

Temporal Isolation with Preemption Delay
Accounting

Technical Report

CISTER-TR-130903

Version:

Date: 9/20/2013

José Marinho

Vincent Nelis

Stefan M. Petters

Technical Report CISTER-TR-130903 Temporal Isolation with Preemption Delay Accounting

© CISTER Research Unit
www.cister.isep.ipp.pt 1

Temporal Isolation with Preemption Delay Accounting
José Marinho, Vincent Nelis, Stefan M. Petters

CISTER Research Unit

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail: jmssm@isep.ipp.pt, nelis@isep.ipp.pt, smp@isep.ipp.pt

http://www.cister.isep.ipp.pt

Abstract
Reservation systems are generally employed to enforce temporal isolation between applications. In the real-time
context the corresponding temporal isolation requires not only the consideration of the direct interference due to
execution of higher priority tasks, but also the indirect cost of e.g. cache-related preemption delay. The accounting
of this in a server-based implementation of temporal isolation posesspecial challenges, in particular when
misbehaving in the form of overruns and violation of the minimum inter-arrival time of an application are to be
covered. We present a novel approach to extend the fault coverage and reduce the pessimism when compared to
the state of the art. Furthermore we demonstrate that the extra implementation of the introduced mechanisms
over the state of the art can be very low on complexity.

Temporal Isolation with Preemption Delay Accounting

José Manuel Marinho

CISTER-ISEP / INESC-TEC

Porto, Portugal

jmsm@isep.ipp.pt

Vincent Nélis

CISTER-ISEP / INESC-TEC

Porto, Portugal

vnelis@isep.ipp.pt

Stefan M. Petters

CISTER-ISEP / INESC-TEC

Porto, Portugal

smp@isep.ipp.pt

ABSTRACT
Reservation systems are generally employed to enforce tem-
poral isolation between applications. In the real-time con-
text the corresponding temporal isolation requires not only
the consideration of the direct interference due to execution
of higher priority tasks, but also the indirect cost of e.g.
cache-related preemption delay. The accounting of this in
a server-based implementation of temporal isolation poses
special challenges, in particular when misbehaving in the
form of overruns and violation of the minimum inter-arrival
time of an application are to be covered. We present a novel
approach to extend the fault coverage and reduce the pes-
simism when compared to the state of the art. Furthermore
we demonstrate that the extra implementation of the intro-
duced mechanisms over the state of the art can be very low
on complexity.

1. INTRODUCTION
In today’s technology, the vast majority of the proces-

sors that are manufactured are not deployed in desktop or
servers, but instead are built in devices and embedded sys-
tems. Besides having specific functional requirements many
applications (called tasks hereafter) deployed in such sys-
tems are subject to stringent timing constraints; in partic-
ular their executions have to complete by a deadline asso-
ciated to each task. Applications exposing such timing re-
quirements are usually called “real-time” applications. A vi-
olation of a task deadline might bring about the same com-
plications as a functional failure in the task execution, so
correctness of a real-time functionality depends on both the
logical results of its computations and the time at which
th ese results are produced. Besides time, many embed-
ded applications also have further non-functional require-
ments in terms of safety and reliability. Before real-time
applications can be deployed in public appliances, timing
guarantees must be derived at design time, consequently en-
forced during run-time and the entire system must be certi-
fied. These timing guarantees are obtained through timing
and schedulability analysis techniques, which are typically

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

more accurate and simpler when spatial and temporal iso-

lation between tasks

1 is provided. This is because timing
analysis techniques must thoroughly examine every shared
resource and identify a worst-case interference scenario in
which the analyzed task incurs the maximum delay before
accessing the shared resource[s]. Without a proper isola-
tion between the tasks: First, the number of interference
scenarios to be explored may be out of proportion, hence
compelling the analysis techniques to introduce an unde-
sired pessimism into the computation by over-approximating
these scenarios. Secondly, having a high number of possible
interference scenarios naturally increases the probability of
encountering a “pathological” case, where the delay incurred
by the analyzed task in that particular scenario is far higher
than in the average case. Since the analysis tools must cap-
ture the worst-case scenario, this pathological scenario will
be retained and used in higher-level analyses (like schedu-
lability analyses) which are built upon the results of timing
analyses (thus propagating the pessimism all the way up to
system-level analyses). More recently, designers of safety-
critical applications also have shown a growing interest in
spatial and temporal isolation mechanisms, because these
critical applications must be certified before being deployed.
The rigorousness (and cost) of the statutory certification
process increases typically with the “Safety Integrity Level”
(SIL) of the task2 to be certified and, when deployed on the
same multicore architecture where tasks of di↵erent SILs
can share low-level hardware resources, unless these tasks

are shown to be su�ciently independent, the hardware and
software must be developed at the highest SIL among the
SILs of all these tasks, which is de-facto very expensive. This
requirement is clearly stated in the international standards
such as ISO 26262-4 [1] (automotive domain, req. 7.4.2.3)
and IEC 61508 [2] (industrial systems, req. 7.6.2.10). This
is why substantial e↵orts are put to (i) render the tasks of a
same SIL as independent and isolated as possible from the
tasks with di↵erent SILs and (ii) upper-bound the impact
that the execution of the tasks of a same SIL may have on
the execution behavior of the tasks of di↵erent SILs, with
the objective of certifying each subset of tasks at its own
SIL level. Within this context of real-time systems the fo-
cus of mixed-criticality systems is set on temporal isolation.

1Spatial partitioning ensures that a task in one partition is
unable to change private data of another task in another
partition. Temporal partitioning, on the other hand, guar-
antees that the timing characteristics of ta sk, such as the
worst-case execution time (WCET), are not a↵ected by the
execution of another task in another partition.
2Every task is assigned a SIL during the design of the system
to reflect its level of “criticality”.

This might be in the form of asymmetric isolation, where
it must be ensured only that tasks with low SIL do not
impact those of higher SILs. However, the more interest-
ing case is symmetric isolation, where tasks do not impact
each other irrespective of their individual SIL. This is moti-
vated through the fact that higher criticality tasks are not
necessarily the ones with shorter deadlines, which leads to
the fact that even the behaviour of the higher priority tasks
needs to be monitored and acted upon in order not to jeop-
ardize the temporal behaviour of higher criticality task with
lower priority. A standard implementation of the symmetric
temporal isolation is by the usage of servers [3], [4]. These
servers provide a certain share of the processing resource
called budget, which is supplied to a task in a recurrent
fashion. While the general concepts of servers have been well
explored, the use of implicitly shared resources, like caches
is still an open issue for server-based systems. When a task
executing in a server is preempted by a higher priority task,
it loses at least partially its set of useful memory blocks in
the caches (working set) and other shared resources. This
loss of working set leads to an additional execution time re-
quirement on resumption of execution, which either needs
to be accounted for in the sizing of the budgets of individ-
ual tasks, or treated through online mechanisms. Besides
easing timing analyses, schedulability analyses, and the cer-
tification process, the main objective of temporal isolation
via servers is also to isolate applications from other tempo-
rally misbehaving applications and their corresponding ef-
fects. This misbehavior can come in two distinct flavors.
Firstly, in terms of a violation of the worst-case execution
time (WCET) assumptions, secondly in the minimum inter-
arrival time assumption made in the analysis step. While
the former has been treated to reasonable extent [4], the
latter is of equal importance.
Contribution of the paper: Within this work we discuss
analysis and online mechanisms which prove suitable to pro-
vide temporal isolation addressing two forms of misbehavior
from a task:

1. Execution over-run (i.e. a job requesting a workload
greater than the WCET assumed at design time)

2. Job released at a faster rate than assumed at design
time

A simple solution for temporal isolation assurance in sys-
tems only subject to miss-behaviors of type 1) is achieved
by setting the budgets of each server equal to the WCET
of the task plus an upper bound on the maximum preemp-
tion delay that any job might su↵er during its execution.
We provide an alternate solution which ensures the tempo-
ral isolation for systems facing only type 1) miss-behaviors
which consists of an online mechanism to transfer budgets
from the server of the preempting task to the server of the
preempted task at each preemption occurrence. We prove
that our proposed solution is always less pessimistic than the
over-dimensioning of the budgets of the preempted tasks. In
order to maintain the temporal isolation in systems faced
with miss-behaviors of type 1) and 2) we provide a further
online mechanism for budget transferring. For this type of
systems there exists no solution in the literature providing
full temporal isolation.
Organization of the paper: In the next section, we pro-
vide an overview of related work followed by a description
of our system model in Section 3. In this we also give a
very brief review of the reservation-based framework which

is used during the work discussion. The options for preemp-
tion delay accounting mechanisms in the reservation based
system are discussed in Section 4 leading to the presentation
of our budget augmentation approach in Section 5. Section 6
is devoted to the discussion of the violation of the minimum
arrival assumption. The implementation concerns of our
proposed techniques are presented in Section 7. Section 8
demonstrates the integration of preemption delay computa-
tion and evaluates our proposed techniques experimentally.
Conclusions and indication of future work finalizes the doc-
ument.

2. RELATED WORK
Reservation-based systems are quite a mature topic in

real-time literature. Sporadic servers [3, 5] are used in real-
time literature to ensure temporal isolation in fixed task
priority systems. Each server reserves a budget for the task
execution. A task can only execute if the server budget is
not depleted. This ensures that the interference generated
by a task in the schedule cannot exceed what is dictated by
its server parameters and servers are the scheduled entities.

Solutions for temporal isolation in Earliest Deadline First
(EDF) also exist employing the sporadic server concept,
namely constant bandwidth server (CBS) [3] and Rate Based
Earliest Deadline First (RBED) [4]. Each server has an
absolute deadline associated to it which acts as the server
priority. On top of the temporal isolation properties these
frameworks also employ budget passing mechanisms which
enhance the average-case response time of tasks in the sys-
tem without jeopardizing the temporal guarantees [6, 7].

The previously employed execution models assume that
the interference between workload occurs solely on the CPU.
As it turns out, if other architectural subsystems are shared
in the execution platform which present some state with non-
negligible state transition times (e.g. caches), interference
between task will be created (commonly referred to as pre-
emption delay). The maximum preemption delay any task
may endure may still be integrated into the task’s budget3,
this solution is shown in this paper to be subject to heavy

pessimism. When minimum inter-arrival times of tasks can-
not be relied upon (i.e. tasks release jobs at a faster rate than
assumed at design time), the previously mentioned frame-
works fail to ensure temporal isolation between concurrent
tasks in the system.

Systems with non-negligible CRPD have been a subject
of wide study. Several methods have been proposed that
provide an o↵-line estimation based on static analysis for
this inter-task interference value. Lee et al. [8] presented
one of the earliest contributions on CRPD estimation for
instruction-caches. The authors introduced the concept of
useful cache blocks, which describe memory blocks poten-
tially stored in the cache at a given program point and that
are potentially reused in the later program execution. They
assume that the CRPD incurred by a task after the preemp-
tion by another task is constant throughout a basic block.
By considering for the maximum quantity of information
a task may have in the cache at every basic block and the
maximum quantity of information that any preempting task
can evict, they have devised a formulation for the compu-
tation of the maximum preemption delay a task may su↵er.
Several works followed, either by reducing the complexity of

3we assign one server per task, the task and server term is
used interchangeably in this document

the schedulability analysis or by enhancing the definition of
useful cache blocks [9, 10, 11].

Embedded in all the stated frameworks are schedulabil-
ity tests. Scheduling analysis for [8] is based on response
time analysis (RTA); Ju et al. [12] have provided a demand
bound function-based procedure suitable for EDF schedu-
lability with preemption delay awareness. The general ap-
proach of computing the CRPD is similar to Lee’s.

In order to ensure temporal isolation cache partitioning
may be employed [13]. This technique has the disadvantage
of decreasing the usable cache area available to each task,
and as a consequence decreasing its performance. Other
architectural subsystems exist (e.g. TLB, dynamic branch
predictors, etc.) which cannot be partitioned in order to
remove the interference source between tasks. Recently an
approach has been proposed where, when a task starts to
execute it stores onto the main memory all the contents of
the cache lines it might potentially use [14]. After the pre-
empting task terminates its execution it loads back from
memory all the memory blocks that it has stored in the
cache at its release. This indeed ensures temporal isolation
among di↵erent applications but has several drawback. It
unnecessarily moves all the memory blocks to main mem-
ory which reside in cache lines it might use even if the ac-
tual actual execution it does not access them. This mecha-
nism significantly increases memory tra�c which might be
troublesome in multicore partitioned scheduling due to in-
creased contention on the shared memory bus. In compar-
ison our approach only passes budgets between servers and
hence this budget is only used it it is required, leading to a
more e�cient system behaviour. As a last limitation of [14]
it cannot cope with scenarios where a given task does not
respect the minimum inter-arrival contract part. As a last
resort non-preemptive scheduling policies may be employed.
By nature, these are not subject to any preemption delay
overhead. Even though fully preemptive fixed task prior-
ity and non-preemptive fixed task priority are incomparable
with respect to schedulability (i.e. one does not dominate
the other), the later presents lower schedulability capabili-
ties [15].

3. SYSTEM MODEL
We model the workload by a task set T = {⌧

1

, . . . , ⌧n}
composed of n tasks, where each task ⌧i is characterized by
the three-tuple hCi, Di, Tii with the following interpretation:
⌧i generates a potentially infinite sequence of jobs, with the
first job released at any time during the system execution
and subsequent jobs released at least Ti time units apart.
Each job released by ⌧i must execute for at most Ci time
units within Di time units from its release. Hence, the pa-
rameter Ci is referred to as the “worst-case execution time”,
Di is the relative deadline of the task and Ti is its mini-
mum inter-release time (sometimes called, its period). In
this work we only focus on task sets where Di 6 Ti. These
three parameters Ci, Di and Ti represent an agreement be-
tween the task and the system. If the system can complete
the execution of all the jobs by their respective deadline
then the task set is said to be “schedulable”. Considering
that the tasks are scheduled by a fixed-priority scheduling
algorithm, e.g. Deadline-Monotonic, we assume that tasks
are indexed by decreasing order of priority, i.e., ⌧

1

has the
highest priority and ⌧n the lowest one.
In this work, we use the notion of “contract”, where each

task has a contract with the system. From the point of view

of a task, this contract states that as long as the task respect

its parameters Ci and Ti, its temporal deadline Di will be

met. However, tasks may not always respect their contract.
We say that a task ⌧i “behaves” if it does not require more
CPU resources than indicated by its parameters Ci and Ti.
Otherwise, if any job of ⌧i comes to request more than Ci

time units to complete, or if ⌧i releases two consecutive jobs
in a time interval < Ti time units, then ⌧i is said to be
“misbehaving”. The other party – the system – is assumed
to never violate its contracts with any task. The system
associates to each task ⌧i a sporadic server Si defined by the
two-tuple hBi, T

s
i i. The parameter Bi encodes the execution

budget that Si provides to ⌧i in any time window of length
T s
i . This budget is consumed as task ⌧i executes and a task

can only execute if its budget is not depleted.
A sporadic server is, at any time instant, in either one of

the two following states:

active when there is pending workload from task ⌧i andBi(t) >
0;

idle when there is no pending workload from task ⌧i or
Bi(t) = 0.

The sporadic server budget replenishment mechanics can
be described succinctly by the protocol formulated with the
two following rules:

• When the server becomes Active at a time t
1

, a recharg-
ing event is set to occur at time instant t

1

+ T s
i ;

• when Si becomes idle at a time t
2

, the replenishment
amount corresponding to the last recharging time is
set to the amount of capacity consumed by Si in the
interval [t1, t2).

At the start of the system (t = 0) Si is idle and Bi(t) =
Ci.

We assume Ti = T s
i for the sake of simplicity and hence,

Ti is used throughout the document as a synonym for T s
i .

From this point onward, we assume that all the task dead-

lines are met at run-time as long as every job of each task

⌧i executes within the execution budget granted by Si and

respects its timing parameters Ci and Ti. The framework
proposed here ensures that, though any task ⌧i can misbe-
have by violating its stated parameters, the other tasks in
the system will never miss their deadlines as long as they be-
have. Note that we assume throughout the document that
each server has only a single task associated to it. The server
and task terms are used interchangeably in the remainder of
the document.

4. COMPARISON BETWEEN PREEMPTION
DELAY ACCOUNTING APPROACHES

In a reservation-based system, as previously stated, each
task ⌧i can only execute as long as Bi(t) is greater than 0 –
Hereafter, Bi(t) denotes the remaining budget of server Si

at time t. If every job is guaranteed to meet its deadlines,
then at each time t where task ⌧i releases a job, it must hold
that Bi(t) is greater than or equal to Ci plus the maximum
preemption delay that the job may be subject to. We denote
by �j,i the maximum interference that a task ⌧j may induce
in the execution time of task ⌧i by preempting it. This
maximum interference can be computed by using methods
such as the ones presented in [9, 16, 17].

Given all these �j,i values, we present below a naive solu-
tion to compute the budget Bi of each task ⌧i 2 T . If we
assume that task ⌧j releases its jobs exactly Tj time units
apart, then the maximum number of jobs that ⌧j can release
in an interval of time of length t is given by

nj(t)
def

=

⇠

t
Tj

⇡

(1)

Therefore, during the worst-case response time of a task ⌧i
denoted by Ri, there are at most nj(Ri) jobs of task ⌧j ,
j < i, that can potentially preempt ⌧i. Since each of these
preemptions imply an interference of at most �j,i time units
on the execution of ⌧i, a straightforward way to compute the
budget Bi assigned to each task ⌧i to meet all its deadlines
is

Bi
def

= Ci +
i�1

X

j=1

nj(Ri)⇥ �j,i (2)

For the budget assignment policy defined in Equation (2),
Equation (3) gives an upper-bound PDmax

bgt

(t) on the total
CPU time that is reserved in any time interval [0, t] to ac-
count for all the preemption delays.

PDmax

bgt

(t)
def

=
n
X

i=2

ni(t)⇥
i�1

X

j=1

nj(Ri)⇥ �j,i

!

=
n
X

i=2

ni(t)⇥
n
X

j=1

nj(Ri)⇥ �j,i

!

(3)

as 8 j > i it holds that �j,i = 0.
It is worth noticing that Equation (2) assigns the budget of

task ⌧i by looking at how many times ⌧i might get preempted
during the execution of each of its jobs and how much each
such preemption may cost. That is, this budget assignment
policy implicitly considers the problem from the point of
view of the preempted task.

An alternative approach to analyze the maximum preemp-
tion delay that a task can incur consists in considering the
problem from the point of view of the preempting task. An
example of such an approach has been presented by Stachu-
lat et al [11]. The authors defined the multi-set Mj,i(t) as
the set of all costs �j,k that tasks ⌧j may induce in the execu-
tion requirements of all the tasks ⌧k with a priority between
that of ⌧j and ⌧i, in a time window of length t. A multi-set
is a generalisation of the set concept where elements may be
replicated (i.e. a multi-set may be for example {x, x, x, y, y}
whereas a set consists of a collection of elements such that no
element is equal to any other in the same set). The multi-set
Mj,i(t) is formally defined at any time t as follow:

Mj,i(t)
def

=
⇣

]i�1

k=j+1

]nk(t)
m=1

]nj(Rk)

`=1

�j,k
⌘

]nj(t)

g=1

�j,i (4)

The operator] denotes the union over multi-sets. Let us
look at a brief example to di↵erentiate between the multi-set
union and the set union. For the multi-set union we have
{x, y}] {x, y} = {x, x, y, y} whereas for the set union the
outcome is {x, y} [{x, y} = {x, y}.

Each set Mj,i(t) enables the construction of the function
�j,i(t), denoting the maximum preemption delay caused by
jobs from task ⌧j in any time window of length t.

�j,i(t)
def

=

qj,i(t)
X

`=1

`
max(Mj,i(t)) (5)

where

qj,i(t)
def

=
i�1

X

k=j

min(nk(t), nj(t)) (6)

and the function
`

max(Mj,i(t)) returns the `th highest value

in the setMj,i(t) – the equation�j,i(t)
def

=
Pqj,i(t)

`=1

`
max(Mj,i(t))

thus represents the sum of the qi,j(t) highest values inMj,i(t).
We show below that, considering the preemption delay

from the perspective of the preempting task is always less
pessimistic than considering the preemption delay from the
point of view of the preempted task.

Theorem 1. For each task ⌧i 2 T , it holds at any time t
that

n
X

j=1

�j,i(t) 6 PDmax

bgt

(t) (7)

Proof. From Equation (4) and since 8 j > i it holds that
�j,i = 0, for all ⌧j 2 T the sum of all elements in Mj,i(t) is
given by:

X

e2Mj,i(t)

e =
i
X

k=j+1

nk(t)
X

m=1

nj(Rk)
X

`=1

�j,k

=
i
X

k=j+1

nk(t)⇥ nj(Rk)⇥ �j,k (8)

We now split the remainder of the proof into two lemmas
that will straightforwardly yield Equation (7).

Lemma 1.
Pn

j=1

P

e2Mj,i(t)
e 6 PDmax

bgt

(t)

Proof. From Equation (8), we know that

n
X

j=1

X

e2Mj,i(t)

e 6
n
X

j=1

n
X

k=2

nk(t)⇥ nj(Rk)⇥ �j,k

6
n
X

k=2

nk(t)⇥
n
X

j=1

nj(Rk)⇥ �j,k

from(3)

6 PDmax

bgt

(t)

Lemma 2.
Pn

j=1

P

e2Mj,i(t)
e >Pn

j=1

�j,i(t)

Proof. On the one hand, one can observe from Equa-
tion (4) that the number of elements in the multiset Mj,i(t)
is given by

#Mj,i(t) =

0

@

i�1

X

k=j+1

nk(t)⇥ nj(Rk)

1

A+ nj(t) (9)

and since nj(Rk) > 1, 8j, k 2 [1, n], it holds that

#Mj,i(t) > nj(t) +
i�1

X

k=j+1

nk(t) (10)

On the other hand, since when j = k we have

min(nk(t), nj(t)) = min(nj(t), nj(t)) = nj(t)

and thus this Equation (6) can be rewritten as:

qj,i(t) = nj(t) +
i�1

X

k=j+1

min(nk(t), nj(t))

6 nj(t) +
i�1

X

k=j+1

nk(t) (11)

By combining Equations (10) and (11), it thus holds 8j, i 2
[1, n] that

qj,i(t) 6 #Mj,i(t) (12)

Remember that
Pqj,i(t)

`=1

`
max(Mj,i(t)) represents the sum

of the qi,j(t) highest values in Mj,i(t). From Inequality (12)

and by definition of the function
`

max(Mj,i(t)), we can con-
clude that 8t > 0 and for all ⌧i, ⌧j 2 T :

X

e2Mj,i(t)

e >
qi,j(t)
X

`=1

`
max(Mj,i(t)) (13)

By summing Inequality (13) over all j 2 [1, n], we get

n
X

j=1

X

e2Mj,i(t)

e >
n
X

j=1

qi,j(t)
X

`=1

`
max(Mj,i(t))

>
n
X

j=1

�j,i(t)

Hence the lemma follows.

Finally, by combining Lemmas 1 and 2 it is easy to see that

n
X

j=1

�j,i(t) 6 PDmax

bgt

(t)

2

5. PROPOSED BUDGET AUGMENTATION
FRAMEWORK

5.1 Description of the framework
Since a task may incur some delay due to a preemption,

it is straightforward that an execution budget of Bi = Ci

may be insu�cient for the task ⌧i to complete if it gets pre-
empted during its execution. On the other hand, the budget
assignment policy defined by Equation (2) has been shown to
be (potentially) pessimistic. Hence, we propose a run-time
mechanism where every preempting task has to pay for the

damage that it causes to the schedule. According to Theo-
rem 1 by accounting for the preemption delay from the point
of view of the preempting task leads to reduced wastage of
system resources. Formally, the execution budget Bi of each
task ⌧i is initially set to Ci and refilled according to the spo-
radic server definition. Then, each time a task ⌧i resumes
its execution after being preempted by other task(s), the re-
maining budget Bi(t) of its associated server Si is increased
by
P

⌧j2H(i) �j,i(t) (where H(i) denotes the set of tasks that

preempted ⌧i) to compensate for the potential extra execu-
tion requirement that ⌧i may incur.
An example of the described framework is presented in

Figure 1. In that example the task set contains 4 tasks.

time

time

The task executes
normally

The task incurs an extra delay
due to the preemption

The task releases
a job

Figure 1: Budget Augmentation Example

Task ⌧
4

is first preempted by a job from ⌧
2

. When ⌧
4

re-
sumes execution at time t

1

, immediately after ⌧
2

terminates,
its remaining budget B

4

(t
1

) is incremented by �
2,4 units.

Then, two jobs of ⌧
1

preempt both ⌧
3

and (indirectly) ⌧
4

.
Each time ⌧

3

resumes its execution at the return from the
preemption (at time t

2

and t
3

), the execution budget B
3

(t
2

)
and B

3

(t
3

) is incremented by �
1,3. Finally, when ⌧

3

ter-
minates its workload and ⌧

4

resumes at time t
4

, B
4

(t
4

) is
incremented by �

1,4 + �
3,4 as both ⌧

1

and ⌧
3

might have
evicted some of its cached data; hence forcing ⌧

4

to reload
it from the memory.

5.2 Schedulability Analysis
When the preemption delay is assumed to be zero (i.e.,

when the cache subsystem is partitioned for example), the
authors of [18] proposed the following schedulability test to
check at design-time, whether all the task deadlines are met
at run-time.

Schedulability Test 1 (From [18]). A task set T is

schedulable if, 8⌧i 2 T , 9t 2 (0, Di] such that

Ci +
i�1

X

j=1

rbf(Sj , t) 6 t (14)

where

rbf(Sj , t)
def

=

✓�

t
T s
j

⌫

+ 1

◆

⇥Bj (15)

Theorem 2 (from [5]). A periodic task-set that is schedu-

lable with a task ⌧i, is also schedulable if ⌧i is replaced by a

sporadic server with the same period and execution time

Proof. Follows from the proof of Theorem 2 in [5]

The correctness of the schedulability test 1 comes as a
direct consequence of the Theorem 2 as the presented test
is the one for a task-set composed of periodic tasks [18].

As introduced earlier, if every task ⌧i augments its budget
for �j,i time units after being preempted by a task ⌧j , then
an upper bound on the total budget augmentation in any
time window of length t is given by

Pi�1

j=1

�j,i(t).
Besides, it can be shown that in any given time window

of length t, an upper-bound on the number of execution

resumptions in a schedule is given by q
1,i(t). Therefore, as-

suming that performing each execution of the budget aug-
mentation consumes F

cost

units of time, the time-penalty
attached to the implementation of the proposed framework
has an upper bound of

cost(t) = q
1,i(t)⇥ F

cost

(16)

Integrating these quantities into Schedulability Test 1 yields
the following test:

Schedulability Test 2. A task set T is schedulable if,

8⌧i 2 T , 9t 2 (0, Di] such that

Ci + cost(t) +
i�1

X

j=1

[rbf(Sj , t) +�j,i(t)] 6 t (17)

Proof Correctness of Schedulability Test 2. The
Function (6) quantifies the maximum number of times that
jobs from task ⌧j may preempt jobs of priority lower than
⌧j and higher or equal than ⌧i in a window of length t. The
Function 5 (�j,i(t)) is the summation over the qj,i(t) largest
values in the multi-set Mj,i(t). The function �j,i(t) is then
an upper-bound on the amount of preemption delay com-
pensation that can be extracted from task ⌧j from any task
of priority lower than ⌧j and higher or equal than ⌧i in a
window of length t. Thus

Pi�1

j=1

�j,i(t) is an upper-bound
on the preemption delay compensation budget used by tasks
of priority higher or equal than ⌧i for any time t. As a con-
sequence and by the correctness of schedulability test 1, the
correctness of this schedulability test is proven.

According to Schedulability Test 2 and as a consequence
of Theorem 1, if we assume cost(t) = 0 then the proposed
framework enables a higher schedulability than considering
the budget Bi of each server Si to be equal to Ci plus the
maximum preemption delay that any job of ⌧i may be poten-
tially subject to (see Equation (2)). However, in a scenario
where cost(t) is non-negligible the dominance relation is no
longer present.

6. PROPOSED BUDGET DONATION FRAME-
WORK

time time

Figure 2: Excessive Preemption Delay Due to Min-
imum Interarrival Time Violation

The framework presented above is a combination of a
reservation-based mechanism and a budget augmentation
policy. This powerful combination ensures that the tem-
poral isolation property is always met as long as none of the
tasks violates its minimum inter-arrival constraint, i.e., as
long as none of them release two consecutive jobs in a time
interval shorter than its pre-defined period Ti. This condi-
tion of not violating the minimum inter-arrival constraint
is implicitly assumed by Equations (5) and (6), in which

the upper-bound on the preemption delay interference in-
herently relies on the number of jobs released by every task
in a given time window.

If any task violates its minimum inter-arrival time con-
straint, the temporal isolation property no longer holds. An
example of this is depicted in Figure 2. On the left-hand side
of the picture, task ⌧

1

releases a single job in a time interval
of length T

1

. This job executes for C
1

time units and task ⌧
2

su↵ers only from one preemption, leading to an increase of
�
1,2 on its execution requirement. In the right-hand side of
the picture, ⌧

1

releases more than one job in the same time
interval of length T

1

and ⌧
2

now su↵ers from 2 preemptions,
leading to an increase of 2 ⇥ �

1,2 on its execution require-
ment. In the latter scenario, task ⌧

2

augments its budget
accordingly but may face a deadline miss, or a lower prior-
ity tasks may be subject to more interference than what was
accounted for in the schedulability test.

In order to avoid this issue, the system associates a second
server Yi to each task ⌧i. This server Yi has parameters
hZi, T

Y
i i – Zi is the budget and TY

i is the replenishment
period. Unlike the server Si, the budget Zi is not debited
while ⌧i is running. The purpose of this second server Yi is
to “pay” for the damage caused by ⌧i in the system when
⌧i preempts another task. That is, each task ⌧j , when it is
preempted by ⌧i, obtains a budget donations by transferring
some execution budget from the server Yi to its execution
budget Bj . These budgets Yi impose a new condition to
their associated task ⌧i in order to accommodate for the
minimum inter-arrival misbehavior: task ⌧i is allowed to
release a new job only if there is su�cient budget in Yi.
In this way the preemption delay that ⌧i may cause in the
schedule is tightly monitored.

The Replenishment condition for server Yi is defined as
follows:

• At time instant t0 when a task ⌧j , after being pre-
empted by ⌧i, requests a preemption delay compensa-
tion of �i,j from ⌧i it sets a replenishment event for
Yi at t0 + TY

i . The amount of budget replenished to
server Yi at the t0 + TY

i event is equal to �i,j .

This replenishment mechanism is in accordance with the
sporadic server replenishment rules [5] and hence the server
Yi is a sporadic server.

These two parameters Zi and TY
i are set by the system

designer and the question of how to define them will be
discussed later. For now, bear in mind that these two pa-
rameters are given for each task ⌧i 2 T .

The purpose of each server Yi is to ensure that new jobs
of a task ⌧i can only be released as long as the maximum
preemption delay that ⌧i can induce in the schedule (ac-
cording to the schedulability test) is available in Yi. To ef-
fectively implement this solution, we reformulate the budget

augmentation mechanism presented in the previous section
as a budget transfer mechanism. The main concept remains
simple:

1. To release a new job (say at time t), a task ⌧j is re-
quired to have at least Pmax

j time units in its budget
Zj(t). This quantity Pmax

j is the maximum delay that
⌧j can cause on the lower priority tasks by preempting
them. It is straightforwardly defined as

Pmax

j
def

=
n
X

k=j+1

�j,k (18)

If Zi(t) < Pmax

j then ⌧j is not authorized to release a
new job at time t and must wait until the earliest time
instant t0 > t when Zj(t

0) > Pmax

j .

2. Unlike the budget augmentation protocol proposed in
the previous section, each time a task ⌧i resumes its ex-
ecution (say at time t) after being preempted (let H(i)
denote the set of tasks that preempted ⌧i), ⌧i does not
see its execution budget Bi(t) being simply augmented
by
P

⌧j2H(i) �j,i time units, with
P

⌧j2H(i) �j,i coming

from thin air. Instead, �j,i(t) time units are trans-

ferred from the budget Zj(t) of each task ⌧j 2 H(i) to
its execution budget Bi(t).

Informally speaking, the underlying concept behind this
budget transfer protocol can be summarized as follows: “a
task ⌧i is allowed to release a new job only if it can pay for
the maximum damage that it may cause to all the tasks that
it may preempt”. If the task ⌧i can pay the required amount
of time units, i.e., ⌧i has a provably su�cient amount of time
units saved in its budget Zi(t), then it can release its new
job and the preempted tasks will claim their due preemption
delay compensation when they will eventually resume their
execution.

This simple concept makes the framework safe. Rather
than a formal proof, we give below a set of arguments to il-
lustrate the claim. Suppose that a task ⌧i starts misbehaving
by frenetically releasing jobs that execute for an arbitrarily
short time; hence clearly violating its minimum inter-arrival
constraint.

1. From the point of view of a higher priority task (say,
⌧j): each job of ⌧j can preempt at most one job from
⌧i and before releasing each of its jobs, ⌧j makes sure
that there is enough provision in its budget Yj to com-
pensate for the damage caused to the lower priority
tasks, including ⌧i.

2. From the point of view of the misbehaving task ⌧i:
this task will keep on generating jobs until its budget
Zi(t) is depleted. For each job released, the framework
makes sure that the job can actually pay for the dam-
age caused to the lower priority tasks. Regarding the
higher priority tasks, each job of ⌧i may be preempted
and request some extra time units upon resumption
of its execution. However, this extra budget requested
has been accounted for when the higher priority jobs
were allowed to be released – as mentioned in 1).

3. From the point of view of a lower priority task (say,
⌧k): each job of ⌧k may be preempted multiple times
by the frenetic job release pattern of ⌧i. However, upon
each resumption of execution, ⌧k will be compensated
for the delay incurred by receiving some extra time
units from the budget Zi(t) of the misbehaving task –
as guaranteed in 2).

As seen, the sole purpose of each server Yi, 8i 2 [1, n]
is to control the preemption delay that the task ⌧i induces
on the schedule. Since the upper-bound on the preemption
delay related interference is now dictated by these servers,
Schedulability Test 2 presented in the previous section can
be rewritten as:

Schedulability Test 3. A task set T is schedulable if,

8⌧i 2 T , 9t 2 (0, Di] such that

Ci + cost(t) +
i�1

X

j=1

[rbf(Sj , t) + rbf(Yj , t)] 6 t (19)

Proof Correctness of Schedulability Test 3. The
replenishment mechanism of server Yi is in accordance with
the sporadic server replenishment rules. As a consequence
of this fact and according to the Theorem 2 the maximum
amount of budget consumed in any interval of length TY

i

is Zi. This means that rbf(Yj , t) is an upper-bound on the
budget used for execution by any task that was preempted
by task ⌧j and got the due compensation in any interval of
length t. By this reasoning and the correctness of schedula-
bility tests 1 and 2 the correctness of this schedulability test
is thus proven.

The choice of the parameters of each Yj server is left at the
criteria of the system designer. However, in a given period
Ti any task ⌧i will require at least the execution of one job.
As a consequence the budget Zi of Yi must necessarily be
greater than or equal to Pmax

i . The simpler approach would
be to define each server Yi as hZi = Pmax

i , TY
i = Tii as Yi

would have enough budget to compensate for all the inter-
ference that ⌧i may cause in the schedule, assuming that
the minimum inter-arrival constraint is not violated. How-
ever, the system designer may prefer TY

i > TS
i to provide

more flexibility in case the task ⌧i is expected to violate its
minimum inter-arrival constraint, or even to accommodate
intended bursty arrival of requests.

As a last note it is important to state the advantage of this
framework with respect to a simple mechanism imposing a
limitation on the number of jobs a task may release in a
given time window. With our framework the number of
jobs that a task may release without breaking the temporal
isolation guarantees is variable since this depends on the
quantity of lower priority jobs that it has preempted so far.
This allows for a more dynamic system with overall better
responsiveness.

7. IMPLEMENTATION ISSUES
An e�cient implementation is key for a useful approach

to server-based scheduling. The general principle pursued is
that the preemption delay repayment budget is only granted
when an actual preemption occurs and is only transferred on
resumption of execution.

�1,2 �1,3 �1,n�2,3 �n�1,n

Figure 3: Preemption Delay Compensation Array

As a first step we arrange the preemption delay repayment
budget values �i,j in a linear preemption delay array (Fig-
ure 3). As a second step the concept of preemption queue is
introduced. Whenever a job is first executed it is entered as
the new head of the preemption queue. On completion of a
job, the highest priority job of the ready queue is picked for
execution and, if executed for the first time, inserted as the
new head of the ready queue, claiming the pointer of the
run queue relationship of the completed job. If the job is

⌧

2

⌧

3

⌧

5

⌧

4

⌧

1

⌧

2

⌧

3

⌧

5

⌧

4

⌧

1

⌧

7

⌧

6

⌧

5

⌧

4

⌧

1

⌧

5

⌧

4

⌧

6

⌧

5

⌧

4

⌧

1

⌧

2

⌧

3

⌧

5

⌧

4

⌧

6

⌧

5

⌧

4

⌧

1

1

2

3

4

5

6

7

Stage

ready queue order

preemption order

preemption head

⌧

1

overruns its budget

⌧

6

releases a job

⌧

7

preempts ⌧

4

⌧

6

preempts ⌧

4

Figure 4: Evolution of the Preemption and Ready
Queues

not executed the first time, it is simply assigned to the head
of the preemption queue pointer. Figure 4 demonstrates the
development of the preemption queue over time. To simplify
representation, the normal priority-based implementation of
the ready queue is depicted as linked list.

The completion or overrun of budget of jobs is indicated
in stage 3 and 6 of Figure 4. It has to be stressed that
maintaining the preemption queue is an O(1) operation, as
it only involves checking whether a task is executed for the
first time and must be inserted into the preemption queue.
The preemption queue provides fundamental information to
guide the system in the budget augmentation procedure.
Using the ready queue as medium for the budget augmenta-
tion would lead to tasks which are just starting to execute to
have budget augmentation when they were not preempted.

As a third element, each task ⌧i’s control block has two
bitfields (outbf (⌧i) and inbf (⌧i)) of length n. At the moment
of job release from ⌧i, the out bitfield is initialized with only
the bit relative to ⌧i set (i.e. outbf (⌧i) = 0x1 << (i� 1)).

When a job ⌧j terminates its execution at time t, it holds
true that ⌧j is the head of the preemption queue. At this
time instant the task immediately preceding ⌧j in the pre-
emption queue (⌧i) has its in bitfield assigned in the follow-
ing way: inbf (⌧i) = inbf (⌧i) _ outbf (⌧j). Scheduling deci-
sions are only taken after this procedure terminates. After
this operation it is not necessarily true that ⌧i will become
the head of the preemption queue and execute on the pro-
cessor.

When a job from ⌧i resumes execution, after a preemption,
the scheduler examines the in bitfield inbf (⌧i). The in bit-
field holds the information on which tasks have preempted
⌧i since the last time instant at which it was executing. The
budget from server Si is then accordingly augmented. If the
considered framework is the one ensuring temporal isolation
with respect to minimum inter-arrival time misbehaving the
corresponding preemption delay donations are deduced from
the preemption delay donation servers of the tasks which
have preempted ⌧i.

After the budget of the task is duly augmented, the out

0001

0010

0100

1000

0000

0010

0100

1000

0000

0000

0100

1000

0000

0000

0110

1000

0001

0000

0110

1000

0000

0010

0111

1000

0000

0000

0111

1000

0000

0000

0000

1111

0000

0000

0000

1000

outbf (⌧1)

outbf (⌧2)

outbf (⌧3)

outbf (⌧4)

⌧4

⌧3

⌧2

⌧1

t

t2 t3 t4 t5 t6 t7 t8 t9t1

inbf (⌧3) = 0001

inbf (⌧2) = 0000

Figure 5: Bit Field Snapshots of Relevance

bitfield is logically ORed with the in bitfield (i.e. outbf (⌧i) =
inbf (⌧i) _ outbf (⌧j). Immediately after this step the in bit-
field is reseted (inbf (⌧i) =0x0). These three procedures need
to be carried out atomically.

Let us use a di↵erent schedule example to better visualize
the bitfield related operations. In Figure 5 an example of
the bit-field evolution as a response to a given set of events
is presented. There are 9 events present. When a task has
no active job in the system its bit field is by default 0. At
events 1–3, tasks ⌧

1

to ⌧
3

release jobs, consequently their bit
fields are set to their respective index. At time t

4

, the first
job of task ⌧

2

finishes its execution. At this time instant,
and since ⌧

2

is the prior preemption queue head and ⌧
3

is
the task after the queue head, the bit field from task the
inbf (⌧3) = inbf (⌧3) _ outbf (⌧2). After this operation is per-
formed inbf (⌧2) = 0. At t

5

and t
6

jobs from ⌧
1

and ⌧
2

are
released correspondingly. At each event the corresponding
bitfield is set accordingly. The job from task ⌧

1

terminates
at t

7

. At this time instant, the out bitfield of task ⌧
1

is
passed onto the subsequent task in the preemption queue
(⌧

3

). Hence inbf (⌧3) = inbf (⌧3) _ outbf (⌧1) Since ⌧
2

was
not in the ready queue the out bitfield from ⌧

1

does not get
passed to its in bitfield.

The algorithm describing the bitfield inspection and bud-
get augmentation is presented in Algorithm 1. Notice that
in the scenario where minimum inter-arrival times cannot
be relied upon, after the budget is augmented (line 6), the
same value has to be decreased from the Y

index

server of the
preempting task. In the same framework it is then necessary
to set up a replenishment event for server Y

index

, T
index

units
after the execution resumption (line 7). At this replenish-
ment event Z

index

is set to be replenished by �[array index]
units. The variable o↵seti is an o↵set with respect to the
base of the � array, where the first element preemption delay
compensation value (�

1,i) from task ⌧i is stored (Figure 3).

8. CACHE RELATED PREEMPTION DELAY
PROOF OF CONCEPT

The previously described theory may be exploited in order
to ensure temporal isolation with respect to any subsystem
holding state concurrently accessed by tasks in the system.
In this section we describe how temporal isolation is ensured
when caches are present in the execution platform by usage

Algorithm 1: Preemption Delay Augmentation Al-
gorithm

1 ⌧i execution resumption after preemption:
index = 0;

2 while index < i do
3 if inbf (⌧i)& 0x1 then
4 array index = o↵seti + index;
5 Bi+ = �[array index];
6 Yindex� = �[array index];
7 Set replenishment event(⌧

index

, �[array index])

8 inbf (⌧i) = inbf (⌧i) >> 1;
9 index++;

10 inbf (⌧i) = 0x0

of the framework described in this document.
At each program point a task has a set of useful mem-

ory blocks (UCB) in cache. These memory blocks were
loaded into the cache at some prior program point and will
be reused in the future. At each program point p of task
⌧k we have UCBp

k [9]. Additionally, the set of cache lines
accessed during the execution of task ⌧j (ECBj) [9] may be
constructed.

The maximum CRPD which a preemption by task ⌧j may
induce in task ⌧k is then defined as [9]:

�j,k
def

= BRT ⇥max
p

n

�

�

�

UCBp
k

\

ECBj

�

�

�

o

(20)

BRT is a constant, denoting the worst case latency for a
cache miss to be served.

8.1 Temporal Isolation Assumptions
In order to ensure full temporal isolation with the used

preemption delay estimation mechanisms, when using infor-
mation from the preempting tasks to compute the �j,i, it is
mandatory to ensure that the ECB sets of each preempting
task are met at run-time. This is because it is assumed that
a task can execute for longer than expected, which implies
that it might in turn also use a larger cache footprint.

Both instruction and data cache footprints have to be re-
lied upon. In order to ensure the worst-case cache footprint,
it su�ces to ensure that each task only accesses the basic
blocks assumed in the static analysis. This can be easily
achieved with the work by Mart́ın Abadi et al. [19], where
each jump instruction is guarded against jumps into illegal
memory locations. Since at run-time, all the possible basic
blocks accessed are the exact same as the ones assumed in
the static analysis the instruction cache ECB set is never
violated. When using [19], all the jumps in the code are
statically defined. Jump to function pointers in the code are
not allowed. These are generally forbidden in safety critical
workload.

In the case of data caches, since the basic blocks accessed
at run-time are enforced, it is su�cient to ensure that no
dynamic memory is used, which is generally the case in real-
time workload. Another assumption is that any access to
an array is guarded against accesses outside of the array
bounds. As a last assumption, recursive calls are forbidden
in order to ensure that the stack footprint is known o✏ine.

If the ECB set of any task cannot be relied upon, it is
always safe to consider that the maximum preemption delay
induced in task ⌧k when preempted by any task ⌧j is the

time to reload the entire UCBk set:

8j : �j,k = BRT ⇥ |UCBk| . (21)

8.2 Experiemental Results
In order to assess the validity of the contribution a set of

experiments was extracted. The schedulability guarantees
from the proposed framework is trialled against the scenario
where the maximum preemption delay is integrated into the
budget of the execution server. Results for the same task
sets are also displayed for a schedulability test oblivious of
preemption delay. In each model all tasks are generated
using the unbiased task set generator method presented by
Bini (UUniFast) [20].

Task systems are randomly generated for every utilization
step in the set {0.75, 0.8, 0.85, 0.9, 0.95}, their maximum ex-
ecution requirements (Ci) were uniformly distributed in the
interval [20, 400]. Knowing Ci and the task utilization Ui,
Ti is obtained. At each utilization step 1000 task sets are
trialled and checked whether the respective algorithm con-
siders it schedulable. Task set sizes of 4, 8, and 16 tasks
have been explored. The relative deadline of tasks is equal
to the minimum inter-arrival time (Di = Ti). When each
task is randomly generated the set of useful cache blocks is
randomly obtained. The cache considered is composed of 10
cache lines. In the computation of each task ⌧k UCBk set,
the usage of each cache line is uniformly distributed. With-
out loss of generality, only one UCBk set is generated for
each task ⌧k. Taking the UCBk set as input, all the cache
lines which were not occupied in the UCB set have a 0.7
probability of being occupied in the ECB set.

The servers Si have been attributed parameters Bi = Ci

and TS
i = Ti. For the situation where the preemption delay

server Yj is put to use, its parameters are Zj =
P

j<k �j,k
and TY

j = Tj .
The results are depicted in Figures 6(a) to 6(c). The num-

ber of task considered is in the set {4, 8, 16}. In the plots
the scenario where the preemption delay is incorporated into
the task execution budget is displayed is presented by the
green line with“x”points. The presented framework for well-
behaving minimum inter-arrival times is represented by the
red line with “+” points. The purple line with square points
represents the framework performance for situations where
the minimum inter-arrival times cannot be trusted. Finally
the blue line with “star” points displays the results for fixed
task priority schedulability test disregarding preemption de-
lay.

From the displayed results it is apparent that the schedu-
lability achieved with the proposed framework is generally
much higher than the one enabled by the simpler version
considering the preemption delay as part of the execution
budget. When the minimum inter-arrival times cannot be
relied upon the schedulability degrades. It is important to
note that the proposed framework ensures temporal isola-
tion whereas there exists no other solution apart from the
proposed framework which ensures the temporal isolation
property for the given system model. Furthermore, when
the number of tasks is small, the framework which provides
the stronger guarantees appears to have on average a higher
scheduling performance. The schedulability reduction at-
tached to the framework for misbehaving tasks with respect
to the minimum inter-arrival time is the price to pay for the
added guarantees.























           



















(a) 4 tasks













           



















(b) 8 tasks













           



















(c) 16 tasks

Figure 6: Schedulability Comparison With CRPD

9. CONCLUSION AND FUTURE WORK
Reservation-based systems are one fundamental way to

enforce temporal isolation in mixed-criticality real-time sys-
tems. We show that, when preemption delay is present in
the system, the state of the art mechanism of reservation-
based systems require pessimism in the analysis and in the
budget allocation procedures. Due to this inherent limi-
tation, a run-time budget augmentation mechanism is pre-
sented in this paper. This framework enables the reduction
of this pessimism with respect to the preemption delay to
be accounted for in the dimensioning of the reservation sys-
tems when tasks may face budget overruns. For a model
in which the minimum inter-arrival time of tasks cannot be
relied upon, there existed no prior result in the literature
ensuring temporal isolation (for systems where preemption
delay is non-negligible). We propose a second framework
which by relying on budget transfers between preempting
and preempted tasks e↵ectively enforces the temporal iso-
lation property in such a considerably challenging system
model (where execution requirements and minimum inter-
arrival times cannot be trusted upon). Furthermore we have
devised a very promising implementation strategy.

As future work we intend to implement the proposed me-
chanics in a real-time system scheduler in order to assess
the overhead associated with both frameworks. As an out-
come, we expect to shown that the overhead of such a sys-
tem is generally less demanding than the pessimism which
would otherwise have to be included in the analysis if the
on-line mechanism would not be present. We further intend
to show the robustness of the solution in scenarios where
several tasks misbehave with respect to their declared min-
imum inter-arrival times.

10. REFERENCES
[1] “Iso26262-4, road vehicles âĂŞ functional safety âĂŞ

part 4: Product development at the system level, 1st
ed., 2011,” tech. rep.

[2] IEC 61508, Functional safety of

electrical/electronic/programmable electronic

safety-related systems, 2010.
[3] L. Abeni and G. Buttazzo, “Resource reservation in

dynamic real-time systems,”Real-Time Systems,
vol. 27, pp. 123–167, 2004.
10.1023/B:TIME.0000027934.77900.22.

[4] C. Lin, T. Kaldewey, A. Povzner, and S. A. Brandt,
“Diverse soft real-time processing in an integrated
system,” in 27th RTSS, pp. 369–378, Dec. 2006.

[5] B. Sprunt, L. Sha, and J. Lehoczky, “Aperiodic task
scheduling for hard-real-time systems,”Real-Time

Systems, vol. 1, pp. 27–60, 1989. 10.1007/BF02341920.

[6] L. Nogueira and L. Pinho, “Shared resources and
precedence constraints with capacity sharing and
stealing,” in Parallel and Distributed Processing, 2008.

IPDPS 2008. IEEE International Symposium on,
pp. 1–8, April 2008.

[7] C. Lin and S. Brandt, “Improving soft real-time
performance through better slack reclaiming,” in 26th

RTSS, pp. 12 pp.–421, Dec. 2005.
[8] C.-G. Lee, J. Hahn, Y.-M. Seo, S. L. Min, R. Ha,

S. Hong, C. Y. Park, M. Lee, and C. S. Kim, “Analysis
of cache-related preemption delay in fixed-priority
preemptive scheduling,” IEEE Transactions on

Computers, vol. 47, pp. 700–713, 1998.
[9] S. Altmeyer and C. Burguiere, “A new notion of useful

cache block to improve the bounds of cache-related
preemption delay,” in 21th ECRTS, 2009.

[10] S. Altmeyer and G. Gebhard, “WCET analysis for
preemptive scheduling,” in 8th WCET, 2008. Austrian
Computer Society (OCG),.

[11] J. Staschulat, S. Schliecker, and R. Ernst, “Scheduling
analysis of real-time systems with precise modeling of
cache related preemption delay,” in 17th ECRTS,
pp. 41–48, July 2005.

[12] L. Ju, S. Chakraborty, and A. Roychoudhury,
“Accounting for cache-related preemption delay in
dynamic priority schedulability analysis,” in DATE

2007, pp. 1–6, April 2007.
[13] B. Bui, M. Caccamo, L. Sha, and J. Martinez, “Impact

of cache partitioning on multi-tasking real time
embedded systems,” in Embedded and Real-Time

Computing Systems and Applications, 2008. RTCSA

’08. 14th IEEE International Conference on, pp. 101
–110, aug. 2008.

[14] J. Whitham and N. Audsley, “Explicit reservation of
local memory in a predictable, preemptive
multitasking real-time system,” in RTAS 2012,
pp. 3–12, 2012.

[15] M. Bertogna, G. Buttazzo, M. Marinoni, G. Yao,
F. Esposito, and M. Caccamo, “Cache-aware
scheduling with limited preemptions,” tech. rep.,
SSSUP, Pisa, Italy, 2010.
http://feanor.sssup.it/⇠marko/LP RTSS09.pdf
accessed on 10th of February, 2010.

[16] H. Ramaprasad and F. Mueller, “Bounding preemption
delay within data cache reference patterns for
real-time tasks,” in 12th RTAS, pp. 71–80, April 2006.

[17] C.-G. Lee, K. Lee, J. Hahn, Y.-M. Seo, S. L. Min,
R. Ha, S. Hong, C. Y. Park, M. Lee, and C. S. Kim,
“Bounding cache-related preemption delay for

real-time systems,” Software Engineering, IEEE

Transactions on, vol. 27, pp. 805–826, Sep 2001.
[18] J. Lehoczky, L. Sha, and Y. Ding, “The rate

monotonic scheduling algorithm: exact
characterization and average case behavior,” in Real

Time Systems Symposium, 1989., Proceedings.,
pp. 166 –171, dec 1989.

[19] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti,
“Control-flow integrity principles, implementations,
and applications,”ACM Trans. Inf. Syst. Secur.,
vol. 13, pp. 4:1–4:40, Nov 2009.

[20] E. Bini and G. Buttazzo, “Biasing e↵ects in
schedulability measures,” in ECRTS 2004, Jun 2004.

