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ABSTRACT
The RUN algorithm has proven to be a very effective tech-
nique for optimal multiprocessor scheduling, thanks to the
limited number of preemptions and migrations incurred by
the scheduled task set. This permits to achieve high sys-
tem utilisation rates typical of global scheduling approaches
without paying too much penalty due to excessive preemp-
tion and migration overheads. Unfortunately, the adoption
of RUN in real-world applications is limited by the missing
support to sporadic task sets: we address this problem by
proposing SPRINT (SPoradic Run for INdependent Tasks).
SPRINT is proven correct for the vast majority of task sets
and successfully scheduled all those randomly generated dur-
ing our experiments. Yet, its behaviour is not defined for
some specific task sets, which are however extremely rare [1].
Interestingly, experimental results show that the favourable
property of causing a small number of preemptions and mi-
grations achieved by RUN is preserved with SPRINT.

1. INTRODUCTION
The Reduction to UNiprocessor (RUN) algorithm [2, 1]

is an optimal technique for multicore scheduling that has
recently attracted the attention of researchers for its out-of-
the-box approach to the problem. Together with U-EDF [3,
4] and in contrast with previous scheduling approaches for
multiprocessor systems such as PD2 [5], BF2 [6, 4], DP-Wrap
[7] or LRE-TL [8], RUN is one of the very few scheduling
algorithms to achieve optimality without explicitly resort-
ing to a notion of proportionate fairness as captured in the
seminal work of Baruah et al. [9]. Indeed, RUN does not try
to mimic the fluid schedule by explicitly assigning execution
time proportional to their utilisation to each task. The sim-
ulation results of RUN [1], backed up by those of U-EDF
[3], tend to show that relaxing the notion of fairness signif-
icantly reduces the number of preemptions and migrations
suffered by the tasks during the schedule1. These two met-
rics are a trustworthy indicator of the interference caused

1The authors of RUN proved that the average number of
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by operating system activities to the executing applications,
and eventually give a hint on how the schedulability of an
application running on a real platform is impacted by the
choice of a specific algorithm.

RUN is a two-phase algorithm. First, off line, the multi-
processor problem of scheduling a set of n tasks on m identi-
cal processors is reduced to a set of uniprocessor scheduling
problems. This step relies on the concept of dual schedule to-
gether with bin packing techniques. It results in a reduction
tree (see Figure 2 for an example) which will be used during
the on-line phase to take appropriate scheduling decisions.

The second phase takes place at run time: tasks on the
leaves of the reduction tree are globally scheduled among the
m processors by traversing the tree downwards from the root
to the leaves. The scheduling decisions for passing from a
level l to the next level l−1 of the reduction tree are taken ac-
cording to a uniprocessor scheduling algorithm, the optimal-
ity of which ensures the optimality of RUN. Therefore, the
earliest-deadline first (EDF) algorithm [10] is usually cho-
sen, although no restriction is imposed in principle on this
choice. In fact, because of the wide range of choices in both
the off-line and the on-line part, RUN could be imagined
as a framework to define different multiprocessor scheduling
algorithms, each distinguished by the way the reduction pro-
cess is performed off-line and the scheduling choices taken
at run time.

Although its authors classified RUN as semi-partitioned,
the algorithm presents the traits of different categories: the
use of aggregates of tasks (packing) to reduce the size of the
problem certainly recalls hierarchical algorithms. The idea
of packing itself of course borrows from purely partitioned
approaches, even though partitioning is not performed per
processor but rather among servers. Finally, as in global
scheduling techniques, tasks are not pinned to processors
and are free to migrate to any processor when scheduling
decisions are taken.

More than just reducing the number of incurred preemp-
tions and migrations, RUN presents some additional prop-
erties which turn out to be useful to support system design,
and make its adoption appealing from an industrial perspec-
tive. Firstly, since the computation of the reduction tree is
performed offline and the reduction process is guaranteed to
converge, little re-engineering effort is required on the occur-
rence of system changes involving modifications to the task

preemptions per job is upper bounded by
⌈
3p+1

2

⌉
when p

reduction operations are required (see Section 3), and they
observed an average of less than 3 preemptions per job in
their simulation results.



set. This feature is highly desirable in settings where incre-
mentality is a necessary requirement of the development and
qualification processes, as it is often the case of industrial
real-time systems. Secondly, the divide-et-impera approach
taken by RUN may help enable compositional system design
and verification, since servers mimic functionally cohesive
and independent subsystems which may be allocated to a
dedicated subset of system resources and analysed in isola-
tion. Although this could be more easily achieved by strict
partitioning, RUN provides it while achieving higher schedu-
lable utilisation at run time, thus avoiding over provisioning
of system resources.
Unfortunately, the main issue with RUN is that it is in-

tended only for the scheduling of periodic task sets. This
is a major limitation that hinders its applicability in a real-
world scenario, since supporting asynchronous events like
interrupts and sporadic task activations is a strong require-
ment for a scheduling algorithm to be industrially relevant.
In this paper we propose an extension to RUN to cope

with this problem, i.e. supporting the scheduling of spo-
radic task sets. The paper is organized as follows. Section 2
presents the system model and notation we will use through
the rest of the work. In Section 3 we recall the main ideas at
the basis of RUN and its scheduling process, both in the off-
line and on-line phases. The core of our contribution is pre-
sented in Section 4 in which we introduce SPRINT (SPoradic
Run for INdependent Tasks), an extension of RUN which en-
ables the scheduling of sporadic task sets that require less
than two reduction levels in the reduction tree (which is in
fact the case for the vast majority of task sets). While not
formally proving the correctness of SPRINT due to space
limitations (the proof can be consulted in [11]), each design
choice is motivated in Section 4 and experimental evidence
of the performance of SPRINT are provided in Section 5.
Finally, in Section 6, we draw some final considerations on
our contribution.

2. SYSTEM MODEL
We address the problem of scheduling a set T = {τ1, . . . , τn}

of n independent sporadic tasks with implicit deadlines on
a platform composed of m identical processors. Each task

τi
def
= ⟨Ci, Di, Ti⟩ is characterized by a worst-case execution

time Ci, a relative deadline Di, and a minimum inter-arrival
time Ti = Di. A task τi releases a (potentially infinite) se-
quence of jobs. Each job Ji,q of τi that arrives at time ai,q

must execute for at most Ci time units before its deadline
occurring at time ai,q + Di. The earliest possible arrival
time of the next job Ji,q+1 of τi is at time ai,q + Ti. Tasks
are supposed independent, i.e. they do not have precedence,
exclusion or concurrency constraints and they do not share
any resource (software or hardware) at the exception of the
processors.

The utilization of a task τi is defined as U(τi)
def
= Ci

Ti
.

Informally, it represents the percentage of processor time
the task may use by releasing one job every Ti time units
and executing each such job for Ci time units. The sys-
tem utilization U(T ) is the sum of all task utilizations (i.e.,

U(T )
def
=

∑
τi∈T U(τi)), which represents the minimum com-

putational capacity that must be provided by the platform
to meet all task deadlines. This means that a necessary con-
dition to respect all job deadlines is to have a number of pro-
cessors m ≥ U(T ). Furthermore, since an optimal schedul-

ing algorithm for independent sporadic tasks with implicit
deadlines needs exactly m = ⌈U(T )⌉ processors to respect
all job deadlines, we say that T is feasible on m = ⌈U(T )⌉.
For this reason, in case U(T ) < m, we can safely insert idle
(dummy) tasks to make up the difference, similarly to the
original RUN algorithm.

We say that a job Ji,q is active at time t if it has been
released no later than t and has its deadline after t, i.e.
ai,q ≤ t < ai,q +Di. If a task τi has an active job at time t
then we say that τi is active and we define ai(t) and di(t) as
the arrival time and absolute deadline of the currently active
job of τi at time t. Since we consider tasks with implicit
deadlines (i.e., Di = Ti), at most one job of each task can
be active at any time t. Therefore, we use the terms “tasks”
and “jobs” interchangeably in the remainder of this paper
with no ambiguity. The set of active tasks in the system at
time t is indicated by A(t).

3. REVIEW OF RUN
As a first step to build its reduction tree offline, RUN

wraps each individual task τi into a higher-level structure
Si called server with the same utilisation, period and dead-
line. Then it resorts to the concepts of dual schedule and
supertasking [12, 13, 14], whose reciprocal interactions are
recalled in the next section.

3.1 Off-line phase
The simple observation behind RUN is that scheduling

a task’s execution time is equivalent to scheduling its idle
time. This approach, named dual scheduling, had already
been investigated in a few previous works [15, 16, 7, 17].
The dual schedule of a set of tasks T consists in the schedule
produced for the dual set T ∗ defined as follows:

Definition 1 (Dual task). Given a task τi with uti-
lization U(τi), the dual task τ∗

i of τi is a task with the same

period and deadline of τi and utilisation U(τ∗
i )

def
= 1−U(τi).

Definition 2 (Dual task set). T ∗ is the dual task set
of the task set T if (i) for each task τi ∈ T its dual task τ∗

i

is in T ∗, and (ii) for each τ∗
i ∈ T ∗ there is τi ∈ T .

Scheduling the tasks in T ∗ is equivalent to schedule the
idle times of the tasks in T , therefore a schedule for T can
be derived from a schedule for the dual task set T ∗. Indeed,
if τ∗

i is running at time t in the dual schedule produced for
T ∗, then τi must stay idle in the actual schedule of T (also
called primal schedule). Inversely, if τ∗

i is idle in the dual
schedule, then τi must execute in the primal schedule.

Example 1. Figure 1 shows an example of the corre-
spondence between the dual and the primal schedule of a set
T composed of three tasks executed on two processors. In
this example tasks τ1 to τ3 have utilization of 2

3
each, imply-

ing that their dual tasks τ∗
1 to τ∗

3 have individual utilization
of 1

3
. The dual task set is therefore schedulable on one (log-

ical) processor, which makes it a simpler problem, while the
primal tasks τ1 to τ3 need two processors. Whenever a dual
task τ∗

i is running in the dual schedule, the primal task τi
remains idle in the primal schedule; conversely, when τ∗

i is
idling in the dual schedule then τi is running in the primal
schedule.
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Figure 1: Correspondence between the primal and
the dual schedule on the three first time units for
three tasks τ1 to τ3 with utilizations of 2

3
and dead-

lines equal to 3.

RUN takes benefit from the duality principle presented
above by using it during the reduction process, i.e. applying
the following dual operation at each level of the reduction
tree:

Definition 3 (Dual operation/Dual server).
Given a server S, the dual operation defines a server S∗

with utilisation U(S∗) = 1 − U(S). S∗ is called the dual
server of S and shares the same deadline as S.

Note however that the number of processors does not al-
ways diminish in the dual schedule. This actually depends
on the utilization of the tasks in the particular task set.
Lemma 1 (proven in [1]) explicits the relation existing be-
tween the utilisation of a task set and the utilisation of its
dual:

Lemma 1. Let T be a set of n periodic tasks. If the
total utilization of T is U(T ), then the utilization of T ∗ is

U(T ∗)
def
= n− U(T ).

Hence, if U(T ) is an integer, then T and T ∗ are feasible
on m = U(T ) and m∗ = n− U(T ) processors, respectively.
Consequently, in systems where n is small enough to get

(n− U(T )) < m (1)

the number of processors can be reduced — and so the com-
plexity of the scheduling problem — by scheduling the dual
task set T ∗ instead of T . For instance, in Example 1, we
have U(T ) = 2. T is therefore feasible on two processors.
And because, n = 3, we get U(T ∗) = n−U(T ) = 1, thereby
implying that the dual task set T ∗ is feasible on one proces-
sor only.
Therefore, in order to enforce Expression 1 being true and

benefit from the duality, RUN uses a bin-packing heuristic
to pack servers into higher level servers as defined by the
following operation:

Definition 4 (Pack operation/Packed server).
Given a set of servers {S1, S2, . . . , Sn}, the pack opera-

tion defines a server S with utilisation U(S) =
∑n

i=1 U(Si).
S is called the packed server of {S1, S2, . . . , Sn}.

In the remainder of this paper, we will use the notation
S ∈ B to specify that server S is packed into server B or
more generally that server S is part of the subtree rooted in
B.
The dual and pack operations presented above are all

the ingredients needed to build the RUN reduction tree and

eventually transform the scheduling problem on m proces-
sors into an equivalent uniprocessor one. The process of
constructing the tree consists in fact in alternatively pack-
ing existing servers to satisfy Equation 1, and then applying
the duality to the newly obtained set of servers.

A reduction level in the reduction tree of RUN is therefore
defined as follows:

Definition 5 (Reduction level). The packing of the
initial servers {S1, S2, . . . , Sn} is named S0. The successive
application of the dual and the pack operation to the set of
servers Sl at level l defines a new set of servers Sl+1 at level
l+ 1 in the reduction tree. The intermediate level between l
and l+1 (i.e. when the dual operation has been applied but
the pack operation has not) is indicated by l∗ (see Figure 2
as an example).

By recursively applying the dual and pack operations, in
[2] the authors proved that the number of processors needed
to schedule the set of obtained servers eventually reaches
one. Hence, the initial multiprocessor scheduling problem
can be reduced to a uniprocessor scheduling one. More for-
mally, this means that ∃l, Sl

k : (|Sl| = 1) ∧ (U(Sl
k) = 1),

where Sl is the set of servers at level l and Sl
k ∈ Sl. In fact,

at every application of the reduction operation (i.e. at each
level of the reduction tree) the number of servers is reduced

by approximately one half, i.e. |Sl+1| ≤
⌈

|Sl|
2

⌉
.

3.2 On-line phase
The on-line phase of RUN consists in deriving the sched-

ule for T from the schedule constructed with EDF at the
uppermost reduction level (i.e. for the equivalent uniproces-
sor system). During runtime, each server S is characterized
by a current deadline and a given budget.

Definition 6 (Server deadline in RUN). At any
time t, the deadline of server Sl

k on level l is given by

dlk(t)
def
= min

Sl−1
i ∈Sl

k

{dl−1
i (t)}

The deadline of the dual server Sl∗
k on level l∗ is given by

dl
∗
k (t)

def
= dlk(t)

Deadline and budget are related since whenever a server
Sl
k reaches its deadline, it replenishes its budget by an amount

proportional to its utilisation U(Sk), as follows:

Definition 7 (Budget replenishment in RUN).

Let R(Sl
k)

def
= {r0(Sl

k), . . . , rn(S
l
k), . . . } be the time in-

stants at which Sl
k replenishes its budget, with r0(S

l
k) = 0

and rn+1(S
l
k) = dlk(rn(S

l
k)). At any instant rn(S

l
k) ∈ R(Sl

k)

server Sl
k is assigned an execution budget bdgt(Sl

k, rn(S
l
k))

def
=

U(Sl
k)×

(
rn+1(S

l
k)− rn(S

l
k)
)
.

The budget of a server is decremented with its execution.
That is, assuming that the budget of Sl

k was not replenished
within the time interval [t1, t2], then

bdgt(Sl
k, t2) = bdgt(Sl

k, t1)− exec(Sl
k, t1, t2) (2)

where exec(Sl
k, t1, t2) is the time Sl

k executed during [t1, t2].
The schedule for T is finally built by applying the two

following rules at each reduction level:



Figure 2: RUN reduction tree for a task set of 7 tasks.

Rule 1. If a server Sl
k at reduction level l is running

at time t, then the component server Sl−1∗

j ∈ Sl
k with the

earliest deadline is executed at level (l − 1)∗ with budget

bdgt(Sl−1∗

j , t) > 0. If a server Sl
k at reduction level l is

not running at time t, then none of its component servers

Sl−1∗

j ∈ Sl
k at reduction level (l − 1)∗ is executed.

Rule 2. If server Sl−1∗

j is not running at level (l − 1)∗,

then server Sl−1
j is executed in the primal schedule at reduc-

tion level l− 1. And inversely, if server Sl−1∗

j is running at

level (l − 1)∗, then Sl−1
j is kept idle in the primal schedule

at reduction level l − 1.

The server at the root of the reduction tree is assumed to
always be running.

Example 2. Let T be composed of 7 tasks τ1 to τ7 such
that U(τ1) = U(τ2) = U(τ5) = 0.6 and U(τ3) = U(τ4) =
U(τ6) = U(τ7) = 0.3. One possible reduction tree of T is
provided in Figure 2. Let us assume that each of the seven
tasks τi ∈ T has an active job at time t = 0 characterized by
its execution time, deadline and period (<c,d,t> respectively
in Figure 2). According to Definition 6, each server S0

i ∈ S0

(with 1 ≤ i ≤ 5) on the first reduction level inherits the
deadline di(t) of the corresponding task(s) τi. At the second
reduction level S1, the sets of deadlines of S1

1 and S1
2 are

{d1(t), d2(t)} and {d3(t), d4(t), d5(t)} respectively, while S1
3

inherits the deadlines of S0
5 , i.e. {d6(t), d7(t)}. Because

a dual server has the same deadline of the corresponding
primal server, if we execute EDF on the set of dual servers
at level 1∗ (Rule 1), S1∗

2 is chosen to be executed at time t
(see Figure 2). According to Rule 2, this means that both S1

1

and S1
3 should be running in the primal schedule at level 1.

Applying EDF in each of these servers, we get that S0∗
1 and

S0∗
5 must be running in the dual schedule of reduction level

0∗. Therefore, S0
1 and S0

5 must stay idle while S0
2 , S0

3 , S0
4

must be executed in the primal schedule of reduction level 0.
Consequently, it results that τ2, τ3 and τ5 must execute at
time t.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S2

S1

S0∗

π1

π2

π3

S1∗
2 S1∗

1 S1∗
3 S1∗

2 S1∗
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1 S1∗

3 S1∗
2 S1∗

3 S1∗
2 S1∗

3

S0∗
1 S0∗

4 S0∗
1 S0∗

4 S0∗
3 S0∗

5 S0∗
3 S0∗

5 S0∗
1

S0∗
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3 S0∗
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2 S0∗
4 S0∗

2 S0∗
4 S0∗

3 S0∗
5 S0∗

4 S0∗
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S0
2 S0
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5 S0
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4 S0
5

S0
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5 S0
3 S0

4 S0
2 S0

4 S0
2

S0
4 S0

1 S0
4 S0

1 S0
5 S0

3 S0
4

Figure 3: Possible RUN schedule for the task set in
Example 3.

4. A GENERALIZATION OF RUN TO HAN-
DLE SPORADIC TASKS

4.1 Motivating Example
Providing support to sporadic activations is arguably a

desirable property for any industrially-relevant system, since
this would make it possible to accommodate the asynchronous
events triggered by the interaction with the external world.
Unfortunately, RUN and its optimality results only apply to
the scheduling of periodic task sets. In the next motivating
example, a setting is shown where a feasible task set cannot
be scheduled with RUN as a consequence of the the sporadic
nature of some of its tasks.



Example 3. Consider the task set composed by 7 tasks
with implicit deadlines in the reduction tree shown in Fig-
ure 2. The beginning of a possible schedule constructed by
RUN is given in Figure 3, where server S0

2 corresponding
to task τ2 is allocated to processor π1 at time t = 0; how-
ever, if τ2 were a sporadic task with a job released at time
0.3, then it would be impossible for RUN to execute τ2 for
the 3.6 required time units by the instant 6.3, thus causing
its deadline miss. In this case the problem might be solved
with RUN by choosing the schedule where the allocations of
S0
1 and S0

2 are switched, although there is no way to capture
this requirement in the original algorithm.

Example 3 above highlights the main problem with RUN:
the algorithm assumes that, whenever a server is scheduled,
its workload is available for execution (thus its budget is not
null). This is a consequence of job releases occurring exclu-
sively upon server deadlines when tasks are periodic. After
jobs are released and new deadlines are propagated up to the
root, a new schedule for T is computed by traversing the re-
duction tree top-down, i.e. by first finding a solution to the
uniprocessor problem of scheduling jobs released by servers
at level n. By applying the two rules shown in Section 3.2 the
process proceeds downwards eventually producing a sched-
ule for the actual tasks on the leaves. However, no clue is
given to the scheduling process on how to select servers at
intermediate levels and the corresponding branches in the
tree to favour/ignore the scheduling of specific tasks, which
may not have been activated yet. It is therefore interest-
ing to investigate a possible generalization of the algorithm,
which could account for variable arrival times and handle
sporadic task sets.
It was proven in [2] that the structure of the reduction tree

based on the notion of dual schedule is the key enabler for
the low number of observed preemptions and migrations. We
decided therefore to maintain this core idea while relaxing
any assumption on job arrival times, giving rise to SPRINT,
an algorithm for scheduling sporadic task sets, which is pre-
sented in the next section. Only the online phase of RUN
is affected by SPRINT modifications. The offline part —
i.e. the construction of the reduction tree — is identical in
SPRINT and RUN.

4.2 SPRINT
The algorithm we present is not different from RUN in

its basic mechanism: servers are characterized by deadlines,
and at the firing of each such deadlines the execution budget
of a server is replenished to provide additional computa-
tional resources for new job executions. However, the way
those quantities (i.e., deadlines and budgets) are computed
changes to accommodate possible sporadic releases. Addi-
tionally, we need to enforce a new server priority mechanism
for the scheduling of component servers to avoid the waste
of processor time when the transient load of the system is
low. We now show how these key modifications differentiate
SPRINT from RUN. Note that SPRINT can be currently
applied to reduction trees with at most two reduction lev-
els, therefore it cannot be considered optimal. However, the
simulation results provided in Section 5, as well as previous
studies performed in [1], show that task sets needing more
than two reduction levels are extremely rare (less than one
case over 600 with 100 processors and thousands of tasks).
For this reason we argue that SPRINT is capable of schedul-
ing the vast majority of task sets.

4.2.1 Deadlines of servers
Server deadlines play a central role in governing the schedul-

ing process of RUN, as they (i) directly influence the budget
replenishment of the servers and (ii) map to priorities under
the EDF scheduling policy used by Rule 1. It is therefore
critical to carefully assign deadlines so that proper schedul-
ing decisions are taken online. This principle still holds in
SPRINT, with the further complication that the deadlines
of servers at level 0 should account for the possible sporadic
nature of the individual tasks wrapped into them.

Let rn(S
0
k) be the release of a new job of server S0

k at
level 0. In RUN the job released by S0

k would be assigned a
deadline equal to the minimum deadline of the tasks packed
in S0

k (see Definition 6). However, in SPRINT, because of
the sporadic nature of tasks, some task τi may exist in S0

k

which is not active at time rn(S
0
k) and therefore has no de-

fined deadline. Nonetheless, we need to compute a deadline
d0k(rn(S

0
k)) for the job released by server S0

k at time rn(S
0
k).

While computing this deadline, we want to preserve an im-
portant property of RUN: the firing of a deadline of any job
released by any task τi always corresponds to the firing of a
deadline in any server Sl

p such that τi ∈ Sl
p. Furthermore,

for the sake of simplicity, we do not want to update the
deadline of S0

k at any instant other than the release of one
of its job.

In order to meet those two requirements, for all the tasks
τi ∈ S0

k that are inactive at time rn(S
0
k), we consider their

earliest possible deadline assuming that they release a job
right after rn(S

0
k). That is, for each inactive task τi ∈ S0

k,
we assume an artificial deadline rn(S

0
k) +Di.

Thanks to the discussion above, the deadline of a server
in SPRINT can be defined as follows:

Definition 8 (Server deadline in SPRINT). At any
time t the deadline of a server S0

k on level l = 0 is given by

d0k(t)
def
= min

τi∈S0
k

{di(r0k(t))| if τi ∈ A(r0k(t));

r0k(t) +Di| if τi /∈ A(r0k(t))}

where r0k(t) is the latest arrival time of a job of server S0
k,

i.e., r0k(t)
def
= max

rn(S0
k
)∈R(S0

k
)

{
rn(S

0
k) | rn(S0

k) ≤ t
}
.

At any time t the deadline of any other server Sl
k on a level

l > 0 is defined as in RUN. That is,

dlk(t)
def
= min

Sl−1
i ∈Sl

k

{dl−1
i (t)}

It is worth noticing that, as expected, this definition pre-
serves the property of RUN that the firing of a deadline of
any job released by any task τi always corresponds to the
firing of a deadline in any server Sl

k such that τi ∈ Sl
k. Note

however that the converse, although true in RUN, is not
valid in SPRINT anymore, i.e. a deadline may be fired by a
job of server Sl

k without any corresponding deadline in the
task set T .

4.2.2 Reduction level 0
As a more challenging modification to RUN, SPRINT

must redefine the budget replenishment rules for its servers.
This is needed because the execution budget assigned to
a server Sl

k at any level of the reduction tree must reflect
the execution time demand of the component tasks at the



leaves of the subtree rooted in Sl
k. This time demand may

now vary at any point in time as a consequence of sporadic
releases and must be preserved upon the reduction process
performed along the tree. While in RUN just one rule is
needed to compute the budget of any server in the tree, in
SPRINT we need to distinguish different budget replenish-
ment rules corresponding to the different levels at which a
server is located in the reduction tree.
Following the reasoning of Section 3.2, let

R(S0
k)

def
= {r0(S0

k), . . . , rn(S
0
k), . . . } be the sequence of time

instants at which the budget of S0
k is replenished. We still

have r0(S
0
k)

def
= 0 and rn+1(S

0
k)

def
= d0k(rn(S

0
k)). While, in

RUN, the budget allocated to S0
k at time rn(S

0
k) is propor-

tional to the utilisation of all the tasks in S0
k, in SPRINT,

the budget of S0
k should account only for the active tasks in

S0
k at time rn(S

0
k). The budget of S0

k is therefore computed
as follows:

bdgt(S0
k, rn(S

0
k))

def
=∑

τj∈S0
k
∩A(rn(S0

k
))

U(τj)×
(
rn+1(S

0
k)− rn(S

0
k)
)

(3)

The provisioned budget for the execution of a server in
SPRINT may therefore be smaller than in RUN. Yet, be-
cause of their sporadic nature, the tasks packed in S0

k may
also release some jobs at any time instant t in-between two
replenishment events rn(S

0
k) and rn+1(S

0
k). In this event,

the budget of S0
k should be incremented to account for the

new workload to be executed. More generally, if a set of
tasks becomes active in a server S0

k at time ta such that
rn(S

0
k) < ta < rn+1(S

0
k), the budget of S0

k should be incre-
mented of an amount proportional to the cumulative utili-
sation of all released jobs. Formally,

bdgt(S0
k, ta)

def
= bdgt(S0

k, t
−
a )

+
∑

τi∈S0
k
∩Rel(ta)

U(τi)× (d0k(ta)− ta) (4)

where Rel(ta) is the set of tasks releasing a job at time ta
and bdgt(S0

k, t
−
a ) is the remaining execution budget of S0

k

right before the arrival of those jobs.
The computation of the budget for the dual server S0∗

k is
also impacted by the sporadic behavior of the tasks. Indeed,
by definition of dual server, the primal server S0

k executes

only when S0∗
k is idle, and conversely S0

k is kept idle when

S0∗
k executes (see Rule 2). Therefore, in order to respect

the deadline d0k(t) of S
0
k, as a minimal requirement we need

to ensure that bdgt(S0∗
k , t) ≤ (d0k(t)− t)− bdgt(S0

k, t) at any
time t. Since in RUN the budget assigned to a server S0

k may
only vary at instants rn(S

l
k) ∈ R(Sl

k) (see Definition 7), it is

sufficient to respect the equality bdgt(S0∗ , t)
def
= (d0k(t)− t)−

bdgt(S0
k, t) at any time t. In SPRINT instead the budget of

S0
k may increase as soon as an inactive task τi ∈ S0

k releases
a new job (Equation 4). Therefore, whenever the budget
bdgt(S0

k, t) increases at any time t due to the release of a new
job of S0

k or a job of an inactive task τi ∈ S0
k, the budget of

S0∗
k needs to be updated according to the following equation:

bdgt(S0∗
k , t) = (d0k(t)− t)− bdgt(S0

k, t)

−
∑

τi∈S0
k
,τi ̸∈A(t)

U(τi)× (d0k(t)− t) (5)

where the last term accounts for the maximum workload by
which the budget of S0

k could be inflated as a consequence
of potential future job releases by the inactive tasks in S0

k.
In Equation 5 the maximum workload (currently active and
potentially released) of the corresponding primal server is
subtracted from the budget of the dual to prevent its exe-
cution for more than allowed.

To summarize, in SPRINT the computation of the bud-
gets of any servers S0

k and S0∗
k at level l = 0 must comply

with the two following rules:

Rule 3 (Budget replenishment at level 0). At any
instant rn(S

0
k) ∈ R(S0

k) as defined in Section 3, servers S0
k

and S0∗
k are assigned execution budgets

bdgt(S0
k, rn(S

0
k)) =∑

τj∈S0
k
∩A(rn(S0

k
))

U(τj)×
(
rn+1(S

0
k)− rn(S

0
k)
)

bdgt(S0∗
k , rn(S

0
k)) = (rn+1(S

0
k)− rn(S

0
k))

−
∑

τi∈S0
k

U(τi)× (rn+1(S
0
k)− rn(S

0
k))

where A(rn(S
0
k)) is the set of active tasks at time rn(S

0
k).

Rule 4 (Budget update at level 0). At any instant
t (such that rn(S

0
k) < t < rn+1(S

0
k)) corresponding to the re-

lease of one or more jobs by one or more tasks in server S0
k,

the execution budgets of servers S0
k and S0∗

k are updated as
follows:

bdgt(S0
k, t) = bdgt(S0

k, t
−)

+
∑

τj∈S0
k
∩Rel(t)

U(τj)× (d0k(t)− t)

bdgt(S0∗
k , t) = (d0k(t)− t)− bdgt(S0

k, t)

−
∑

τi∈S0
k
,τi ̸∈A(t)

U(τi)× (d0k(t)− t)

where Rel(t) is the set of tasks releasing a job at time t and
bdgt(S0

k, t
−) is the remaining execution budget of S0

k right
before the arrival of those jobs at time t.

The following example shows how server budget can be
computed in the presence of both active and inactive tasks,
resuming from the motivating Example 3 in Section 4.1.

Example 4. Let us consider server S0
3 in the reduction

tree depicted in Figure 2 and the possible schedule in Fig-
ure 3; additionally let τ4 be sporadic and initially inactive at
time t = 0. Since d3(0) ≤ t+D4, the deadline at time 0 of
server S0

3 in which τ3 and τ4 are packed is d03(0) = d3(0) =
10, corresponding to the deadline of task τ3. Server S0

3 is
assigned budget proportional to the active tasks packed in it,
i.e. bdgt(S0

3 , 0) =
∑

τj∈S0
3∩A(0)

U(τj)× (d03−0) = 0.3×10 = 3.

Supposing now that τ4 becomes active (and thus releases a
job) at time t1 = 0.6, the budget of server S0

3 should be raised
to satisfy the execution demand of τ4. The amount of such
increment is given by ∆bdgt(S0

3 , t1) =
∑

τj∈S0
3∩Rel(t1)

U(τj) ×

(d03(t1)− t1) = U(τ4)× (d03 − t1) = 0.3× (10− 0.6) = 2.82.
However, since d4(t1) = 15.6 > d3(t1), τ3 keeps on exe-
cuting. At time t2 = 10, τ3 will release a new job with



deadline d3 = 20 (which is later than S0
3 current dead-

line, d03(t2) = 15.6) and the budget of S0
3 will be reset to

bdgt(S0
3 , 10) = (U(τ3)+U(τ4))× (d03(t2)− t2) = (0.3+0.3)×

(15.6 − 10) = 3.36 since both τ3 and τ4 will be active at
t2. Thus, the budget assigned overall to S0

3 for the execu-
tion of τ4 is given by the sum of the budgets assigned in the
two intervals, i.e. bdgt(τ4, [t1, d4(t1)]) = bdgt(τ4, [t1, t2]) +
bdgt(τ4, [t2, d4(t1)]) = U(τ4) × (t2 − t1) + U(τ4) × (d4(t1) −
t2) = 0.3× 9.4 + 0.3× 5.6 = 4.5 = C4.

We now prove that scheduling the packed servers at level
0 is equivalent to scheduling the task set T .

Lemma 2. Let S0
k be a server at level l = 0 of the reduc-

tion tree and assume that S0
k complies with Rules 3 and 4

for computing its budget. If S0
k always exhausts its budget by

its deadlines then all jobs released by the tasks in S0
k respect

their deadlines.

Proof. We provide a proof sketch. According to Defini-
tion 8, the deadline of any job released by any task in S0

k

corresponds to one of the deadline of S0
k. Therefore, from

Rules 3 and 4, the budget allocated to S0
k between any in-

stant corresponding to the release ai,q of a job Ji,q of a task
τi ∈ S0

k and the deadline ds,p of any job released by the same
or another task τs ∈ S0

k, is proportional to the utilisation of
the tasks in S0

k that are active between those two instants.
That is, the budget allocated to the server (i.e., the supply)
is larger than or equal to the sum of the worst-case execution
times of the jobs of the tasks in S0

k with both an arrival and
a deadline in the interval (i.e., the demand). And because
EDF is an optimal scheduling algorithm and the cumulative
load is always ≤ 1, all those jobs respect their deadlines.

Properly assigning deadlines and budgets to servers is not
sufficient to guarantee that the algorithm works. As men-
tioned at the beginning of this section, due to the fact that
all tasks are not always active at any given time t, the pri-
ority rules for servers must also be adapted in SPRINT
to avoid wasting time while there is still pending work in
the system. Indeed, as shown by Example 3, blindly using
EDF to schedule servers in the presence of sporadic tasks
may lead to deadline misses. Because a sufficient condi-
tion for guaranteing the schedulability of the tasks in T is
that all jobs of the servers at level 0 respect their dead-
lines (as proven by Lemma 2), then it is straightforward to
conclude that there is no need to execute any server S0

k at
level 0 for more than its assigned budget. To enforce this,
we rely on the idea of dual schedule, ensuring that S0

k does

not execute when S0∗
k is running. Therefore, we just need

to enforce the execution of S0∗
k as soon as a server S0

k ex-

hausts its budget (even in case S0∗
k already exhausted its

own budget, i.e. bdgt(S0
k, t) = bdgt(S0∗

k , t) = 0): this can

be achieved by assigning the highest priority to S0∗
k . As a

consequence, by virtue of Rule 2 presented in Section 3, S0∗
k

will be favourably chosen to execute at level l = 0∗ (the only
exception being if another server S0

p also completed its exe-
cution), thereby implying that S0

k will not execute (thanks
to Rule 1). These observations are formalised in Rule 5:

Rule 5 (Server priorities at level l = 0∗). If the bud-
get of a server S0

k is exhausted at time t, i.e. bdgt(S0
k, t) = 0,

then the dual server S0∗
k is given the highest priority. Oth-

erwise, if bdgt(S0
k, t) > 0, the priority of S0∗

k is determined
by its deadline d0k(t) as defined in Definition 8.

4.2.3 Reduction level 1
We can extend the reasoning above to determine how

the execution budgets should be replenished and how the
scheduling decisions should be taken at levels l = 1 and 1∗

of the reduction tree. We first start with the observations
in the two following lemmas.

Lemma 3. If S1∗
i executes at time t then all servers S0

k ∈
S1
i execute at time t.

Proof. This lemma is a consequence of the dual opera-
tion applied in Rule 2. If S1∗

i executes at time t then, by
Rule 2, S1

i does not execute at time t. Consequently, by
Rule 1, none of the component servers S0∗

k ∈ S1
i executes ei-

ther. This implies (by Rule 2) that all tasks S0
k ∈ S1

i execute
at time t.

Lemma 4. If S1∗
i does not execute at time t then all sev-

ers S0
k ∈ S1

i but one execute at time t.

Proof. If S1∗
i does not execute at time t then, by Rule 2,

S1
i executes at time t. Consequently, by Rule 1, one compo-

nent server S0∗
p ∈ S1

i executes at time t. Therefore, applying
Rule 2, all tasks S0

k ∈ {S1
i } \ S0

p execute at time t.

A direct consequence of Lemmas 3 and 4 is that there is
no need for executing S1∗

i when at least one of the servers
S0
k ∈ S1

i exhausted its budget. Therefore, S1∗
i is assigned

the lowest priority to prevent its execution, as long as at
least one server S0

k ∈ S1
i has budget bdgt(S0

k, t) = 0. Hence,
the following rule applies at level l = 1∗:

Rule 6 (Server priorities at level l = 1∗). If the bud-
get of a server S0

k is exhausted at time t, i.e. bdgt(S0
k, t) = 0,

then the server S1∗
i such that S0

k ∈ S1∗
i is given the lowest

priority. Otherwise, if bdgt(S0
k, t) > 0 for all S0

k ∈ S1∗
i , the

priority of S1∗
i is determined by its deadline d1k(t) as speci-

fied in Definition 8.

The following example shows how assigning priorities ac-
cording to Rules 5 and 6 at levels 0∗ and 1∗ affects the
scheduling of the servers at level 0.

Example 5. Consider again the task set in Figure 2 and
focus on the subtree rooted in S1∗

2 . We assume τ3, τ4 and
τ5 to be sporadic and releasing their first jobs at time in-
stants 3, 0.1 and 0 respectively. The beginning of a possible
schedule constructed by RUN is given in Figure 4. Since the
budget of S0

3 is null at time 0, according to Rule 5 server
S0∗
3 is assigned the highest priority among S0∗ , whereas S1∗

2

takes the lowest priority in S1∗ according to Rule 6. Con-
sequently, SPRINT selects S1∗

1 at level S1∗ and S0∗
3 at S0∗ ,

which prevents dispatching τ3 and τ4, that have not been re-
leased yet, in favour of S0

4 and τ5. Later at time 0.1, when
τ4 is released, server S0

3 is given budget proportional to the
execution demand of τ4, S

0∗
3 takes nominal priority (that of

S0
3 , according to Definition 8), and S1∗

2 is assigned priority
equal to the deadline of S0

4 by virtue of Rule 6. This new as-
signment permits to select S1∗

2 at level S1∗ and consequently
enables the scheduling of S0

3 , thus τ4, at level S0. At time
3, τ3 is also released and preempts τ4 as a consequence of
its earlier deadline. At the same time τ5 completes and,
assuming that its next arrival is later than time 3, servers
S0∗
4 is assigned the highest priority among S0∗ , whereas S1∗

2
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Figure 4: Possible RUN schedule for the task set in
Example 5.

takes again the lowest priority in S1∗ . Similarly to the situa-
tion at time 0, preventing the selection of server S1∗

2 implies
scheduling the server with the highest priority in S0∗ , this
time S0∗

4 , which in turn favours the scheduling of the active
workload in S0

3 over S0
4 (and thus τ5) in the primal schedule.

At levels 1 and 1∗, the budget replenishment policy ap-
plied at any instant rn(S

1
k) ∈ R(S1

k) is no different from
RUN. Hence, the algorithm still respects the following rule:

Rule 7 (Budget replenishment at level 1). At

any instant rn(S
1
k) ∈ R(S1

k) servers S
1
k and S1∗

k are assigned
execution budgetsbdgt(S1∗

k , rn(S
1
k)) = U(S1∗

k )×
(
rn+1(S

1
k)− rn(S

1
k)
)

bdgt(S1
k, rn(S

1
k)) = (rn+1(S

1
k)− rn(S

1
k))− bdgt(S1∗

k , rn(S
1
k))

One more rule is however needed to define the behaviour
of the algorithm when a task releases a job at time t such
that rn(S

1
k) < t < rn+1(S

1
k). This rule is given below and

uses the operator [x]zy defined as min{z,max{y, x}}.

Rule 8 (Budget update at level 1). At any instant
t such that rn(S

1
k) < t < rn+1(S

1
k), corresponding to the up-

date of one or more jobs from one or more server S0
p ∈ S1

k:

• if bdgt(S0
p , t

−) = 0 and calling t0 ≥ rn(S
1
k) the instant

at which bdgt(S0
p , t) became equal to 0, then the exe-

cution budgets of servers S1
k and S1∗

k are updated as
follows:bdgt(S1∗

k , t) =
[
U(S1∗

k )× (d1k(t)− t)
]bdgt(S1∗

k ,t0)

bdgt(S1∗
k

,t0)−(t−t0)

bdgt(S1
k, t) = (d1k(t)− t)− bdgt(S1∗

k , t)

where bdgt(S0
k, t

−) and bdgt(S1∗
k , t−) are the remaining

execution budgets of S0
k and S1∗

k , respectively, right be-
fore the budget update occurring at time t;

• otherwise, if bdgt(S0
p , t

−) > 0 for all updated servers

S0
p ∈ S1

k, then bdgt(S1∗
k , t) and bdgt(S1

k, t) remain un-

changed, i.e. bdgt(S1∗
k , t) = bdgt(S1∗

k , t−) and
bdgt(S1

k, t) = bdgt(S1
k, t

−).

Due to space limitations, we cannot provide a formal proof
in this paper that all servers S1∗

k of level l = 1 always respect
their deadlines. However, as proven in [11], the following
lemma holds:

Lemma 5. If all servers of level 1∗ comply with Rules 7
and 8 for computing their budgets, then all servers of level
1∗ respect all their deadlines.

4.2.4 Reduction level 2
By assumption, at most two reduction levels are present

in SPRINT: consequently, level 2 can only be the root of
the reduction tree. Since by definition the root has always
utilisation equal to 100%, it is always executing and neither
budget nor priority need to be computed for it.

Theorem 1. SPRINT respects all the deadlines of all the
jobs released by sporadic tasks with implicit deadlines when
there are a maximum of two reduction levels in the reduction
tree.

Proof. See [11].

5. EXPERIMENTAL RESULTS
We now proceed to compare SPRINT to state-of-the-art

multicore scheduling algorithms. In particular, we are inter-
ested in counting the number of preemptions and migrations
incurred by the task sets to be scheduled during those tests.

Please note that from a run-time complexity viewpoint,
RUN needs to traverse the reduction tree upon each schedul-
ing event. SPRINT has the same behaviour while perform-
ing a few supplementary summations and multiplications to
properly adjust server utilisation, with minimal additional
impact on system overhead. Since it has been demonstrated
in [18] that RUN can be actually implemented with reason-
able performance when compared to other existing parti-
tioned and global algorithms2, we assume that this result
can be extended to SPRINT, which is based on RUN, to
only focus on evaluation by simulation.

All our experiments relate SPRINT with Partitioned-EDF
(P-EDF), Global-EDF (G-EDF) and U-EDF, by schedul-
ing randomly generated sporadic task sets. Individual tasks
are characterised by their minimum inter-arrival time, ran-
domly chosen in the range of [5, 100] time units. Sporadic
releases are simulated by randomly picking an arrival delay
for each job in a range of values depending on the specific
scenario. Every point in the graphs presented in this section
is the result of the scheduling of 1000 task sets. During the
off line reduction process of SPRINT, no task set required
more than 2 levels in its reduction tree and all tasks always
respected their deadlines when using SPRINT.

In the first batch of experiments we studied SPRINT per-
formance as a function of the varying system utilisation.
We simulated a system with 8 processors and we randomly
generated task utilizations between 0.01 and 0.99 until the

2The cited implementation has been made on the
LITMUSRT extension to the Linux kernel developed by
UNC [19, 20].
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Figure 5: Comparative results for SPRINT with respect to G-EDF, P-EDF and U-EDF in terms of pre-
emptions (a) and migrations (b) per job, and number of schedulable task sets (c) with increasing system
utilisation.
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Figure 6: Comparative results for SPRINT with respect to G-EDF, P-EDF and U-EDF in terms of pre-
emptions (a) and migrations (b) per job, and number of schedulable task sets (c) with increasing number of
tasks.

targeted system utilization was reached, increasing it pro-
gressively from 55% to 100%. Sporadic delays suffered
by the jobs were randomly chosen in the range of [0, 100]
time units. Figures 5(a) and 5(b) show the results obtained
for SPRINT in terms of preemptions and migrations per
job, respectively; in particular, we notice that the number
of migrations incurred by SPRINT is always smaller than
the number experienced under both G-EDF and U-EDF up
to 95% utilisation (U(T ) = 7.5), whereas it approaches U-
EDF performance afterwards. The number of preemptions
is similar to the well-known results for P-EDF, at least up
to 85% utilisation, i.e. U(T ) = 7. After that point however
the number of scheduled task sets for P-EDF and G-EDF
drops substantially, as evident from Figure 5(c)3, until the
extreme of 100% utilisation where not even a valid parti-
tioning is found for P-EDF. As expected, the schedulabil-
ity ratios for U-EDF and SPRINT remain 100%, while the
number of incurred preemptions becomes similar due to a
saturated system.
In the second experiment, we kept the system utilisation

fixed to 90% (i.e. U(T ) = 7.2), in order to still observe some
feasible task sets under G-EDF and P-EDF, and varied the
number of tasks. Task utilizations were generated using the
method proposed in [21] and sporadic delays were picked in
the range [0, 100] time units. In our expectations this exper-
iment would challenge even more the relative performance
of the algorithms, since growing the number of concurrent
tasks in the system potentially increases the work to be per-
formed by the scheduling algorithm. Figures 6(a) and 6(b)
show that the number of preemptions for SPRINT is similar
to that of P-EDF and G-EDF, while the number of migra-
tions is even smaller (in fact null) than the migrations reg-

3In that case we only count the number of preemptions and
migrations incurred by the schedulable task sets.

istered by G-EDF and U-EDF. However, with a small num-
ber of tasks, whose individual utilisation must be therefore
large, P-EDF and G-EDF fail to schedule some task sets as a
consequence of the impossibility of finding a good partition-
ing and of taking advantage of task migration, respectively
(Figure 6(c)). U-EDF is instead comparable to SPRINT in
terms of achieved schedulability, still paying some penalty
due to a higher number of preemptions and migrations.

As a final experiment we observed the behaviour of SPRINT
and U-EDF when the number of processors in the system in-
creases, while keeping the system fully utilised. As expected,
both the number of preemptions (Figure 7(a)) and migra-
tions (Figure 7(b)) increase for U-EDF with the size of the
system, whereas for SPRINT it remains constant on aver-
age, and always below the value of 3. This is in line with the
results obtained for RUN and by virtue of the observation
that no task set in our experiments requires more than 2 re-
duction levels. Note however, that some experiments show
results were up to 5 preemptions per job are needed in av-
erage. This breaks the upper-bound on the average number
of preemptions per job proven for RUN and is the logical
result of the sporadic releases of the jobs.

The same graphs also show how the behaviour of both
SPRINT and RUN are affected by modifying the maximum
delay that sporadic jobs could incur. To this end we defined
three representative scenarios: (i) in the first one, jobs do
not incur any delay (i.e., max delay = 0), which corresponds
to having only periodic tasks and is therefore suitable to
roughly compare SPRINT and U-EDF on a strictly periodic
system; (ii) in the second, job delays are randomly picked
in the range [0,max period], so that there is at least one
job released by each task every 200 time units; finally, (iii)
in the third scenario, job delays are chosen in the range
[0, 10 × max period]. We notice on Figure 7 that scenario



(ii) is the most expensive both in terms of preemptions and
migrations, for both algorithms. This is explained by the
fact that in that scenario, jobs are released often enough to
always keep the processors busy; additionally such releases
are likely to happen out-of-phase with respect to each other,
thereby generating more scheduling events. On the contrary,
in setting (i), jobs are more likely to be released in phase,
whereas in setting (iii), job releases are far less frequent,
thus diluting the number of dispatched scheduling events.
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Figure 7: Comparative results for SPRINT with re-
spect to U-EDF in terms of preemptions (a) and
migrations (b) per job, with different inter-arrival
times and increasing number of processors.

6. CONCLUSIONS
In this paper we presented SPRINT, an extension to RUN

to schedule sporadic task sets in multiprocessor systems.
Although only applicable to those task sets whose reduc-
tion tree does not require more than two reduction levels,
our algorithm presents a first yet solid investigation on how
optimal multiprocessor scheduling of sporadic taks can be
achieved by embracing a RUN-like philosophy. The benefits
thereof can be leveraged by simply re-defining the priority
and budget replenishment rules for servers, which need to be
taken into account upon the occurrence of RUN’s scheduling
events. Experimental evidence confirmed that the low num-
ber of preemptions and migrations, and the schedulability
results enjoyed with RUN are in fact preserved by SPRINT.
We plan therefore to carry on with the study of SPRINT
to make it suitable for the scheduling of any given task set,
with no restriction imposed on the height of its reduction
tree.
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