

Supporting Real-Time Parallel Task Models
with Work-Stealing

www.hurray.isep.ipp.pt

Technical Report

HURRAY-TR-120301

Version:

Date: 03-16-2012

Cláudio Maia

Luís Nogueira

Luís Miguel Pinho

Technical Report HURRAY-TR-120301 Supporting Real-Time Parallel Task Models with Work-Stealing

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

1

Supporting Real-Time Parallel Task Models with Work-Stealing
Cláudio Maia, Luís Nogueira, Luís Miguel Pinho

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail: crrm@isep.ipp.pt

http://www.hurray.isep.ipp.pt

Abstract
Dynamic parallel scheduling using work-stealing has gained popularity in academia and industry for its good
performance, ease of implementation and theoretical bounds on space and time. Cores treat their own double-ended
queues (deques) as a stack, pushing and popping threads from the bottom, but treat the deque of another randomly
selected busy core as a queue, stealing threads only from the top, whenever they are idle.

However, this standard approach cannot be directly applied to real-time systems, where the importance of parallelising
tasks is increasing due to the limitations of multiprocessor scheduling theory regarding parallelism. Using one deque per
core is obviously a source of priority inversion since high priority tasks may eventually be enqueued after lower priority
tasks, possibly leading to deadline misses as in this case the lower priority tasks are the candidates when a stealing
operation occurs.

Our proposal is to replace the single non-priority deque of work-stealing with ordered per-processor priority deques of
ready threads. The scheduling algorithm starts with a single deque per-core, but unlike traditional work-stealing, the
total number of deques in the system may now exceed the number of processors. Instead of stealing randomly, cores
steal from the highest priority deque.

Supporting Real-T ime Parallel Task Models with Work-Stealing

Cláudio Maia, Luís Nogueira, Luís Miguel Pinho
CISTER Research Centre

School of Engineering of the Polytechnic Institute of Porto
Porto, Portugal

{crrm, lmn, lmp}@isep.ipp.pt

Abstract

!"#$%&'()$*$++,+(-'.,/0+(0-(23*45-6,$+(.$-(1$&#,/()3)0+$*&6"(&#($'$/,%&$($#/(&#/0-6*"(73*(&6-(
133/(),*73*%$#',8(,$-,(37(&%)+,%,#6$6&3#($#/(6.,3*,6&'$+(930#/-(3#(-)$',($#/(6&%,:(;3*,-(6*,$6(6.,&*(
32#(/309+,5,#/,/(<0,0,-(=/,<0,->($-($(-6$'48()0-.($#/()3))(6.*,$/-(7*3%(6.,(93663%8(906(6*,$6(
6.,(/,<0,(37($#36.,*(*$#/3%+"(-,+,'6,/(90-"('3*,($-($(<0,0,8(-6,$+(6.*,$/-(3#+"(7*3%(6.,(63)8(
2.,#,?,*(6.,"($*,(&/+,:(

@32,?,*8(6.&-(-6$#/$*/($))*3$'.('$##36(9,(/&*,'6+"($))+&,/(63(*,$+56&%,(-"-6,%-8(2.,*,(6.,(&%)3*6$#',(
37()$*$++,+&-(6$-4-(&-(&#'*,$-(/0,(63(6.,(+&%&6$6&3#-(37(%0+6&)*3',--3*(-'.,/0+(6.,3*"(*,1$*/(
)$*$++,+&-%:(A-(3#,(/,<0,(),*('3*,(&-(39?&30-+"($(-30*',(37()*&3*&6"(&#?,*-&3#(-&#',(.&1.()*&3*&6"(6$-4-(
%$"(,?,#60$++"(9,(,#<0,0,/($76,*(+32,*()*&3*&6"(6$-4-8()3--&9+"(+,$/(63(/,$/+&#,(%&--,-($-(&#(6.&-('$-,(
6.,(+32,*()*&3*&6"(6$-4-($*,(6.,('$#/&/$6,-(2.,#($(-6,$+(3),*$6&3#(3''0*-:(

B0*()*3)3-$+(&-(63(*,)+$',(6.,(-+,(#3#5)*&3*&6"(/,<0,(37(23*45-6,$+(2&6.(3*/,*,/(),*5)*3',--3*(
)*&3*&6"(/,<0,-(37(*,$/"(6.*,$/-:(C.,(-'.,/0+($+13*&6.%(-6$*6-(2&6.($(-+,(/,<0,(),*5'3*,8(906(
0#+&4,(6*$/&6&3#$+(23*45-6,$+(6.,(636$+(#0%9,*(37(/,<0,-(&#(6.,(-"-6,%(%$"(#32(,D',,/(6.,(#0%9,*(
37()*3',--3*-:(E#-6,$/(37(-6,$+(*$#/3%+"8('3*,-(-6,$+(7*3%(6.,(.&1.,-6()*&3*&6"(/,<0,:(

Supporting Real-Time Parallel Task Models
with Work-Stealing

Context

Cláudio Maia, Luís Nogueira and Luís Miguel Pinho
{crrm, lmn, lmp}@isep.ipp.pt

Proposed Approach

Growing importance of parallel task models in real-time applications poses new challenges to

 real-time scheduling.

Task-based parallelism enforced through compilers still lacks the ability to handle highly
 complex source code.

The usefulness of existing real-time scheduling approaches is limited by their restrictive
 parallel task models.

In contrast, the more general parallel task model addressed in our work allows jobs to
 generate an arbitrary number of parallel threads at different stages of their computations.

One of the simplest, yet best-performing, dynamic load-balancing algorithms for

 shared-memory architectures.

Uses a "breadth-first theft, depth-first work" scheduling policy with minimal overhead and good
 data locality.

The challenge is to impose a priority-based scheduling policy that positively increases the
speedup of parallel applications without jeopardising the schedulability of the system.

Work-stealing

Jobs are scheduled according to priority
and placed in a global submission queue,

parallel jobs inherit the timing properties of
the parent job.

Instead of using one deque per core (as it is

a source of priority inversion), our proposal is

to replace the single non-priority deque of

work-stealing with ordered per-processor
priority deques of ready parallel jobs.

The scheduling algorithm starts with a single

deque per-core, but unlike traditional work-

stealing, the total number of deques in the
system may now exceed the number of
processors.

Instead of stealing randomly, cores steal
from the highest priority deque among all
cores.

Timing properties of real-time tasks are

assured through feasibility analysis.

