / power-up mode that allows for controlling the device on/off

periods in order to the provide the external microcontroller full energy manage-

ment capabilities.

(6) The Clear Channel Assessment (CCA) signal, based on the measured

Received Signal Strength Indication (RSSI) value and a programmable threshold,

allows selecting between 3 modes: CCA when received energy is below threshold;

CCA when not receiving valid IEEE 802.15.4 data; CCA when energy is below

threshold and not receiving valid IEEE 802.15.4 data [18, chapter 25].

(7) Encryption / Authentication modes for hardware support of the IEEE

802.15.4 MAC security operations.

The CC2420 functionalities are accessed through a built-in state machine

(Figure 3.3) that is used to switch between different operational states. The

change of state is done either by internal events such as SFD detected in receive

mode or by using command strobes, which are single byte instructions sent to

the radio via SPI.

In order to turn the radio on, both the voltage regulator, responsible for

powering the device, and the crystal oscillator needed for the radio internal clock

and other radio operations, must be turned on and become stable. Only then,

the radio can be used in either RX or TX mode, as dictated by the state machine,

whose active state can be read in the FSMSTATE status register, for test/debug

purposes.

CC2420 includes also hardware support for transmitting acknowledge frames,

following an IEEE std. 802.15.4 compliant auto-filled frame format, with the

timing commanded by the microcontroller by issuing the appropriate command

strobes [18, chapter 19]. However, acknowledge frames may be manually trans-

mitted using normal data transmission if desired, future proofing the radio for

possible standard updates on the acknowledge frame format.
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Figure 3.3: Radio control states
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3.2 Daintree 2400E Protocol Analyzer

The implementation of IEEE 802.15.4-2011 is supported by the Daintree 2400E

packet sniffer. This protocol analyzer, detects and registers any IEEE 802.15.4

transmitting packets, even interpreting frames with versions prior to the 2015

standard, as the sniffer dates before its release. This features allow to debug and

to validate the implementation of the IEEE 802.15.4-2015 protocol.

The proprietary Daintree Network Analyzer software, besides providing the

received packet list and their field highlighting, also constructs a graphic view of

the network topology, including the visualization of routing paths, message flows,

device states and link quality of the messages, as depicted in Figure 3.4.

Figure 3.4: Daintree Network Analyzer[38]

The software is also capable of evaluating the network status of the devices

by analyzing the messages transmitted, messages received, lost message ratio,

bandwidth usage, average link quality indicator among others. Additionally, the

Daintree Network Analyzer supports the higher layer ZigBee protocol and the

application distinguishes between analysis parameters depending on the selected

protocol layers.

The Daintree Analyzer enables the import of a plant layout (office floor, fac-

tory floor) and overlay the network topological view over it. This feature allows
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dragging and dropping nodes, assigning labels to each node and it can be very

useful for monitoring the network. The hardware used in conjunction with this

network analyzer is the 2400 Sensor Network Adapter [38]. This adapter in-

cludes an Ethernet interface and can be used for a multiple and synchronized

node sniffing, meaning that several 2400 can be scattered (connected to an Eth-

ernet network) in a certain geographical area in a way that IEEE 802.15.4/ZigBee

traffic can be collected at different locations of a large-scale network into a single

application.

3.3 MSP430 simulator

MSPSim is a Java-based instruction level emulator for the MSP430 series micro-

processor and emulation of some sensor networking platforms. MSPSim targets

cycle accurate emulation of both the MSP430 Central Processing Unit(CPU) core

and built-in peripherals such as timers, serial communication and analog to digi-

tal converters. Furthermore, MSPSim emulates external components such as the

radio chip CC2420, sensors, and flash memories. MSPSim also provides emula-

tion of complete sensor devices such as the Tmote Sky (which has the same board

design as TelosB mote) [27] and Scatterweb ESB [26]. The program provides a

GUI (Graphical User Interface) with a visual representation of platform (Figure

3.5) that interacts along the emulated instructions, with elements such as sensors,

interfaces and Light-emitting Diodes (LED) [28].

Figure 3.5: Multitaskting on a Real Time OS [39]

The simulator supports IHEX and ELF firmware files, and has some tools

for monitoring the stack, setting breakpoints, and profiling [39], making it a

powerful tool for debugging applications without the need to acquire the MSP430

Flash Emulation Tool, an expensive MCU Programmer and a direct hardware

Debugger.
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The usage of an emulator during implementation, that provides an hardware

abstraction layer and debugging tools for the application

3.4 FreeRTOS Operating System

3.4.1 Real-time Operation systems

An Operating System (OS) is a computer program that supports a computer’s

basic functions, and provides services to other programs that run on the computer.

Some OS allow multiple programs to execute at the same time. This is called

multi-tasking. In reality, each processor core can only be running a single thread

of execution at any given point in time and the type of OS is classified by how the

processor operation time is distributed between the running programs. The OS

has a scheduler, responsible for deciding how the processing time is distributed

and what task (one of the applications “running”) should be executing. For

example, the scheduler used in a multi user operating system, such as Unix, will

ensure each user gets a fair amount of the processing time whilst the scheduler in

a system such as Windows, will try and ensure the computer remains responsive

to its user. [3]

In addition to being suspended involuntarily by the kernel, a task can choose

to suspend itself. It will do this if it either wants to delay (sleep) for a fixed

period, or wait (block) for a resource to become available (e.g., a serial port) or

an event to occur (e.g., a key press). A blocked or sleeping task is not able to

execute, and will not be allocated any processing time.

In a Real Time Operating System (RTOS), the scheduler is designed to pro-

vide a predictable execution pattern, a deterministic behaviour, meeting real time

requirements by some applications, common among embedded systems[4]. A real

time requirement is one that specifies that the embedded system must respond

to a certain event within a strictly defined time (the deadline), only possible with

the deterministic scheduler provided by the RTOS.

3.4.2 Choosing FreeRTOS as the IoT OS

Before choosing FreeRTOS as the operating system for the IEEE 802.15.4, a sur-

vey was performed, gathering other popular OS among the IoT community. The

most critical characteristics under evaluation were (1) Scheduling and Real-time

capabilities, (2) Memory footprint, (3) Energy efficiency, (4) Hardware support

and (5) programming language, but also, taking into account available documen-

tation and robustness of the OS.

Table 3.1 exposes some of these features to take in consideration for the im-

plementation task.
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Table 3.1: A Comparison between OS

OS Real-time Schedule language Hardware

FreeRTOS Supported
Preemptive/

C
AVR, MSP430, ARM,

Cooperative x86, 8052, Renesasc

RiotOS Supported Preemptive C
AVR, MSP430, ARM7,
x86, ARM Cortex-M

Contiki No support Cooperative C
MSP430, ARM7,

x86, ARM Cortex-M,
PIC32, 6502, AVR

Tiny OS No support Cooperative NesC AVR, MSP430, px27ax

In regards to energy efficiency, due to being a recurrent requirement in the

IoT world, all the OS are energy efficient and provide most of the same energy

management library for the respective hardware [24].

Memory wise, since IoT devices have less resources than conventional con-

nected objects, IoT OS are designed seeking a low memory footprint and need

to provide mechanisms in order to abstract the memory management for the

programmer. The Internet Engineering Task Force (IETF) standardized a clas-

sification devices in three subcategories based on memory capacity [25].

� Class 0 devices have the smallest resources (� 10 kB of RAM and � 100

kB Flash), e.g., a specialized mote in a wireless sensor network (WSN);

� Class 1 devices have medium-level resources (∼ 10 kB of RAM and ∼ 100

kB Flash);

� Class 2 devices have more resources, but are still very constrained compared

to high-end IoT devices and traditional Internet hosts.

As for the performance of the compared OS, based on memories needs, FreeR-

TOS and RIOT are both for devices under class memories 1 and 2. Contiki is

for devices classified under classes 1 and 0 and the smallest memory footprint

belongs to the TinyOS whose devices fit under class 0 [24]. TelosB, given its

aforementioned characteristics, can be classified under class 1.

Only RiotOS and FreeRTOS offer real time capabilities which is a crucial

feature for the task in hand, proving the best candidates for the standard imple-

mentation. Both support the TI MSP430 and a handful of other IoT hardware,

important for the project longevity, and the OS are comparable by the critical

characteristics standards mentioned above.

An attempt to implement the protocol grounds on top of RiotOS was made

during the early days of the project. However, due to lack of documentation
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and coding standards, FreeRTOS was found to be the appropriate OS for the

task. The strict quality management of the OS project, better documentation

than all the other surveyed OSs, the minimalism and simplicity of the system as

well as the robustness, all of this in par with the documented design goals make

FreeRTOS look like the perfect partner for the task at hand.

3.4.3 FreeRTOS

FreeRTOS is a real time OS with a compact format, designed with the primary

goals of ease of use, small memory and energy footprints, and robustness. The

OS targets embedded applications for implementation on microcontrollers, with

such size constraints that a “full” RTOS implementation is not possible.

The FreeRTOS kernel was originally created by Richard Barry in 2003, and

was later developed and maintained by Richard’s company, Real Time Engineers.

FreeRTOS was a success, and in 2017 Real Time Engineers, Ltd. passed stew-

ardship of the FreeRTOS project to Amazon Web Services [20].

FreeRTOS provides a priority based scheduling procedure. The OS is well

suitable to a small embedded system that has limited, predefined tasks and re-

search should be done on designing FreeRTOS to handle large IoT system tasks

with more advanced scheduling mechanisms.

The OS relies on a tick which is a function periodically called, with an in-

terruption like behaviour, and responsible for maintaining several of the OS base

functionalities. The main purpose of the tick is to support the scheduler, by driv-

ing the context switch between tasks and allowing it to distribute CPU processing

time.

The OS selling features are highlighted as the following:

- 6 kB to 12 kB ROM footprint;

- Pre-emptive scheduling option;

- Co-operative scheduling option;

- Round robin with time slicing;

- Mutexes with priority inheritance;

- Easy to use message passing;

- Very efficient software timers;

- Configurable / scalable.

The most relevant characteristics of the OS for this Thesis are described below.
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3.4.4 Tasks

In FreeRTOS, tasks can be created and contain a functional component that

the user wants to run at specific times or in reaction to other events. When

the OS is running, each task exists in one of four states: (1) Running when

utilizing processing time, if the processor on which the RTOS is running only

has a single core then there can only be one task in the Running state at any

given time.(2) Ready whenever able to execute but are not currently executing

because a different task of equal or higher priority is already in the Running state.

(3) Blocked if in a “sleep” state waiting for any event, i.e. timer interrupt or a

semaphore resource to become available, and when in the blocked state, tasks do

not use any processing time but cannot be selected to enter the Running state.

(4) Suspended tasks, like Blocked ones, cannot be selected to enter the Running

state, but when in the Suspended state do not have a time out. Instead, tasks only

enter or exit the Suspended state when explicitly commanded. The interaction

between the application and tasks state is made through a set of modules [22],

that result on a state machine for each task, following the module of Figure 3.6.

Figure 3.6: Task state transitions

Each task, in FreeRTOS, is assigned a priority from 0 to a configurable

MaxPriorities − 1 where, low priority numbers denote low priority tasks. The

FreeRTOS scheduler ensures that the higher priority tasks will be given processor

(CPU) time in preference to tasks with lower priority that are also in the ready

state. In other words, the task placed into the Running state is always the highest

priority task that is able to run.

An idle task is created automatically when the RTOS scheduler is started

to ensure there is always at least one task that is able to run. It is created at
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the lowest possible priority (typically 0) to ensure it does not use any CPU time

if there are higher priority application tasks in the ready state. This way, it is

possible to reduce the power consumed by the microcontroller running FreeRTOS

by using the Idle task hook to place the microcontroller into a low power state.

The power saving that can be achieved by this simple method is limited by the

necessity to periodically exit and then re-enter the low power state to process

tick interrupts. Further, if the frequency of the tick interrupt is too high, the

energy and time consumed entering and then exiting a low power state for every

tick will outweigh any potential power saving gains for all but the lightest power

saving modes.

The FreeRTOS tickless idle mode stops the periodic tick interrupt during idle

periods (periods when there are no application tasks that are able to execute),

then makes a correcting adjustment to the RTOS tick count value when the tick

interrupt is restarted. Stopping the tick interrupt allows the microcontroller to

remain in a deep power saving state until either an interrupt occurs, or it is time

for the RTOS kernel to transition a task into the Ready state.

3.4.5 The scheduler

The scheduler used in FreeRTOS achieves determinism by allowing the user to

assign a priority to each task of execution and then chooses, based the priority,

which thread of execution to run next. The scheduler follows a preemptive priority

method where any running task can be suspended in order to an assigned higher

priority one, use CPU processing time instead. This ensures that the application

is able to perform any critical task instantly (t1, Figure 3.7) and that it has full

control of the CPU time distribution, therefore creating a predictable behaviour,

or in other words, a real time system.

Figure 3.7 is an example of how the FreeRTOS scheduler handles multitasking.

The preemptive behaviour is first represented in t1, when the task A is launched

by the application, it immediately starts running, interrupting the lower priority

task C.

If multiple tasks have the same priority, as is the case of tasks A and B ,

and are in the Running or Ready state, the kernel creates a Round Robin model,

visible between t2 and t3, where each gets a full tick before switching to the next.

Whenever an top priority task ends, the scheduler instantly starts running the

next ready higher priority task (t4 ), or, if there are no tasks left to run, the idle

task will start running (t5 ) for energy efficiency purposes, until the application

launches any task which will immediately start running (t6 ).

FreeRTOS also supports an alternative cooperative scheduler by using Co-

routines instead of tasks, which are a different type of process that may be used

for a real time application. The main difference from tasks, is that co-routines
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Figure 3.7: Multitaskting on a Real Time OS

use prioritized cooperative scheduling, which means they decide when another

co-routine may be executed (task yielding).

3.4.6 Intertask communication

Intertask communication is essential for developing multi-tasked applications.

An application will rely on a networking task, a concurrent (parallel) task, when

wanting to access a network of devices. This requires some form of communication

for both data exchange and resource sharing. FreeRTOS provides the following

three mechanisms to fulfil these needs.

Queues are the primary form of intertask communications. They can be used

to send messages between tasks or between interrupts and tasks. They use safe

FIFO buffers with new data being sent to the back of the queue, although data

can also be sent to the front for critical reasons. The items placed in the queues

are of fixed size, defined with the maximum number of elements when the queue

is created. Tasks can block on queues, waiting for an item to be inserted, or

space to be available. It is one way to synchronize different tasks between them,

or with interrupts.

Semaphores are directly derived from queues, and contain only one element.

The queue can be full or empty and what’s contained in the queue does not

matter. A task can ’take’ a semaphore, that is emptying the queue. If the queue

was not full, it will block. An interrupt can ’give’ the semaphore, that is filling

the queue, hence allowing the task to continue. Semaphores are therefore mainly
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designed to offer synchronization between tasks and interrupts.

Mutexes (for MUTual EXclusion) are a form of binary semaphores used to

prevent several tasks to access the same resource at the same time. A mutex

is created for a shared resource and it’s associated queue is full. When a task

wants to access the resource, it ’takes’ the mutex. When the task is done with

the resource, it gives the mutex back, so another task can use it. If a task tries to

take a mutex that is already taken, it will block the resource becomes available

[31].

3.4.7 Memory management

FreeRTOS offers several heap management schemes, five sample memory alloca-

tion implementations [23], providing different mechanisms, with the possibility of

implementing a custom memory heap algorithm, so that the user can select the

necessary memory management functionalities. The Memory footprint of the OS,

the official documentation advertises a RAM usage of about 300 b while some

surveys point to a less conservative 4KB of usage. As for the ROM footprint the

documented usage is between 5kB to 10 kB, backed by the surveys [34][24][25].





Chapter 4

Implementing FreeRTOS over

TelosB

This chapter describes in great detail the port of the FreeRTOS to the TelosB

platform, focusing on the microcontroller, radio transceiver and other device pe-

ripherals. In addition, an experimental validation is carried out and presented

with the purpose to corroborate and validate the implementation.

4.1 Porting FreeRTOS to the MSP430F1611 MCU

FreeRTOS doesn’t officially offer a native port for the TelosB microcontroller,

MSP430F1611. However, as indicated in the official supported devices list[30],

FreeRTOS already provides a port for MSP430F449, a variant from the same

family as the TelosB MCU. Following a porting guide for the WSM430 hardware

platform [31], which also uses the same MCU as TelosB, the port specific source

files for MSP430F449, located under the ’Source/portable/GCC/MSP430F449’

directory from the official FreeRTOS Kernel [33], can be used for compiling FreeR-

TOS onto the TelosB, after the appropriate adaptations.

On the port.c file, resides the adaptation layer between the operating system

and the microcontroller. The hardware timer initialization to generate the RTOS

tick, macros to save a task context for task switching and other support functions

for the OS scheduler are defined under this file. Fortunately, this port is fully com-

patible with the TelosB MCU, given all the resources utilized by the OS (registers

for context saving and TIMER A for the RTOS ticker) are available on both

MCU and share the same macros by the port.c compiler, MSP430-gcc[15][32].

35
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When setting up the ticker ISR timer, in:

// Set the compare match value according to the wanted tick rate

TACCR0 = portACLK_FREQUENCY_HZ / configTICK_RATE_HZ;

The compare value for TIMER A, sourced by the low-frequency auxiliary

clock (ACLK), is calculated with the project configured tick rate under FreeR-

TOSConfig.h, and the port.c defined:

// telosb 32kHz crystal nominal value

#define portACLK_FREQUENCY_HZ ( ( TickType_t ) 32768 )

Since the TelosB board, provides an internal 32 kHz oscillator which drives

the ACLK [16], no changes are required to the port.c file.

Special care needs to be taken if utilizing the TIMER A when developing

applications given that the resource needs to be shared with the OS.

4.1.1 MCU implementation details

Three clock signals are available from the basic clock module of the MCU. The

previously mentioned ACLK, driven by the LFXT1CLK, and other two source

selectable clocks, between the LFXT1CLK, the DCO and an optional XT2CLK,

which is not present on the TelosB platform [16]. First, the Master Clock

(MCLK), used by the CPU and system and a second SMCLK Sub-main clock

selectable for individual peripheral.

For this Thesis, it is of interest to have an high frequency clock for faster

MCU operations but it is required to have a reliable clock source for accurate

time stamping. Therefore, the MCLK is driven by the higher frequency DCO,

while the ACLK is available for time critical tasks through the LFXT1CLK low

frequency mode.

The MSP430 designed start-up procedure (Figure 4.3), starts with disabling

the watchdog timer (WDT). The functionality, enabled by default, will reset the

device unless the running application periodically resets the countdown timer

(“feeding the dog”). This feature is particularly useful for long term running ap-

plications. Should a blocking malfunction occur, the watchdog will automatically

reset the device seeking to restore the application without requiring a manual in-

tervention. During the implementation of the IEEE 802.15.4 this functionality

would not prove so useful, only blocking the progress of the project, therefore is

disabled at upstart.

It is then necessary to setup the clock system, configurable through the two

Basic Clock System Control Registers (BCSCTL). The MCLK and the SCLK are
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by default sourced with the DCOLCK, requiring no further configuration. It is

necessary however to disable the optional XT2 oscillator since its not present on

the TelosB board.

In order to be able to setup a timer driven by the digital clock, it is necessary

to know the frequency value (fDCO) the clock is running at. Given that the

fDCO is heavily influence by the MCU’s temperature knowing its value becomes

a challenge, therefore the MSP430 provides a functionality for adjusting the DCO

frequency by configuring a set of register values (DCO and RSEL). One solution

is to calibrate the DCO using the more predictable 32 kHz crystal.

Figure 4.1: Typical DCOx Range and RSELx Steps [16]

Figure 4.1 shows some typical values for the pair of the configurable variables,

which represent the DCO frequency behaviour with the adjustment of DCO and

RSEL. Following the indicated nature of the DCO, the algorithm represented on

Figure 4.3 performs a clock calibration.

Using a timer sourced by the DCO to capture the input signal of ACLK, the

frequency of the DCO can be determined, since the interval between captures of

the ACLK corresponds to the steps incremented to the timer counter.

With the configurable reference values as follows:

//board.h

#define MSP430_INITIAL_CPU_SPEED 2457600uL

#define F_RC_OSCILLATOR 32768

A desirable“DELTA”value can be calculated for further comparison, following

the Equation 4.1:

DELTA =
F DCO

F OS
(4.1)
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Based on the difference between the “DELTA” and “capture” values, the DCO

and RSEL are adjusted according to the provided flowchart, where, in a nutshell,

the algorithm will range across the set of values represented in Figure 4.1, seeking

the desired frequency for the DCO.

4.1.2 Radio implementation details

The CC2420 initialization routine, as represented in Figure 4.4, starts by setting

up the SPI communication between the radio and the MCU.

The USART0 peripheral is set to SPI 3-pin Mode with the microcontroller as

the master [15]. Additionally the necessary pins (Figure 4.2) are setup accordingly

to the board schematic [17], with P3.1 and P3.2 working as the master’s output

and input respectively. The P3.3 pin is responsible for providing the serial clock

necessary for the synchronous protocol while the P4.2 works as the slave selector.

Figure 4.2: TelosB RADIO-MCU logical schematic

Following the serial communication setup, the voltage regulator that powers

the radio is enabled and the device is reset, where all the configuration registers

of the device will take the default values [18, chapter 37], preparing the chip for

post configuration.

Through the now configured SPI connection, the radio controller is then

turned on using the corresponding command strobe (SXOSCON), which turns

on the internal oscillator that chips the chip’s operations. The crystal requires at
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most 2 ms to stabilize and when stable, the status register’s respective bit will

go high, that will be read until either, the crystal stabilization period has passed

in case of failure, or when the oscillator has stabilized.

In case the crystal is able to stabilize, some default initial configurations are

performed, such as setting the transmission power to the maximum[18, chapter

28], selecting the default channel (23) and a default PAN ID. The security features

are also disabled accessing the Security Control Register, in order to facilitate the

debugging by not requiring to set up the appropriate decryption for the Daintree

packet sniffer.

The initialization process will then follow to set the radio on RX mode. By

issuing the corresponding command strobes, first the radio will be set on the Idle

State (Figure 3.3) then clearing any data from the RX buffer, and finally setting

on the RX state, concluding the device initialization routine.
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Figure 4.3: MCU initialization with DCO calibration
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Figure 4.4: Radio initialization flowchart
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4.2 An improved development environment for TelosB

FreeRTOS applications

An intuitive, modular compilation environment was created using the GNU Make

tool. With these design goals in mind, and inspired by the ros2.0, riotOS and

contiki makefile systems, the building instructions were divided through four

different makefile files.

A first one, project specific, were all the customization takes place, following

the template on Appendix-B. In this makefile the application developer can define

all the compiling requirements, such as the target hardware, and master paths;

select any available modules, as is the case of the provided TelosB drivers; choose

the appropriate memory allocation implementation by FreeRTOS; and provide

any .c source files and path to header .h directory files. Besides the configuration

settings, this makefile is also responsible to invoke the other makefiles that process

the configurations and proceed with the compilation.

The other three files, located under the ’Makefiles’ directory, were divided by

the tasks each one is responsible as follows: (1) The modules.mk makefile asso-

ciates each module to the respective source files and headers, based on the make

variable $MODULE, where new drivers, network stack elements and layers, or

any other modules, can easily be added in the future, bringing the desired mod-

ular behaviour to applications; (2) The makefile common.mk takes the project

makefile, which provides the source and header files, along with other configura-

tions, flags and compiler information, and builds the make command string for

the MSP430-GCC compiler; (3) The default target.mk makefile, holds the typ-

ical instructions of a makefile with the necessary rules to generate the outputs

(targets). The three targets can be built by the user through the make command,

as follows:

$make clean all flash

The previous example results on, first, due to the ’clean’ target, the removal

of any previous executables and object files and then, through the ’all’ target,

generates the new set of objects and the application executable (.hex ).

The ’flash’ target was designed to setup the flashing tool for TelosB. The

flashing tools is the MSP430 serial bootstrap loader, an open source tool [40],

that the makefile calls to program the TelosB with the generated .hex file. The

tool is a python script, that requires the pip package: python-serial.

In order to ease the implementation of the Standard, a minimalistic filesystem

was created, leaving only essential modules for the FreeRTOS and removing all

unused platform ports, resulting on a simplistic directory system (Figure 4.5).
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MASTER

Lib

Makefiles

"default_target.mk"

"makefile_common.mk"

"modules.mk"

Flashing_tool

"goodfet.bsl"

Projects

project_example

"main.c"

"FreeRTOSConfig.h"

"makefile"

Source

Figure 4.5: Project filesystem

The OS files, including the MCU port, are stored under the ’Source’ directory,

with the exception to the FreeRTOS configuration file called FreeRTOSConfig.h.

Every FreeRTOS application must have a FreeRTOSConfig.h header file in its

pre-processor include path. FreeRTOSConfig.h tailors the RTOS kernel to the

application being built. It is therefore specific to the application, not the RTOS,

and should be located in an application directory.

The TelosB peripheral drivers, network stack and protocol implementation or

any other future module should be set under the ’Lib’ directory.

4.3 TelosB drivers

The drivers for the mote platform resulted from the adaptation of several other

TelosB implementations [37][36][31], mainly the drivers provided by ROS2 em-

bedded on RiotOS [41] project, due to its modular design. While following

the MSP430F1611 [15] and CC2420 [18] datasheets, the drivers were adapted in

order to utilize the FreeRTOS functionalities (such as the software delays) and

the module on Appendix-C was added to provide the application with easy access

to the drivers.

As visible in the directory tree from Figure 4.6, the drivers were separated

under the three folders: (1) ’telosb’, (2) ’cc2420’ and (3) ’cpu’, in order to share

the drivers with other platforms that utilize the same RF transceiver or MCU,

seeking an organized and efficient filesystem, while storing under ’telosb’, board

specific instructions.
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The platform is implemented following the directory tree represented in Figure

4.7, having the board initialization procedure built under board.c, responsible

for calibrating the DCO, using the internal 32 kHz crystal, and the initialization

of the microcontroller ports, setting up the chips default functionalities.

Lib

Drivers

telosb

cpu

msp430-common

cc2420

Net_Stack

Figure 4.6: Modules library filesystem

The board.h header provides the generic board init(void) function to the

application, as well as some platform macros for LED control and frequency

settings for the calibration process. The driver cc2420.c bridges the CC2420

drivers to the TelosB platform by providing the pin setup and control, which

include the UART0 initialization for the SPI communication with the transceiver

as well as the interrupt handlers for the radio pins.

As for the radio driver files, they are organized under the “cc2420” directory,

as depicted in Figure 4.7.

The main cc2420.c driver file stores main control functions of the RF device,

including the functionalities required by the IEEE 802.15.4, which are accessible

through cc2420.h.

The cc2420 settings.h header file provides macros for the command strobes

and the necessary register addresses for control and configuration of the device,

while cc2420 spi.c, using said macros, provides the cc2420.c with the control

telosb

include

"board.h"

"board.c"

"driver_cc2420.c"

cc2420

include

"cc2420.h"

"cc2420_settings.h"

"cc2420_spi.h"

"cc2420_arch.h"

"cc2420.c"

"cc2420_spi.c"

Figure 4.7: TelosB implementation filesystem
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for the register content of the CC2420 chip. This functionality relies on the

cc2420 arch.h which interfaces the singular MCU pin control drivers for the ra-

dio (telosb/driver cc2420.h), required to provide the main drivers with access

to the correct radio pins for a specific platform.

4.4 Experimental Validation

4.4.1 MCU clocks

The MSP430F1611 provides a mechanism for debugging the MCU clock frequen-

cies through the port selection and enabling the special function on the appropri-

ate pins. In order to corroborate the implementation, first, the platform initial-

ization was tested by verifying the MCLK (main clock) calibration result as well

as the ACLK frequency sourced from the 32768 Hz watch crystal. The measure-

ments presented in Figure 4.8 were acquired utilizing the Tektronix oscilloscope

[42], with an observed ACLK frequency of 32.68 kHz and 2.358 MHz with the

MCLK.

(a) MCLK (b) ACLK

Figure 4.8: MSP430F1611 frequency results

The ACKL frequency (4.8b), as expected, is close to the datasheet[17] value,

proving the reliability of the internal crystal as the base time driver for the

IEEE 802.15.4 implementation. The MCLK (4.8a), given the volatile nature

of the DCO, didn’t match the provided reference value on the following macros:

//board.h

#define MSP430_INITIAL_CPU_SPEED 2400000uL

#define F_RC_OSCILLATOR 32768

This unpredictable behaviour, that would for certain compromise the deter-

minism and, therefore, the reliability of the protocol implementation, makes the

DCO unsuitable for this task. However, parallel operations, that don’t have such
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time critical demands and might even require a time granularity that the internal

oscillator cannot provide, can, instead, use the DCO for timer purposes, specially

if using the calibration process to mitigate the unsteady performance.

4.4.2 Memory footprint

Using the MSP430-gcc ’-Map’ option [43], the linker will print out the map

file which contains diagnostic information along with a memory map for the

application. Figure 4.9 is an example of a memory configuration, start of the

RAM stack (0x1100 ) and size are available. The RAM length of 0x2800 converts

to the characteristic 10 240 B registers of the MSP4301611.

Memory Configuration

Name Origin Length Attributes

sfr 0x0000000000000000 0x0000000000000010

peripheral_8bit 0x0000000000000010 0x00000000000000f0

peripheral_16bit 0x0000000000000100 0x0000000000000100

ram_mirror 0x0000000000000200 0x0000000000000800 xw

infomem 0x0000000000001000 0x0000000000000100

infob 0x0000000000001000 0x0000000000000080

infoa 0x0000000000001080 0x0000000000000080

ram 0x0000000000001100 0x0000000000002800 xw

rom 0x0000000000004000 0x000000000000bfe0 xr

vectors 0x000000000000ffe0 0x0000000000000020

bsl 0x0000000000000000 0x0000000000000000

infoc 0x0000000000000000 0x0000000000000000

infod 0x0000000000000000 0x0000000000000000

ram2 0x0000000000000000 0x0000000000000000 xw

usbram 0x0000000000000000 0x0000000000000000 xw

far_rom 0x0000000000000000 0x0000000000000000

*default* 0x0000000000000000 0xffffffffffffffff

Figure 4.9: MSP-GCC compiled Mapfile example

The MSPSim emulator provides highest used RAM address of an instant

through the command stack as seen on the example below.

-----------------------------------------------

MSPSim 0.99 starting firmware:

../MASTER/Projects/my_led_timers/main.elf

-----------------------------------------------

MSPSim>stack

Current stack: $14cc
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Knowing the first and last used addresses of the stack, the total usage of the

RAM by an application can be easily calculated.

In order to measure the memory footprint resulting from the platform im-

plementation, a simple application, available on Appendix-D, was developed in

order to track the memory usage with the increase of running tasks.

The results of the memory benchmark are presented on Table 4.1 providing

the RAM usage of a given instance of the simulation as well as the memory usage

increase along the growth of the number of tasks. The application is designed to

launch a configurable number of tasks. Each has a small stack size that uses the

same vTask MylightTask() function in order to obtain a better representation of

the OS memory management.

Table 4.1: Memory Usage Benchmark

Nº of running Last used Total RAM Memory
tasks stack address Usage (B) scaling (B)

0* 0x130e 526
1 0x12ec 492 ———–
2 0x149c 924 432
3 0x1642 1346 422
4 0x17fa 1786 440
5 0x19c4 2244 458
6 0x1b6a 2666 422
7 0x1d3c 3132 466
8 0x1ee6 3558 426
9 0x209e 3998 440
10 0x2266 4454 456

*Idle task running

From the values presented in Table 4.1, it can be concluded that the memory

manager is working correctly with a visible memory usage linearly increasing

alongside the number of tasks. In regard to the memory usage of the Idle task, the

fact that it is higher than running a single task doesn’t indicate a problem with the

implementation given that the created tasks are minimal and the idle task needs

to perform several functions, such as energy saving mechanisms, and, still keeps

a relatively low memory usage. The advertised footprint seems accurate when

comparing to the value presented in section 3.4.7 by the official documentation.

Understanding how the memory usage of the application scales with the num-

ber of tasks is critical for the the design of the IEEE 802.15.4 application. This is

achieved by knowing the available resources, memory wise, keeping in mind that a
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more efficient memory usage by the protocol allows for more complex applications

that require more RAM.

4.4.3 Radio Functionalities

In order to test the CC2420 RF transceiver, the application provided in Appendix-

E was created, capable of transmitting test packets. Utilizing the Daintree Anal-

yser sniffer functionalities, that require a minimal MAC frame format, the out-

come of the application transmissions was depicted onto Figure 4.10, validating

the drivers implementation.

Figure 4.10: Captured packets of the radio test application (Appendix-E)

Under the “Packet Decode” tab, the frame content is interpreted and associ-

ated to the respective frame field allowing the debugging of the packet formation

as well as know the payload content (“Testing”). Additionally, other informa-

tion about the transmission, such as the frequency channel and the power of the

packet, allows for the verification of the Channel Selection and Transmit Power

Selection functionalities of the radio. For a periodical transmission, the applica-

tion utilizes the vTaskDelay() function of the software timers, driven by the OS

ticker. The transmission frequency, set to every 500 ms, appears very compara-

ble to the presented value on the “Time Delta” column, under the “Packet List”

window.
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4.4.4 Implementation Remarks

Although not a thorough evaluation of the new ported system, these compo-

nent tests verify and legitimize the TelosB implementation for the overall goal

of this Thesis: Implementing the IEEE std. 802.15.4-2015 on the FreeRTOS, in

particular the DSME MAC behaviour. The time granularity of the MCU and

the features provided by the radio transceiver are able to meet the requirements

of the protocol, while the memory management benchmark, which tests the OS

scheduler, indicates that it is working correctly.





Chapter 5

Towards a Reliable and

Predictable Protocol Stack

This chapter presents a preliminary design strategy to carry out the implemen-

tation of the IEEE 802.15.4 DSME MAC behaviour. Additionally, some of the

most critical modules are described including the planned approach to the Multi-

superframe.

When seeking a lasting and referenced implementation of the IEEE std.

802.15.4, layered, modular, fully customizable and accessible features are of paramount

importance. This demands for a well designed project, while keeping the require-

ments in mind throughout the entire implementation.

5.1 Envisaged Architecture

This project aims to provide support for a full implementation of the IEEE std.

802.15.4-2015 on the real time operating system FreeRTOS. The targeted hard-

ware is the TelosB, whose RF transceiver CC2420 and MSP430 microcontroller

are the foundation elements to both the Standard and the RTOS operations.

Figure 5.1 maps out how these components are set to inter-operate and pro-

vide the application with a deterministic network implementation, whilst follow-

ing the defined design goals. The stack is divided between hardware independent

and specific components, aiming to improve cross-platform compatibility and al-

low for an implementation abstracted from the hardware. This way, the IEEE std.

802.15.4 is available to any platform, provided they have a FreeRTOS port and

the minimum hardware (compliant radio and symbol-sensible timer), requiring

only the radio and timer drivers to be interfaced with the respective SAP.
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Figure 5.1: Project stack map

The hardware specific portion of the diagram was the focus of Chapter 4. With

the unique hardware layer abstracted, the two service providers, RF-SAP and

TIMER-SAP, are able to interface the future Network Stack with any imple-

mented hardware platform. This increases the abstraction of the protocol imple-

mentation and enables cross-platform compatibility.
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The RF-SAP module, used on the aforementioned radio test application

(Appendix-E), is a generic radio interface that provides PHY with all the required

functionalities (2.2.1) of the RF device by utilizing the specific radio drivers.

This is achieved by compiling the appropriate radio drivers with generic func-

tion names, based on the provided platform indication through the “$BOARD”

MAKE variable. An early version of the RF-SAP is available on Appendix-F,

namely the TelosB interface, which was used during this thesis project.

The Timer-SAP, with a similar behaviour and purpose to RF-SAP, requires

the hardware timer driver to fulfil the IEEE std. 802.15.4 time requirements with

a symbol (16 µs) granularity. As of writing this thesis the Timer-SAP module

has not yet been implemented. On the same note, a Packet building module,

compliant with the protocol, is planned for implementation. Provided all the

needed hardware services, the protocol Stack and FreeRTOS functionalities are

accessible to the application with full abstraction.

In Figure 5.1 it is also depicted a raw representation for the planned IEEE

802.15.4 implementation, based on the components suggested by the standard

and respective requirements. Additionally, the expected packet planned path is

marked from the USART module up to the application. However, its expected

that the protocol Stack and the Application run on concurrent tasks in order to

prioritize any time critical operations of the protocol. Therefore, the communi-

cation between the application and protocol layers, namely packet exchange, is

anticipated to involve the Queue mechanism of FreeRTOS.

5.2 Building the DSME-Superframe

The ACKL, driven by the low frequency crystal, is limited to a time granularity

of 1
32 kHz = 30, 52 µs. The time base unit of the protocol is the symbol (16

µs),. However, the TelosB is only able to provide time precision up to double

the base value, still with an error of 1,48 µs every two symbols. In the face of

this issue, the TKN Group [44] suggested the use of 64 kHz external crystal in

order to drive a Symbol rate timer for TelosB, even providing the board design

for the accessible JTAG port of the platform. This proposal, which makes use

of the available XT2 oscillator slot, is a considered upgrade for the future of this

project. As of now, a slot duration (60 symbols) can be used as the time base

unit.

Table 5.1 provides the results of a study on how to stamp the slots required

to build the DSME-Superframe using an MSP430 timer sourced by the reliable

ACLK. Due to the granularity limits of the crystal and the resulting error of

0,74 µs the produced symbol is referred to as “rSy” (15,26 µs) and the forming

Superframe (with a base duration) as the “rSuperframe”.
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Table 5.1: Timer survey for the DSME-Superframe

ACLK
divider

rSy
/tick

Ticks
/slot

rSuperframe
Duration

Superframe
Duration

Error
(s)

Error
(%)

1 2 30

14.6 ms 15.36 ms 711,6E-6 4,64
2 4 15
4 8 7,5*
8 16 3,75*

*Not enough granularity to define a slot

The TelosB MCU timer allows for dividers of 1, 2, 4 and 8 that end up

requiring a different amount of timer cycles, referred on the Table as “Ticks”, to

stamp and track the slots of the superframe. The number of ticks per slot is

required to have an integer value, such are the number of clock cycles,in order to

not further divert from the Symbol value (16 µs). Hence the only viable divider

values for the ACLK are 1 and 2, each requiring consequently a different number

of ticks to total a slot. The resulting rSuperframe duration deviation from the

expected baseSuperframe of value 15,36 ms is explicit under the “Error” columns.

This deflection will only have an impact when devices based on the full Symbol

(16 µs) time unit join the network. Therefore this discrepancy will not affect the

end result of the implementation and only a small adjustment is needed should

the full Symbol unit be adopted.

Figure 5.2: DSME-Superframe Timestamping

Should a slot granularity be achieved, building the DSME Superframe comes

down to run the pertinent task and handle all associated events, following the

time lines defined by the protocol variables (2.12), as is depicted in Figure 5.2.
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Table 5.2: Superframe launched tasks

Event Launching task
stamp description

t1 DSME Beacon Handler (either RX or TX)
t2 Enable CSMA-CA mode and run the algorithm.
t3 CFP mode (radio off when slot is not allocated)
t4 Radio TX mode - Transmit packets on allocated slot
t5 Radio TX mode - Handle incoming packets during slot

The tasks that shape the Superframe, labelled in Table 5.2, represent an

abstraction of the process required to conduct each DSME procedure, leaving

aside subroutines such as the anticipated radio preparation for each task in order

to maintain the timeliness of the Superframe.

Figure 5.3 portraits the FreeRTOS scheduler handling of an application run-

ning beside the IEEE 802.15.4.

Figure 5.3: FreeRTOS Application Multitask with the IEEE 802.15.4
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This example brings to light how the implementation of the DSME-superframe

would impact the application execution time on a real-time OS. As visible on

the first superframe of Figure 5.3, during the CAP, the usage of the CSMA-CA

access method requires a total usage of the available processing time. In contrast,

during the CFP region, only the allocated slots for dedicated communication

employ execution time. The scheduler diagram, which handles a CAP reduction

enabled DSME-superframe, further highlights the benefit of the CAP reduction

that may be configured to provide the minimum necessary CAP, increasing the

CFP deterministic communication span. This results on a optimization of the

application execution time with an efficient and time reliable communication

protocol.



Chapter 6

Conclusion and Future Work

This chapter reviews the proposed objectives of this Thesis and summarises its

main contributions, detailing how the objectives were meet and the imposed work.

Finally, some remarks about our future work are also presented, based on the

work developed during this Thesis.

The work presented in this Thesis aims to set in motion the Implementation

of the IEEE 802.15.4 DSME MAC behaviour on a real time OS. Given the mag-

nitude of the task at hand, a thorough assessment on both the protocol and the

involved technologies for its application was required to be performed. The The-

sis goal was then achieved by providing the foundation support in terms of tools,

software components and architecture, so that for future work, we can solely focus

on the protocol implementation.

The groundwork included the TelosB hardware platform and associated drivers

implementation and documentation, as well as the port of FreeRTOS for the de-

vice. This involved a survey of the available real-time OS and an extensive review

of the system that eventually lead to the selection of the appropriate OS for the

assigned work. Additionally, this Thesis over viewed a set of tools, the Daintree

Sniffer and the MSPSim emulator, which served as support for this Thesis work

and may prove helpful for the future development of the project.

All the documentation regarding the protocol and technologies involved in

this work is available on this Thesis for future reference during the IEEE 802.15.4

complete implementation.

Aside from the implementation project, porting FreeRTOS, which is arguably

the operating system for the IoT, to one of the most iconic motes of the IoT world,

as is the case of the TelosB, is by itself quite a significant contribution. We have

plans to make the port available to the community, enabling the support for a

series of innovative real-time applications in the IoT arena.
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6.1 Future Remarks

As suggested by the title of this Thesis, the overall proposed task is a work in

progress. On that note, several of the contributions of the project are proposed

approaches and procedures for the implementation of the IEEE 802.15.4 DSME

protocol. Hence, the plan is to carry on the MAC behaviour implementation and

build upon the work of the Thesis. Additionally, other platforms might receive

a port for FreeRTOS in order to integrate the protocol implementation in other

projects developed at the CISTER research centre.
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Appendix B

Makefile template for

TelosB-FreeRTOS projects

# *

# * FreeRTOS Kernel V10.0.1

# * 23rd june 2018

# *

# */THIS MAKEFILE TEMPLATE WAS DESIGNED

# FOR TELOSB AND TMOTE SKY by Crossbow

#-----------------------#-----------------------#----------------------#

#-----------------------#-----------------------#----------------------#

# Defining paths to OS source code:

MASTER_PATH = ./../../../Telosb-FreeRTOS#should be first instruction

PROJECT_PATH = .

PORT_PATH = $(MASTER_PATH)/Source/portable/GCC/MSP430F449#nospaces

# Defining device info:

CPU = msp430f1611

BOARD += telosb

MODULE += phy

#--------------------------------------#------------------------------#

#--------------------------------------#------------------------------#

# add project headers "directory" path:

INC += ./ \

\
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#--------------------------------------#------------------------------#

#--------------------------------------#------------------------------#

#MODULE += cc2420 #phy

include $(MASTER_PATH)/Makefiles/makefile_comon.mk

# Target name

NAMES ?= main

#--------------------------------------#------------------------------#

#--------------------------------------#------------------------------#

# add project sources files path:

SRC += \

main.c \

$(SOURCE_PATH)/portable/MemMang/heap_1.c \

\

#--------------------------------------#------------------------------#

#--------------------------------------#------------------------------#

include $(MAKE_PATH)/default_target.mk

#-----------------------#-----------------------#----------------------#

#-----------------------#-----------------------#----------------------#



Appendix C

TelosB Module

# File: MASTER\Makefiles\modules.mk

#------------------------------------#-----------------------------#

#------------------------------------#-----------------------------#

ifneq (,$(filter telosb,$(BOARD)))

INC += \

$(MASTER_PATH)/Lib/drivers/telosb/include\

$(MASTER_PATH)/Lib/drivers/cpu/msp430-common/include\

$(MASTER_PATH)/Lib/drivers/cc2420/include\

\

SRC += \

$(MASTER_PATH)/Lib/drivers/telosb/board.c\

$(MASTER_PATH)/Lib/drivers/telosb/uart.c\

\

\

$(MASTER_PATH)/Lib/drivers/telosb/driver_cc2420.c\

$(MASTER_PATH)/Lib/drivers/cc2420/cc2420_spi.c\

$(MASTER_PATH)/Lib/drivers/cc2420/cc2420.c\

\

\

$(MASTER_PATH)/Lib/drivers/cpu/msp430-common/cpu.c\

$(MASTER_PATH)/Lib/drivers/cpu/msp430-common/irq.c\

endif
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Appendix D

FreeRTOS RAM footprint

Benchmark Application

1 //Pedro Neto @ CISTER 10/2018

2 /* Scheduler i n c l ud e s . */

3 #inc lude ”FreeRTOS . h”

4 #inc lude ”task . h”

5 #inc lude <msp430 . h>//BIT macros

6 #inc lude ”board . h”

7 #de f i n e mainLED TASK PRIORITY (tskIDLE PRIORITY+1)

8

9 //=================# Memory usage t e s t #================//

10 #de f i n e TASKNUMBER 10

11

12 s t a t i c void vTaskMylighTask ( void *pvParameters ) ;

13 //=================# Memory usage t e s t #================//

14

15 //Perform Hardware i n i t i a l i z a t i o n .

16 void t e l o s b i n i t ( void ) ;

17 void cc2420 rx hand l e r ( void ) ;

18 /*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/
19

20 void manual delay ( i n t s t ep s ) ;

21

22 i n t main ( void )

23 {
24 /* Setup the hardware . */

25 boa rd i n i t ( ) ;

26

27 LED OUT |= (BIT4 | BIT5 | BIT6) ; // s t a r t LEDs Off

28

29 //=================# Memory usage t e s t #================//
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30 uint task ;

31

32 whi le ( task<TASKNUMBER)

33 {
34 xTaskCreate ( vTaskMylighTask , ”task ”+task ,

configMINIMAL STACK SIZE , NULL, mainLED TASK PRIORITY, NULL ) ;

35 task++;

36 }
37

38 //=================# Memory usage t e s t #================//

39

40 /* Star t the s chedu l e r . */

41 vTaskStartScheduler ( ) ;

42 /* As the s chedu l e r has been s t a r t ed the demo app l i c a t i on

43 ta sk s w i l l be execut ing and we should never get here ! */

44 re turn 0 ;

45 }
46

47 s t a t i c void vTask MylightTask ( void *pvParameters )

48 {double i ;

49 whi le (1 )

50 {
51 // Toggle blue LED

52 f o r ( i = 0 ; i < 1000 ; ++i ) {}
53 LED OUT ˆ= LED BLUE;

54 }
55 }



Appendix E

Radio-Test Application

1 /* Scheduler i n c l ud e s . */

2 #inc lude ”FreeRTOS . h”

3 #inc lude ”task . h”

4

5 /* Pro j ec t i n c l ud e s */

6 #inc lude ”board . h”

7 #inc lude ”RF−SAP. h”

8

9 #de f i n e CH 23

10

11 //MAC PDU struct−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
12 typede f s t r u c t MPDU

13 {
14 // i n f o on frame type/ack/ e tc

15 u in t 8 t f rame cont ro l 1 ;

16 // i n f o on addre s s ing f i e l d s

17 u in t 8 t f rame cont ro l 2 ;

18 // u in t16 t f r ame cont ro l ;

19 u in t 8 t seq num ;

20 u in t 8 t data [ 1 2 0 ] ;

21 }MPDU;

22 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
23

24 /*

25 * Sending task

26 */

27 s t a t i c void vSendingTask ( void * pvParameters ) ;

28 #de f i n e SEND TASK PRIORITY (tskIDLE PRIORITY+1)

29

30 void rad i o s e tup ( void ) ;

31

32 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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33 i n t main ( void )

34 {
35 // Setup the hardware . //

36 boa rd i n i t ( ) ;

37

38 // Add the task

39 xTaskCreate ( vSendingTask , ( const s igned char *) ”appl ” ,

configMINIMAL STACK SIZE , NULL, SEND TASK PRIORITY, NULL ) ;

40

41 // Star t the s chedu l e r .

42 vTaskStartScheduler ( ) ; // loop

43 // never reached

44 re turn 0 ;

45 }
46

47

48 s t a t i c void vSendingTask ( void * pvParameters ) {
49 r ad i o s e tup ( ) ;

50

51 u in t 8 t len , packet bytes ;

52 u in t32 t i =0;

53

54 char msg [ ]= ”Test ing ” ;

55

56 //number o f bytes / ad r e s s e s that need to be transmited

57 l en=s i z e o f (msg)+1;

58

59 //#−−−−−−−−−−−−−−−−Packet bu i ld ing−−−−−−−−−−−−−−−−−−−−−−
60 s t r u c t MPDU mympdu;

61 s t r u c t MPDU *mpdu ;

62 mpdu=&mympdu;

63

64

65 mympdu. f rame cont ro l 1= (1<<0) ; //Data frame type ;

66 mympdu. f rame cont ro l 2= (1<<5) ; // frame ve r s i on IEEE 802.15.4−2015

67

68 f o r ( i = 0 ; i < l en +1; ++i )

69 {
70 mympdu. data [ i ]= msg [ i ] ;

71 }
72

73 packet bytes= 3+len ;

74 //#−−−−−−−−−−−−−−−−Packet bu i ld ing−−−−−−−−−−−−−−−−−−−−−−
75

76 //Load packet to the rad io bu f f e r

77 r ad i o l o ad (&(mympdu. f r ame cont ro l 1 ) , packet bytes ) ;

78

79

80

81

82
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83 whi le (1 )

84 {
85 r ad i o tx ( ) ; //Transmit what i s in the bu f f e r

86

87 LED BLUE TOGGLE;

88

89 vTaskDelay (500) ;

90 }
91 }
92

93

94 void rad i o s e tup ( void )

95 {
96 r a d i o i n i t ( ) ;

97 i f ( ! rad io on ( ) )LED RED ON;

98 i f ( ! ( r ad i o s e t channe l (CH)==CH) )LED RED ON;

99 }





Appendix F

RF-SAP implementation for

CC2420

1 //Pedro Neto @ CISTER 08/2018

2 #inc lude ”RF−SAP. h”

3 #inc lude ”cc2420 . h”

4

5

6 void r a d i o i n i t ( void )

7 {
8 re turn c c 2 4 2 0 i n i t ( ) ;

9 }
10

11 bool rad io on ( void )

12 {
13 re turn cc2420 on ( ) ;

14 }
15

16 void r a d i o o f f ( void )

17 {
18 re turn c c 2420 o f f ( ) ;

19 }
20

21 i n t r ad i o s e t channe l ( unsigned i n t chan )

22 {
23 re turn cc2420 s e t channe l ( chan ) ;

24 }
25

26 bool cca ( void )

27 {
28 re turn c c2420 channe l c l e a r ( ) ;

29 }
30
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31 i n t r ad i o s e t t x powe r ( i n t pow)

32 {
33 re turn cc2420 se t tx power (pow) ;

34 }
35

36

37 //Radio transmit ( load to FIFO and transmit )

38 u in t 8 t rad io s end ( u i n t 8 t * data , u i n t 8 t l en )

39 {
40 re turn cc2420 send ( data , l en ) ;

41 }
42

43

44 //Load packet to the rad io bu f f e r

45 u in t 8 t r ad i o l o ad ( u i n t 8 t * data , u i n t 8 t l en ) {
46 re turn cc2420 load ( data , l en ) ;

47 }
48

49 //Transmit what i s in the bu f f e r

50 void r ad i o tx ( void )

51 {
52 re turn cc2420 tx ( ) ;

53 }
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