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Abstract 
Virtualization techniques for hard real-time systems typically employ TDMA scheduling to achieve temporal 
isolation among partitions. The processing of user-level interrupt handlers is only performed within appropriate 
time slots, thus signi_cantly increasing interrupt latencies. We propose a novel approach permitting execution of 
user-level interrupt handlers during time slots of other partitions hence reducing interrupt latencies. Su_cient 
temporal independence among partitions, as required by safety standards, is maintained through a monitoring 
mechanism, which bounds the interference of user-level interrupt handlers in other partitions. We show 
correctness of the approach and evaluate its performance in a hypervisor implementation. 
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ABSTRACT
Virtualization techniques for hard real-time systems typi-
cally employ TDMA scheduling to achieve temporal isola-
tion among partitions. The processing of user-level interrupt
handlers is only performed within appropriate time slots,
thus significantly increasing interrupt latencies.

We propose a novel approach permitting execution of user-
level interrupt handlers during time slots of other parti-
tions hence reducing interrupt latencies. Su�cient tempo-
ral independence among partitions, as required by safety
standards, is maintained through a monitoring mechanism,
which bounds the interference of user-level interrupt han-
dlers in other partitions. We show correctness of the ap-
proach and evaluate its performance in a hypervisor imple-
mentation.

1. INTRODUCTION
Virtualization techniques, which are well established in

general purpose computing, have come of age also in the
domain of embedded real-time systems. Implementations,
such as PikeOS [13] or OK:Microvisor [4], are commercially
available and used in relevant industries. With the Inte-
grated Modular Avionics (IMA) architecture of the AR-
INC653 standard [10] virtualization techniques have become
part of a standardized software architecture in safety-critical
systems.

Opposed to general purpose computing, virtualized real-
time systems not only require spatial isolation among par-
titions (typically achieved through use of virtual memory)
but also su�cient temporal independence. Particularly, in
safety-critical systems this is required by applicable stan-
dards such as IEC61508 [5].

Current virtualization environments achieve a complete
temporal isolation through use of time-division multiple ac-
cess (TDMA) scheduling [13]. The single partitions that
shall be isolated from each other are assigned time slots of
fixed length in which they may execute. The virtualization
environment cycles through these time slots according to a
fixed schedule. The cycle length, which is calculated as sum

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

DAC ’14 June 1-5 2014, San Fransisco, CA, USA

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

of all time slot lengths, is referred to as TDMA cycle length.
As a result from this scheduling, the processing time each
partition receives is completly independent of the behavior
of other partitions.

Interrupt handling is split into two parts. The direct hard-
ware interrupt request (IRQ) is processed by the virtualiza-
tion environment in the top handler, which may preempt
the application level processes. This includes, e.g. clearing
the IRQ flags. Further, the actual application-level process-
ing of the interrupt is performed in a bottom handler, which
is executed in the context of a partition. Therefore, worst-
case interrupt latencies, i.e. the time between occurrence
of the interrupt and the end of processing in the bottom
handler, are governed by the TDMA cycle length because a
partition’s time slot may have just ended when the interrupt
occurred.

Reduction of the TDMA cycle length to reduce interrupt
latencies is not always an option as this requires frequent
partition switches, which may significantly increase over-
head.

In this paper we propose a novel approach to reduce in-
terrupt latencies. We relax the isolation requirements and
allow to execute bottom IRQ handler within time slots of
other partitions. However, in order to maintain su�cient
temporal independence, as required by safety standards, we
bound and enforce the maximum interference such inter-
rupts have on other partitions. This is achieved through
appropriate monitoring and shaping mechanisms that delay
bottom handler processing to the depending partition in case
a defined maximum interference to the system is reached.
We show the correctness of the approach and evaluate it
with our own modified implementation of the MicroC/OS
hypervisor (uC/OS-MMU) [1].

2. RELATED WORK
Interrupt latency in virtualization environments has so far

received limited attention in the literature. While in general-
purpose systems the concept of interrupt latency for guest
operating systems has been examined, the notion of inter-
rupt latency in real-time embedded systems has only be in-
vestigated with the notion of reducing the interrupt latencies
within the hypervisor.

For example, Ongaro et al. [9] investigated the Xen credit-
based scheduler and its shortcoming for interrupt latencies.
In order to address this issue, they added a new schedul-
ing priority that is higher than that of regular schedulable
partitions (domains). Whenever an interrupt is delivered
via an event to any of the partitions, the receiving partition
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Figure 1: Hypervisor system architecture

is immediately placed in this higher priority class for one
time slice to respond to the interrupt. This approach was
refined by Kim et al. [6] to account for finer granularities
than the tick based accounting of the original credit based
system. Besides other works addressing similar concerns,
Whiteaker et al. [19] have compared the interrupt latency
observed by Xen, KVM, and a standard Linux. While the
fundamental idea of boosting the performance of interrupt
serving domains achieves the desired e↵ect, the lack of tem-
poral partition enforcement within Xen is not suitable for
real-time workloads. In particular I/O devices are concen-
trated in these models into a separate partition, which does
not allow for the desired development of isolation of guest
partitions.

The work of Blackham et al. [2] focuses on shortening
the interrupt latencies through manipulation of kernel oper-
ations in the formally verified seL4 kernel. However, it does
not address the issue of guest operating system level inter-
rupt/event latencies due to the introduction of partitions
addressed here.

Throttling overloading interrupts at their source has been
targeted by Regehr and Duongsaa [11]. This monitors in-
coming interrupt requests and if a pre-specified limit has
been reached does not clear the interrupt flag until a new
interrupt is permissible again. While it also addresses the
avoidance of overloads we present in this work, it does not
cover the latency concerns for guest operating systems in
virtualized systems.

3. HYPERVISOR ARCHITECTURE AND IN-
TERRUPT HANDLING

In this section we describe the underlying architecture of
the hypervisor and the associated IRQ handling. The de-
scription follows the implementation of uC/OS-MMU [1],
which we have used for the implementation. However, the
general architecture and IRQ handling mechanisms are com-
parable to other hypervisors, as e.g. L4 based systems [14].

The aim of a hypervisor is to isolate di↵erent applications
spatially and temporally. The general architecture of a hy-
pervisor system is depicted in Figure 1. Applications are
executed in separate application partitions. The hypervisor
controls scheduling of the partitions, communication among
partitions, and the access rights to memory and peripher-
als. In the scope of this paper we solely regard temporal
properties.

Within each application partition a guest operating sys-
tem can be executed. The proposed solution supports both
full- as well as para-virtualization techniques. Without loss
of generality we will focus in the discussion on the terminol-
ogy for para-virtualization, in which the guest operating sys-
tems is modified to run on the virtual machine. To achieve
temporal isolation between the application partitions, the
hypervisor uses TDMA scheduling for the partitions, i.e.
each partition pi is assigned a time slot of fixed size Ti. The
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Figure 2: Interrupt Handling

hypervisor cycles through the time slots in a static order.
Unused processing capacity of a time partition is left un-
used even when other time partitions have outstanding jobs.
This way the temporal properties (e.g. worst-case response
times) of any software running within a partition does not
depend on the execution behavior of other partitions.

Direct access to the interrupt controller is only possible
from the context of the hypervisor in order to enforce iso-
lation. The IRQ handling within an application partition
is therefore not based on the processors interrupt controller
but rather on “emulated” IRQ from the hypervisor. The
concept is illustrated in Figure 2.

The basic processing of hardware IRQs (e.g. resetting IRQ
flags) is directly handled by the IRQ top handler within the
hypervisor IRQ context (1). After the IRQ is processed by
the top handler, the hypervisor checks if any partition has
to react on this IRQ (2,3). Further, the hypervisor pushes
an event in the respective interrupt queue of each partition
that has to react on the IRQ (4). Newer processor architec-
tures also support a virtual interface for the interrupt con-
troller, which is maintained by the hypervisor [18]. After
pushing the IRQ to the respective queues, the hypervisor
switches back to the partition context. Upon each parti-
tion context switch (i.e. everytime a partition is given the
right to execute) the partition checks its interrupt queue for
any pending IRQs. In case pending IRQs exist, instead of
continuing from the last interruption point within the parti-
tion’s context (5), the partition calls an IRQ bottom handler

(6), which processes all pending interrupts. Only after this
regular processing is resumed (7).

From a timing perspective this behavior can cause long
interrupt latencies as we illustrate in Figure 3. The system
is executing in partition 1 when a hardware interrupt (HW
IRQ) occurs. Immediately the execution of partition 1 is
interrupted and the top handler of the hypervisor is called.
The top handler pushes an event in the interrupt queue of
partition 2 which shall process the IRQ. Then the hypervi-
sor returns to the context of partition 1. After the timeslot
of partition 1, the system switches to partition 2 that im-
mediately calls the bottom handler to process the pending
IRQ. From this setup we see that IRQ latencies are largely
determined through the assignment of the TDMA cycle and
timeslot lengths. In the worst-case an IRQ occurs right af-
ter the end of the partition with the appropriate bottom
handler. The aim of the approach in this paper is to re-
duce IRQ latencies (independent of the TDMA cycle length)
while maintaining su�cient temporal independence instead
of complete temporal isolation.

4. IRQ LATENCIES AND SUFFICIENT TEM-
PORAL INDEPENDENCE

In order to reason about IRQ latencies and su�cient tem-
poral independence, we first formalize these concepts in this
section. We start by a defining the di↵erence between tem-



Figure 3: Interrupt Latency

poral isolation and su�cient temporal independence. Later
we will provide an analysis for the worst-case IRQ latency
for IRQ handling according to the above TDMA scheme and
analyze the interference that IRQs impose on partitions. We
profit from that a partition is nothing else than a tasks to
the hypervisor’s scheduler, so that standard analysis meth-
ods can be used.

For P partitions, we define a taskset T = {⌧1, . . . , ⌧P }.
To each ⌧p where p 2 [1, P ] we assign a set of tasks Ip

that might interferer with ⌧p and the overall interference Ip

which is caused by Ip. For temporal isolation no interference
is allowed, which leads us to:

Ip = {?} ) Ip = 0 (1)

In case of su�cient temporal independence, a bounded in-
terference b

Ip caused by Ip is allowed, where Ip,⌧j indicates
the worst-case interference a task ⌧p can su↵er from a task
⌧j .

Ip = {T \ ⌧p} ) Ip =
X

⌧j2Ip

Ip,⌧j  b
Ip (2)

In order to determine the worst-case IRQ latency, we use
the concept of the busy-window analysis [7, 16], which is
known from response-time analysis. To analyze a given
task ⌧i, the analysis requires the set of tasks Ii that can
interfere with ⌧i, the worst-case execution times Ci of ⌧i

and its interferers, and a description of their activation pat-
terns. Activation patterns are modelled via arrival functions

⌘

+(�t) [3], which return the maximum number of events
that can arrive within any time window of size �t. At some
points in this paper the dual representation of minimum

distance functions �

�(q) [12], which yield the minimum dis-
tance of any q events, is used.

The busy-window analysis determines an upper bound on
the amount of time a resource requires to service q activa-
tions of task ⌧i [16]. This upper bound, the q-event busy

time Wi(q), is given through the following iterative formula,
which is evaluated until convergence to a fixed-point

Wi(q) = q · Ci +
X

j2Ii

Cj · ⌘+(Wi(q)) (3)

To determine the worst-case response time Ri of ⌧i, the
first Qi activations of ⌧i have to be considered, where

Qi = max
�
n : 8q 2 N+

, q  n : ��i (q)  Wi(q � 1)
�

(4)

The worst-case response time [15] is then given as

Ri = max
q2[1,Qi]

�
Wi(q)� �

�
i (q)

�
(5)

Now, we provide an analysis for the worst-case interrupt
latencies of the above TDMA-based interrupt handling based

on the busy-window analysis. Consider the analysis of a
given IRQ source IRQi. Each invocation of IRQi requires
the processing of one top handler and one bottom handler.
Thus, the worst-case computation time is given through

Ci = CTHi + CBHi (6)

Any invocation of IRQi can su↵er delay from three sources:
1) interference from TDMA time partitions in which IRQi

may not execute its bottom handler (denoted by ITDMA),
2) interference from top handlers of other IRQ sources (de-
noted by ITHj ), and 3) interference from top handlers of
the same IRQ source ITHi . There is no interference from
bottom handlers of the same IRQ source as bottom handler
invocations are processed in FIFO manner due to the queue
mechanism (cf. Figure 2). Thus, for the analysis of IRQ
latencies we can rewrite the q-event busy-window of IRQi

(3), which denotes the longest time to process q activations
of IRQi, as

Wi(q) = q ·Ci+ITDMA(Wi(q))+ITHj (Wi(q))+ITHi(Wi(q))
(7)

Next, we determine the individual interference terms. Let
Ti be the length of the time slot in which IRQi may execute
its bottom handler. The worst-case interference su↵ered
through other partitions (including context switch overhead)
in a time-window of �t is [17]

ITDMA(�t) = d�t/TTDMAe · (TTDMA � Ti) (8)

The worst-case interference from top handlers of other IRQ
sources in �t is determined through [16]

ITHj (�t) =
X

j2Ii

⌘

+
j (�t) · CTHj (9)

where ⌘

+
j denotes the upper arrival curve describing the ar-

rival pattern of an interfering IRQ IRQj .
Now, let us consider the interference through the top han-

dlers of the same IRQ source. For any time interval �t the
maximum number of activations of IRQi is given through
⌘

+
i (�t). In a q-event busy-window q, top handler activations

are already accounted for in the term q · Ci. Therefore, the
additional interference through own top handlers is given
through

ITHi(�t) = (⌘+
i (�t)� q) · CTHi (10)

Combining (6)-(10) yields

Wi(q) =q · CBHi + ⌘

+
i (Wi(q)) · CTHi

+ dWi(q)/TTDMAe · (TTDMA � Ti)

+
X

j2Ii

⌘

+
j (Wi(q)) · CTHj (11)

The worst-case IRQ latency is then given through

Ri = max
q2[1,Qi]

�
Wi(q)� �

�
i (q)

�
(12)

Typically, the TDMA cycle and timeslot lengths are large
compared to CTH and CBH to reduce the overhead of fre-
quent partition context switches. Typically we have

CTH , CBH ⌧ TTDMA � Ti

Thus, the worst-case interrupt latency is dominated by the
TDMA cycle length.

Further, we see that the worst-case latency depends on the
processing of top handlers of IRQs that shall be processed
in other partitions. Although this weakens temporal isola-
tion, this is typically tolerated for several reasons. 1) Top
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handlers have minimal execution time (i.e. resetting IRQ
flags and pushing an event to the respective queue), 2) top
handlers are executed in hypervisor context, and therefore
the code is trusted and 3) disabling the IRQ source while
not in the appropriate partition may cause missing IRQs as
in most cases IRQ flags are not counting. Further, the han-
dling of IRQs that are shared by several partitions would be
particularly complicated.

In this paper we aim to reduce IRQ latencies while main-
taining su�cient temporal independence of partitions, i.e.
to allow processing of top handlers of other partitions but
to e↵ectively control the processing of bottom handlers.

5. MONITORING BASED IRQ SHAPING
In this section we introduce our approach to e↵ectively re-

duce interrupt latencies. We do this by not only permitting
top handlers but also bottom handlers to execute during
other partitions’ timeslots. However, execution of bottom
handlers is monitored and shaped according to a predefined
monitoring condition. We will show that this results in a
bounded interference on other partitions and leads to greatly
reduced average interrupt latencies. Also worst-case inter-
rupt latencies are significantly reduced if interrupts do not
violate the monitoring condition.

In order to monitor and shape bottom handler process-
ing we modify the interrupt top handler of the operating
system. Figure 4a shows the original top handler behavior
in uC/OS-MMU. The top handler merely pushes an IRQ
event to the partition’s interrupt queue and returns into the
original partition context. There is no distinction whether
or not the interrupt is for the currently running partition.
In case the partition of the interrupt is currently running
(direct IRQ handling), the interrupt is processed immedi-
ately after returning into the unprivileged mode. Otherwise
it is later executed in the correct TDMA slot (delayed IRQ

handling as shown in Figure 3).
We have modified the top handler as shown in Figure 4b.

Again the top handler pushes an IRQ event to the parti-
tion’s interrupt queue. If the active partition is not the IRQ
subscriber, a monitoring function (Interposing IRQ denied? )
checks whether the requested bottom handler is allowed to
execute within a foreign TDMA slot. If this is not the case,
processing remains as for the unmodified top handler. Oth-

Figure 5: Interrupt Latency for interposed IRQ

erwise, i.e. if the activation of the requested bottom handler
satisfies the monitoring condition, the top handler calls the
scheduler, switches into the bottom handler’s partition for
CBHi time units and returns into the unprivileged mode, i.e.
the bottom handler is called and may execute for at most
CBHi time units. This maximum execution time is enforced
through the hypervisor by calling the partition scheduler af-
ter CBHi and switching back to the original partition. The
execution of such an interposed IRQ is shown in Figure 5.
In all three cases the IRQ queues are used, to prevent an
out-of-order execution of IRQs.

For monitoring IRQs we use the �� based mechanism pre-
sented in [8] such that it permits bottom handler processing
only with a defined minimum temporal distance dmin be-
tween any two consecutive activations (i.e. the parameter
l in [8] for the length of the �

�-function is set to 1). I.e.
if two interrupts are separated by at least dmin time units
their respective bottom handler is directly executed after
the top handler. However, if the second interrupt arrives
less than dmin after the first, regular processing for delayed
IRQs is used. A more complex setup with l � 1 is given in
Appendix A.

5.1 Interference and Interrupt Latency
Next, we bound the worst-case interference interposed in-

terrupt processing can cause for other partitions and develop
a worst-case response time analysis for interposed interrupts.
We start with the consideration of the interference on other
partitions.

For our scenario interposed interrupts are permitted by
the monitoring scheme every dmin time units. Thus, in any
time interval of size �t at most d �t

dmin
e bottom-handler in-

vocations may interrupt a partition. Each interposed in-
terrupt executes for CBHi (enforced through the hypervi-
sor). Furthermore, overhead for manipulation of the sched-
uler with WCET Csched and two additional context switches
with worst-case context-switch overhead of Cctx each are in-
troduced, which e↵ectively increases the execution time of
the bottom handler, i.e.

C

0
BHi

= CBHi + Csched + 2 · Cctx (13)

Thus, the interference through interposed bottom-handler
execution on other partitions is given through

Iinterposed =

⇠
�t

dmin

⇡
· C0

BHi
(14)

Furthermore, additional overhead is introduced through the
modification of the top handler. The top handler calls the
monitoring function for each interrupt that occurs during
other partitions’ timeslot. This e↵ectively extends the worst-
case execution time of the top handler to

C

0
THi

= CTHi + CMon (15)



where CMon denotes the worst-case execution time of the
monitoring function. Note, that neither (14) nor (15) de-
pend on runtime behavior of a partition. Ip in (2) is now re-
placed by (14) which is strictly controlled by the hypervisor
and the defined monitoring condition to maintain su�cient
temporal independence for each partition.

Next, we regard the worst-case interrupt latencies. We
distinguish between two scenarios. 1) all interrupts satisfy
the monitoring condition given through dmin and 2) inter-
rupts can arrive earlier than the specified dmin.

1) All interrupts that satisfy dmin do not have to wait un-
til their respective partition is activated. Therefore, we can
now remove ITDMA(Wi(q)) from (7). Additional interfer-
ence is introduced through the additional context switches
through interposed interrupt processing (cf. (13)) and through
the monitoring overhead in the top handlers (cf. (15)).
With these modified WCETs and dropping the interference
through the TDMA cycle we obtain from (11) for interrupts
that adhere to dmin

Wi(q) = q ·C0
BHi

+⌘

+
i (Wi(q)) ·C0

THi
+

X

j2Ii

⌘

+
j (Wi(q)) ·CTHj

(16)
2) Interrupts that violate monitoring condition are pro-

cessed as delayed IRQs. No additional context switch is
introduced (i.e. CBHi remains unchanged), however, the
monitoring function is still executed in the top handler (i.e.
C

0
THi

applies). Therefore (7) with C

0
THi

instead of CTHi

applies.
From this analysis of worst-case timing e↵ects we make the

following observations. 1) Use of interposed interrupts only
imposes bounded interference on other partitions. This in-
terference is strictly controlled through the hypervisor and
independent of the partition’s timing behavior. 2) Worst-
case interrupt latencies are independent of the TDMA cycle
if interrupts arrive according to the specified dmin. 3) Inter-
rupt latencies can be increased when they violate dmin as
additional monitoring functionality is executed. This moni-
toring overhead is in the order of magnitude of 10 cycles [8]
and, therefore, tolerable in most cases.

6. EVALUATION
In this section we evaluate our approach based on an own

implementation in uC/OS-MMU running on a ARM926ejs
processor @200MHz. We evaluate the approach w.r.t. aver-
age and worst-case interrupt latencies.

To evaluate our approach we will first focus on the IRQ
latency improvements and secondly present the runtime and
memory overhead.

6.1 IRQ latencies
In order to investigate IRQ latencies, we have performed

two di↵erent experiments. The first experiment evaluates
the interrupt latencies for the case when interrupts can ar-
rive at arbitrary times, and thus can violate dmin. In the
second experiment all interrupts adhere to dmin. A third
testcase based on a measured activation trace from an auto-
motive ECU is presented in Appendix A. In either scenario
we trigger IRQs with one of the timers of the processor.
The timer is reprogrammed from within the IRQ top han-
dler such that the temporal distances between successive
IRQs follow an exponential distribution with mean interar-
rival time �. For the second scenario the pseudo-random
interarrival time is set at least to dmin such that the mon-
itoring condition is always satisfied. All interarrival times

are generated before execution of the experiments in order
not to introduce additional overhead in the top handler.

To measure the interrupt latencies (i.e. the time between
top handler activation and finishing of the corresponding
bottom handler), we use a second timer which provides a
timestamp. Both, top handler and bottom handler, read
this timestamp. The di↵erence provides the measured IRQ
latency.

We use a setup with two application partitions as shown
in Figure 1. Each application partition has a TDMA slot
length of 6000µs. In addition to the two application parti-
tions a third partition with slot length of 2000µs is used for
housekeeping within the hypervisor. In our test setup we
monitor the activation pattern of one IRQ source.

In order to evaluate the approach of interposed interrupts
for a variety of long-term bottom-handler interrupt loads
UIRQ, we have varied the mean interarrival rate � while
keeping C

0
BHi

constant, i.e. � was set to

� = C

0
BHi

/UIRQ (17)

We have performed experiments for UIRQ values of 1%, 5%
and 10%. The results over 15000 IRQs are presented in Fig-
ure 6 (cumulative over all interrupt loads). The graphs show
histograms over the IRQ latencies for the case without moni-
toring (Figure 6a), the case with monitoring (Figure 6b) and
the monitored case where all interrupts adhere to dmin (Fig-
ure 6c). For the monitored scenarios we have used � = dmin.
Further, note that we have used a broken y-axis with dual
scale for better readability.

In the scenario without monitoring (Figure 6a) we ob-
serve that direct IRQs (⇠ 40%b=6000IRQs) exhibit a short
latency of up to 50µs. The interrupts that did not arrive in
the appropriate time partition (i.e. delayed interrupts, 60%)
have latencies of up to TTDMA�Ti = 8000µs. The latencies
of these interrupts are approximately uniformly distributed
in this interval as the interrupts are activated at arbitrary
points in the TDMA cycle. The vertical line in Figure 6a
denotes the average IRQ latency of ⇠ 2500µs over all 15000
IRQs.

Figure 6b shows the results for the same activation pat-
tern for the monitored case. With activated monitoring a
significant amount of IRQs that were delayed in the previ-
ous scenario are now handled as interposed interrupts (direct
40%, interposed 40%, delayed 20%). The resulting interrupt
latencies are significantly shorter. The average IRQ latency
is reduced to ⇠ 1200µs. The worst-case interrupt latency is,
as anticipated in Section 5, still defined through the TDMA
cycle length and identical to the unmonitored case.

The results for the third scenario, where all IRQs satisfy
dmin, is shown in Figure 6c. We observe that no IRQ is
delayed (direct 40%, interposed 60%). The average IRQ
latency is ⇠ 150µs, which marks a ⇠ 16⇥ improvement
over the unmonitored case. The worst-case latencies are no
longer defined through the TDMA cycle length.

6.2 Memory and Runtime Overhead
Next, we evaluate the overhead on memory and compu-

tation time that the proposed interposed interrupt handling
causes. The results for memory usage and runtime overhead
are based on the same compiler optimization level (gcc with
�o1).

The entire implementation requires 1120 bytes of code
within the hypervisor. The modification of the hypervisor’s
TDMA scheduler account for 392 bytes, the implementation
of the modified top handler (Figure 4b) for 456 bytes, and
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Figure 6: Latency results for 15000 IRQs

the monitoring function for 272 bytes. The data memory
overhead is caused solely by the used monitoring scheme
and requires 28 bytes.

The runtime overhead is given through CMon, Csched and
two additional context switches of Cctx each (cf. Section 5).
CMon, i.e. the execution of time of the monitoring (including
the instructions that call the scheduler if the IRQ handling
is interposed), requires 128 instructions. The manipulation
of the scheduler for processing interposed bottom handlers
Csched requires 877 instructions. The context switch over-
head is heavily dependent on processor architecture (partic-
ularly cache and TLB) and memory layout. We measured
an overhead of ⇠ 5000 instructions per context switch for
invalidation of caches and TLB on the ARMv5 architecture.
Additional overhead based on cache writebacks of⇠ 5000 cy-
cles per context switch was required for our particular mem-
ory layout. In scenario 2, for the given choice of dmin = �

(which defines the number of interrupts that can be inter-
posed) we have observed an overall increase in the number
of context switches of ⇠ 10%.

7. CONCLUSION
In this paper we have presented an approach to reduce

interrupt latencies in hypervisor systems that provide su�-
cient temporal independence between partitions. We have
provided an analysis for worst-case interrupt latencies for the
case of strictly TDMA scheduled partitions. Furthermore
we introduced a monitoring-based interrupt shaping, which
permits the execution of IRQ bottom handlers within for-
eign TDMA slots up to a predefined density. We have shown
that the monitoring ensures a su�cient temporal indepen-
dence while improving IRQ latencies. Further, we have pro-
vided an analysis of interrupt latencies and interference on
other partitions for the monitored case. In the evaluation,
which is based on an implementation in uC/OS-MMU on
an ARM926ejs processor, we have validated the results and
shown that interrupt latencies can be significantly reduced
in the average as well as the worst case.
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APPENDIX
A. TESTCASE WITH A REAL-LIFE ACTI-

VATION PATTERN
To test the developed mechanism with a real-world exam-

ple, we used a task activation trace from an automotive ECU
with ⇠ 11000 activations. We assume that for each task acti-
vation in the trace, an IRQ for a partition on the hypervisor
system is generated (e.g. the activated task communicates
with a partition on the hypervisor system via CAN or Ether-
net). Based on the activation trace, we generated a distance
array which includes all distances between two consecutive
activations in the trace. The generated array was now used
to reload the timer within the IRQ top handler, instead of
the exponential distributed distance array from Section 6.1.

We used the first 10% of the generated array to learn a
�

�
Ip
[l] function with l = 5 entries. During this learning phase

only delayed and direct IRQ handling is active. Therefore
the average IRQ latency during this time is compareable to
the scenario without monitoring in Section 6.1. For each
IRQ Algorithm 1 is executed within the top handler. The
algorithm checks if the distances between the current IRQ
and the last l-events are smaller than the actual saved ones
(i.e. �

�
Ip
[l] is initialized with large positive numbers). The

current timestamp then is saved, if the current distance to
the considered activation is smaller.

Algorithm 1 Self-learning �

�
Ip
[l] function

Input: timestamp, tracebu↵er[l], ��Ip [l]

1: for i 2 [0, l � 1] do
2: if timestamp� tracebu↵er[i] < �

�
Ip
[i] then

3: �

�
Ip
[i] = timestamp� tracebu↵er[i]

4: right shift tracebu↵er
5: tracebu↵er[0] = timestamp

When the learning phase is finished, Algorithm 2 com-
pares the recorded �

�
Ip
[l] function to the predefined upper

bound �

�
bIp
[l]. If a distance in �

�
Ip
[l] is smaller than the coun-

terpart in �

�
bIp
[l], the value in �

�
Ip
[l] is adjusted to adhere to

�

�
bIp
[l].

Algorithm 2 Adjusting �

�
Ip
[l] to an upper bound

Input: �

�
bIp
[l], ��Ip [l]

1: for i 2 [0, l � 1] do
2: if �

�
Ip
[i] < �

�
bIp
[i] then

3: �

�
Ip
[i] = �

�
bIp
[i]

After processing all l elements, the system enters the mon-
itored run mode and the remaining activations are processed.
Now each IRQ within a foreign TDMA slot is interposed if
it adheres to the generated and bounded �

�
Ip
[l] monitoring

condition.
To test this setup we used four di↵erent predefined func-

tions for �

�
bIp
[l]. The results are shown in Figure 7. For the

first test (graph a), an �

�
bIp
[l] was specified that does not

bound the recorded �

�
Ip
[l]. As expected the average IRQ la-

tency drops from ⇠ 2200µs to ⇠ 120µs, when entering the
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Figure 7: Average Interrupt Latency

monitored run mode. Due to the fact, that the unmodified
�

�
Ip
[l] is below �

�
bIp
[l], each IRQ within a foreign TDMA slot

is interposed and none is delayed.
For the second run (presented in graph b) we defined an

�

�
bIp
[l] that only allows 25% of the requested load from the

recorded �

�
Ip
[l]. We did the same also for 12, 5% (presented in

graph c) and for 6, 25% (presented in graph d). As expected
bounding the requested load results in delayed IRQs, there-
fore we get as average latencies ⇠ 300µs for 25%, ⇠ 900µs
for 12, 5% and ⇠ 1600µs for 6, 25% allowed load. These
results match to the shown synthetic testcases from Sec-
tion 6.1.


