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Abstract 
Localization is a fundamental task in Cyber-Physical Systems (CPS), where data is tightly coupled with the 
environment and the location where it is generated. The research literature on localization has reached a critical 
mass, and several surveys have also emerged. This review paper contributes on the state- of-the-art with the 
proposal of a new and holistic taxonomy of the fundamental concepts of localization in Cyber-Physical Systems, 
based on a comprehensive analysis of previous research works and surveys. The main objective is to pave the way 
towards a deep understanding of the main localization techniques, and unify their descriptions. Further, this 
review paper provides a complete overview on the most relevant localization and geolocation techniques. Also, we 
present the most important metrics for measuring the accuracy of localization approaches, which is meant to be 
the gap between the real location and its estimate. Finally, we present open issues and research challenges 
pertaining to localization. We believe that this review paper will represent an important and complete reference of 
localization techniques in cyber-physical systems for researchers and practitioners and will provide them with an 
added value as compared to previous surveys. 
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Abstract Localization is a fundamental task in Cyber-Physical Systems (CPS),
where data is tightly coupled with the environment and the location where it is
generated. The research literature on localization has reached a critical mass, and
several surveys have also emerged. This review paper contributes on the state-
of-the-art with the proposal of a new and holistic taxonomy of the fundamental
concepts of localization in Cyber-Physical Systems, based on a comprehensive
analysis of previous research works and surveys. The main objective is to pave the
way towards a deep understanding of the main localization techniques, and unify
their descriptions. Further, this review paper provides a complete overview on the
most relevant localization and geolocation techniques. Also, we present the most
important metrics for measuring the accuracy of localization approaches, which is
meant to be the gap between the real location and its estimate. Finally, we present
open issues and research challenges pertaining to localization. We believe that this
review paper will represent an important and complete reference of localization
techniques in cyber-physical systems for researchers and practitioners and will
provide them with an added value as compared to previous surveys.

Keywords Fundamental Techniques of Localization · Localization Accuracy
Metrics · Localization Real-World Challenges · Localization Open Issues

1 Introduction

Cyber-physical systems (CPS) have been attracting an increasing interest from
both the academic and industrial community. Indeed, these systems are showing
powerful potentials in interfacing with the physical-world and making its control
much easier. This achievement was enabled by the integration of computation
and communication capabilities to the components of this physical world. Cyber-
physical systems are representing today the new generation of networks and em-
bedded systems. The deployment of CPS witnesses several challenges, and it is
not new to say that localization is one of the most important topics that has

Address(es) of author(s) should be given
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triggered huge amount of research. Basically, localization aims at determining the
position of CPS components. This topic has been considered by the CONET con-
sortium as the most important in cooperative object research [4]. The amount of
works related to localization is so tremendous such that it becomes challenging
to a (novice) researcher to have a global view of the di↵erent approaches that
have been proposed. There has been some surveys [33,59,76,54,35,6,30,31,25,14]
covering the localization problem but each of them tackles it for a di↵erent per-
spective. One may ask: yet, another survey on localization? When looking at these
surveys, it becomes clear that there is a big overlap between them, however, some
of them do not speak the same language, in the sense that there is no unified
terminology/taxonomy that gathers all these works. This fact represents one of
the major motivation behind writing this survey with the aim to provide a unified
taxonomy of localization for cyber-physical systems. Our survey di↵ers from oth-
ers in several fronts. First, unlike some topic-oriented surveys, such as [33,76,35,
31,25], this paper presents a comprehensive and generic overview of localization
techniques in cyber-physical systems. Indeed, the authors in [33,76] focused on
range-free localization techniques, whereas the authors in [31] focused on TOA-
based localization techniques. In [25], the authors were interested in localization
techniques for underwater acoustic networks, and [35] addressed map-based local-
ization with a particular interest on fingerprinting methods namely deterministic,
probabilistic and filtering approaches. On the other hand, this survey paper con-
tributes to the state-of-the-art as compared to other generic and thorough surveys,
such as [59,54,82,6,30,14], in the sense that it provides a comprehensive taxonomy
of localization techniques and discusses in details the fundamental concepts of each
techniques as well as its features and application context. Furthermore, the current
survey paper overviews localization accuracy metrics, which were not exhaustively
discussed in other papers, to the best of our knowledge. As such, we believe that
our survey would provide a key reference in the literature of localization in cyber-
physical systems. To meet its objective, this survey (i.) makes a comprehensive
review of fundamental localization techniques based on a fine grained analysis of
the literature, (ii.) designs a taxonomy in a structured way, (iii.) elaborates on the
applicability of these techniques in the CPS context, (iv.) elaborates on the most
representative metrics quantifying the accuracy of localization systems, and (v.)
discusses the future directions in localization research. Providing such information
will help researchers and localization systems designers to understand the scope
of di↵erent techniques, and to design appropriate localization algorithms for their
systems.

The remainder of this survey is organized as follows. Section 2 presents a global
taxonomy of fundamental localization concepts in cyber-physical systems. For each
category we examine its features and application context and we enumerate their
advantages and limitations. In section 3, we present a thorough review of funda-
mental localization techniques, namely the three main classes: (i.) range-based,
(ii.) range-free and (iii.) geolocation techniques. Given the diversity of localiza-
tion techniques and the need for evaluating and comparing their performance, we
present in Section 4, the most relevant metrics that quantify their degree of accu-
racy. Finally, Section 5 wraps-up the main lessons of this survey paper, presents
real-world challenges and describes the future research directions in this research
area.
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Table 1: Content of the paper

Topic Section

Taxonomy 2
Topology 2.1
Coordinate System 2.2
Algorithms 2.3
Communication Paradigm 2.4
Environment 2.5
Category 2.6

Fundamental Techniques of Localization 3
Range-Based Techniques 3.1

RSS-based localization 3.1.1
Time-based localization 3.1.2
Angle-based localization 3.1.3
Phase-based localization 3.1.4

Range-Free Techniques 3.2
Anchor-based methods 3.2.1
Anchor-free methods 3.2.2

Geolocation Techniques 3.3
Geometric geolocation techniques 3.3.1
Refinement geolocation techniques 3.3.2

Localization Accuracy Metrics 4
Distance-based 4.1

Average Relative Deviation (ARD) 4.1.1
Global Energy Ratio (GER) 4.1.2
Frobenius (FROB) 4.1.3

Location-based 4.2
Mean Absolute Error (MAE) 4.2.1
Root Mean Square Error (RMSE) 4.2.2
Cramer-Rao Lower Bound (CRLB) 4.2.3
Boundary Alignment Ratio (BAR) 4.2.4

Area-based 4.3
Circular Error Probability (CEP) 4.3.1
Geometric Dilution of precision (GDOP) 4.3.2
Tile and Distance Accuracy 4.3.3

Discussions and Future Directions 5

2 Taxonomy

Localization systems consist commonly of two main blocks: (i) the set of deployed
nodes and (ii) the localization algorithm. Deployed nodes may have di↵erent states.
A state refers to whether a node initially knows or manages to know its location
during the execution of the localization algorithm. According to [14], there are ba-
sically three states: unknown, settled and beacon. At the startup of the localization
algorithm, nodes can either be in state beacon or unknown. Beacon nodes, also
referred to as landmarks or anchors, are those that already know their locations
through a manual placement or through GPS reading. In contrast, unknown nodes,
referred to as free, dumb, or target nodes, are those that do not have any informa-
tion about their geographic locations. Over the time, unknown nodes may change
their states to settled if they succeed to determine or estimate their locations.
Both beacon and settled nodes are very useful for unknown nodes in order to esti-
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mate their locations as they could be considered as references. On the other side,
localization algorithms aim at finding the location/position of unknown nodes.
There are several ways to determine the location depending on the objective of
the cyber-physical application and the underlying technologies. Global Positioning
System (GPS) has been commonly assumed as the intuitive solution to determine
accurately locations. Nevertheless, GPS is not always the most e↵ective solution
for cyber-physical systems, due to cost and energy constraints. As alternatives,
many other localization techniques have been proposed. These techniques localize
unknown nodes by exploiting (i.) the sensing and (ii.) the wireless communication
capabilities of CPS components. For example, some techniques use wave propa-
gation characteristics such as the Received Signal Strength (RSS), or propaga-
tion delay (known as time-of-flight) to infer the distances/angles to some reference
nodes and then estimate the location through simple geometric computations (e.g.
lateration/triangulation techniques). Some other techniques estimate distances by
exploiting the di↵erence between heterogeneous waves’ propagation properties (e.g
the reception time di↵erence of acoustic and radio waves (TDoA) [32,66,84]). An-
other class of localization algorithms, known as range-free localization [76,33],
does not rely on distance estimation. In contrast, it determines unknown node
position based on proximity/connectivity information or based on artificial gener-
ated events. Taking into account the diversity of localization schemes, it is utmost
important to derive the key criteria enabling their categorization which facilitates,
consequently, their design and the understanding of their pros and cons. To meet
this requirement, the following taxonomy, depicted in Figure 1, has been devised
after the compilation of several research and survey papers [22,63,67,33,73,57,76,
54,14,35,6,27].

2.1 Topology

The topology of a localization algorithm refers to where and how the location of
a given node is calculated. In fact, locations can either be computed at node level
or at a central unit level, and this is based on signal measurements either received
from or reported by anchor nodes, respectively. The choice of the topology typically
depends on the cyber-physical application, the computational capabilities, the
nature and the configuration of the objects involved in the localization process.
There are mainly four possible topologies [22,54].

– Remote positioning : The location of a node is computed at a central base
station, where anchor nodes collect transmitted radio signals from the mobile
node and forward them to the base station. The latter computes the estimated
position of the mobile node based on the measured signals forwarded by the
anchors.

– Self-positioning : The location of a mobile node is computed by itself based on
the measured signals that it receives from anchor nodes.

– Indirect remote positioning : Like in the self-positioning case, the mobile node
computes its locations and sends it to a base station through a wireless back
channel.

– Indirect self-positioning : Like in the remote positioning, the location of the mo-
bile node is computed at the base station based on measured signals forwarded
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Fig. 1: Localization Taxonomy
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by anchor nodes, then the base station forwards the estimated position to the
mobile node, through a wireless back channel.

2.2 Coordinate System

The choice of the coordinate system type is fundamental in the design of localiza-
tion algorithms. This choice is biased by the type of the information required to
represent a location. The coordinate system can be either absolute or relative. For
absolute coordinate systems, locations are expressed as unique coordinate values
making reference to special nodes that know their positions, which are mainly
the anchor nodes. At least, three anchors are needed in a 2D coordinate system,
whereas four anchors are needed in a 3D coordinate system to be able to devise the
locations of unknown nodes. For instance, GPS systems [1] use 24 to 32 satellites as
anchor nodes to estimate the absolute location of GPS-enabled devices in outdoor
environments. On the other hand, in relative coordinate systems, the location of
a given node is determined relatively to other nodes with no reference to absolute
anchors. In other words, reference nodes are not absolute in a relative coordinate
system. For instance, Multi-Dimensional Scaling technique (MDS-MAP [74]) pro-
duces a map of relative coordinates based on mutual nodes’ distance information
[74].

Another classification of coordinate systems is related to the nature of coordi-
nates, which can be either physical or symbolic. Physical locations are represented
as a point in a 2D/3D coordinate system, such as the Universe Traverse Merca-
tor (UTM) system, or the Degree/Minutes/Seconds (DMS) used for expressing
GPS-based locations. On the other hand, symbolic locations are expressed as log-
ical positions’ information such as cell number, o�ce/building number, or street
name, etc.

2.3 Algorithms

Techniques of CPS objects location computation can be roughly classified into
two categories: distributed and centralized. In centralized localization approaches,
a central device (e.g. base station) is the responsible entity for estimating the lo-
cation of unknown nodes based on the signal measurements forwarded by anchor
nodes. In distributed localization approaches, each object estimates its location
using the collected signal measurements and location information of the anchor
nodes in its neighborhood. In the literature, distributed approaches are also re-
ferred to as localized algorithms [42]. With respect to topology, remote positioning
and indirect self-positioning represent centralized algorithmic approaches, whereas
self-positioning and indirect remote positioning represent distributed approaches.

For cyber-physical applications, centralized algorithms are appropriate for ap-
plications with a central monitoring station, which collects information from all
objects in the network, such as surveillance systems, health care monitoring, en-
vironment monitoring, assets tracking. On the contrary, distributed algorithms
are more convenient for decentralized applications such as swarm robotics, object
auto-navigation, GPS-based systems.
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Table 2: Comparison between distributed and centralized techniques

Performance criteria Distributed Centralized

Computation level node a central unit
Measurements sources neighbors all nodes
Accuracy medium high
Scalability high low
Energy consumption low high
Communication overhead low high
Computation overhead low high
Computation delay low high
Extra processing center no yes
Anisotropic topologies robust sensitive

Centralized and distributed approaches have opposite performance: centralized
algorithms provide better localization accuracy at the cost of higher computation
complexity and energy e�ciency as compared to distributed algorithms [60,57].
In fact, centralized localization approaches are more accurate than distributed
approaches because they rely on a global information, which is the sensory data
collected from and forwarded by individual sensor nodes to the base station, to
estimate the location. However, this centralization inherently induces a negative
impact on scalability and computation e�ciency. In contrast, distributed algo-
rithms simply rely on local information to directly estimate the position rather
than piggybacking data to a central unit. Therefore, the computation complexity
of distributed localization algorithms is much simpler than that of centralized al-
gorithms. The implementation of distributed algorithms in large-scale is also much
easier. Regarding energy-e�ciency, distributed algorithms are basically more en-
ergy e�cient than centralized algorithms as the latter is subject to multi-hop
communication between sensor nodes and the base station; whereas the former
only requires one hop communication for location estimation. Nevertheless, the
energy consumption in distributed algorithms may get higher if several iterations
are needed to reach a stable estimation of the position [60]. A comparative perfor-
mance study between distributed and centralized approaches has been presented
in [69] and showed that the distributed algorithms are much more e�cient, in
terms of energy and communication than centralized estimation schemes using
both analytical and simulation models. Table 2 summarizes the major di↵erences
between distributed and centralized localization approaches.

2.4 Communication Paradigm

When building a localization system, it is essential to define how nodes exchange
messages between each other, which is referred to as communication paradigm. In
the literature, there are mainly two communication approaches [82]: non-cooperative
and cooperative. In the non-cooperative approach, the communication is restricted
between unknown nodes and anchors, and there is no communication between
nodes with unknown locations. In this case, a high density of anchors or long-
range anchor transmissions [82] are needed to ensure that each unknown node
is within the communication range of at least three anchors. On the other hand,
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the cooperative communication approach allows communication between unknown
nodes in addition to communication between anchors and unknown nodes. As such,
the need for high anchor density is alleviated. However, one major problem with
cooperative localization is the need for intensive processing operations in order to
filter noisy measurements collected at intermediate unknown nodes communica-
tion stage.
Another variant of cooperative localization is called opportunistic localization [88].
Unlike classical localization algorithms that assume homogeneous nodes and the
deployment of a dedicated infrastructure, opportunistic localization exploits inter-
actions between existing nodes and other nodes (which may be of heterogeneous
nature) that occasionally pass in their proximity. Opportunistic localization raises
a number of research challenges, mainly the e�cient discovery of occasional nodes,
the establishment of links between heterogeneous devices for opportunistic data
exchange, and more important, the design of suitable protocols for e�cient data
exchange [88].

2.5 Environment

The environment plays an important role in the design of localization algorithms
depending on whether it is outdoor or indoor environment. In outdoor environ-
ments, the radio propagation fits much better the free space propagation model
than it does in indoor environments, due to the absence of obstacles and the little
impact of interferences and multi-path propagations. For that reason, localiza-
tion algorithms based on Radio Frequency (RF) signals are more convenient for
outdoor environments. For instance, GPS-based systems are exclusively used for
outdoor localization as GPS signals are not able to resist to obstacles. For indoor
environments, the path loss propagation model does not hold and the RF-based
localization becomes more challenging due to external factors of signal distortion
mainly resulting from multi-path propagation. However, for low-power radios, the
multi-path e↵ect can be reduced by controlling the transmission power as the in-
crease of the transmission power may result in higher-intensity destructive signals
at the receiver. Interferences and noise impose additional challenges for indoor
RF-based localization.
Other techniques for indoor localization rely on the Time Di↵erence of Arrival
(TDoA) mechanism, such as Cricket indoor location system [68], which combines
RF and ultrasound signals to estimate a location. The key idea exploits the di↵er-
ence in propagation time between RF signal (speed-of-light) and ultrasound signal
(speed-of-sound), and it has been shown that it provides very accurate location
with an error around a few centimeters [60].
There are also other techniques that bypass the computation of distance and use
neighborhood information to estimate the position of a node, known as range free
techniques (refer to subsection 3.2 for more details). These localization mechanisms
are suitable for indoor environments as they are less complex and the location er-
ror would be tolerable taking into account the small scale and short radio ranges
in such environments.
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2.6 Category

To design a localization scheme for a given cyber-physical application, it is impor-
tant to decide the category of the localization technique, which pertains to how the
location of a node is calculated depending on whether they are based on distance
measurement or not. In this respect, there are two main categories of localization
techniques: range-based and range-free.

Range-based (or distance-based) techniques rely on the computation of dis-
tances between the target node and anchor nodes to infer the position of a tar-
get node using lateration techniques. Basically, distance measurement is achieved
through RF signals or ultrasound signals or a combination of both. These tech-
niques exploit the intrinsic propagation signal properties at the receiver to infer
the relative distance of the target node through an empirical or analytical rela-
tionship/mapping between the received signal and the relative distance. Therefore,
range-based localization requires complex computations to achieve high accuracy,
which is considered as challenging for resource-constrained cyber-physical devices
(e.g. sensor nodes) making hard to envision them as practical solutions for large-
scale networks, in particular in noisy environments.

As another alternative, range-free solutions have been proposed. These ap-
proaches estimate the location of a target node without need to calculate distances
but rather relying on other logical information including radio connectivity, an-
chor proximity and sensing capabilities (e.g. event detection). In [76], range-free
techniques are classified as anchor-based schemes, assuming the existence of nodes
with known positions, and anchor-free schemes that do not rely on any anchor
node for localization.

Range-based solutions are known to achieve high localization accuracy at the
cost of increasing system complexity in terms of ranging hardware, careful calibra-
tion and environment profiling. Being more tolerant in terms of accuracy, range-
free solutions is likely to be more convenient for a large-scale networks of low-cost
nodes as they do not require high cost specialized hardware for localization. Details
about those techniques are presented in Section 3.

3 Fundamental Techniques of Localization

In this section, we describe the fundamental techniques used for calculating the
location of a node according to the taxonomy presented in Figure 1. First, we
present the main approaches used for range-based and range-free schemes.

3.1 Range-Based Techniques

Range-based techniques for distance estimation can be categorized into four classes:
(1) RSS-based, (2) Time-based, (3) Angulation-based and (4) Phase-based tech-
niques.

3.1.1 RSS-based localization

These are based on creating a mapping between the distance and the received
signal strength as the signal attenuates when the distance increases. Ideally, for
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Table 3: Path loss exponent values for di↵erent types of environments [19]

Environment Path loss exponent

Free space 2
Urban area (cellular radio) 2.7 - 3.5
Shadowed urban area (cellular
radio)

3 - 5

In-building LOS 1.6 - 1.8
Obstructed in-building 4 - 6

a certain environment, the distance to RSS mapping can be represented by the
path-loss propagation model where the RSS is inversely proportional to d⌘, where
d refers to the distance between the transceivers and ⌘ refers to the path loss expo-
nent, which is an environment-dependent parameter that represents the intensity
of the signal attenuation in a given environment. Table 3 outlines a set of path
loss exponents values for certain wireless networks. Eq.(1) presents the general
path-loss model expression:

RSS = P
t

⇥K ⇥
✓

d
0

d

◆

⌘

(1)

where P
t

is the transmission power, K is a constant that depends on the sender/receiver
antenna gains, the wavelength and the path loss up to a reference distance d

0

.
Unfortunately, RSS is inherently unreliable as it gets a↵ected by the random multi-
path e↵ect due to several physical phenomena of the signal propagation including
reflection, refraction, di↵raction and scattering. These phenomena results from
the obstruction of physical objects during the signal propagation, also known
as the shadowing e↵ect making the signal weaker and more exposed to errors.
RSS/Distance mapping methods can be roughly classified into Analytical-Mapping
and Empirical-Mapping methods.

Analytical-Mapping models map RSS to distance through a mathematical equa-
tion. These models are commonly used in simulation software to emulate the chan-
nel behavior. The most common RSS to distance mapping model is the log-normal
distance path loss propagation model, which is expressed as follows:

RSS(d)[dB] = RSS(d
0

)� 10⌘ log(d/d0) + X
�

[dB] (2)

where RSS(d) is the received signal strength at distance d from the sender,
RSS(d

0

) is the received signal strength at a reference distance d
0

from the sender
fixed and known in advance, ⌘ represents the path loss exponent that measures
the rate at which the received signal strength decreases with distance and X

�

is
a zero-mean Gaussian random variable with a variance �2, which is referred to
as the shadowing variance. Both ⌘ and �2 are environment dependent. Although
the above equation seems to give a reasonable relation between the RSS and the
distance, in reality, the establishment of the mapping is challenging and complex.
We report three typical empirical observations to describe the challenging problem
of finding a relation between the distance and the RSS.

Observation 1. The distribution of the RSS is not necessarily Gaussian: The
path-loss log normal shadowing model assumes that the uncertainty is modeled
as a white noise through the variable X

�

. This assumption does not hold in all
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situations, as the empirical distribution of the RSS shows up to be di↵erent in
several cases. Indeed, this distribution typically depends on the environment and
on the interference factors a↵ecting the signal propagation and may not follow the
normal distribution. Figure 2 illustrates our statement.

Fig. 2: RSS distribution at 5m in di↵erent environments with Tx power = 0 dBm
and -15 dBm

The Figure shows the distribution of the RSS in two environments (indoor and
outdoor) and with two transmission powers (0 dBm and -15 dBm). We observe
that probability distribution of the RSS depends on the environment and on the
transmission power. Furthermore, it is clear from the figures that the RSS dis-
tributions do not match well the Gaussian distribution which compromises the
validity of the assumption of the path loss log normal shadowing model (i.e. X

�

is a zero-mean Gaussian random variable). The reasons behind this discrepancy
are manifold: (i.) sensor node hardware imperfections or (ii.) dynamic signal dis-
tortion caused random multi-path propagation, or by the moving objects/persons
around sensor nodes or due to weather conditions. We can also observe that the
RSS distribution is closer to Gaussian in outdoor environment than in indoor one.
This argues more the e↵ect of multi-path propagation caused by walls in the indoor
environment.

Observation 2. The RSS variability is typically (very) high: On the other hand,
in the path loss shadowing model, the variability of the RSS is modeled through
the variance of the Gaussian noise. It is commonly known that the shadowing at
a given fixed distance variance might be high, in particular when the propagation
is disturbed by the multi-path e↵ect and interferences. Figure 3 demonstrates this
fact and shows the RSS variance for one indoor and one outdoor environments.
We observe that the RSS standard deviation in the indoor environment (with an
average 3.78) is a bit higher than that in the outdoor environment (with an average
2.85) for the same reasons mentioned above. In addition, the non regularity of the
radiation pattern of radio signals represents a main source of RSS variance in the
same distance, which we discuss in the next observation.

Observation 3. The non isotropic behavior of signal propagation is the cause of
RSS variability: One of the drawbacks of the path loss model is that it does not
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Fig. 3: RSS average and its standard deviation as a function of distance

consider the relative orientation of the sender and receiver. The anisotropic behav-
ior of the RSS turns the mapping with distance even harder, as radio propagation
is not omni-directional, and thus the RSS may be highly variable at receivers
placed at the same distance, but in di↵erent orientations. Figure 4 illustrates the
problem and shows the RSS at di↵erent orientations and at the same distance.

Fig. 4: RSS measurements for the same distance (3 m) at di↵erent orientations

In Figure 4, we observe that the non-uniform radiation pattern of the sensor node
transceiver makes the extents of the RSS variation interval di↵erent from one orien-
tation to another. This is one the factors that comprises the localization accuracy
based on the RSS.

It is clear from the aforementioned observations that log-normal distance path
loss propagation model expressed in Equation 2 does not reflect the reality in
strict sense, but rather provides an acceptable approximation. Nonetheless, there
have been several research works that used this model for localization purposes.
Since ⌘ and �2 are environment dependent, usually it is needed to determine these
parameters prior to deployment using extensive experimental tests, which may
restrain the use of this model in reality. This practice is commonly referred as
environment profiling or fingerprinting or scene analysis. However to avoid prior
environment investigation, some research works have provided practical methods
to dynamically adapt the theoretical log-normal propagation model to the envi-
ronment of deployment. This adaptation focuses especially on the empirical esti-
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mation of the path-loss exponent. For instance in [77], the path-loss exponent has
been estimated, based on the RSS measurements collected during the localization
process and by assuming the existence of N fixed anchors evenly distributed. The
drawback of this solution is that it relies on an approximated distance function,
which induces additional complexity and less accuracy. In [58], the calibration of
the path loss exponent has been conducted through two techniques. In the first
technique, the path loss exponent is estimated using a small number of received
power measurements and by assuming that the probability distribution of distance
between neighboring sensors is known. However, this assumption is unrealistic for
certain applications. To overcome this limitation, a second technique based on
the Cayley-Menger determinant has been proposed. This technique estimates the
path loss exponent using only power measurements and the geometric constraints
associated with planarity in a cyber-physical system. In [9] too, the costly o↵-line
fingerprinting procedure has been avoided and replaced by a virtual calibration
procedure which exploits only RSS measurements. In this calibration procedure,
the authors have used an enhanced propagation model which takes into account
the wall and floor attenuation factors for indoor environments. Two estimations
methods have been derived for single wall and multi-wall indoor environment mod-
els. The experimental study showed that the estimation accuracy was comparable
to that achievable by a more computationally expensive fingerprinting procedure.
Furthermore, a simpler yet e↵ective approach has been proposed in [50]. This
approach also exploits the theoretical propagation model for indoor localization
with no manual profiling. The key idea makes use of Apollonius circles principle
and the fact that the position of a node can be determined if the ratios of the
distances to a few anchors are known. An Apollonius circle regroups all points
having the same ratio of their distances to two fixed points. An unknown node
is located at the intersection point of all circles for which it satisfies the Apollo-
nius condition. In [10] too, a practical plug-and-play and distributed RSS-based
localization method called EasyLoc was proposed. The idea of EasyLoc consists in
exploiting the available distance information between anchors to derive an online
and anchor-specific RSS-to-distance mapping. The main advantage of EasyLoc is
its easy of deployment since it avoids any pre-deployment calibration phase and
builds its mapping in runtime. This mapping is dynamically updated in order to
be robust against environment change. Nonetheless, the mapping model used in
EasyLoc is very simplistic and does not hold the real variation of RSS with respect
to distance.

It appears from the aforementioned works that online and o↵-line calibrations
of the theoretical path-loss propagation model are challenging, and the achieve-
ment of an optimized trade-o↵ between accuracy and simplicity is a complex prob-
lem. However, for accuracy-tolerant cyber-physical applications, this propagation
model would be su�cient to reach an acceptable accuracy with simple adaptation
techniques. Alternatively to analytical-mapping models, empirical-mapping mod-
els, which we describe next, can also be used for RSS/distance mapping. These
models are more accurate, but also more labor-intensive.

Empirical-Mapping models map RSS to distance through experimental mea-
surements and statistical analysis of collected data. The most common technique
is the map-based localization, which is mainly based on fingerprinting the envi-
ronment through extensive pre-deployment measurements [35]. This technique is
composed of two phases as depicted in Figure 5. (i.) the training phase: it con-
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Fig. 5: Phases of fingerprinting

sists in measuring the RSS at di↵erent locations in the deployment area, then
forming a radio map, which represents the mapping between locations and their
corresponding measured RSS, (ii.) the positioning phase: A node with unknown
location will be able to localize itself by comparing its RSS with those in the map,
and then estimates its position as being the location corresponding to the closest
RSS in the map. The map-based technique presents the advantage of providing
accurate results as compared with other techniques (e.g. analytical models), and
this accuracy pertains to the amount of measurements collected during the train-
ing phase. However, it has the following drawbacks: first, the profiling operation
is too complex, which increases with the area of the explored environment and
the number of devices to be deployed in the training phase. Second, any change
in the environment, such as the movement of persons/objects, will compromise
the validity of the static mapping already established in the training phase, or
resulting in increasing loss of accuracy. One way to reduce the human labor for
environment fingerprinting is to automate the mapping process, which allows to
perform frequent updates of the radio map. This technique is used in [83] for a co-
operative robot/RFID system. Initially, the robot gets a radio map from a location
server, which enables it to estimate its distance at a meter-level. Then, the robots
move towards RFID tags, which serve as landmark as their location is known,
and calculates its exact location. Using the exact location information, the robot
can automate the training phase and reconstruct a new radio map to improve the
precision of the fingerprinting algorithm.

The construction of the map starts with subdividing the area into regular cells.
The collection process starts when Access Points transmit radio signals, which will
be received by the calibration devices for a certain period of time at a fixed lo-
cation. The process is repeated at di↵erent locations in the area of interest. The
received RSS will be stored in a vector data a

ij

in a database, where i denotes
the ith cell and j the jth access point. The collection of RSS vectors is called the
radio map. The radio map can also include other information that would be useful
for the localization process. For instance, in [5] the authors have considered three
parameters in radio map including the central position of the ith cell, a vector
a

i

whose jth element represents the average RSS measured in cell i from Access
Point j, and a diagonal matrix whose jth element represents the variance of the
RSS values measured from the jth Access Point.
The most challenging issue in map-based localization is how to measure the similar-
ity between the fingerprints and collected measurements [64]. The trivial approach
consists in computing the minimum Euclidean distance between the observed RSS
and the mean of each fingerprint such as in [40]. For instance, RADAR localiza-
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Table 4: Comparison between RSS-based techniques

Technique Advantages Limitations

Analytical-Mapping models
- simple to implement - parameters are

environment-dependent
- useful for simulators de-
sign

- coarse accuracy

Empirical-Mapping models

- can achieve high accu-
racy level

- need extensive environ-
ment profiling
- high o↵-line computa-
tion overhead
- poor scalability
- unreliable if the en-
vironment is continually
changing

tion system [8] relies on the measurement of the Euclidean distance in order to
find the k-nearest-neighbors to the target node and thus to be able to compute
its location. Other sophisticated methods are recently proposed to better take
into account the variability of the RSS. These methods generally rely on the use
of the probability theory by first generating probability densities for the training
data and then by computing the Maximum-Likelihood. Kernel-based nonlinear
methods have also been investigated for similarity computation, such as in [44].
Nonetheless, these methods often require the collection of large data samples in
the training phase and high processing capabilities [64], which is generally beyond
the capacity of low-cost cyber-physical devices. Recently, a new methodology of
exploiting fingerprints known as Radio Tomographic Imaging (RTI) has emerged
[81,41]. In this approach, the fingerprint does not represent a vector of RSS values
for a specific location, but it rather represents a vector of RSS values for a radio
link in the network. To locate a target, an RTI system bases its detection of links
that were attenuated. Radio Tomographic Imaging is still a challenging issue for
indoor environments as the target presence is not the only factor a↵ecting the
RSS.

3.1.2 Time-based localization

It represents another class of radio-based distance measurement techniques, which
rely on radio signal propagation time. In other words, time-based localization
consists in calculating the distance by measuring the radio signal propagation
time from the source to the destination. In the literature, there are, basically,
three known kinds of time-based approaches. Figure 6 depicts them.

Time-of-Arrival (TOA) Also called Time-of-Flight (TOF ), TOA consists in cal-
culating the one way propagation time of radio signals between two synchronized
nodes. In fact, this time is proportional to the distance between transceivers since
the propagation speeds of the RF signals are well-known both in free-space and in
the air. This distance is simply given by Eq. 3 when no synchronization errors are
available.

d = c
r

⇥ (t
1

� t
0

) (3)
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Fig. 6: Time-based localization techniques

Where c
r

refers to the speed of the RF signal, t
0

to the transmission time and t
1

to the reception time.
The TOA method of RF signals is usually inappropriate for WSNs because of
short distances and inaccurate time synchronization of sensor nodes. Acoustic or
ultrasonic signals represents another alternative better than RF signals in order
to use the TOA method in such systems. Nevertheless, RF-based TOA is typically
applicable for GPS systems with large distances and high clock synchronization.

In general, the main disadvantages of this method for cyber-physical systems
are three folded: (i.) transceivers of di↵erent nodes must be accurately synchro-
nized, which requires high clock resolutions. (ii.) the TOA accuracy depends on the
RF bandwidth, which means that higher bandwidths provide better accuracy as it
is the case with Ultra Wide Band Technology (UWB), (iii.) they are very sensitive
to multi-path e↵ect as TOA represents a direct line-of-sight propagation time, thus
the blockage of the direct path will cause large errors. Some research works have
proposed solutions to mitigate the non line-of-sight propagation problem [80].

The TOA method can be used with either Direct Sequence Spread Spectrum
(DSSS) [61] or UWB radios [54]. With UWB technology, high accuracy can be
achieved mainly because (i.) there is more tolerance with respect to clock reso-
lution as the propagation speed of ultrasound radios is relatively small (approxi-
matively 331.4 ms/s [54]) (ii.) it has a large bandwidth (� 500 MHz). This turns
the measurements of the transmission delay more accurate and inexpensive. It has
been shown that the location estimation accuracy with UWB radios can be up to
2cm in good conditions with direct line-of-sight propagation. With other RF-based
TOA, the accuracy is roughly from 5m to 10m.

Round-trip Time of Flight (RTOF) This is another variation of TOA, which at-
tempts to avoid synchronization constraints. The main idea is to measure the
round-trip TOA at the sender side, and since the same clock will be used for cal-
culating the delay, the synchronization problem does no longer hold. However, the
signal processing delay at the receiver side must be estimated and eliminated to
prevent additional source of errors. The signal processing delay in the receiver can
be pre-calibrated in advanced or measured by the receiver, and then sent back to
the sender to be subtracted. Approximately, distance between the sender and the
receiver can be given by Eq.(4) :

d = c
r

⇥ (t
1

� t
0

)
2

(4)
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where c
r

refers to the speed of the RF signal and (t
1

� t
0

) to the round-trip time
of flight.
It has to be noted that the accuracy of RTOF is also compromised by noise,
multi-path e↵ect and the unavailability of NLOS path.

Time Di↵erence of Arrival (TDOA) Two di↵erent definitions of TDOA are avail-
able in the literature. The early approach used in geolocation systems, such as
telecommunication and satellite communication systems [34], consists in calcu-
lating the time di↵erence of arrival in two di↵erent receivers placed at di↵erent
distances from the sender. We refer to this method as multiple-receiver TDOA.
The other approach, being used in low power device systems, is based on the time
di↵erence resulting from the di↵erence of propagation durations of two signals
received by the same receiver. We refer to this method as single-receiver TDOA.
In what follows, we present the concepts of both approaches and discuss their
advantages and drawbacks.

The single-receiver TDOA: This approach is based on the measurement of the
time di↵erence of the propagation of two signals with very di↵erent propagation
speeds. Doing so, the synchronization requirement of TOA method is bypassed.
The most common signals used in TDOA-based localization systems are radio sig-
nals and ultrasound signals, as RF signals (speed-of-light) are roughly 106 faster
than ultrasound signals. As a matter of fact, this combination is used in the com-
mercially available sensor platform Cricket [66] and has been shown to provide
an accuracy of 5cm. Acoustic signals are also used as another alternative to ul-
trasound signals. This TDOA approach works as follows: When a node simulta-
neously sends an RF signal and an ultrasound signal, the receiver considers the
arrival time of the (faster) radio signal as a time reference and uses the arrival
time of the (slower) ultrasound radio to calculate the delay between both signals.
The distance d between the sender and the receiver is calculated according to the
following equation:

d =
c
r

⇥ c
u

⇥ (t
2

� t
1

)
c
r

� c
u

(5)

Where c
r

and c
u

are respectively the propagation speed of both radio and ultra-
sound signals, while t

1

and t
2

are their reception times at the receiver level.
The TDOA method has the advantage to provide much better accuracy than
RSS-based methods and it does not su↵er from the need of explicit synchroniza-
tion between nodes. However, it presents the drawback of requiring additional
and more complex hardware with two di↵erent transceivers, which would have a
negative impact on the cost.

The multiple-receiver TDOA: In this approach, the TDOA method is seen from
another perspective. It is based on the propagation of only one signal (e.g. radio)
and needs at least two receivers to estimate the reception time di↵erence in the
multiple receivers [54]. When a sender node transmits a signal, it will be received
at di↵erent instants at two receivers located in di↵erent positions. The TDOA
results from the distance di↵erence of both receivers from the transmitter. Thus,
it has been formally shown that for two receivers at known locations and with a
known TDOA, the sender node is then located on a hyperboloid whose equation
is given by:

R
i,j

= D
i

�D
j

(6)
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where D
i

is the distance between receiver i and the sender node defined as:

D
i

=
q

(x
i

� x)2 + (y
i

� y)2 + (z
i

� z)2 (7)

where (x
i

, y
i

, z
i

) represents the 3D coordinates of a fixed receiver i, and (x, y, z)
represents the coordinates of the sender. Finding the exact solution of hyperbolas
intersection is very complex. There is though linear techniques using Tailor-series
to find an estimated location [78]. Another conventional method relies on com-
puting the cross-correlation function of the signals arriving to two receivers and
estimate TDOA being the time that maximizes the cross-correlation function [54].

3.1.3 Angle-based localization

This class mainly represents the Angle-of-Arrival (AOA) method also known as
Direction-of-Arrival (DOA) or bearing measurements [60]. This method relies on
computing the angle (or the direction) of the line connecting an unknown node to
an anchor node with respect to some reference direction. The reference direction is
also referred to as orientation [73]. If there is no reference direction (the orientation
is unknown), the angle is defined by two lines connecting the unknown node with
two anchor nodes.

The orientation is considered as absolute if it refers to the North direction,
which means an angle of 0�. It is considered as relative, otherwise, where a relative
reference direction with respect to the North is known in advanced. The concept
of absolute and relative orientations is illustrated in Figure 7. In the literature, it
is assumed that each node may have its own orientation axis di↵erent from others’
nodes orientations [63].

If the orientation of an unknown node is known (either absolute or relative),
only two anchor nodes would be su�cient to estimate the position of the target.
However, when the orientation is unknown, at least three non-collinear anchor
nodes are needed for locating the unknown node, as illustrated in Figure 7.c. In
this case, since the absolute angle information cannot be determined, the angle
di↵erence between two di↵erent nodes viewed by the third one is utilized instead.

In [87], the authors have proposed localization algorithms using AOA informa-
tion in the case of unknown orientations. The first method relies on dual informa-
tion pertaining to distance and AOA whereas the second method only considers
AOA information. It has been shown that the knowledge of distance improves the
robustness of the localization against noise but is inherently dependent on distance
measurements.

Geometrically, the estimated angle ✓̂ between a target node with coordinates
(X

target

, Y
target

) and an anchor node with known coordinates (X
anchor

, Y
anchor

)
is determined by [60,21]:

✓̂ = ✓ + n
i

(8)

where

✓ = arctan

✓

X
target

�X
anchor

Y
target

� Y
anchor

◆

(9)

where n
i

is the additive zero-mean Gaussian noise with variance �2, and tan�1 is
the inverse of trigonometry tangent function.
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Fig. 7: AOA orientation concept

Fig. 8: Illustration of AOA concept of an array of antenna

In practice, there are two fundamental techniques for measuring angles [42].
The first technique relies on the use of directional antennas that can rotate on their
axis. While this technique makes simple the computation of angles, it is not prac-
tical for low-cost cyber-physical devices (e.g. sensor nodes) as their propagation
pattern is typically assumed to be quasi omnidirectional. The second technique
is based on the use of an array of antenna, which exploit the finite propagation
speed of waves. Figure 8 illustrates this concept and shows an array of N antenna
where adjacent ones are mutually separated by a distance d. The distance of the
transmitter to the kth antenna is approximated by the following equation [60]:

R
k

⇡ R
0

� kd cos(✓) (10)

Where R
0

represents the distance of the transmitter to the 0th antenna, and
✓ is the direction of the transmitted signal viewed from the antenna array. The
phase of the received signal is equal to 2⇡ d cos(✓)

�

with � is the wavelength of the
transmitted signal. Thus, the AOA can be derived from the phase di↵erences of
received signals.

The advantage of the AOA method is that it does not require time synchro-
nization in contrast to time-based localization methods (e.g. TOA). However, it
exhibits several disadvantages making it not very appropriate for cyber-physical
systems. First, AOA requires very complex and expensive hardware which con-
trasts the basic requirements of low-cost, low-power devices. Second, the com-
putation paradigm of angles is inherently complex, challenging and pretty much
a↵ected by noise, shadowing and multi-path reflections incident from misleading
directions. In the literature, it is very di�cult to find research works on AOA us-
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ing experimental validation of the proposed mechanisms as the majority of these
works such as [21,73,63,87] rely on simulations for validation purposes.

3.1.4 Phase-based localization

This class mainly represents the Phase-of-Arrival (POA) method which is also
called Received Signal Phase Method [54]. This method consists in finding the
carrier phase of the received signal by the receiver and devise the corresponding
distance. This method is e↵ective only when the signal’s wavelength is longer
than the maximum distance to be estimated. In this technique, it is assumed
that all nodes send sinusoidal signals of the form S

i

(t) = sin(2⇧ft + '
i

). The
propagation delay is proportional to the phase '

i

= (2⇧fD
i

)/C, where C is the
speed-of-light, and D

i

is the delay between sender and receiver i. If the wavelength
is longer than the maximum distance, then 0  '

i

 2⇧ and the delay can be
estimated as D

i

= (C'
i

)/((2⇧f). The POA method, like previous methods, needs
the LOS path, otherwise errors will degrade its accuracy. In addition, carrier phase
estimation is a challenging task making the practical use of this POA tricky. The
POA method can be used in combination with the aforementioned methods to
improve the accuracy of the localization.

3.2 Range-Free Techniques

Range-free methods do not rely on distance or angle estimation in localization.
They rather use proximity or connectivity information to devise the location of
the target. In [60], a classification of range-free techniques has been proposed and
considers three classes: (i.) Connectivity-based localization, (ii.) non-parametric
RSS-based localization, (iii.) RF fingerprint-based localization. In the comprehen-
sive survey about range-free localization methods [76], these methods have been
classified into anchor-based and anchor-free, which we believe is more convenient
for a proper taxonomy. In fact, RSS-based method and RF fingerprinting are typ-
ically used in range-based techniques, as described above, although distance can
be ignored in some cases to estimate the location based on connectivity. How-
ever, this does not represent the essence of these techniques. In what follow, we
present the most representative techniques of range-free methods according to the
classification proposed in [76].

3.2.1 Anchor-based methods

These methods assume the existence of anchor nodes that know their locations. In
a 2D space, three anchors are required, whereas in a 3D space, at least four anchors
are needed to estimate a location of a target based on radio connectivity. Several
techniques have been proposed in the literature to approximate the location of
a target based on connectivity information and without recourse to distance. In
this paragraph, we present several anchor-based range-free localization techniques,
which in turn can be classified as (i.) Area-based approaches such as centroid and
point-in-triangle techniques, (ii.) Global optimization approaches such as Multidi-
mensional Scaling (MDS), or (iii.). Multi-hop localization approaches.
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Table 5: Comparison between range-based techniques

Localization Methods Advantages Limitations

Time-of-Arrival - accurate
- low communication
and computation
overhead

- node synchronization
is mandatory
- require extra sensing
hardware

T
im

e
-b

a
se

d

Time-Di↵erence-of-
Arrival

- accurate
- low communication
and computation
overhead
- synchronization is
not mandatory

- extra ultrasound
transmitter is required

Round-Trip
Time-of-Flight

- accurate
- low communication
and computation
overhead
- synchronization is
not mandatory

- prune to NLOS
e↵ects

RSS-based - no need for extra
sensing hardware
- simple to implement
- low cost

- high variation
especially in indoor
environments
- sensitive to
interferences and
multi-path e↵ects
- unreliable and
inaccurate

Angle-based - give information on
orientation
- synchronization is
not mandatory

- a↵ected by NLOS
and multi-path e↵ects
- sophisticated or
arrays of antenna is
required

Phase-based - simple to implement - the signal’s
wavelength must be
longer than the
maximum distance to
be estimated

(a) Area-based approaches: these techniques are based on radio connectivity be-
tween the target and anchors and typically estimate the position of the target
as a particular point in the polygon formed by all neighbors. Two main meth-
ods are proposed in the literature: (i) the centroid method, (ii) the point-in-
triangle.

i) Centroid : this is an area-based technique that was first proposed in [15]
and it merely consists in computing the location of the target as the
centroid point, defined as the geometric center (or barycenter) of a set of
anchors, as shown in Figure 9.
In the most general form, assuming n anchor nodes A

i

with coordinates
(X

i

, Y
i

) are detected by the target node (through beacon listening), the
latter calculates its coordinate (X

G

, Y
G

) such that:
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Fig. 9: Illustration of Centroid Localization Technique

(X
G

, Y
G

) =

✓

P

n

i=1

(X
i

)

n
,

P

n

i=1

(Y
i

)

n

◆

(11)

To refine the localization accuracy using the centroid technique, a point
mass (or a weight) can be adequately assigned to each anchor node de-
pending on a predefined criterion. In this case, the coordinate of the target
node is given by:
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where m
i

represents the point mass of the anchor node A
i

, which de-
fines the weight assigned to it. This technique is commonly known as the
Weighted Centroid Localization (WCL).
In the literature, several studies have focused on finding optimal values
for point masses based on the RSS or distance information [70,12,56] and
several values were proposed. In [56], m

i

was chosen to be equal to the
inverse of the estimated distance, d

i

, between the anchor node A
i

and the
target node, whereas Reference [12] proposed more general weight having
m

i

equal to 1

(di)
q , where q is a degree ensuring a greater impact of long

distances of estimated target position. Similarly, in [70], the inverse of
(RSS)q was used as weight for anchor nodes. In these papers, it has been
shown that centroid localization provides better accuracy when used with
adequate weights as compared to the general case, while still keeping low
computation complexity.

ii) Approximate Point-in-Triangle Test (APIT ): It is another area-based lo-
calization technique proposed in [33]. It assumes that the location of the
target is the center of gravity of a certain triangle, which is defined as
the intersection of triangles formed by anchors in which the target node
resides, as illustrated in Figure 10. The idea simply consists in dividing
the environment into triangular regions, then testing whether the target
is inside a given triangle or not to narrow down the area of the possible
target locations. All possible triangle combinations are tested: When the
target is outside a given triangle, it will not be considered in the com-
putation of location. At the end, the center of gravity of the triangles’
intersection will represent the estimation target position.
The main challenge in this technique is to determine whether the target
is inside or outside a certain triangle. In [33], the authors proposed an
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Fig. 10: Illustration of APIT Localization Technique

exact, yet theoretical, test that correctly decides whether a point is inside
a triangle or not. The idea referred to as perfect PIT and relies on check-
ing the existence of a direction such that if the target moves according
to that direction, it will simultaneously get further/closer to all triangle
points, i.e. anchors. This approach is illustrated in Figure 11. Two major
handicaps hinder the practicability of this approach in real-world. First,
nodes typically do not have the ability to recognize the direction without
moving. Second, it is not possible to perform an exhaustive test covering
all possible directions in which the target may move to. To solve both
problems, an approximation has been proposed and whose idea is to use
neighborhood information, exchanged via beaconing, to emulate the node
movement in the Perfect PIT test as shown in Figure 12. First, the target
node asks its neighbors for their distances to three corner anchors. The
target then compares its distance to these three corner anchors against
those of its neighbors. If there exists at least one anchor such that it is
further from or closer to all corner anchors than the target, then the latter
considers itself as being outside the triangle. Otherwise, if all neighbors
are closer to some anchors and further from some others, then the target
infers that it is located inside the triangle.
With respect to distance estimation and comparison, RSS has been pro-
posed to be used. This produces errors in the APIT test leading to incor-
rect decisions. It has been reported in [33] that, based on experiments,
the decision error of APIT does not exceed 14% in the worst case. The
APIT approach provides better accuracy in case of dense networks as the
probability of such errors would decrease. For additional details about the
performance of APIT and the comparison of its behavior against other
localization techniques, the interested reader is referred to [33] and [76].

(b) Global optimization methods: Roughly, these methods assume the knowledge
of global information to find an optimal solution to the main problem (e.g.
inferred optimal location of nodes). Multidimensional Scaling (MDS) has been
used as a global optimization technique for finding the location of nodes based
on the global knowledge of distances between nodes. In a more general perspec-
tive, this technique is used in visual representation of the information for the
sake of exploring similarities or dissimilarities in data. Applied to localization,
it consists in inferring the di↵erent locations of nodes in multidimensional 2D
or 3D space (visual representation of geographical data) based on the infor-
mation of relative distances (global information input). In other words, MDS
attempts to arrange nodes in a 2D or 3D space so as to reproduce a map
such that the resulting distances on the map are as much close as possible
to the observed distances. A typical example, is map reconstruction based on
inter-city distances. Obviously, if the map containing multiple cities is known,
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Fig. 11: Possible Cases in Point-in-Triangle Test. N denotes the target node, and
A

i

denote the ith anchor. The left figure shows that if the target N inside the
triangle moves in any direction, it will get close to some anchors and far from
others. In the right figure, if the target node N outside the triangle moves in the
indicated direction, it will get far to all anchors at the same time.
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Fig. 12: Possible Cases in Approximate Point-in-Triangle Test. N denotes the tar-
get node, and A

i

denote the ith anchor. The left figure shows that if the target N
inside the triangle, none of its neighbors is either close to or far from all anchors. In
the right figure, if the target node N outside the triangle, its neighbor n

1

indicates
that is it further to all anchors than it.

it is straightforward to determine the relative distance between cities, which
provides a unique solution. In contrast, if distances between cities are known,
finding the exact location of each city in the map is too complex and not de-
terministic. MDS provides a solution to approximate the real positions based
on distance observations.
Usually, MDS is formulated as an optimization problem, where the estimated
locations of N nodes (x

1

, . . . , x
N

) are those that minimize some cost functions,
such as min

x1,...,xN

P

i<j

(kx
i

� x
j

k � d
i,j

)2, where k.k is the vector norm
operator and d

i,j

is the observed distance between node i and node j.
In [74], the authors proposed MDS-MAP, a method for using MDS in localiza-
tion. MDS-MAP uses the Classical Multidimensional Scaling (CMDS), which
is the simplest case of the MDS technique that does not require iterations as it
provides a closed form solution. The network is assumed to be an undirected
graph with vertices V and edges E. The vertices represent nodes whereas edges
can either represent (i.) connectivity information or (ii.) distances between
nodes, if those are known. In general, the MDS-based localization algorithm
generates a relative map, which tailors a possible geographical visualization
of the network based on distance or connectivity information. If, in addition,
the absolute locations of some anchors are known, then the absolute map can
also be derived. The proposed localization algorithm has three steps:
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i) Shortest-path computation: The algorithm first computes the shortest
paths between all pair of nodes with either connectivity or distance infor-
mation. The resulting distances in the shortest path are used to construct
the distance Matrix.

ii) Relative mapping : MDS is then applied to the distance Matrix and rel-
ative positions are computed. For m-dimensional space (m= 2 or 3) the
coordinate matrix representing the location is based on the m eigenval-
ues and eigenvectors after the singular value decomposition. Although it is
possible to achieve high accuracy in terms of resulting inter-node distance,
the location of nodes will be arbitrary rotated and flipped as compared
to real node locations.

iii) Absolute mapping : Assuming that locations of some anchor nodes are
known, the algorithm devises the absolute map through linear transfor-
mation including scaling, rotation, and reflection. The absolute locations
are considered to be found when the sum of the squares of the errors
between the true positions of the anchors and their observed location in
the map is minimized.

More details about mathematical models of MDS-MAP can be found in [74,
76]. It has been shown that the MDS-MAP localization has a complexity in
the order of O(n3) due to the singular value decomposition operation in MDS.
This complexity cannot be handled by resource constrained nodes, thus, MDS
computation must be executed on a base station with powerful computation
capacity.
The main shortcoming of MDS-MAP method is the need for global information
about inter-node distances or connectivity information. This is very improb-
able in case of dense wireless sensor networks due to energy and bandwidth
constraints. In addition, MDS performs worse than other techniques in dense
sensor networks. The knowledge of connectivity information is usually more
feasible than the knowledge of real distances. However, this actually compro-
mises the accuracy of relative and absolute computed geographical locations.
Furthermore, this approach is centralized and is not convenient for mobile
cyber-physical systems, in general, as distributed approaches would be more
suitable.
In the literature, several techniques have been proposed to enhance the per-
formance of MDS-MAP [20,38]. In [38], MDS was used to estimate locations
in with anisotropic topology and complex terrain and to eliminate measure-
ment error cumulation through iterative computations. In [20], the authors
proposed a distributed and weighted MDS approach, dwMDS, thus avoiding
the centralization shortcoming of the classical MDS-MAP approach.

(c) Multihop localization approaches : It is not always possible that a target trying
to locate itself is in communication range with at least three anchor nodes
because of the limitation of the transmission power. For that reason, mecha-
nisms for multihop localization have been proposed to extend the localization
process over a larger geographical extent.
One of the most popular methods is Ad-Hoc Positioning System (APS), pro-
posed by Niculescu and Nath in [63]. APS aims at computing a range estimate
between a target node faraway from anchors, assuming that a set of anchors is
available in the network. The main idea of APS, similar to Ad hoc On-Demand
Distance Vector (AODV) mechanism; it consists in flooding the network such
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that each anchor independently broadcasts a packet, called beacon, embedding
its location and a hop-counter field initially set to one and increased in each
new hop. Then, each target node identifies the shortest-path to each anchor
node and tries to estimate its distance to it. Three distance propagation meth-
ods have been proposed: DV-HOP, Distance-Hop and Euclidian. DV-Hop is
the only range-free method among all other propagation methods, which we
describe in what follows.
The idea of DV-Hop is to compute the number of hops between any two
anchors (A

i

, A
j

) and estimate the average 1-hop distance by dividing the sum
of physical distances by the sum logical distances. More explicitly, each anchor
estimates the average 1-hop distance by dividing the sum of its distance to
other anchors by the sum of hop counts to those anchors. The DV-Hop steps
can be summarized as follows:
– Node update phase: When a target N

i

receives a beacon from an anchor,
it maintains the record (X

i

, Y
i

, h
i

) for each anchor A
i

, where (X
i

, Y
i

) rep-
resents the location of the anchor, and h

i

, the number of hops from N
i

to that anchor A
i

. At the end of this step, the target knows about the
locations of anchor nodes and the hop counts to reach them.

– 1-hop distance estimation phase: When an anchor node receives the loca-
tions and hop counts to other anchors, it calculates the estimated average
1-hop distance, referred to as correction factor c

i

, expressed as follows:

c
i

=

P

⇣

p

(x
i

� x
j

)2 + (y
i

� y
j

)2
⌘

P

(h
i

)
(13)

Then, the anchor floods the network with the estimated 1-hop distance.
A node that receives a correction, forwards it and then stops forwarding
subsequent corrections.

– Target node localization: each target uses the correction sent from the clos-
est anchor as the estimated 1-hop distance. It then multiplies the 1-hop
distance by the hop counts to other anchors to estimate its physical dis-
tances to them. After getting distance estimates to at least three anchors,
a target can use trilateration to approximate its location.

DV-Hop has the advantage of being simple and computationally-e�cient, and
also it does not depend on measurements error, for instance like when using
RSS for distance estimation. However, DV-Hop is limited for use in isotropic
networks to exhibit e�cient behavior. In fact, for anisotropic environment,
the average 1-hop distance will not be accurate as connectivity will be less
correlated with range.
Gradient localization algorithm proposed by Nagpal et al. in [62] is another
technique similar to DV-HOP in the sense that anchor nodes broadcast a
message containing its location and hop count set to one, which increases
from one hop to another. The di↵erence with DV-Hop relies in the way how
the 1-hop distance is calculated. The Gradient approach uses the formula given
by Kleinrock-Silvester in [43] to estimate the 1-hop distance as the Euclidian
distance covered by one radio hop expressed by:
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d
hop

= r(1 + exp (�n
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)�
Z

1

�1
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✓�n
local

⇡

⇣

arccos t�
p

1� t2
⌘

◆

dt)
(14)

where n
local

represents the expected local neighborhood. The above estimation
of 1-hop distance may result in additional localization errors.

Most of the above aforementioned localization methods assume an isotropic
network topology with a statistically identical connectivity information for all
directions. However, this assumption often does not hold in reality because of ob-
stacles presence, radio irregularity and the non-uniform node density. As a matter
of fact, holes and complex shapes will be frequently present in the network topol-
ogy. Several works have tried to deal with the anisotropic radio propagation issue
including [47–49]. For instance, in [47] the authors have addressed the hole and
complex shape problem by e�ciently sub-devising the network, strategically plac-
ing anchor nodes, and finally selecting anchors placed on network boundaries with
su�cient density. The method presented in [47] relies on (i.) the use of geometri-
cal concepts in order to construct the Voronoi diagram of anchors in the shape of
triangles [85] and (ii.) on rigidity theory in order to find the network layout and
localize target nodes.

Table 6: Comparison between range-free anchor based techniques

Localization
Methods

Accuracy Overhead
of compu-
tation

Overhead
of com-
munica-
tion

Number
of an-
chors

Degree
of
scala-
bility

Weighted
Centroid

 Radio
transmis-
sion range
(R)

depends on
weights

low, one
hop

at least
three

high

APIT  Radio
transmis-
sion range
(R)

low low, one
hop

large high

DV-hop low in
anisotropic
environ-
ments

low high low low

MDS-
MAP

O(R) high high can be zero low

3.2.2 Anchor-free methods

Range-free anchor-free methods also called Event-driven methods, are schemes that
exploit temporal and spatial properties of an event. For instance, an event may
be the reception of an acoustic or a RF-signal. In [76], the authors argue that
these methods can lead to a much higher accuracy as compared to the anchor-
based ones. However, this benefit comes along with an implicit assumption that
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Fig. 13: Lighthouse localization system [72]

events can be precisely generated and propagated to a specific location at a specific
time [85]. The well known anchor free methods are Walking-GPS, Lighthouse and
Spotlight. Detailed descriptions are given in what follows.

Walking-GPS: As its name reflects, walking GPS is a localization method con-
sisting of a walking device/person carrying a Global Positioning System (GPS)
which broadcasts periodically its/his position. The broadcasted data are used
by unknown nodes to deduce their own locations. The hardware architecture of
Walking-GPS encloses three main components:

– A GPS device: computes periodically its current position.
– A mote connected to the GPS (GPS Mote): broadcasts the coordinates got from

the GPS device. For the sake of communication overhead reduction, Walking
GPS system uses a local Cartesian coordinates system instead of the original
GPS coordinates as these latter require 11 bytes for their representation.

– Unknown nodes (Sensor Motes): run a triangulation-based localization algo-
rithm. This algorithm relies on the use of location information generated from
two distinct sources: the GPS Mote and the settled nodes. Location informa-
tion sent by settled nodes are used by unknown nodes that were unable to hear
the data broadcasted by the GPS Mote.

The main advantage of the walking-GPS system is enabling by a single GPS de-
vice, the localization of an entire network with an acceptable accuracy (average
localization errors are within 1 to 2 meters [75]).

Lighthouse: It is another anchor-free method proposed in [72]. As depicted in
Figure 13, this system consists of a constant rotating speed anchor node generating
light signals. Its design assumes two idealistic hypothesis:

– A free-space optical channel between the light source and the unknown nodes.
– A parallel light beam.

While the beacon node is rotating, an unknown node N
k

perceives the light sig-
nal during a period of time t

beam

. t
beam

depends on three parameters: the N
k

’s
distance d from the rotation axis, the time t

turn

required for a complete rotation
and the light beam width b. t

beam

is given by Eq. 15.

t
beam

=
arcsin

⇣

b

2d

⌘

⇤ t
turn

⇡
(15)

The location of the unknown node belongs to the cylinder with radius d centered
at the lighthouse rotation axis. The main drawback of Lighthouse localization
system is its idealistic assumptions. In fact, it is very di�cult to ensure a parallel
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Fig. 14: Spotlight system architecture [76]

light beam. Ignoring such fact leads to inaccuracies. To cope with this drawback,
the authors of [72] adapt their system by using two semiconductor laser modules
and two rotating mirrors. Mirrors are mounted to ensure that the beam can be
seen from any directions. Each laser module has a beam of width b

i

and angle
orientations �

i

,�
i

and �
i

where i=1,2. The resulting beam seen by the unknown
node is approximately equal to:

b ⇡ b
1

+ b
2

+
p

d2 + h2 ⇤ (sin�
1

+ sin�
2

)

+ h (tan�
1

+ tan�
2

) + d (sin�
1

+ sin�
2

)
(16)

Where d is the unknown node distance to the lighthouse rotation axis while h is
its height over the lighthouse center.

Spotlight: It is a localization system which employs an asymmetric architecture
where all expensive and energy greedy operations are shifted from unknown nodes
to a single powerful device. This device, called Spotlight is responsible of the
computation of all unknown nodes locations. To do, Spotlight device flies over the
network A and broadcasts light events e(t) according to a predetermined event
distribution function E(t). When an unknown node detects an event, it reports
back to the Spotlight device, its detection timestamps. This information will be
mapped to a fixed position which will be also reported to the unknown node. As
depicted in Figure 14, Spotlight localization system supports three main functions
dispatched between the Spotlight device and unknown nodes:

– A binary event detection function D(e) set to true if an event e is detected and
to false otherwise.

– An event distribution function E(t) defining where in the network A an event
was detected at time t.

E(t) = {p|p 2 A ^D(e(t, p)) = true} (17)

Where e(t, p) is an event occurred at time t at the position p 2 A.
– Localization Function L(T

i

) defining the localization algorithm having as in-
puts the timestamps Ti reported by the node i:

Spotlight localization system could be implemented in three possible instances:

1. Point Scan: In this instance, the Spotlight device is assumed generating light
spots and moving with a constant speed s along a rectilinear line where un-
known nodes lie.
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2. Line Scan: In this instance, the Spotlight device is assumed generating a line
of light events (e.g laser device) over a square shaped area A where unknown
nodes are deployed. The Spotlight device is supposed scanning the area A by
moving straightly along the x axis and then along the y axis.

3. Area Cover: Di↵erently to Point Scan and Line Scan, the Area Cover supposes
that Spotlight device is able to generate events covering a whole area at time
(e.g video projector).

As it may be intuitively concluded, the Spotlight localization system requires that
unknown nodes and the Spotlight device be synchronized which may results in an
increase in system cost.

3.3 Geolocation Techniques

Geolocation is the act of finding unknown nodes locations based on some infor-
mation pertaining to distances and angles measurements. Basically, there are two
major classes of gelocation techniques: (1) geometric geolocation techniques based
on geometric transformation of distance or angle information to estimate the lo-
cation of the target; lateration and triangulation are the fundamental methods
of this class, and (2) refinement geolocation techniques consist of mathematical
methods aiming to reduce measurements’ noise and to improve the accuracy of
the estimated location. The following sections provide more details about both
classes.

3.3.1 Geometric geolocation techniques

Lateration/Trilateration Lateration is the technique that uses distance informa-
tion from anchor nodes to locate a target. In a 2D space, lateration involves the
determination of the location of an unknown node as the intersection point of
three circles centered in three non-collinear anchors (A, B and C), given that dis-
tances R

1

, R
2

and R
3

(i.e. circle radii) between the node and anchors are known.
This technique is referred to as trilateration. In a 3D space, there is a need of at
least four anchor nodes to determine the location of a target node. In the ideal
case, trilateration assumes that distance measurements are precise and noise-free,
as depicted in Figure 15. Such a situation is not usually true as errors and in-
accuracies most likely occur. These inaccuracies prevent circles intersection to be
an exact point Figure 16 and makes the localization process more challenging. In
this case, one possible solution to estimate the target location is to use Maximum
Likelihood algorithm [28] or the least squares optimization method. More details
about least-squares methods will be presented in Section 3.3.2.

The trilateration process for inferring the target location is achieved by solving
the linear equation system in Equation (18),

(x
i

� x)2 + (y
i

� y)2 = d
i

2 (18)

where x and y are the coordinates of the unknown node, and (x
i

, y
i

) are the coordi-
nates of at least three anchors N

i

, i 2 1, 2, 3 involved in the localization. The linear
equation system would give an exact and unique solution if the circles intersect in
one point, in an ideal noise-free environment. As shown in [27], this system can be
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Fig. 15: Trilateration with Noise-Free Mea-
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Fig. 16: Trilateration with Noisy Measure-
ments

linearized by subtracting Eq.(18) for an anchor N
i

from the equivalent expression
of anchor N

1

, it results:
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The system can be written in matrix notation:

HX = B (20)

where X = [x, y]T represents the target node location,
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and
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Thereby, the target location can be estimated as solution of [Eq. (20)]:

X = (HT H)�1HT B (23)
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main idea is to construct a bounding box for each
anchor using its position and distance estimate

These positions are not very accurate, even under
good conditions (high connectivity, small range
errors), because not all available information is
used in the first two phases. In particular, most
ranges between neighboring nodes are neglected
when the node–anchor distances are determined.
The iterative Refinement procedure proposed by
Savarese et al. [11] does take into account all inter-
node ranges, when nodes update their positions in
a small number of steps. At the beginning of each
step a node broadcasts its position estimate, re-
ceives the positions and corresponding range esti-
mates from its neighbors, and performs the
Lateration procedure of Phase 2 to determine its
new position. In many cases the constraints im-
posed by the distances to the neighboring locations
will force the new position towards the true posi-
tion of the node. When, after a number of itera-
tions, the position update becomes small,
Refinement stops and reports the final position.

Th b i it ti fi t d t

Anchor1
Anchor2

Anchor3

est.
pos.

Fig. 3. Determining position using Min–max.

K. Langendoen, N. Reijers / Computer Networks 43 (2003) 499–518 505

Fig. 17: Bounding-Box (Min-Max) [45]

Bounding-Box (Min-Max) The bounding-box (also known as min-max) algorithm
is another computationally-e�cient alternative to trilateration that relies on the
intersection of rectangles instead of circles to estimate the location of an unknown
node. The main idea is to draw a bounding box for each anchor node using its
location and distance estimate, then to determine the intersection of these rectan-
gles. The location of the target node is estimated as the center of the intersection
rectangle. Figure 17 illustrates the bounding-box method for a target node based
on the distance estimate of three anchor nodes. The min-max method provides a
solution very close to the ideal solution obtained through trilateration, with much
less computation requirements. Formally, the bounding box pertaining to an an-
chor N

i

is constructed by subtracting its distance estimate d
i

from its location
[x

i

, y
i

]

[x
i

� d
i

, y
i

� d
i

]⇥ [x
i

+ d
i

, y
i

+ d
i

] (24)

The intersection of the bounding boxes is computed by taking the maximum of
all coordinate minimums and the minimum of all maximums:

[max(x
i

� d
i

), max(y
i

� d
i

)]⇥ [min(x
i

+ d
i

), min(y
i

+ d
i

)] (25)

It can be noticed that the computation cost with bounding-box method is
much smaller than that with trilateration, at the expenses of a bit lower accuracy.

Triangulation Triangulation is a geolocation method that exploit triangles prop-
erties in order to determine unknown nodes locations. Being di↵erent from tri-
lateration, triangulation is based on angle measurements to estimate the location
of an unknown node rather than measuring distances to the unknown node (i.e.
trilateration). In particular, it is typically based on AOA measurements from two
anchor nodes in a 2D space. In a 3D space, triangulation would be possible if
another measurement of azimuth is available. Two cases may arise with triangu-
lation: (1) the distance between the two anchor nodes is known, (2) the distance
between the two anchor nodes is unknown.

In the first case, if we consider two anchor nodes A and B separated by a
distance d

AB

, C is the target node, and dCAB and dABC are two known angles, then
the location of the unknown node C completing the constitution of the triangle
ABC is derived using the trigonometry laws of sines and cosines (also known as
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Fig. 18: Triangulation (first case)

AL-KASHI theorem). Node C will be located at distance d
C

at the perpendicular
to line (A, B) as shown in Figure 18 such that:

d
C

=
d

AB

sin( dCAB) sin( dABC)

sin( dCAB + dABC)
(26)

In the second case, assuming that each anchor N
i

is able to measure the AOA
✓

i

of the signal transmitted from the target node, then it is possible to write:
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and, in matrix form:
HX = B (28)
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The solution is given by:

X =
⇣

HT H
⌘�1

HT B (31)

Multilateration or (Hyperbolic localization) Multilateration, also known as hyper-
bolic localization, is a geolocation technique based on the estimation of distances
using TDOA measurements. Multilateration typically refers to locating an emit-
ter node with unknown location by measuring the TDOA of the signal it emits
to three of more anchor nodes. It may also refer to locating a receiver node that
measures the TDOA of a signal transmitted from three or more synchronized an-
chor nodes. Multilateration is di↵erent from trilateration, which relies on absolute
(real) distance measurements between the target node and anchor nodes, whereas
multilateration exploits the di↵erential distance between anchor nodes. We also
note that multilateration di↵ers from triangulation, which is based on at least
two-angle measurements. The nomination of multiletration as hyperbolic localiza-
tion is because the possible location of a target node lies in a hyperbola as a result
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of considering the distance di↵erence (i.e. TDOA) instead of absolute distances. In
fact, the hyperbola is defined as the curve such that the di↵erence of the distance
from any point on the hyperbola to the two foci is a constant 2a, which is the
distance between its two vertices [55]. If the distance between the two foci is 2c,
then the hyperbola equation is expressed as:

q

(x + c)2 + y2 �
q

(x� c)2 + y2 = 2a (32)

It can also be written in the following equivalent form:

x2

a2

� y2

b2
= 1 (33)

where b =
p

c2 � a2.
For a TDOA measurement t

i

that pertains to a di↵erence of distances D
ij

between the target node and the anchors N
i

and N
j

, the hyperbola equation is:

d
i

� d
j

= D
ij

(34)

which is equivalent to Eq. (32). d
i

and d
j

represent the distance between the target
node and anchors N

i

and N
j

, respectively. The relation between the distances and
the parameters of the hyperbola is given in [55]. Similarly to trilateration, due to
measurements inaccuracy, the intersection of hyperbolas will not result into a single
point. The same optimization approaches as those used in case of trilateration can
also be used in this case. In particular, equations (20) and (23) can still be applied
for the following matrix notation of the problem:

X = [x, y, d
1

] (35)
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and

B =
1
2

2

6

6

6

6

4

�

x2

2

+ y2

2

� � �x2

1

+ y2

1

� � d2

2

�

x2

3

+ y2

3

� � �x2

1

+ y2

1

� � d2

3

...
�

x2

n

+ y2

n

� � �x2

1

+ y2

1

� � d2

n

3

7

7

7

7

5

(37)

We note that d
1

refers to the distance between the target node and the first anchor
N

1

and that this distance is also unknown, thus is included in the unknown vector
X. Using the least-squares optimization method as in Equation (23), a solution
can be determined for this system in noisy environments. Other techniques such
as Extended Kalman Filter can also be used.
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Figure 2: TDOAs: 1-2, 1-3, 1-4 

 

 
Figure 3: TDOAs: 1-2, 2-3, 3-4 

 
to cost limitations manufacturers prefer locations where 
necessary infrastructure like power supply and data links are 
already available. In most cases this will be the primary siting 
criteria and therefore leads to to limited range of choices and 
makes an ideal set-up unrealistic.  
 
This leads to two questions: 
 

• What would be the best arrangement of sites, if there 
would be no other restrictions than the pure geometry? 

• What is the best way to calculate the position in a 
given system under geometrical aspects? 

For a manufacturer the installation of an MLAT system is 
probably somewhere in the middle of these questions.  There 

is a limited choice of sites and within this choice the best 
arrangements and the corresponding algorithms have to be 
found. For our work we decided to focus on the second 
question. The main reason was the access to MLAT sites and 
thus the possibility to validate theoretical results by field tests. 
While the first question remains theoretical unless the found 
ideal arrangement can really be installed, the answers to the 
second question can be verified in a much easier way. 
 
Initial  trials were conducted in a local (airport) MLAT system. 
This allowed static measurements to gather a certain amount 
of MLAT data for a static position. Flight trials in a wide area 
system have been planned as well but had to be postponed 
repeatedly due to bad weather conditions. They have been 
conducted recently but analysis of these trials is still going on. 
 
For ground tests the institutes research vehicle, a Volkswagen 
Passat was used at Adolph Würth Airport in Schwäbisch Hall, 
Germany. The car is equipped with special power supply and 
prepared for experiments in the field of GNSS research. For 
transmission of Mode S signals a Thales ADS-B transmitter 
“Mosquito” was used, which transmits Mode S Downlink 
Format 18. The multilateration system at the airport consists 
of four receiver sites. The locations are shown in Figure 4.  
 
Measurements were made at eleven positions at the airport for 
a duration from one up to two hours per position. The duration 
at the positions varied due to the overall time budget and the 
fact that some positions could not be occupied for two hours 
as they were blocking taxiways (e.g. position 5). Due to heavy 
snowfall only positions at aprons and taxiways were 
accessible, limiting the choice of trial positions and leading to 
the conflicts with taxiing aircraft. 
 
For the whole duration GPS data was recorded, using a 
NovAtel OEMV receiver. This data was further processed 
later on, averaged and finally the lever arms between the two 

 
Figure 4: Site arrangement at Adolph Würth Airport 
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Fig. 19: Hyperbolic localization [37]

Table 7: Comparison between Geometric geolocation techniques

Geolocation
Methods

Accuracy Complexity of
computation

Requirements

Bounding-Box Coarse-grained O(n) comparisons at least two anchors
Triangulation Fine-grained if

non-noisy mea-
surements

O(n) multiplica-
tions

at least two anchors,
angle measures

Trilateration Fine-grained if
non-noisy mea-
surements

O(n) multiplica-
tions

at least three anchors

Multilateration Fine-grained if
non-noisy mea-
surements

O(n) multiplica-
tions

at least three an-
chors, synchronization
between anchors

The Closest-
Neighbor

Coarse-grained Zero at least one anchor

The Closest-Neighbor Algorithm It is also known as proximity-based localization.
In the Closest-Neighbor algorithm (CN), the location of the unknown node is
simply confused with the location of the closest anchor. The algorithm proceeds
as follows: given a group of anchors, in order to locate a particular node s

n

, a
distance measurement is performed by each anchor N

i

. Let d
i

be the set of all
measured distances. The location of s

n

will be determined as the location of the
anchor having the minimum d

i

.

3.3.2 Refinement geolocation techniques

Least-Squares method The main objective of Least Square (LS) method in localiza-
tion consists in minimizing the e↵ect of distance errors on the estimated location.
In fact, when using trilateration, for example, the intersection of circle does not
result in a single point since the estimated distances are di↵erent from real dis-
tances. The LS consider the localization problem as an optimization problem and
finds the optimal location that minimizes the square errors.

Least Squares (LS) models the range errors as random variables ⌘
i

a↵ecting
the measured distances (D = [d

1

, ..., d
n

]T ). Range errors take into account the
measurements errors resulted from channel noise, and NLOS errors resulted from
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blocks presence in the direct path [65]. Thus, Equation (18) can be written as:

d
i

= f
i

(X) + ⌘
i

(38)

where X = (x, y) is the coordinates vector of the unknown node, f
i

(X) is the
distance computation function

p

(x� x
i

)2 + (y � y
i

)2 and (x
i

, y
i

) are the coordi-
nates of the anchor nodes N

i

, i 2 1, 2, ..., N involved in the localization.
The LS problem is reduced to determine the optimal unknown node coordinates

X̂ =(x̂, ŷ) by finding the argument minimizing the cost function H(X):

X̂ = arg min
x

{H(X)} (39)

where

H(X) =
N

X

i=1

[d
i

� f
i

(X)]2 = [D � F (X)]T [D � F (X)] (40)

and F (X) = [f
1

(X), ..., f
n

(X)]T . The solution to Equation (39) can be obtained
by setting the gradient of H(X) to zero, where the partial derivative of H(X) is:

rH(X) = �2 [D � F (X)]T rF (X) (41)

LS method presents one major limitation. In fact, when measuring the optimal
location, LS takes equitably all distance measurements computed by all the N an-
chors. However, these measurements have di↵erent accuracy degrees. Thus, using
all measured data does not necessarily lead to the derivation of the best possi-
ble unknown node location. A better approach consists in applying a weight to
each distance measurement in order to mitigate largely erroneous data. This con-
stitutes the idea behind the Weighted Least Squares (WLS) method proposal.
WLS assumes that the distance measurement d

i

is corrupted by a white Gaussian
noise having a standard deviation equals to �

i

, i.e. ⌘
i

⇠ Norm(0,�
i

) where ⌘ =
[⌘

1

, ..., ⌘
n

]T and E[⌘ ⌘T ] = R, the best fit is when the following cost function H(X)
is minimized [27]:

H(X) =
N

X

i=1

R�1

i,i

[d
i

� f
i

(X)]2

= [D � F (X)]T R�1 [D � F (X)]

(42)

Similarly to LS, the optimal location can be calculated by setting the gradient
of H(X) to zero:

rH(X) = �2 [D � F (X)]T R�1rF (X) = 0 (43)

In Equation (43), R is a diagonal matrix defining the di↵erent weights.
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RWGH Algorithm The Residual Weighting alGoritHm (RWGH [65]) has been pro-
posed to overcome the limitation of the Least-Square method discussed previously
in section 3.3.2. In fact, the estimation of unknown node location in RWGH is not
computed based on all collected distance measurements. Rather, RWGH derives it
by estimating preliminary intermediate locations computed over multiple sub-sets
of the measured data. The final RWGH output consists in a weighted sum of all
estimated locations. RWGH algorithm proceeds according to the following steps.
Given a set {D

i

}
3iM

of distance measurements representing each the distance
separating the unknown node and an anchor node i, RWGH computes the set S
of all possible distance measurements combinations.

where S =
n

�

M

i

�

o

3iM

and
�

M

i

�

denotes the set of all possible combinations of

i measurements selected from a total of M measurements.
Each combination in RWGH is referred by an index S

k

|k = 1, 2, ..., N
c

where

N
c

= card(S) =
M

P

i=3

M !

i!(M�i)!

. Subsequently, the Least Square method is applied

to each combination S
k

in order to determine the best unknown node location
coordinates X̂

k

= (x̂
k

, ŷ
k

) which minimizes the residual. X̂
k

is considered as an
intermediate estimate of the unknown node coordinates and it is given by:
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(44)

The minimal residual corresponding to the combination S
k

is then normalized by
the number of elements of this latter. This quantity is referred by gR

es

(X̂
k

, S
k

).
The final estimate of the coordinate vector X̂ = (x̂, ŷ) is expressed as the weighted
sum of the intermediate estimates, as shown in Equation 45.
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(45)

In the RWGH algorithm, it is clear that if M increases N
c

goes larger. As for each
sub-set S

k1kNc
, a least-square method needs to be applied, the computational

complexity of RWGH becomes quite high [39].

4 Localization Accuracy Metrics

Accuracy is the fundamental criterion that reflects the goodness and the perfor-
mance of a localization technique. It is defined by how close the estimated and
the actual locations are. In other words, accuracy reflects the amount of errors
in the estimated locations. Several factors impact the resolution of accuracy such
as distorted measurements, memory and computation constraints, dynamic envi-
ronment changes, path loss e↵ects and most importantly errors accumulation and
propagation. Nevertheless, despite its importance, accuracy is not the overriding
goal of a good localization technique as this is application-dependent [60]. For
instance, in fire-alerting system, fires may be localized with an accuracy of some
meters however automated guided vehicles requires much more accuracy in the
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Accuracy Metrics

Distance-Based Position-Based Area-Based

Average Relative 
Deviation (ARD)

Boundary Alignment Ratio 
(BAR)

Circular Error Probability 
(CEP)

Global Energy Ratio 
(GER) 

Mean Absolute Error 
(MAE)

Geometric Dilution of 
Precision (GDOP)

Frobenius (FROB) Root Mean Square Error 
(RMSE)

Tile and Distance 
Accuracy

Cramer-Rao Lower Bound 
(CRLB)

Fig. 20: Accuracy Metrics

range of few centimeters. In the literature, several accuracy metrics have been
proposed. They can be classified into three categories: distance-based, position-
based and area-based. The following sub-sections provide a bird’s eye view on the
most relevant metrics of these categories.

4.1 Distance-based

Distance-based accuracy metrics measure the localization accuracy based on the
information of estimated distances.

4.1.1 Average Relative Deviation (ARD)

ARD [29] represents the average deviation ratio between estimated and actual
distances of two nodes i and j. ARD metric takes into account both short-range
and long-range errors. In fact, the deviation ratio is averaged over all possible
nodes pairs, and not only adjacent ones. It is expressed as:

ARD =
2

n (n� 1)

n

X

i<j

�

�

�

d̂
ij

� d
ij

�

�

�

min
⇣

d̂
ij

, d
ij

⌘ (46)

4.1.2 Global Energy Ratio (GER)

This metric has been proposed in [67] in order to measure how well the estimated
network layout derived from estimated inter-nodes distances matches the actual
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network layout. In other words, GER quantifies the estimated layout error and it
is calculated using the following equation:

GER =
1

n (n� 1) /2
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u
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(47)

Where n denotes the number of nodes in the network, d̂
ij

and d
ij

are respectively
the estimated and the actual distances between the two nodes i and j. The au-
thors of [23] argue that GER metric is appropriate to compare the qualities of
layouts obtained by di↵erent localization algorithms for graphs of the same size,
nevertheless it is not well-suited to compare between those of di↵erent graph sizes.

4.1.3 Frobenius (FROB)

Similarly to GER metric, FROB metric [23] has been proposed to verify if the
estimated network layout created by the localization algorithm matches the actual
one. Consider a network of n nodes where d̂

ij

and d
ij

are respectively the estimated
and the actual distances between the two nodes i and j, FROB is equivalent to
the Frobenius norm of the matrix M whose entries are:

M
ij

=
d̂

ij

� d
ij

n
(48)

In other words, FROB metric computes the normalized error of the global esti-
mated network layout.
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4.2 Position-based

Unlike distance-based accuracy metrics, metrics belonging to this category evalu-
ate how accurate the estimated positions are.

4.2.1 Mean Absolute Error (MAE)

The MAE metric measures the average distance (known also as the residual or
deviation) between estimated and actual position coordinates. Given a network
of n nodes, where for each node of index i

1in

, the actual position coordinates
vector X

i

is known, MAE is equal to:

MAE =
1
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n
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� X̂
i

�

�

�

⌘

(50)

where X̂
i

is the estimated position coordinates vector for the given node i.
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4.2.2 Root Mean Square Error (RMSE)

RMSE is commonly used in statistic and it is roughly similar the MAE metric as
both of them determines the residual between estimated and actual data. RMSE
is used in localization context in order to quantify the residual between estimated
and actual position coordinates vectors and this is by computing the standard
deviation between the two vectors.
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(51)

In both RMSE and MAE, values near to zero reflect high accuracy resolution.

4.2.3 Cramer-Rao Lower Bound (CRLB)

The CRLB metric defines the lower bound for the variance of any unbiased es-
timator. In theory, this variance is at least as high as the inverse of the Fisher
Information Matrix (FIM). If the variance is equal to the CRLB, then the estima-
tion is considered to be optimal. CRLB is computed as follows:

V ar
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@✓2
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(52)

Where, ✓ is an unbiased , unknown column vector of parameters of the distribution
p (r, ✓) of a random variable r, and ✓̂ is an estimator of ✓. In typical localization
problem, ✓ represents the vector of the actual position coordinates of sensor nodes,
whose locations are to be estimated.

4.2.4 Boundary Alignment Ratio (BAR)

This metric has been also proposed by [23] in addition to the FROB metric. While
the latter metric compares the accuracy of the estimated network layout globally,
the BAR metric estimates how well the estimated positions of nodes that sit on
the boundary match their actual positions. The Bar metric is evaluated as follows:

BAR =
1
|S|

X

x̂2 ˆ

S

(x̂� x)2 (53)

Where S and Ŝ are respectively the actual and the estimated set of nodes that sit
on the boundary of the network, |S| is the size of S and x is the closest node in S
to x̂.

4.3 Area-based

Area-based techniques represent another way to quantify the localization accuracy
and they are characterized by the size of the area where the unknown node is likely
to be. The smaller the area is, the better is the accuracy. In what follows, we define
the most relevant techniques.
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Low GDOP

High GDOP

Fig. 21: Satellites geometric scattering impact [3]

4.3.1 Circular Error Probability (CEP)

This metric defines the radius d of a circular area where 50% of the residual
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Where
�

�

�

X
i

� X̂
i

�

�

�

denotes the residual between an estimated and actual position
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). Based on the previous formula, we notice that

when the radius d increases, the accuracy decreases as the area becomes larger.

4.3.2 Geometric Dilution of Precision (GDOP)

GDOP metric is related to GPS localization context. Recall that GPS system
infers unknown node location using 3-D lateration which consists in finding where
spheres intersect. If measured spheres’ radius are corrupted by noise then spheres
will intersect in an oddly-shaped area and not in an exact point. GDOP metric
measures how large this area is. As depicted in Figure 21, the size of this area
is impacted by the geometric scattering of satellites chosen in the 3-D lateration
process. If the satellites are close to each other, the geometry is bad and the GDOP
value is high however if they are far apart, the geometry is good and the GDOP
value is low. Such result is due to the fact that satellites that are close to each other
provide less information than those that are widely separated. Thereby, higher the
GDOP is, worse is the accuracy. GDOP metric is given by [86]:

GDOP =
q

tr (GT G)�1 (55)
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Where G is equal to:
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where x, y and z denote the position of the GPS receiver, x
i

,y
i

and z
i

denote
the position of satellite i and R

i

denotes the distance of the GPS receiver to the
satellite i. GDOP metric can be used in lateration geolocation technique in order
to find the best combination of reference nodes.

4.3.3 Tile and Distance Accuracy

This metric was proposed by [24] and it is used when the reported location is
described as a set of small discrete tiles rather than a single point or a single
area. Tile accuracy refers to the percentage of times the localization technique is
able to return the true tile containing the unknown node. The drawback of this
metric is that sometimes, the true tile is close to the returned set, nonetheless the
localization accuracy is reported as bad. To overcome this shortcoming, [24] has
proposed Distance accuracy metric where accuracy is quantified by the distance
between the true tile and tiles in the returned area.

5 Discussions and Future Directions

5.1 Discussions and Lessons

Localization has been attracting a lot of attention and represents a key research
area in the community of the cyber-physical systems, as it relates events to their
locations in the surrounding environment. This paper fills a gap by presenting
an attempt to provide a global and unified taxonomy of fundamental concepts of
localization in cyber-physical systems.

In the first part of this paper, we synthesized the literature and proposed a
global taxonomy of localization concepts. We proposed a classification that helps
researchers to have a complete knowledge of the di↵erent localization approaches
and paradigms in cyber-physical systems, while deeply analyzing their advantages
and limitations. This is indeed very useful taking into account the diversity and
the number of localization concepts and their applications. In the second part of
this paper, we presented a thorough review of fundamental localization techniques,
and we have reviewed the most relevant research works for each category. Finally,
the last part of this review paper was devoted to localization accuracy, which is a
key criterion to di↵erentiate and compare between localization techniques.

It appears that the choice of an adequate localization technique for a particular
cyber-physical application is a complex task as it is inherently dependent on sev-
eral factors including, but not limited to: (i.) the desired solution accuracy, which
may vary from a few centimes to several meters. Range-free techniques such as
Centroid may be su�cient for accuracy-tolerant systems (ii.) solution cost : in fact
additional hardware, such as ultrasonic devices, would produce good accuracy but
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this comes with an additional cost that may be not suitable for large-scale appli-
cations, (iii.) solution scale, localization in large-scale systems is more challenging
than that with small-scale systems. Distributed approaches would be more suit-
able for large-scale systems than centralized approaches. (iv.) environment : the
requirements of indoor localization are di↵erent from those of outdoor location
systems, as presented in Section II. In summary, the localization system designer
needs to make a good balance between the di↵erent requirements of the target
solution.
Furthermore, we observe that among all presented localization techniques, RSS-
based localization is a range-based technique that represents a key method in
resource-constrained low-cost devices, such as sensor nodes, for two main reasons:
(1) it relies on built-in wireless transceivers and thus does not require any addi-
tional hardware as in other techniques such as ultrasound devices with time-based
approaches, directional antennas in angle based approaches, (2) induces a low
computational complexity as compared to other techniques, as it does not require
intensive signal processing computation as required by image-based or sound-based
localization methods. The complexity of the fingerprinting phase can be overcome
with the recent techniques that perform distance to RSS mapping on runtime [36,
52,79,18,11]. Deployment complexity represents one challenge among several oth-
ers in what concerns the real-world utilization of localization mechanisms. The
next section summarizes the main practical issues pertaining to localization.

5.2 Real-World Challenges

Building a robust localization system in real-world is a very hard problem as it
encompasses several practical challenges. In fact, as mentioned above, the local-
ization system designer have to ensure a tradeo↵ between several antagonistic
metrics including system cost, energy e↵ectiveness, ease of calibration and deploy-
ment, and accuracy. The achievement of this tradeo↵ is not obvious and wraps-up
serious challenges. We classify these challenges into four categories:

– Cost-e↵ectiveness: To ensure a high localization accuracy level, the underlying
localization mechanism must incorporate extra sophisticated hardware per net-
work nodes. Nonetheless, this may induce a heavy burden on the system cost
in addition to energy dissipation, since cyber-physical devices, such as sensor
nodes, are generally battery powered and massively deployed.

– Measurements errors: RF and acoustic signals are the main vehicles of local-
ization measurements. These signals are inherently unreliable as they may get
distorted. For instance, most of RF-signals have irregular propagation patterns
induced by the environment conditions (namely pressure and temperature) and
the random multi-path e↵ects including reflection, refraction, di↵raction and
scattering. These phenomena result from the obstruction of physical objects
during the signal propagation. On the other side, acoustic signals are also
subject of distortion caused namely by the environment conditions and echo
presence. Errors in measurement makes the localization process more challeng-
ing as it is needed to filter the measurement noise out to improve localization
accuracy.

– Deployment complexity : Typical localization methods, such as time-based and
RSS-based methods, usually require a pre-deployment configuration process.
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For instance, in TOA-based technique, transceivers of di↵erent nodes must
be accurately synchronized before starting localizing objects. Also, RSS-based
techniques need to be pre-calibrated before their use. This calibration requires
complex, tedious, labor-intensive, time-consuming, human-based and o✏ine
environment profiling phase. Such cumbersome pre-deployment phase is a ma-
jor handicap constraining the wide adoption of the localization system and
its practical use. This operation becomes even more complex as environment
changes will compromise the caliber. To cope with this shortcoming, calibration
needs to be automated and made environment adaptive. It is also important
to pre-implement self-configuration mechanisms in order to cope with network
dynamics (e.g. due to nodes failures). Furthermore, one of the most challenging
problems pertaining to deployment of a localization system is to determine the
optimal number of anchor nodes to be deployed in addition to their placement
pattern. According to [26], two main constraints must be addressed for strate-
gic placement patterns. First, it is important to maximize the coverage area
while minimizing the number of anchor nodes. Second, the system tuned with
the selected pattern has to (1) o↵er an acceptable accuracy degree and to (2)
avoid interference between adjacent nodes. By skimming the state of the art,
no general guidelines are available.

– Security : Securing localization mechanisms is essential for certain critical ap-
plications to protect the localization system against malicious attacks that
may compromise the application security [46,17,71]. In general, these attacks
threaten the integrity, the confidentiality and the availability of the location
information. For instance, RSS-based localization techniques are vulnerable to
Signal Strength attacks. Indeed, the RSS of an anchor or a target node can
be attenuated or amplified by placing an absorbing or a reflecting material
around the node [16]. Furthermore, because of the openness of cyber-physical
systems, they might be exposed to spoofing attacks [17] where a malicious
node pretends to be a legitimate node and thus can inject undesirable tra�c
in the system. Another common attack is wormhole attack where malicious
node sni↵ers transmitted packets at one location, sends them to another ma-
licious node placed in another location, which in its side replays them locally
[71]. This would make the localization system to operate incorrectly. All these
challenges must be addressed before a real-deployment, in particular for appli-
cations where security is a main concern.

5.3 Open Issues

Throughout this review paper, we have presented a representative sample of the
vast array of research works in the localization area. In spite the high number of
works in the literature, there are still several challenges to be addressed in the
future to meet the ever evolving nature of future cyber-physical networks. In what
follow, we enumerate, without being comprehensive, some challenging ideas and
research trends in the localization arena:

1. Localization Data Fusion: The predominant localization techniques basically
rely on a single type of information (e.g. radio or sound or image) to local-
ize nodes. In future cyber-physical systems, the need for heterogeneous data
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fusion techniques for location estimation is a promising research area. Hybrid
localization techniques should use di↵erent measurement data sources and col-
laborate together to estimate the location of unknown nodes. This is rather
useful in robotic applications, where di↵erent sensor types are available.

2. Zero Profiling Localization: Most of radio-based localization techniques rely
on o✏ine fingerprinting methods and profiling approaches to characterize the
environment. Such paradigm is not suitable for dynamic systems where the
characteristics of the environment changes over time. There is need to develop
more sophisticated and practical approaches for RSS-based localization with-
out need to perform o✏ine profiling of the environments. There has been some
proposed approaches [13,51,53], but there still room for major improvement
of these techniques.

3. Novel Radio-based Localization Mechanisms: Radio-based localization is very
appealing, in particular for low-cost solutions, as it does not require additional
hardware. The major trend has been the use of the RSS information to infer
distances to and then locations of unknown nodes. However, RSS is known to
be highly variable and does not map well with distance. In this regards, other
link quality metrics such as LQI, SNR and F-LQE [7] could be considered to
propose new radio-based localization mechanisms that provide better accuracy
than RSS-based techniques. Another trend would be to use other link quality
metrics to improve RSS-based localization.

4. Benchmarking Localization Methodology : One challenge that needs further
research is the devising of a benchmarking methodology enabling objective
experimental validation of and fair comparison between state-of-the art lo-
calization solutions. If such methodology is provided, the prototyping of new
localization solutions would become easier.
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48 Anis Koubâa, Maissa Ben Jamâa
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