
  

 

 

 

 

Timing Analysis of Fixed Priority Self-

Suspending Sporadic Tasks 

 

 
 

 

Conference Paper 

*CISTER Research Center  

CISTER-TR-150506 

 

2015/07/07 

Geoffrey Nelissen* 

José Fonseca* 

Gurulingesh Raravi 

Vincent Nélis* 

 



Conference Paper CISTER-TR-150506 Timing Analysis of Fixed Priority Self-Suspending Sporadic  ... 

© CISTER Research Center 
www.cister.isep.ipp.pt   

1 

 

Timing Analysis of Fixed Priority Self-Suspending Sporadic Tasks 

Geoffrey Nelissen*, José Fonseca*, Gurulingesh Raravi, Vincent Nélis* 

*CISTER Research Center 

Polytechnic Institute of Porto (ISEP-IPP) 

Rua Dr. António Bernardino de Almeida, 431 

4200-072 Porto 

Portugal 

Tel.: +351.22.8340509, Fax: +351.22.8321159 

E-mail: grrpn@isep.ipp.pt, jcnfo@isep.ipp.pt, guhri@isep.ipp.pt, nelis@isep.ipp.pt 

http://www.cister.isep.ipp.pt 

 

Abstract 

Many real-time systems include tasks that need to suspend their execution in order to externalize some of their 

operations or to wait for data, events or shared resources. Although commonly encountered in real-world systems, 

study of their timing analysis is still limited due to the problem complexity. In this paper, we invalidate a claim 

made in one of the earlier works [1], that led to the common belief that the timing analysis of one self-suspending 

task interacting with non-self-suspending sporadic tasks is much easier than in the periodic case. This work 

highlights the complexity of the problem and presents a method to compute the exact worst-case response time 

(WCRT) of a self-suspending task with one suspension region. However, as the complexity of the analysis might 

rapidly grow with the number of tasks, we also define an optimization formulationto compute an upper-bound on 

the WCRT for tasks with multiple suspendion regions. In the experiments, our optimization framework outperforms 

all previous analysis techniques and oftenfinds the exact WCRT. 

 



Timing Analysis of Fixed Priority Self-Suspending Sporadic Tasks

Geoffrey Nelissen∗, José Fonseca∗, Gurulingesh Raravi† and Vincent Nélis∗
∗CISTER/INESC-TEC, ISEP, Polytechnic Institute of Porto, Portugal

†Xerox Research Center India, Bengaluru
Email: ∗{grrpn, jcnfo, nelis}@isep.ipp.pt, †gurulingesh.raravi@xerox.com

Abstract—Many real-time systems include tasks that need to
suspend their execution in order to externalize some of their
operations or to wait for data, events or shared resources.
Although commonly encountered in real-world systems, study of
their timing analysis is still limited due to the problem complexity.
In this paper, we invalidate a claim made in one of the earlier
works [1], that led to the common belief that the timing analysis
of one self-suspending task interacting with non-self-suspending
sporadic tasks is much easier than in the periodic case. This
work highlights the complexity of the problem and presents a
method to compute the exact worst-case response time (WCRT)
of a self-suspending task with one suspension region. However,
as the complexity of the analysis might rapidly grow with the
number of tasks, we also define an optimization formulation
to compute an upper-bound on the WCRT for tasks with
multiple suspendion regions. In the experiments, our optimization
framework outperforms all previous analysis techniques and often
finds the exact WCRT.

I. INTRODUCTION

Real-time tasks often involve processing operations which
may take considerable time to finish if executed solely on a
generic purpose uniprocessor platform. System designers have
been achieving significant improvement in the efficiency of
these operations by offloading them to specialized hardware
accelerators (e.g., Graphical or Network Processing Units),
leaving the main processor available for other tasks. The
offloading phases represent suspension delays for the task that
initiates them. Suspension delays can also be observed when
tasks are synchronizing, exchanging data through communi-
cation interfaces, or accessing external shared resources such
as I/O devices. All such tasks that may at some point in their
execution suspend their computation to wait for external data,
events or resources are called self-suspending tasks.

A self-suspending task is composed of a set of execu-
tion regions interleaved with suspension regions. Traditional
real-time systems theory [2] has accounted the duration of
suspension regions as part of the task worst-case execution
time while doing timing analysis. However, if the suspen-
sion regions are lengthy, such suspension-oblivious analysis
typically become very pessimistic, leading to severe utiliza-
tion loss and possibly jeopardizing the schedulability of the
system. Hence, recent works [1], [3]–[6] have focused on
suspension-aware analysis techniques which explicitly model
the suspension placement and durations in order to reduce the
pessimism on the calculated worst-case interference exerted
by higher priority tasks, thereby offering opportunities fora
potential utilization improvement. Nevertheless, suspension-
aware analysis are rather complex and sometimes assume the
existence of additional operating system facilities (e.g., phase
enforcement mechanisms or execution control policies) to ease
the analysis and minimize the pessimism while considering the
suspension regions.

In this work, we start by studying the timing analysis
of self-suspending tasks, under fixed-priority scheduling, as-
suming that all the interfering tasks are non-self-suspending
sporadic tasks. Contrary to what has been claimed in previ-
ous works, we show that it is not simple to characterize a
critical instant even for this limited model. Based on this key
observation, we identify the exponential number of scenarios
that need to be considered, and we then present an algorithm
to compute the exact worst-case response time (WCRT) for
a self-suspending task with one suspension region. As the
algorithm becomes intractable in function of the number of
higher-priority tasks, we formulate a response time test for
self-suspending tasks with multiple suspension regions as an
optimization problem, which can be solved in reasonable
time. This optimization problem is then extended for the
response time analysis of multiple self-suspending sporadic
tasks interfering with each other.

Related Work. The problem of analyzing the timing
behavior and schedulability of self-suspending tasks has been
extensively studied in previous works [1], [3]–[11]. Negative
results on the feasibility problem of scheduling periodic self-
suspending tasks on uniprocessors have been presented in [8],
[9]. Schedulability analyses for self-suspending periodic tasks
were proposed in [10], [11]. However, the pessimism in
those analyses led to significant utilization loss. Recently, new
schedulablity tests for synchronous self-suspending tasks with
harmonic periods have shown to exhibit low utilization loss
under Rate Monotonic (RM) policy [12].

The self-suspending sporadic task model studied in this
paper has received considerable attention [1], [3], [7]. In [1],
authors attempted to characterize the critical instant for self-
suspending tasks with respect to the interference exerted by
higher priority non-self-suspending tasks. It builds on the fact
that sporadic tasks may delay their job releases, to prove that
an exact characterization of the worst-case scheduling scenario
leading to the WCRT of the self-suspending task is simpler to
achieve in comparison to the periodic case. It therefore became
a common belief that the exact WCRT of a self-suspending
task co-running with sporadic non-self-suspending tasks can
be obtained in pseudo-polynomial time. However, as discussed
in Section III, the worst-case release pattern identified in [1]
is incorrect.

Still on sporadic tasks, early research [7] considered fixed-
priority scheduling of limited parallel systems, where parts of
a process are executed in parallel in software and hardware,
and therefore can be modeled as a set of self-suspending
sporadic tasks. The authors introduced the notion of synthetic
worst-case execution distribution for higher-priority tasks and
derived upper-bounds on the WCRT. Response time analysis
for a segment-fixed priority scheduling scheme, which assigns
different priorities to each computing segment and enforces
phase offsets to predict the different segment’s releases, were



Ci,1 Si,1 Ci,2 Si,2 
. . . Ci,mi 

time 

Di 

Ti 

Fig. 1: Constrained-deadline self-suspending sporadic task.

developed in [3]. In the same paper, the effectiveness of RM
scheduling for self-suspending periodic tasks with specific
properties was demonstrated.

Lately, there has also been relevant work on global schedul-
ing of self-suspending tasks on multiprocessor, particularly for
soft real-time systems [4]–[6]. In [6], the first suspension-
aware schedulability analysis for self-suspending sporadic
tasks in a multi-core hard-real setting was presented. Unfortu-
nately the schedulability test provided in that paper for global
fixed-priority scheduling is not entirely correct and may often
lead to optimistic (unsafe) results [13].

This Research. In this paper, we consider the problem
of computing the WCRT of a self-suspending task on a
uniprocessor platform, under a sporadic task system. Towards
this end, we make the following contributions: (i) we discuss
a couple of misconceptions about the timing analysis of self-
suspending tasks by showing that a well-accepted claim from
an earlier work [1] is incorrect; (ii) we propose an algorithm for
computing the exact WCRT of a self-suspending with a single
suspension region; (iii) we propose a Mixed Integer Linear
Programming (MILP) based technique for finding an upper-
bound on the WCRT of a self-suspending task having multiple
suspension regions; (iv) we extend this MILP formulation to
analyze the WCRTs of multiple self-suspending sporadic tasks
running on the same platform; and (v) we present the evalua-
tion results comparing the performance of our approaches with
prior state-of-the-art analyses.

II. SYSTEM MODEL

Consider a task set τ = {τ1, τ2, . . . , τn} of n constrained-
deadline self-suspending sporadic tasks scheduled on a single
processor. Each task τi releases a (potentially infinite) sequence
of jobs, with the first job released at any time during the system
execution and subsequent jobs released at least Ti (referred
to as minimum inter-arrival time) time units apart. Each job
released by τi has to complete its execution within Di ≤ Ti
(referred to as τi’s deadline) time units from its release.

A task τi consists of mi ≥ 1 execution re-
gions and mi − 1 suspension regions such that any two
consecutive execution regions are separated by a sus-
pendion region as shown in Fig. 1. Formally, each self-
suspending task τi is characterized as follows: τi

def
=

〈(Ci,1, Si,1, Ci,2, Si,2, . . . , Si,mi−1, Ci,mi
, ) , Di, Ti〉 where (i)

Ci,j denotes the worst-case execution time of the jth execution
region; (ii) Si,j denotes the worst-case duration of the jth
suspension region; (iii) mi denotes the number of execution
regions separated by mi − 1 suspension regions; (iv) Di ≤ Ti
denotes the deadline before which all the execution regions
must finish their execution and (v) Ti denotes the minimum
inter-arrival time between two successive jobs of τi. In this
paper, we call non-self-suspending task, a task with no sus-
pension regions. A non-self-suspending task τk is represented
as: τk

def
= 〈(Ck,1) , Dk, Tk〉.

We assume that a fixed-priority scheduling policy is used
to schedule the tasks on the processor. For convenience, we de-
note by τi,j the jth execution region of task τi, and the overall
worst-case execution time of τi is defined as Ci

def
=
∑mi

j=1 Ci,j .
The first execution region τi,1 of a job of task τi becomes ready
for execution (also referred to as the arrival time of τi,1 and
denoted by ai,1) as soon as that job of task τi is released.
The response time Ri,1 of the execution region τi,1 is the
difference between its completion time (denoted by fi,1) and
the arrival time of the job; formally, Ri,1 = fi,1 − ai,1. For
2 ≤ j ≤ mi, the execution region τi,j of a job of task τi

becomes ready for execution at time ai,j
def
= fi,j−1 + si,j−1

(where si,j−1 ≤ Si,j−1 is the duration of the (j − 1)th self-
suspension region) and its response time Ri,j is given by the
difference between its completion time and its arrival time;
formally, Ri,j = fi,j − ai,j . The response time Ri of a job of
task τi is the sum of the response times of all its execution
regions, plus the sum of the duration of all its suspension
regions, that is, Ri

def
=
∑mi

j=1Ri,j +
∑mi−1
j=1 si,j . Finally, the

worst-case response time WCRTi of a task τi is defined as the
largest response time that any job of τi may ever experience.

In Sections III to V, we consider the case in which the task
set τ has only one self-suspending task and all the other tasks
are non-self-suspending. The self-suspending task is denoted
τss and has the lowest priority, i.e., all the non-self-suspending
tasks in τ have a higher priority than τss. We denote the
set of higher priority non-self-suspending tasks as hp(τss).
The restriction of having only one self-suspending task in the
taskset is relaxed in Section VI.

III. MISCONCEPTIONS ABOUT TIMING ANALYSIS OF
SELF-SUSPENDING TASKS

Let us assume that there is only one self-suspending task
τss in the taskset τ . This task has the lowest priority and suffers
interference from a set hp(τss) of higher priority non-self-
suspending sporadic tasks. The exact worst-case response time
analysis of such a system was studied in [1] and was deemed
solved. However, in this section, we prove that those results
were based on a couple of wrong observations (which have
established themselves as facts over the years), namely (i) that
the worst-case interference suffered by τss is generated when
all the higher priority tasks are released synchronously with
τss, and (ii) that releasing the jobs of higher priority tasks as
often as possible (respecting the minimum inter-arrival times)
in each execution region maximizes the overall interference
on the self-suspending task. Unfortunately, although intuitive,
these observations are incorrect and have led to flawed analy-
ses [1].

A. On the synchronous release with the first execution region

Exact worst-case response time analysis are based on the
notion of critical instant. The critical instant for a task τi is
defined as an instant at which a request for that task will have
the largest response time. Since the response time of a task
is dependent on the higher priority tasks, a critical instant for
a task τi is generally concerned with the release pattern of
higher priority tasks.

In [1], Lakshmanan et. al. argue that the release pattern Φss

is a critical instant for a self-suspending task τss, where Φss

is defined as follows:



0 t
τ1 τ2 
τss 

4 8 12 
τ1	
   τ2	
  τss,1	
  

Sss,1 

5
τ1 

τ1	
  
13 
τ1 

9
τ1 

τss,2	
  

Delay 

(a) Scenario 1. Response-time analysis when the job release pattern
is Φss.

0 t
τ1 τ2 τss 

4 8 12 
τ1	
  τss,1	
  

Sss,1 

τ1 

τ1	
  
13 

τ1 τ1 

τss,2	
  τ2	
   τ1	
  τss,2	
  
10 

(b) Scenario 2. Response-time analysis when the job release pattern
is not Φss.

Fig. 2: Counter-example to Φss being the critical instant of τss.

• every higher priority non-self-suspending task τh
def
=

〈(Ch) , Dh, Th〉 is released simultaneously with τss;

• jobs of τh eligible to be released during any jth (1 ≤
j < mi) suspension region of τss are delayed to be
aligned with the release of the subsequent (j + 1)th
execution region of τss; and

• all remaining jobs of τh are released every Th.

We prove with a counter-example that Φss is not a critical
instant for a self-suspending task τss.

Lemma 1. The worst-case response time of task τss is not
given by Φss.

Proof: Consider a task set τ = {τ1, τ2, τss} of three
constrained-deadline sporadic tasks scheduled on a single
processor. τ1 and τ2 are non-self-suspending tasks and τss is
a self-suspending task. Let the characteristics of these tasks
be as follows: τ1

def
= 〈(1) , 4, 4〉; τ2

def
= 〈(1) , 100, 100〉 and

τss
def
= 〈(1, 2, 3) , 1000, 1000〉. Let the priorities of the tasks be

assigned using the RM policy (i.e., smaller the period, higher
the priority); this implies that task τ1 has the highest priority
and τss the lowest. Let us compute the response time of task τss
considering two different job release patterns: (i) a job release
pattern Φss compliant with its definition made in [1] and (ii)
a job release pattern different than Φss. We show that there
exists a job release pattern which is not Φss and for which the
response-time of task τss is larger than its response time when
the job release pattern is Φss.

Scenario 1. Let us consider the job release pattern Φss as
shown in Fig. 2a. Using the standard response-time equation,
we obtain Rss,1 = 3 for the execution region τss,1 and Rss,2 =
4 for the execution region τss,2 (see Fig. 2a). Hence, under the
release pattern Φss, the response-time of task τss is given by:
Rss = Rss,1 + Sss,1 +Rss,2 = 3 + 2 + 4 = 9.

Scenario 2. Let us consider a job release pattern as shown
in Fig. 2b. Observe that this release pattern is not Φss since
task τ2 is not released synchronously with task τss. Using the
same standard response-time equation, we obtain a response
time Rss,1 = 2 for the execution region τss,1 and Rss,2 = 6
for the execution region τss,2 (see Fig. 2b). Hence, under a
release pattern which is not Φss, the response-time of task τss
is given by: Rss = 2 + 2 + 6 = 10.

Step 1. 
Remove non- 
interfering jobs 

Step 2. 
Add missing  
releases 
Step 3(1). 
Offset the  
releases 

Step 3(2). 
Offset the  
releases 

Step 4. 
Get (1) 

ass,2 fss,2Rss,2

⌧ss,2

RP1

RP

RP0

�1

�2

Omin
2

⌧ss

RP2

RP2

⌧ss

⌧ss

�1 �1

�2

Fig. 3: Illustration of the proof of Lemma 2.

Clearly, the response-time of task τss obtained in Scenario 2
is larger than the response-time of τss obtained in Scenario 1.
Hence, the claim of Lakshmanan et. al. [1] that Φss is the
critical instant for a self-suspending task τss is incorrect.

We now prove properties about the job release pattern
characterizing the critical instant of task τss.

Lemma 2. From any feasible release pattern RP of the tasks
in hp(τss), we can construct a feasible release pattern RP′

from RP such that:

(1) In RP′, at least one job of every task in hp(τss)
is released synchronously with the release of an
execution region of τss;

(2) RP′ entails a larger (or equivalent) response time
of task τss than RP.

Proof: Let us assume that τss is scheduled to execute
concurrently with a set hp(τss) of higher priority tasks and
suppose that those tasks are released according to the release
pattern RP. We denote by Wbk and Wek the beginning and
end of the kth time window during which only tasks in hp(τss)
are executed. That is, τss does not execute at all in the time
intervals defined by [Wbk,Wek], ∀k > 0. Those intervals will
be referred to as the higher priority tasks busy windows.

Fig. 3 (top part) shows these notations with a simple
example that will be used throughout the proof to illustrate
the process of creating RP′ from RP. This example assumes
that hp(τss) consists of three sporadic tasks. The interference
by those tasks on the self-suspending task τss is represented
by light rectangles on the first line of Fig. 3. Dark rectangles
correspond to the execution of the execution regions of τss.
The busy windows generated by tasks in hp(τss) are shown
by arrow filled rectangles on the second line of Fig. 3. Note
that only the jobs potentially contributing to the response time
of τss are depicted in Fig. 3.

First of all, we remove from RP all the releases from the
tasks in hp(τss) that occur in a busy window [Wbk,Wek] that
does not overlap with any execution region of τss (see Step 1
in Figure 3). Note that removing these releases along with the
execution of the corresponding jobs does not alter the schedule
of τss (i.e. it does not impact the response time of any of its



execution regions) or that of the jobs of any higher priority
task released in any other busy window in RP. As a result,
the response time of τss is not impacted by this modification
of RP. We define the resulting release pattern as RP1.

In order to get (1), each task in hp(τss) must release at least
one job in RP′. Since there may be some tasks in hp(τss) that
do not release a job in RP1, one job release from each of those
tasks is added to RP1 such that it coincides with the arrival
of the last execution region of τss (see Step 2 on Fig. 3). This
transformation of RP1 trivially increases the response time of
the last execution region as compared to RP and consequently
also increases the overall response time of τss.

The next step to construct RP′ from RP consists in
considering all the execution regions of τss one-by-one, starting
from τss,1, and for each execution region τss,j do the following:
if there is a busy window k such that Wbk ≤ ass,j ≤ Wek
(i.e. τss,j is released within [Wbk,Wek]), we then compute
the distance δj between the arrival of τss,j and Wbk, i.e.
δj

def
= ass,j − Wbk. Note that by definition, δ` ≥ 0. If

such an overlap exists, we postpone all the higher priority
job releases that occur at or after Wbk by δj time units. This
shift in the job releases makes δj additional units of workload
from the tasks in hp(τss) interfere with the execution of τss,j .
As a consequence, the response time of τss,j increases by
δj (i.e. Rss,j ← Rss,j + δj), and so does the time fss,j at
which it finishes its execution (fss,j ← fss,j + δj) and, in a
cascade effect, the times at which the next execution regions
are released (i.e., ∀` > j, ass,` ← ass,` + δj). Step 3(1) in
Fig. 3) illustrates this process for the first region of τss. At
that step all the task releases are delayed by δ1 time units.
Then, Step 3(2) illustrates the second and last iteration of that
process when the second execution region of τss is considered
and all releases occurring at or after Wb2 get postponed by
δ2 time units. For clarity, we have redrawn the interference
pattern on τss resulting from that step.

Note that at each iteration of the transformation described
above, the response time of the currently considered region
τss,j of τss increases by δj time units. However, given that
along with this increase, we also delay by δj time units the
release of all the subsequent execution regions of τss and the
releases of all the jobs of the tasks in hp(τss) that interfere
with those regions, there is no variation in the interference
suffered by those execution regions and their response time
is not impacted by the transformation. After each iteration,
the overall response time of τss therefore increases by δj time
units only. The release pattern from this transformation is now
referred to as RP2. One can notice that all the jobs in RP2

are released within the execution regions of τss.

As already explained, the response time of every region
of τss may have only increased (sometimes it remains the
same) during the process of constructing RP2 as described
above. Finally, in order to obtain RP′, RP2 is further modified
as follows. For each task τh ∈ hp(τss), let Rh denote the
set of all its release time-instants in the pattern RP2. We
know that for each of these instants relh,x there exists a
execution region τss,j of τss such that ass,j ≤ relh,x < fss,j ,
i.e. that release of τj happens while there is a execution
region τss,j of τss which is running or waiting for the CPU.
Now, for each release in Rh, we compute the offset Oh,x of
relh,x relative to the release of the execution region of τss
which is active at that time. That is, for each relh,x ∈ Rh

we compute Oh,x
def
= relh,x−ass,j where j is such that

ass,j ≤ relh,x < fss,j . We then compute the minimum offset
Omin
h for τh such that Omin

h
def
= min∀x {Oh,x} and shift to

the left all the releases of τh by that minimum offset, i.e. for
all relh,x ∈ Rh, we impose relh,x ← relh,x−Omin

h . As a
result, none of the releases of τh exit its ”encompassing” τss’s
execution region and, as a consequence, the interference on
τss is not modified when passing from RP2 to RP′. Moreover,
because the releases of all the jobs of τh are shifted by the
same amount of time, the minimum inter-arrival time between
all those jobs is still respected. Finally, at least one job of each
task τk ∈ hp(τss) is now synchronous with the release of an
execution region of τss (the one[s] for which the relative offset
was minimum, i.e. Oh,x = Omin

h ). This last step of the proof
is depicted on the last line of Fig. 3 for the second task in
hp(τss). From the entire discussion, it can be seen that (1)
and (2) hold true. Hence the lemma.

The previous lemma leads to the following corollary.

Corollary 1. In the critical instant of a self-suspending task
τss, every higher priority task releases a job synchronously
with the arrival of at least one execution region of τss, although
not all higher priority tasks must release a job synchronously
with the same execution region.

B. On maximizing the number of releases in each execution
region

In the previous section, we proved that the critical instant
for a self-suspending task τss suffering interference from non-
self-suspending sporadic tasks happens when every higher
priority task releases a job synchronously with at least one
execution region of τss. Let us now define a set of synchronous
release constraints Synchss as follows.

Definition 1 (Set of synchronous release constraints). Let
Synchss

j be a set of tasks in hp(τss) that are constrained to
release a job synchronously with the jth execution region of
τss. Then, the set of synchronous release constraints Synchss

is the composition of the sets Synchss
j associated with every

execution region τss,j of τss. It thus represents the release
constraints imposed to each of the tasks in hp(τss) with respect
to the execution regions of τss.

With the above definition, we now prove the counter-
intuitive property that, even considering the set of synchronous
releases that lead to the critical instant of τss, the WCRT of τss
is not always obtained when the higher priority tasks release
as many jobs as possible in each execution region of τss.

Lemma 3. Let Synchss be a set of synchronous release
constraints on tasks in hp(τss). Releasing the jobs of the tasks
in hp(τss) as often as possible in each execution region of τss,
while respecting the set of constraints Synchss, will not always
lead to the WCRT of τss under Synchss.

Proof: Consider a task set τ = {τ1, τ2, τ3, τss} of 4
tasks in which τ1, τ2 and τ3 are non-self-suspending spo-
radic tasks and τss is a self-suspending task with the low-
est priority. The tasks are characterized as follows: τ1 =
〈(4) , 8, 8〉, τ2 = 〈(1) , 10, 10〉, τ3 = 〈(1) , 17, 17〉 and τss =
〈(265, 2, 6) , 1000, 1000〉. The set Synchss imposes τ1 to re-
lease a job synchronously with the second execution region
τss,2 of τss while τ2 and τ3 must release a job synchronously
with τss,1.



t
τ3 

τ3	
  
Sss,1 

76
5 

τss	
   τ1	
   τ2	
   τss	
   τ1	
   τ2	
  τss	
   τ1	
   τ3	
  τss	
  τ2	
  τss	
   τ1	
   τss	
  
76

8 

78
0 

77
6 

78
2 

78
4 

79
0 

79
2 

80
0 

τ1 τ2 τ1 τ2 τ3 τ3 τ1 

τ2 τ1 τ2 τ1 
τ3 

77
0 

Delay 

. . . 

(a) Scenario 1. Jobs are released as often as possible while respecting all the
constraints on the synchronous releases.

τ3	
  

76
5 

τss	
   τ1	
   τ2	
   τss	
  

76
8 

77
7 

Sss,1 τ1	
   τ2	
  τ3	
   τss	
   τ1	
   τ2	
   τss	
   τ1	
   τ3	
  τ2	
  τss	
  
77

9 

78
7 

79
5 

79
9 

80
0 

80
2 

. . . 

τ3 τ1 τ2 τ1 τ2 τ3 τ1 τ2 τ1 τ3 τ2 

77
0 

78
0 

78
2 

79
0 

(b) Scenario 2. Jobs are not released as often as possible.

Fig. 4: Example showing that releasing higher priority jobs as
often as possible while respecting a set of synchronous release
constraints Synchss on tasks in hp(τss) may not always cause
the maximum interference on a self-suspending task τss.

Consider two scenarios with respect to the job release
pattern, always respecting the given synchronous release con-
straints. In Scenario 1, the jobs of the higher priority non-
self-suspending tasks are released as often as possible in each
execution region of τss. In Scenario 2 however, one less
job of task τ1 is released in (and therefore interfere with)
τss,1. Showing that the WCRT of the self-suspending task in
Scenario 2 is higher than that of Scenario 1 proves the claim.

Scenario 1 is depicted in Fig. 4a, and Scenario 2 in Fig. 4b.
The first 765 time units are omitted in both figures. This is
mainly due to space constraint. Furthermore, in both scenarios
the release and schedule of the jobs is identical in this time
window. A first job of τ1, τ2 and τ3 is released synchronously
with the arrival of the first execution region of τss at time 0.
The subsequent jobs of these three tasks are released as often
as possible respecting the minimum inter-arrival times of the
respective tasks. That is, they are released periodically with
periods T1, T2 and T3, respectively. With this release pattern,
it is easy to compute that the 97th job of τ1 is released at time
768, the 78th job of τ2 at time 770 and the 46th job of τ3
at time 765. As a consequence, at time 765, τss has finished
executing 259 time units of its first execution segment out of
265 (indeed, we have 765−96×4−77×1−45×1 = 259) in
both scenarios. From time 765 onwards, we separately consider
Scenario 1 and 2.

Scenario 1. Continuing the release of jobs of the non-self-
suspending tasks as often as possible without violating their
minimum inter-arrival times, the first execution region τss,1 of
τss finishes its execution at time 782 as shown in Fig. 4a. After
completion of its first execution region, τss self-suspends for
two time units until time 784. As τ3 would have released a job
just after the completion of τss,1, we delay the release of that
job from time 782 to 784 in order to maximize the interference
exerted by τ3 on the second execution region of τss as shown
in Fig. 4a. Note that, in order to respect its minimum inter-
arrival time, τ2 has an offset of 6 time units with the arrival of
the second execution region of τss. Upon following the rest of
the schedule, it can easily be seen that the job of τss finishes
its execution at time 800.

Scenario 2. As shown on Fig. 4b, the release of a job of task τ1
is skipped at time 776 in comparison to Scenario 1. As a result,

the execution of τss,1 is completed at time 777, thereby causing
one job of τ2 that was released at time 780 in Scenario 1, to not
be released during the execution of the first execution region
of τss in Scenario 2. The response time of τss,1 is thus reduced
by C1 + C2 = 5 time units in comparison to Scenario 1 (see
Fig. 4). Note that this deviation from Scenario 1 still allows
us to respect the synchronous release constraints imposed by
Synchss, as we can release the next job of τ1 synchronously
with the second execution region of τss without violating the
minimum inter-arrival time of τ1. The next job of τ3 however,
is not released in the suspension region anymore but 3 time
units after the arrival of τss,2. Moreover, the offset of τ2 with
respect to the start of the second execution region is reduced
by C1 + C2 = 5 time units. This causes an extra job of τ2 to
be released in the second execution region of τss, initiating a
cascade effect: an extra job of τ1 is released in τss,2, which in
turn causes the release of an extra job of τ3, itself causing the
arrival of one more job of τ2 in the second execution region
of τss. Consequently, the response time of τss,2 increases by
C2 + C1 + C3 + C2 = 7 time units. Overall, the response
time of τss increases by 7 − 5 = 2 time units in comparison
to Scenario 1. This is reflected in Figure 4b as the job of τss
finishes its execution at time 802.

This counter-example proves that the response time of
a self-suspending task τss can be larger when the tasks in
hp(τss) do not release jobs as often as possible.

Theorem 1. The WCRT of τss is not always obtained when the
tasks in hp(τss) release their jobs as often as possible in the
execution regions of τss under any set of constraints Synchss

on their synchronous releases.

Proof: Using the task set τ of the counter-example
provided in Lemma 3, one can check that the response-time
obtained for τss when releasing jobs as often as possible, while
respecting any combination of constraints on the synchronous
releases of the tasks in hp(τss), never exceeds 800 (note that 4
of the 8 possible combinations are already covered by Scenario
1 of the Fig. 4 since τ1 and τ3 have a synchronous release
with both execution regions of τss). However, it was shown
in the proof of Lemma 3 that a response time of 802 can be
experienced by τss when the release of one job of τ1 is delayed.
This proves the theorem.

IV. EXACT WCRT FOR A SELF-SUSPENDING TASK WITH
ONE SELF-SUSPENDING REGION

In this section, we restrict our analysis to the special case
of a self-suspending task τss composed of only two execution
regions and one suspension region. We propose an algorithm
to compute the exact worst-case response time of such a task.
Self-suspending tasks with multiple suspension regions will be
considered in the next section.

As proven in Lemma 2, the critical instant for τss hap-
pens when a job of every higher priority task is released
synchronously with the release of the first and/or second
execution region of τss. However, since we do not know a
priori which combination of synchronous releases corresponds
to the critical instant, there is no other solution for an exact
WCRT analysis than considering all the possible combinations
of synchronous releases. The exact WCRT for τss is thus given
by the maximum response time obtained with any of these
combinations. Consequently, the WCRT analysis problem boils
down to the subproblem of computing the WCRT of τss when



the higher priority tasks in hp(τss) are constrained to have a
synchronous release with a specific execution region of τss. We
will later refer to that subproblem as the “constrained releases
subproblem”.

A. Discussion on the constrained releases subproblem

Let us consider a self-suspending task τss, a set of higher
priority tasks hp(τss) and a subset Synchss

2 of hp(τss) con-
taining tasks constrained to have a synchronous release with
the second execution region of τss. The WCRT of the first
execution region τss,1 of τss under those circumstances can be
computed as follows

Rss,1 = Css,1 +
∑

∀k∈hp(τss)
NIk ×Ck (1)

where NIk is the maximum number of jobs of τk interfering
with τss. According to the usual response time analysis for
sporadic tasks with fixed priorities, NIk is subject to the
following constraint

NIk ≤
⌈
Rss,1
Tk

⌉
(2)

Furthermore, for the higher priority tasks that are constrained
to have a synchronous release with τss,2, one must ensure that

∀τk ∈ Synchss
2 , NIk ×Tk ≤ Rss,1 + Sss,1 (3)

in order to respect the minimum inter-arrival time Tk of τk.
That is, for every higher priority task τk that has a synchronous
release with τss,2, the release of its last job interfering with
τss,1, happening at time (NIk −1)× Tk, and the beginning of
τss,2 at time Rss,1 +Sss,1, have to be separated by at least Tk
time units.

As a consequence of those constraints, the following equa-
tion can be used for NIk and substituted in Eq. (1)

NIk =

min
(⌈

Rss,1

Tk

⌉
,
⌊
Rss,1+Sss,1

Tk

⌋)
if τk ∈ Synchss

2⌈
Rss,1

Tk

⌉
otherwise

(4)

When combined with Eq. (4), Eq. (1) becomes recursive.
This kind of equation is usually solved using a fixed point
iteration on Rss,1. However, as shown in the example be-
low, contrary to the traditional WCRT analysis of non-self-
suspending sporadic tasks, the first solution found to this
equation by increasing the value of Rss,1 until it converges
may yield to an optimistic (and unsafe) value.

Example 1. Consider a self-suspending task τss such that
Css,1 = 3 and Sss,1 = 1, and two higher priority tasks
τ1

def
= 〈(1), 5, 5〉 and τ2

def
= 〈(2), 6, 6〉. Let us assume that

both τ1 and τ2 are constrained to have a synchronous release
with τss,2. It can be verified that the WCRT of τss,1 under those
constraints is given when both τ1 and τ2 release one job in
τss,1, that is, Rss,1 = 6. However, using a fixed point iteration
with Eq. (1) and (4), initiating Rss,1 to Css,1 = 3, the process
immediately converges to Rss,1 = 3, thereby assuming no job
released by the higher priority tasks. �

This example shows that the usual fixed-point iteration
approach, initiating Rss,1 with Css,1, is unsafe. Yet, solving
Eq. (1) with NIk =

⌈
Rss,1

Tk

⌉
for all tasks in hp(τss) — that

is, when there is no constraint on the task releases — is
known to be an upper-bound on the WCRT of τss,1 [10].
Let UBss,1 be the value of that upper-bound. Based on the
observation that increasing Rss,1 until its convergence might
be optimistic, one might propose to start the fixed point
iteration on Rss,1 by initiating Rss,1 to UBss,1. Then, the
value of Rss,1 should decrease over the iterations thanks to
the constraint NIk ≤

⌊
Rss,1+Sss,1

Tk

⌋
. However, as proven in

the example provided below, the new solution output by this
second method can over-estimate the WCRT of τss,1.

Example 2. Consider the same set of tasks as in Example 1,
but let us assume that τ1 must have a synchronous release with
τss,2 and τ2 with τss,1. It can be computed that the WCRT of
τss,1 under those constraints is given when both τ1 and τ2
release one job in τss,1, that is, Rss,1 = 6. Moreover, the
WCRT of τss,1 is known to be upper-bounded by UBss,1 = 9.
If we initiate the fixed point iteration on Rss,1 in Eq. (1) with
UBss,1, we obtain Rss,1 = 8. This is impossible since it would
mean that τ2 releases two jobs in τss,1, that is ,its second
job would be released at time 6 when τss,1 just completed its
execution. �

These two examples show that, in the general case, no
simple method exists yet to find a exact solution to the
constrained releases subproblem.

B. Solution for the constrained releases subproblem

In this section, we propose a method to compute the exact
WCRT on the sum of Rss,1 and Rss,2 under a set of release
constraints Synchss

2 .

The proposed method to compute Rss,1 is based on a
combination of the two straightforward but inexact solutions
investigated in Section IV-A. That is, we simultaneously in-
crease and decrease the value of Rss,1 in two different but
interdependent iterative processes until they converge to the
same value. To do so, Eq. (4) is rewritten as follows

NIk =

min
(⌈

Rss,1

Tk

⌉
,NImax

k

)
if τk ∈ Synchss

2⌈
Rss,1

Tk

⌉
otherwise

(5)

where NImax
k is an upper-bound on the number of jobs of

τk interfering with the first execution region of τss. This
new formulation of Eq. 4 removes the recursiveness in the
term enforcing compliance with the constraints imposed by
Synchss

2 . The WCRT can therefore be computed with the
usual fixed-point iteration on Rss,1 where Rss,1 is initialized
to Css,1 for the first iteration. During that process, NImax

k is
assigned a known upper-bound on NIk. Because NImax

k is an
upper-bound, the result obtained for Rss,1 after convergence
of Eq. (5) is also an upper-bound on the actual WCRT of τss,1.
However, with this value, the constraint expressed by Eq. (3)
may not be respected. Therefore, the constraint imposed by
Eq. (3) is checked. If violated, the value of NImax

k is decreased
and Eq. (1) is solved again. Otherwise, an exact WCRT for
τss,1 has been found.

Lines 2 to 14 of Algorithm 1 present a pseudo-code of
that method. Starting with the upper bound UBss,1 on Rss,1
(line 4), it iteratively removes jobs of higher priority tasks
interfering with τss,1 (lines 7–11) when the condition expressed
in Eq. (3) is violated, i.e., NIk >

Rss,1+Sss,1

Tk
. With this updated



Algorithm 1: Computation of the WCRT of τss assuming
a set of constraints on higher priority tasks releases
1 Function RespTime ( hp(τss), Synchss

2 , NIup ) is
Inputs : hp(τss) - set of higher priority tasks w.r.t. τss

Synchss
2 - the set of tasks in hp(τss) with an

imposed synchronous release with τss,2
NIup - vector of upper bounds on the number

of jobs of each task τk, that can interfere with τss,1
Output: Rss - The exact WCRT for τss when respecting

the constraints given by Synchss
2 and NIup

2 Rbwd
ss,1 ← 0 ;

3 NI ← NIup;
4 Rss,1 ← Css,1 +

∑
∀k∈hp(τss)

NIupk × Ck ;

5 while Rbwd
ss,1 6= Rss,1 do

6 Rbwd
ss,1 ← Rss,1 ;

/* Update the number of interfering
jobs for the tasks synchronous
with τss,2 */

7 forall the τk ∈ Synchss
2 do

8 if NIk >
Rss,1+Sss,1

Tk
then

9 NIk ← NIk − 1 ;
10 end
11 end

// Compute the response time of τss,1

12 Rss,1 ← Css,1+
∑

∀k∈hp(τss)
min(NIk;

⌈
Rss,1

Tk

⌉
)×Ck;

13 forall the τk ∈ hp(τss) do NIk ←
⌈
Rss,1

Tk

⌉
;

14 end
// Compute the offsets with τss,2

15 forall the τk ∈ hp(τss) do
16 Ok,2 ← max(0;NIk × Tk −Rss,1 − Sss,1);
17 end

// Compute the response time of τss,2

18 Rss,2 ← Css,2 +
∑

∀k∈hp(τss)

⌈
Rss,2−Ok,2

Tk

⌉
× Ck;

19 Rss ← Rss,1 + Sss,1 +Rss,2; ;

/* Check if there is not a release
pattern with one less job in τss,1
that increases the overall WCRT */

20 if Rss < UBss and Rss,2 < UBss,2 then
21 forall the τk ∈ hp(τss) do
22 if NIk > 0 then
23 NI ′ ← NI ;
24 NI ′k ← NIk − 1 ;
25 R← RespTime(hp(τss), Synchss

2 , NI ′);
26 If R > Rss then Rss ← R;
27 end
28 end
29 end
30 return Rss;
31 end

value, the response time Rss,1 is recomputed at line 12 of
Algorithm 1. This process iterates until the value computed
for Rss,1 converges to the exact WCRT of τss,1 under the
constraints imposed by Synchss

2 .

Once the response time of τss,1 has been computed, the
offset Ok,2 can be obtained with Eq. (6). This offset accounts
for the difference between the earliest instant at which each
task τk can release a job in τss,2, while respecting its minimum

inter-arrival time Tk, and the beginning of τss,2.

Ok,2 =

{
0 if τk ∈ Synchss

2

max{0, NIk ×Tk − (Rss,1 + Sss,1)} otherwise
(6)

As expressed by Eq. (6), any release of a job of τk that should
happen within the suspension region of τss is delayed until the
beginning of τss,2, thereby imposing Ok,2 = 0. This allows us
to maximize the interference caused by τk to τss,2.

Rss,2 is given by Eq. (7) and is computed as the traditional
response time for non-self-suspending tasks. That is, we seek a
minimum response time that satisfies the fixed-point iteration
by starting with Rss,2 = Css,2. In Algorithm 1, this is reflected
in lines 15 to 18.

Rss,2 = Css,2 +
∑

∀k∈hp(τi)

⌈
Rss,2 −Ok,2

Tk

⌉
× Ck (7)

Line 19 computes the overall response time of τss. How-
ever, as proven in Section III-B, it might happen that releasing
one less job in τss,1 allows to increase the response time of
τss,2 and in turn increase the overall response time of τss.
Therefore, lines 20 to 29 have been added to consider that case.
Those lines call recursively the function RespTime, imposing
the upper-bound on the number of interfering jobs with the first
execution region to be one less than in the computed solution.
Of course, this recursion must not be activated if the overall
response time Rss found for τss is already equal to a known
upper-bound obtained with simple approximation techniques
likes those proposed in [7]. Similarly, there is no need trying
to increase the response time of τss,2 by reducing the response
time of τss,1 if Rss,2 is already equal to an upper-bound.

It can easily be seen by looking at Algorithm 1, that
computing the exact WCRT of τss becomes rapidly intractable.
This fact has been confirmed by the experiments reported
in Section VII. Therefore, in the next section, we propose
a second method, using a MILP formulation, to compute an
approximation over the WCRT of τss.

V. UPPER-BOUND ON THE WCRT FOR A
SELF-SUSPENDING TASK WITH MULTIPLE

SELF-SUSPENDING REGIONS

The exact test proposed in the previous section, although
restricted to one suspension region, rapidly becomes in-
tractable. In this section, we therefore propose an MILP
formulation for computing an upper-bound on the WCRT of a
self-suspending task with multiple suspension regions when all
the interfering tasks are non-self-suspending. This formulation
will be extended in the next section to consider the case where
multiple self-suspending tasks interfere with each other.

The optimization problem, defined by Expressions (8)
to (16) (explained below), has the objective to maximize the
sum of the response times of every execution region of τss.
Its constraints (9)–(16) can all be easily linearized (see [3] for
instance). In the proposed problem formulation, the number
of jobs NIk,j of each task τk ∈ hp(τss) interfering with
each execution region of τss are integer variables, while the
response time Rss,j of each execution region τss,j of τss and
the offsets Ok,j of each task τk with each execution region
τss,j are real variables. This MILP formulation is quite simple
in comparison to the exact test described in Algorithm 1. As
demonstrated in Section VII, this permits a state-of-the-art



MILP solver to output results in an acceptable amount of time
for reasonable system sizes.

Maximize:
mss∑
j=1

Rss,j (8)

Subject to:
mss∑
j=1

Rss,j +

mss−1∑
j=1

Sss,j ≤ UBss, (9)

∀τss,j ∈ τss : Rss,j = Css,j +
∑

τp∈hp(τss)

NIp,j ×Cp (10)

Rss,j ≤ UBss,j (11)
∀τk ∈ hp(τss), ∀τss,j ∈ τss :

Ok,j ≥ 0 (12)
Ok,j+1 ≥ Ok,j +NIk,j ×Tk − (Rss,j + Sss,j) (13)
NIk,j ≥ 0 (14)

NIk,j ≤
⌈
Rss,j −Ok,j

Tk

⌉
(15)

The constraints (9)–(15) of the optimization problem are
a direct translation of the constraints already discussed in
Section IV. That is, Constraint (10) is equivalent to Eq. (1);
Constraints (12) and (13) are a generalization of Eq. (6)
computing the offsets of the higher priority tasks with each
execution region; and Constraints (14) and (15) impose the
traditional lower- and upper-bound on the number of interfer-
ing jobs of each task τk with each execution region τss,j as
already discussed for Eq. (7). Constraints (9) and (11) reduce
the research space of the problem by stating that the overall
response time of τss and the response time of each of its
execution region, respectively, cannot be larger than known
upper-bounds computed with simple methods such as the joint
and split methods presented in [7].

The solution of the optimization problem can still be
improved by adding the following constraint:

∀τk ∈ hp(τss), ∀τss,j ∈ τss :

Rss,j > relk,j +
∑

τp∈hp(τss)

max{0,
⌊
dp,j − relk,j

Tp

⌋
Cp} (16)

where relk,j
def
= Ok,j + (NIk,j −1) × Tk and dp,j

def
= Op,j +

NIp,j ×Tp.

The value of relk,j gives the release instant of the last job
of τk released in the execution region τss,j , while dp,j gives the
deadline of the last job of τp released in τss,j . Therefore, the
term

⌊
dp,j−relk,j

Tp

⌋
provides the number of jobs released by τp

after relk,j and the sum thus gives the total workload released
by higher priority tasks after relk,j . Since τss cannot execute
when higher priority workload is available and because relk,j
is an instant in the response time of the execution region, the
response time of τss,j cannot be smaller or equal than relk,j
plus the higher priority workload remaining to execute after
relk,j . This is what Constraint (16) enforces.

Note that because the optimization problem tests all the
possible values for the offsets Ok,j of each task τk with
every execution region of τss, it also tests all the possible
synchronous release combinations. Therefore, there is no need
to impose any constraint on the synchronous release patterns,
as it was the case in Algorithm 1.

VI. MULTIPLE SELF-SUSPENDING TASKS

In this section, we propose a solution to analyse multiple
self-suspending tasks interfering together. We prove below that
each higher priority self-suspending task τk can safely be re-
placed by a non-self-suspending task τ ′k

def
= 〈(Ck), Dk, Tk, Jk〉

in the response time analysis. The new parameter Jk is the
jitter and is given by Jk

def
= WCRTk −Ck. The worst-case

execution time Ck of the equivalent task τ ′k is defined as the
sum of the worst-case execution times of all τk’s execution
regions, that is, Ck

def
=
∑mk

j=1 Ck,j .

Theorem 2. The interference caused by τk ∈ hp(τi) on a
self-suspending task τi is upper-bounded by the interference
caused by the transformed task τ ′k

def
= 〈(Ck), Dk, Tk, Jk〉.

Proof sketch: The proof is by contradiction. Let us assume
that τk causes more interference than τ ′k. There might be only
two reasons for this to be true: (i) some jobs released by τk
cause more interference than the jobs released by τ ′k, or (ii)
τk releases more jobs than τ ′k in a given time window.

Since τk is self-suspending, the interference caused by each
job of τk is the sum of the interference caused by each of its
execution regions. Therefore, the interference caused by each
job of τk is upper-bounded by Ck

def
=
∑mk

j=1 Ck,j . Because
jobs of τ ′k have a WCET of Ck, this contradicts (i).

Since the minimum inter-arrival times of τk and τ ′k are
identical only their jitters may cause (ii) to be true. Now, let
us compute the maximum jitter that can be experienced by the
jobs of τk. Let ak,1 denote the arrival time of a job of τk. Since
WCRTk assumes that τk executes for its WCET, it means that
a job of τk cannot start executing later than WCRTk −Ck after
ak,1 (otherwise it would complete after ak,1 + WCRTk and
WCRTk would not be a worst-case response time). The release
jitter of τk is therefore upper-bounded by Jk

def
= WCRTk −Ck.

This contradicts (ii) and hence proves the lemma. �

This new model can easily be integrated in the MILP
formulation presented in the previous section. Let Jk,j rep-
resents the jitter experienced by the jobs of τk released in the
jth execution region of τss. In the traditional response time
analysis, the jitter can be accounted by subtracting it from the
offset of the interfering task [2]. That is, Constraint (15) would
become

NIk,j ≤
⌈
Rss,j − (Ok,j − Jk,j)

Tk

⌉
However, instead of introducing a new set of variables in
the optimization problem and hence increase its complexity,
one can simply replace Ok,j by O′k,j in Constraints (15) and

(16), where O′k,j is defined as O′k,j
def
= Ok,j − Jk,j . Because

Jk,j is upper-bounded by Jk, this variable replacement has
for consequence that the bound imposed on the offsets of the
tasks in hp(τss) must be modified. Therefore, Constraints (12)
and (13) must be replaced by:

∀τk ∈ hp(τss),∀τss,j ∈ τss :

O′k,j ≥ −Jk
O′k,j+1 ≥ O′k,j + NIk,j ×Tk − (Rss,j + Sss,j)− Jk

Note that those modifications to the MILP formulation
do not impact its complexity and therefore the time required



to find a solution to the response time analysis of τss in
comparison to the case where all interfering tasks are non-
self-suspending.

VII. EXPERIMENTS

In this section, we describe experiments conducted through
randomly generated task sets to evaluate (i) the applicability of
our exact WCRT computation algorithm, (ii) the performance
of the MILP method, and (iii) the respective gain in com-
parison with the state-of-the-art analysis for self-suspending
sporadic tasks. We used Gurobi [14], a state-of-the-art MILP
solver, to solve our optimization problem.

All the task sets were generated using the
randfixedsum algorithm [15], allowing us to choose
a constant total task set utilization for a given number of
tasks and bounded per-task utilization. Accordingly, the total
utilization (Utot) was varied from 0.1 to 1 by 0.1 increments.
The per-task utilization ranged from [0.05, Utot

2 ], while periods
were uniformly distributed over [10, 100]. The task execution
requirements were calculated from the respective periods
and utilizations. Individual values for each of the multiple
execution and suspension regions were assigned as fraction
of the overall values, Css and Sss respectively, using again
the randfixedsum algorithm for a constant total of 1 and
a minimum fraction of 0.1. We generated 100 task sets per
combination of parameters, while ensuring that task τn−1 was
always schedulable.

We evaluated our techniques for computing the WCRT of
self-suspending sporadic tasks under fixed-priority scheduling
by comparing them to the analysis presented in [3] (denoted
“SFP”) and the ‘Split” and “Joint” analysis presented in [7].
For SFP, we provided the task priorities using RM as an
input to their optimization problem but let it find the optimal
phase assignment. We also removed the constraint Ri ≤ Di in
the solver described in [3] since the goal of our experiments
is not to check the schedulabity of the system per se but
comparing the actual worst-case response time computed with
each analysis. It is worth mentioning that SFP deemed a few
task sets infeasible, in which case, in order to maintain a fair
comparison, they were discarded in the evaluation. For the
task model evaluated in this paper, Split boils down to force
all higher priority tasks to have synchronous releases with each
of the execution regions of the self-suspending task. Joint is
the traditional suspension-oblivious analysis for fixed-priority
scheduling, that is, assuming that the suspension regions are
part of the worst-case execution time of the task. Both Split
and Joint are simple response time tests that yield well-known
upper bounds and that can be computed straightforwardly.
The analysis from [6] was not considered as it was found
incorrect [13]. All the plots of Fig. 5 represent the inaccuracy
of the previous timing analysis techniques when compared to
our optimal method (for Fig. 5a) or our optimization problem
(for Fig. 5b–f).

Herein we restrict our attention to problem instances that
are representative in size of many real-time systems, in or-
der to study the applicability and trade-offs of the different
analysis towards specific parameter intervals. For the first set
of experiments presented on Fig. 5a–c, we fixed the number
of execution regions of τss to 2 and we varied the number
of tasks from 4 to 12. The suspension length of τss was set
as a ratio Si

Ti
with values 0.1, 0.3, and 0.5. Fig. 5a–c show

the average gain achieved by our analysis with respect to

the WCRT when varying the utilization, the length of the
suspension and the number of interfering tasks, respectively.
As expected, our MILP formulation (denoted “Opt”) and our
exact analysis always outperform the other approaches with
average gains varying from 1 to 30% relatively to Joint and
Split, and considerably more for SFP. The difference with SFP
can be explained by the fact that the optimization problem
of [3] was formulated to find schedulable solutions and not
necessarily reduce the response time of the self-suspending
tasks. Maximum gains (which is not represented on the plots)
observed during our experiments showed that our method can
reduce the pessimism on the WCRT over 120% in some
cases, but it is approximately 70% for utilizations around 0.7,
i.e., close to the schedulability bound of RM for non-self-
suspending tasks. However, the gains are highly dependent on
the utilization of the system and the length of the suspension
region as can be seen on Fig. 5a and 5c.

Joint performs relatively poorly when the suspensions
become longer and the utilization increases, but is competitive
in the presence of short suspensions and low utilizations. Split
exhibits the opposite behavior as it is unlikely that the higher
priority tasks happen to be released synchronously with both
execution regions when the suspension is short and the system
is not highly loaded. Although our exact algorithm becomes
intractable for n > 8 (it is only part of Fig. 5a), Opt is able to
also provide the exact WCRT for the majority of the task sets
as illustrated in Fig. 5f. In order to verify if a given WCRT
is the exact solution, one must check if the response time of
each execution region converges to the number of interfering
jobs assumed to be released inside their window.

We then study the importance of different suspension
ratios and how it relates with multiple suspension regions.
Accordingly, the second set of experiments had the number of
tasks fixed to 6 and the number of execution regions varying
from 2 to 5. The suspension length was instead set as a
ratio Si

Ci
with values 1 and 2. The results are depicted in

Fig. 5d and 5e. SFP could not find significant feasible solutions
and thus was excluded in the evaluation. It can be observed
that an increase in the number of suspension regions, when
not accompanied by a substantial increase in the ratio Si

Ci
,

leads to a severe degradation for the Split’s performance, just
attenuated for high utilizations which typically result in smaller
offsets due to the increase in response time. Joint remains very
competitive even when the suspension is twice the length of
the execution time of the task. Throughout the experiments,
it becomes clear that Joint and Split are not comparable, but
also that for such low run-time complexity both approaches
may yield tight upper-bounds when applied over this type of
task sets. As a last remark, we note that our optimization
problem takes in average a few seconds to find its best solution
and that the computational time remains acceptable (below
10s) for reasonable dimension of the problem (12 tasks for 2
execution regions, or 6 tasks for 5 execution regions), although
under highly loaded circumstances the solver may struggle to
improve over the initial solutions for some specific problem
instances, in which case a timer may limit the research time.

VIII. CONCLUSION

In this paper, we have shown that it is simple to characterize
a critical instant for sporadic tasks with self-suspensions,
thereby invalidating a claim made in earlier works. We
highlighted the complexity of the problem and presented an



(a) n = 6 and Sss
Tss

= 0.3. (b) Utot = 0.6 and Sss
Tss

= 0.3. (c) Utot = 0.6 and n = 6.

(d) Utot = 0.7, n = 6 and Sss
Css

= 2. (e) n = 6, mss = 5 and Sss
Css

= 1 or 2. (f) % of exact solutions found by the opt. problem.

Fig. 5: Average WCRT gain (a)–(e) and % of exact solutions found by the optimization problem (f) under various system config.

algorithm to compute the exact WCRT of a lower priority
self-suspending tasks when scheduled together with non-self-
suspending sporadic tasks. As the algorithm rapidly becomes
intractable for a large number of higher priority-tasks due
to the exponential number of scenarios that need to be
considered, we formulated a response time test for multiple
suspension regions as an optimization problem that can be
solved by a MILP tool in reasonable time. The optimization
problem was then extended to accommodate multiple self-
suspending sporadic tasks interfering with each other, still
under fixed-priority scheduling. Experiment results showed
that the proposed response time tests dominate state-of-the-
art techniques, although the WCRT gains highly depend on
the peculiarities of the task sets. Experiments also pointed out
that the optimization problem finds the exact WCRT solution
in the majority of the cases.

Acknowledgment. The authors would like to thank Junsung Kim
for providing his simulator for comparing the results of [3] with
those obtained in this work. This work was partially supported
by National Funds through FCT/MEC (Portuguese Foundation for
Science and Technology) and when applicable, co-financed by ERDF
(European Regional Development Fund) under the PT2020 Part-
nership, within project UID/CEC/04234/2013 (CISTER Research
Centre); also by, FCT/MEC and the EU ARTEMIS JU within projects
ARTEMIS/0003/2012 - JU grant nr. 333053 (CONCERTO) and
ARTEMIS/0001/2013 - JU grant nr. 621429 (EMC2), and the Eu-
ropean Union under the Seventh Framework Programme (FP7/2007-
2013), grant agreement nr. 611016 (P-SOCRATES).

REFERENCES

[1] K. Lakshmanan and R. Rajkumar, “Scheduling self-suspending real-
time tasks with rate-monotonic priorities,” in RTAS, 2010, pp. 3–12.

[2] J. W. S. Liu, Real-Time Systems. Prentice Hall, 2000.

[3] J. Kim, B. Andersson, D. de Niz, and R. Rajkumar, “Segment-fixed
priority scheduling for self-suspending real-time tasks,” in RTSS, Dec
2013, pp. 246–257.

[4] C. Liu and J. H. Anderson, “Task scheduling with self-suspensions in
soft real-time multiprocessor systems,” in RTSS, Dec 2009, pp. 425–
436.

[5] C. Liu and J. Anderson, “An o(m) analysis technique for supporting
real-time self-suspending task systems,” in RTSS, Dec 2012, pp. 373–
382.

[6] C. Liu and J. H. Anderson, “Suspension-aware analysis for hard real-
time multiprocessor scheduling,” in ECRTS, 2013, pp. 271–281.

[7] K. Bletsas, “Worst-case and best-case timing analysis for real-time em-
bedded systems with limited parallelism,” Ph.D. dissertation, University
of York, Department of Computer Science, 2007, pp. 131–141.

[8] F. Ridouard, P. Richard, F. Cottet, and K. Traoré, “Some results on
scheduling tasks with self-suspensions,” Journal of Embedded Comput-
ing, vol. 2, no. 3,4, pp. 301–312, Dec. 2006.

[9] F. Ridouard, P. Richard, and F. Cottet, “Negative results for scheduling
independent hard real-time tasks with self-suspensions,” in RTSS, Dec
2004, pp. 47–56.

[10] K. Tindell and J. Clark, “Holistic schedulability analysis for distributed
hard real-time systems,” Microprocess. Microprogram., vol. 40, no. 2-3,
pp. 117–134, Apr. 1994.

[11] J. Palencia and M. Gonzalez Harbour, “Schedulability analysis for tasks
with static and dynamic offsets,” in RTSS, Dec 1998, pp. 26–37.

[12] C. Liu, J. J. Chen, L. He, and Y. Gu, “Analysis techniques for supporting
harmonic real-time tasks with suspensions,” in ECRTS, July 2014, pp.
201–210.

[13] C. Liu and J. H. Anderson, “Erratum to “suspension-aware analysis for
hard real-time multiprocessor scheduling”,” https://www.cs.unc.edu/ an-
derson/papers/ecrts13e erratum.pdf, 2015.

[14] Gurobi Optimization Inc., “Gurobi optimizer reference manual,”
http://www.gurobi.com, 2015.

[15] P. Emberson, R. Stafford, and R. I. Davis, “Techniques for the synthesis
of multiprocessor tasksets,” in WATERS Workshop, 2010, pp. 6–11.


