

Sporadic Multiprocessor Scheduling with
Few Preemptions

Björn Andersson
Konstantinos Bletsas

www.hurray.isep.ipp.pt

Technical Report

HURRAY-TR-080402

Version: 0

Date: 04-17-2008

Technical Report HURRAY-TR-080402 Sporadic Multiprocessor Scheduling with Few Preemptions

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

1

Sporadic Multiprocessor Scheduling with Few Preemptions
Björn Andersson, Konstantinos Bletsas

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail: bandersson@dei.isep.ipp.pt, ksbs@isep.ipp.pt

http://www.hurray.isep.ipp.pt

Abstract
Consider the problem of scheduling n sporadic tasks so as to meet deadlines on m identical processors. A task is
characterised by its minimum interarrival time and its worst-case execution time. Tasks are preemptible and may
migrate between processors. We propose an algorithm with limited migration, configurable for a utilisation bound of
88% with few preemptions (and arbitrarily close to 100% with more preemptions).

Sporadic Multiprocessor Scheduling with Few Preemptions

Björn Andersson and Konstantinos Bletsas
IPP-HURRAY! Research Group, Polytechnic Institute of Porto (ISEP-IPP),

Rua Dr. António Bernardino de Almeida 431, 4200-072 Porto,Portugal
bandersson@dei.isep.ipp.pt, ksbs@isep.ipp.pt

Abstract

Consider the problem of schedulingn sporadic tasks so
as to meet deadlines onm identical processors. A task
is characterised by its minimum interarrival time and its
worst-case execution time. Tasks are preemptible and may
migrate between processors. We propose an algorithm with
limited migration, configurable for a utilisation bound of
88% with few preemptions (and arbitrarily close to 100%
with more preemptions).

1. Introduction

Consider the problem of preemptively schedulingn spo-
radically arriving tasks onm identical processors. A taskτi

is uniquely indexed in the range 1..n and a processor like-
wise in the range 1..m. A task τi generates a (potentially
infinite) sequence of jobs. The arrival times of these jobs
cannot be controlled by the scheduling algorithm and area
priori unknown. We assume that the time between two suc-
cessive jobs by the same taskτi is at leastTi. Every job
by τi requires at mostCi time units of execution over the
nextTi time units after its arrival. We assume thatTi and
Ci are real numbers and 0≤ Ci ≤ Ti. A processor executes
at most one job at a time and no job may execute on multi-
ple processors simultaneously. The utilisation is defined as
Us = 1

m
·
∑n

i=1
Ci

Ti
. The utilisation boundUBA of an al-

gorithmA is the maximum number such that all tasks meet
their deadlines when scheduled byA, if Us ≤ UBA.

Multiprocessor scheduling algorithms are often cate-
gorised aspartitionedor global. Global scheduling stores
tasks which have arrived but not finished execution in one
queue, shared by all processors. At any moment, them
highest-priority tasks among those are selected for execu-
tion on them processors. In contrast, partitioned schedul-
ing algorithms partition the task set such that all tasks in a
partition are assigned to the same processor. Tasks may not
migrate from one processor to another. The multiprocessor
scheduling problem is thus transformed to many uniproces-

sor scheduling problems. This simplifies scheduling and
schedulability analysis as the wealth of results in uniproces-
sor scheduling can be reused. Unfortunately, all partitioned
scheduling algorithms have utilisation bounds of 50% or
less. Global scheduling may achieve a utilisation bound of
100% using thepfair [5, 1] family of algorithms. Yet, this
great utilisation bound comes at a price; all task parameters
must be multiples of a time quantum and in every quantum
a new task is selected for execution. Preemption counts can
thus be high [9]. Like Baker (see [4, p. 12]), we desire a
high utilisation bound without too many preemptions.

This paper proposes an algorithm for schedulingn spo-
radic tasks onm processors. It assigns at mostm−1 tasks to
two processors (carefully dispatched so that they never ex-
ecute on both simultaneously) and the rest to only one pro-
cessor. This design circumvents the limitation (i.e. the util-
isation bound of 50%) of partitioned scheduling yet retains
its advantages in that (i) the time complexity of dispatching
is independent of processor count and (ii) most tasks do not
migrate at all and those few that do, only do so between two
processors each and (iii) few preemptions are generated.

The algorithm is configurable with a parameterδ, con-
trolling the frequency of migration of tasks assigned to two
processors. The utilisation bound of the algorithm is

4 · (
√

δ · (δ + 1) − δ) − 1

(88% for δ=4). Let TMIN denote the minimum of all
Ti. Letnjobsp(t) denote the maximum number, over an in-
terval of lengtht, of arrivals of jobs assigned (split or non-
split) on processorp. During the same interval the algo-
rithm generates at most3 · δ · ⌈t/TMIN⌉ + 2 + njobsp(t)
preemptions on processorp.

This paper is organised as follows. Section 2 explores the
design of a scheduling algorithm with high utilisation bound
and few preemptions leading to our design (Section 3) and
proof of its performance. Section 4 explores special cases
where the new algorithm can achieve a utilization bound of
100%. Section 5 concludes.

(a) The reserves on processors for the task that is assigned to two proces-
sors.

(b) In order to ensure that the split tasks meet deadlines forall possible
arrivals, it is necessary to increase the size of the reserves.

Figure 1. How to perform run-time dispatching of tasks that a re assigned to two processors.

2. Background

A task with outstanding computation at timet, is said
to be preempted at timet if it executes on processorp just
beforet but not just aftert. With this definition, a job that
starts executing is not preempted, nor is one that finishes ex-
ecuting. Also, if a job is executing both just before and just
after t but on different processors (hence migrates), with
our definition there is preemption at timet. We believe that
this captures the notion of preemption used in the research
community.

Preemptions are important for meeting deadlines in real-
time scheduling on both uniprocessors and multiprocessors.
In fact, every non-preemptive scheduling algorithm has a
utilisation bound of 0% (see Example 2 in [2]). Although
preemption is useful, it is not to be overused as it has asso-
ciated operating system overheads. Exact preemption costs
are application- and architecture-dependent and we will not
discuss those (see [7] for excellent coverage).

We will express an upper bound on the count of preemp-
tions in a time interval as a function of its duration and the
number of job arrivals within it. By this metric, one can
show (see Example 4 in [2]) that pfair scheduling is inher-
ently prone to high preemption counts (as also shown by
Devi and Anderson [9]). A promising technique for reduc-
ing preemptions is the enforcement of the pfair constraint
only upon job arrivals. The algorithm BF [11] and vari-
ants [8, 10] do that. Under the EKG algorithm [3], con-
figurable for a utilisation bound of 100%, only a subset of
tasks need satisfy the pfair constraint when jobs arrive.

Unfortunately, BF, its variants and EKG were only de-
signed for strictly periodic tasks, whose job arrival times
are foreknowable. This permits the calculation of the time
budget to be granted to a task over the interval until the next
arrival of some job. For sporadic tasks, where the time of
next arrival is unknown, this technique cannot be used.

We will thus reason about how to design an algorithm for
sporadic tasks; this reasoning takes as starting point parti-

tioned scheduling and the new algorithm based on it is pre-
sented in Section 3.

It is well-known that partitioned scheduling has a utili-
sation bound of at most 50%. For illustrative purposes, the
argument is repeated in Example 1.

Example 1. Consider n=m+1 tasks with Ti=1 and
Ci=0.5+ǫ and partitioned scheduling. Asn>m, one pro-
cessor is assigned two or more tasks hence its utilisation is
at least1+2ǫ>100%. If m→∞ andǫ→0, the task set has
Us→0.5 and a deadline is missed. The utilisation bound of
every partitioned scheduling algorithm is thus 50% or less.

This example shows that deadlines can be missed be-
cause a task could not be assigned to a processor although
there was plenty of idle time in the overall system. The
idle time was spread out on different processors and could
not be used. However, if a task is given some utilisation
on one processor and some on another processor (without
executing on both simultaneously) then it is possible to as-
sign tasks such that deadlines are met even with the utilisa-
tion on every processor reaching 100%. This approach was
used in EKG where many tasks utilise only one processor
but a few utilise two. This was ensured by enforcing that
the amount of execution of any such task between two con-
secutive arrivals divided by the time between those is ex-
actly equal to its utilisation on that processor. For sporadic
tasks this scheme is impossible as the time of the next ar-
rival is unknown. One may however subdivide the timeline
into fixed-length timeslots of durationS equal toTMIN/δ
(whereTMIN is the shortest interarrival time of all tasks
andδ is a positive integer set by the designer) and ensure
that each task utilising two processors is given execution
proportional to its utilisation in these timeslots (possibly
adjusted for worst-case arrival phasings relative to timeslot
boundaries). This approach requires no knowledge of future
arrival times. See Figure 1.

2

1. for p:=1 tom do 20. for i := L+1 to n do
2. U[p] := 0 21. if U[p]+Ci/Ti ≤ SEP then
3. lo split[p] := 0 22. U[p] := U[p] + Ci/Ti

4. hi split[p] := 0 23. τi.processorid1 := p
5. end for 24. τi.processorid2 := p
6. Letτheavy denote the set of tasks such thatCi/Ti > SEP 25. else
7. Letτ light denote the set of tasks such thatCi/Ti ≤ SEP 26. if p+1≤ m then
8. L := |τheavy| 27. hi split[p] := SEP− U[p]
9. Order tasks such thatτi with i in 1..L are all inτheavy 28. lo split[p+1] :=Ci/Ti − hi split[p]

andτi with i in L+1..n are all inτ light 29. τi.processorid1 := p
10. if L ≥ m 30. τi.processorid2 := p+1
11. declare FAILURE 31. U [p] := U [p] + hi split[p]
12. else 32. U [p+1] := U [p+1] + lo split[p+1]
13. for i:=1 to L do 33. p := p+1
14. p := i 34. else
15. U[p] := U[p] + Ci/Ti 35. declare FAILURE
16. τi.processorid1 := p 36. endif
17. τi.processorid2 := p 37. end if
18. end for 38. end for
19. p := L + 1 39. declare SUCCESS

40. end if

Figure 2. The algorithm for assigning tasks to processors.

3. The new algorithm

We outline our algorithm, then prove its utilisation and
preemption count bounds as functions of a parameterδ (set
by the designer), balancing utilisation vs preemptions.

3.1 Outline

Recall thatn sporadic tasks are to be scheduled onm
identical processors. LetTMIN be defined as

TMIN = min(T1, T2, ..., Tn) (1)

Our algorithm divides time into slots of length

S =
TMIN

δ
(2)

Tasks whose utilisation exceeds some thresholdSEP
(corresponding to the utilisation bound of our algorithm,
whose derivation for a givenδ is explored later in the paper)
are each granted a dedicated processor – hence never miss
deadlines. Remaining tasks are assigned next-fit to remain-
ing processors such that their utilisation is exactlySEP. To
achieve this though, whenever assigning a task would cause
the utilisation of a processor to exceedSEP, “task splitting”
is performed as follows:

Said task (sayτi) is “split” between that processor (in-
dexedp) and the next one (p + 1) (i.e. may utilise both but
not simultaneously). This is accomplished by reserving the

first x time units of each timeslot of lengthS for τi to ex-
ecute on processorp + 1 and the lasty time units for it to
execute on processorp. Reservesx, y for each split task
must be appropriately sized so as to (i) rule out any overlap
and (ii) ensure the schedulability of the split task and also
that (iii) on each processor utilised up toSEP, all non-split
tasks (scheduled under EDF whenever their host processor
is not executing split tasks) also meet their deadlines.

The offline algorithm for task partitioning and splitting
is described in detail in pseudocode in Figure 2. As for the
online dispatching algorithm, it is described in high-level
pseudocode in Figure 3.

Since dedicated processors for tasks with utilisation
aboveSEP are likewise utilised aboveSEP and the utili-
sation of those for remaining tasks isSEP, then if the algo-
rithm ensures that remaining tasks (split or not) are schedu-
lable, it follows that its utilisation bound is at leastSEP.

We proceed with the derivation of optimal reserve sizing
(givenδ) such that any split task will always be schedulable
under our algorithm and, subject to this finding, next de-
termine what the maximum value forSEP (givenδ) is, for
which any task set with utilisation up toSEP will always be
schedulable under our algorithm (i.e. its utilisation bound).
Last, we derive worst-case preemption counts over any time
interval as a function of its length, for a givenδ.

3.2 Observations

We observe the following:

3

1. while TRUE do
2. if first iteration()then //some variables set just once
3. p:=gethostprocessor();
4. hi task:=gethi task(p);//split task run at timeslot end
5. lo task:=getlo task(p);//split task run at timeslot start
6. y:=optimally size reserve(hitask,p,S);//using Eq. 3
7. x:=optimally size reserve(lotask,p,S);//using Eq. 4
8. end if
9.

10. t:=(currenttime()-t boot) mod S; //since timeslot start
11.
12. if 0≤t<x then //within reserve for low split task
13. if hasarrived but not completed(lotask)then
14. executelo task(p);
15. else
16. executenon split task with earliestdeadline();
17. end if
18. end if
19.
20. if x≤t<S-y then //not within a reserve of a split task
21. executenon split task with earliestdeadline();
22. end if
23.
24. if S-y≤t<S then //within reserve for high split task
25. if hasarrived but not completed(hitask)then
26. executehi task(p);
27. else
28. executenon split task with earliestdeadline();
29. end if
30. end if
31.
32.end while

Figure 3. A high-level overview of the dis-
patching algorithm, which runs on every non-
dedicated processor

Let x, y be the reserves of some split taskτi on proces-
sorsp + 1, p respectively. Depending on the phasing of the
arrival and deadline ofτi relative to timeslot boundaries,
the fraction of time available forτi between its arrival and
deadline may differ fromx+y

S
. Yet, as reserves are made

available periodically and the interarrival time of any task is
at leastδ · S, said fraction is in any case lower bounded by

∞

min
κ=δ
κ∈N

κ · (x + y)

(κ + 1) · S − (x + y)
=

δ · (x + y)

(δ + 1) · TMIN
δ

− (x + y)

This is because, any two consecutive windows of exe-
cution (consisting of adjacent reservesy andx merged) for
the split task are separated by intervals,S−x−y time units
long, of split task idleness, and any interval fully containing
κ of the former, may fully contain up toκ+1 of the latter.

Were reservesx andy to be sized such thatx+y
S

=Ci

Ti
, by

inspection, the above lower bound would be less thanCi

Ti
,

thus deadlines could potentially be missed. It is thus nec-
essary to inflate reserves by some factorα so as to always
meet deadlines irrespective of arrival phasings relative to

timeslot boundaries. These then become:

y = S · (α + hi split(i)) (3)

x = S · (α + lo split(i)) (4)

wherehi split, lo split denote the respective “uninflated”
reserves1, for which the following holds:

hi split(i) + lo split(i) =
Ci

Ti

(5)

For any split taskτi to always be schedulable, it must
hold that:

δ · (x + y)

(δ + 1) · TMIN
δ

− (x + y)
≥

Ci

Ti

(6)

Equations 2, 3, 4, 5 and Inequality 6 combined yield:

α ≥
U · (1 − U)

2 · U + 2 · δ
(7)

whereU = Ci

Ti
is the utilisation of the task in question.

For a givenδ, what is of interest is the optimal (i.e. smallest)
value forα (as a function ofδ) which will satisfy schedula-
bility for all permissible utilisations. The function

αδ(U) =
U · (1 − U)

2U + 2δ
(8)

has a maximum atU0 =
√

δ · (δ + 1) − δ, which is

αδ(U0) =
1

2
−

√

δ · (δ + 1) + δ (9)

The optimal value
(

αδ(U0)
)

for α givenδ is plotted in
Figure 4 for various values ofδ.

Finally, it must be that no temporal overlap is possible
either (i) between the reserves on different processors of
any given split taskτi or (ii) between the reserves of dif-
ferent split tasks on the same processorp. For these cases
to be satisfied, the following (necessary and sufficient) set
of constraints (see Figure 5) applies:

(hi split(i) + α) + (lo split(i) + α) ≤ 1 ∀ split τi (10)

(hi split[p] + α) + (lo split[p] + α) ≤ 1 ∀p (11)

1Sincehi split(i) utilises processorp, in which it is associated with
the reserve placed at the end of a timeslot, we will occasionally use for it
the equivalent notationhi split[p], with angular brackets instead of paren-
theses. Similarly, forlo split(i), utilising processorp + 1, in which it is
associated with the reserve towards the start of the timeslot, we will be
usinglo split[p + 1].

4

Figure 4. Optimal α as a function of parame-
ter δ

Figure 5. (a) Reserves of the same split task
τi on processors p and p + 1. (b) Reserves of
different split tasks on the same processor p.

From our earlier assumptions though (see Equation 5),
we have

hi split(i) + lo split(i) =
Ci

Ti

≤ SEP ∀ split τi

and

hi split[p] + lo split[p] = U [p] ≤ SEP ∀p

Thus, Inequalities 10 and 11 are satisfied if the following
(sufficient) condition holds:

SEP ≤ 1 − 2 · α (12)

Let us then request that the sufficient constraint ex-
pressed by Inequality 12 holds, while at the same time not
restricting our reasoning to a specific value forSEP within
that range.

Recapitulating then, if reserves of all split tasks are in-
flated by the optimalα, subject to the constraint expressed
by Inequality 12, these tasks (which only execute within
their reserves but when doing so have priority over non-split
tasks) will always be schedulable. The question then arises:
What is the maximum utilisation (SEP) for non-dedicated
processors such that non-split tasks will likewise always
be schedulable? Equivalently, what is the lowest proces-
sor utilisation for which it would be possible for non-split
tasks to miss deadlines? This, we proceed to derive:

Assume that deadlines on processorp by one or more
non-split tasks are in fact missed. Lett be the earliest time
that a deadline miss occurs andt−L < t be the earliest in-
stant such that the processor will have been busy during the
entire interval[t − L, t). Then, lettdemand

nsp denote the cu-
mulative execution requirement of all jobs of non-split tasks
which arrived att − L or later and whose deadlines lie no
later thant, let tnsp denote the time available to (and used
up in its entirety by) non-split tasks for execution within the
interval [t − L, t) and lettsp denote the cumulative exe-
cution time of split tasks on processorp over [t − L, t).
Obviously,

tnsp = L − tsp (13)

Having a missed deadline by a non-split task is equiva-
lent to

tdemand
nsp > tnsp (14)

Regardingtdemand
nsp , it follows from [6] that

tdemand
nsp ≤

∑

j∈NS[p]

⌊

L

Tj

⌋

· Cj (15)

whereNS[p] is the set of non-split tasks on processorp.
Then, by combining Statements 13, 14 and 15 we obtain

tdemand
nsp > tnsp

(13), (15)
=⇒

∑

τj∈NS[p]

⌊

L

Tj

⌋

· Cj > L − tsp

(16)
At this point, we note that

∑

τj∈NS[p]

⌊

L

Tj

⌋

· Cj ≤
∑

τj∈NS[p]

L

Tj

· Cj

= L ·
∑

τj∈NS[p]

Cj

Tj

= L · Unsp (17)

with Unsp denoting the cumulative utilisation of non-
split tasks on processorp. Then

(16)
(17)
⇒ L · Unsp > L − tsp ⇔ Unsp >

L − tsp

L
(18)

Let x, z denote the split task reserves (respectively, low
and high) on processorp (which belong to different tasks).
We then have

x = S · (α + lo split[p]) (19)

z = S · (α + hi split[p]) (20)

5

and clearly, since, the cumulative utilisation of split tasks
on processorp (equal tolo split[p]+hi split[p]) represents
a fraction of the total utilisation of processorp (which in
turn does not exceedSEP),

Usp ≡ lo split[p] + hi split[p] ≤ SEP (21)

We draw attention to the fact thatL ≥ Ti, with Ti denot-
ing the interarrival time of whichever task misses its dead-
line (for which in turn it holds thatTi ≥ TMIN = δ · S,
from Equations 1 and 2), thusL ≥ δ · S. It then holds that

L − tsp

L
≥

δ · (S − x − z)

δ · S + (x + z)
(22)

as derived by use of Lemma 1 in Appendix A forΛ = L.
(A more intuitive explanation is that any two consecutive
windows of execution, corresponding to adjacent reservesz
andx merged, for the split task are separated by intervals,
S − x − z time units long, of split task idleness, and any
time interval fully containingk of the latter there can fully
contain up tok + 1 of the former.)

Then, by combining Inequalities 18 and 22 we get

δ · (S − x − z)

δ · S + (x + z)
< Unsp (23)

Adding Usp to both sides and rewriting, using Equa-
tions 19 and 20 yields:

Usp +
δ · S − δ · S · (Usp + 2 · α)

S(δ + Usp + 2 · α)
< Usp + Unsp (24)

Further rewriting yields:

Usp + Unsp > Usp +
δ · (1 − Usp − 2 · α)

δ + Usp + 2 · α
(25)

Then, as long as the cumulative utilisation of split and
non-split tasks on some processor (corresponding toUsp +
Unsp) does not exceed the right-hand side of Inequality 25,
it is not possible for any non-split task to miss its dead-
line. Note that the right-hand side of Inequality 25, which
expresses the maximum cumulative utilisation so that no
deadlines by non-split tasks are missed, is a function of
Usp. In other words, it depends on what fraction of pro-
cessor utilisation corresponds to split and what to non-split
tasks. Then, the utilisation bound (by definition, insensitive
to what share of the utilisation is for split/non-split tasks)
of our algorithm would correspond to the minimum for the
above expression, over the entire range of variableUsp.

The right-hand side of Inequality 25 is a continuous and
differentiable function ofUsp. If we substitute the optimal
α as a function ofδ (derived earlier and given by the right-
hand side Equation 9) then, using calculus, one may see that
it is minimised for

Figure 6. The utilisation bound (SEP) of our
algorithm for various values of parameter δ

Usp = 3 · (
√

δ · (δ + 1) − δ) − 1 (26)

and that the respective minimum is

SEP(δ) = 4 · (
√

δ · (δ + 1) − δ) − 1 (27)

Note also that (as can be verified via substitution of the
value forα given by Equation 9), it holds that

SEP(δ) = 1 − 4 · α (28)

Figure 6 shows the utilisation bound of our algorithm
(SEP) for different values of the parameterδ.

Equation 27 (or, equivalently, Equation 28) thus suggests
the highest value that we could use for the variableSEP (al-
ready restricted to at most1 − 2 · α by our earlier assump-
tions, so as to avoid reserve overlap) so that no deadlines
(whether by split or non-split taks) are ever missed on non-
dedicated processors utilised up toSEP. This means that, if
we use the above value forSEP, then the utilisation bound
of our algorithm isSEP.

Our reasoning so far thus suffices as proof to the follow-
ing theorem:

Theorem 1. Assume that tasks are assigned to processors
(and split, where necessary) according to the algorithm of
Figure 2 and dispatched using the algorithm in Figure 3,
using forα, SEP the values dictated by the right-hand side
of Equations 9 and 27 respectively, given some value for
parameterδ by the designer.

Then, if the system utilisation does not exceed the utilisa-
tion bound given by Equation 27, all deadlines are met and
no task executes on two or more processors simultaneously.

6

3.3 Reasoning about preemptions

An upper bound on the number of preemptions within
a given interval as a function of its length is provided by
Theorem 2.

Theorem 2. Assume that tasks are assigned to processors
(and split, where necessary) according to the algorithm of
Figure 2 and dispatched using the algorithm in Figure 3,
using forα, SEP the values dictated by Equations 9 and
27 respectively, given some value for parameterδ by the
designer.

Let njobsp(t) denote the maximum number of jobs by
tasks (split or non-split) assigned to processorp that may
arrive during a time interval of lengtht. Then, during a
time interval of lengtht, the algorithm generates at most3 ·
δ ·⌈t/TMIN⌉ + 2 + njobsp(t) preemptions on processorp.

Proof. Observe that preemptions may only occur on in-
stants which coincide either with (i) task arrivals or (ii) with
the boundaries of split task reserves. An upper bound on the
number of such instants within a given time window is thus
also an upper bound for the number of preemptions within
that time window.

On processorp there can be at mostnjobsp(t) instants
of the first type

(

as per the definition ofnjobsp(t)
)

within
any interval of lengtht. Regarding the number of timeslot
boundaries which are contained within the same interval,
we reason as follows:

Every timeslot[k ·S, (k + 1) ·S) ∀k ∈ N contains three
instants corresponding to reserve boundaries. Moreover, a
time window of lengtht can overlap (fully or partially) with
at most⌈ t·δ

TMIN⌉ ≤ δ · ⌈ t
TMIN⌉ timeslots. There can thus be

at most3 ·δ ·⌈ t
TMIN⌉+2 preemptions due to the implemen-

tation of the reserves. The additional two preemptions are
due to unfavorable alignment of the time window relative to
reserve boundaries.

Adding these preemption counts gives us the figure sug-
gested by the theorem.

3.4 Discussion of tradeoffs associated with
the selection of parameter δ

We showed previously how the utilisation bound of our
algorithm increases withδ (see Equation 27). Unfortu-
nately, so does the number of preemptions (see Theorem 2).
Let us reason about this tradeoff:

According to Theorem 2, the number of preemptions in-
creases linearly withδ. For practical purposes, this means
that in cases where having fewer preemptions matters more
than increased utilisation, the designer should opt for a
value for δ no more than that past which diminishing re-
turns (in terms of utilisation) occur. Fortunately, as seen

in Figure 6, our algorithm attains high utilisations even for
very low values ofδ.

For example, selectingδ = 3 over δ = 4 results in a
25% reduction of the linear term of the expression for the
number of preemptions (see Theorem 2) with a sacrifice of
less than4% in terms utilisation, which remains high, at
85% (see Figure 6).

4. On attaining a utilisation bound of exactly
100%

The right-hand side of Equation 27 can be written as

4 ·
(
√

δ · (δ + 1) − δ)(
√

δ · (δ + 1) + δ)
√

δ · (δ + 1) + δ
− 1

= 4 ·
δ

√

δ · (δ + 1) + δ
− 1 = 4 ·

1
√

1 + 1
δ

+ 1
− 1

Then, lim
δ→∞

SEP(δ) = lim
δ→∞

4 ·
1

√

1 + 1
δ

+ 1
− 1 = 1

In other words, by increasingδ, one may reach utilisa-
tion bounds arbitrarily close to unity (100%, in percentage
terms). Yet the question arises: Is it possible (assuming to-
tal freedom in the selection of integer parameterδ) for a
utilisation bound ofexactly100% to be attained, using our
algorithm? We will proceed to prove that this is the case if
minimum interarrival times of all tasks are a rational multi-
ples ofTMIN.

Theorem 3. If ∀i ∈ {1, 2, . . . , n} it holds thatTi is a
rational multiple ofTMIN, then, using for integer parame-
ter δ the valueTMIN

s
, wheres denotes the greatest number

such that∀i : Ti

s
∈ N

+, our algorithm, withα = 0, has a
utilisation bound of 100%.

Proof. Consider the greatest non-negative numbers such
that, for every taskτi in the system,Ti

s
is an integer. Such a

number always exists if all task interarrival times are ratio-
nal multiples ofTMIN, as we assumed. Let us then choose
a timeslot length ofS = s or equivalentlyδ = TMIN

s
and

explore whether a utilisation bound of100% is attainable.
Previously, we derived an expression for the optimal re-

serve inflation factorα, as a function ofδ (see Equation 9).
Yet, that was for the general case, whereas now we addi-
tionally assume that all task interarrival times are rational
multiples ofTMIN and also assume a specific criterion for
selectingδ. We first proceed to show that, in this case, the
optimal inflation factor isα = 0, in other words that (i) any
split task will always meet its deadline without any inflation
of its reserves and subsequently that (ii) non-split tasks may
fully utilise the remaining (i.e. not claimed by split tasks)
processor utilisation.

7

Figure 7. In the case that all task minimum in-
terarrival times divided by the timeslot length
yield integers, there is no need for the infla-
tion of the reserves of split tasks, as their
schedulability does not depend on their off-
set relative to timeslot boundaries.

Assumeα = 0 and consider a split taskτi arriving ϕ
time units past a timeslot boundary (see Figure 7(a)). It
follows that its deadline will also lieϕ time units past some
other a timeslot boundary. Then the interval between its
arrival and deadline spans the lastS − ϕ time units of the
timeslot in which it arrives,Ti

S
− 1 subsequent timeslots in

their entirety and the firstϕ time units of the timeslot after
those.

Within each of the subsequentTi

S
−1 timeslots to the one

in which it arrived, the time reserves forτi on the two pro-
cessors which it utilises are cumulativelyx + y time units.

By substitutingα = 0 into Equations 3 and 4 we obtain

y = S · hi split(i) (29)

x = S · lo split(i) (30)

thus, each of the subsequentTi

S
− 1 timeslots to the one

in which τi arrived, provides for the execution ofτi exactly

S · (hi split(i) + lo split(i)) = S ·
Ci

Ti

time units. It then follows that upon reaching its deadline
τi will have executed for

Ctotal = Chead +

(

Ti

S
− 1

)

· S ·
Ci

Ti

+ Ctail

time units, whereChead is the time available for the ex-
ecution ofτi within the interval from its release to the end
of the timeslot in which it was released andCtail is the time
available for the execution ofτi within the interval from the
start of the timeslot where its deadline lies until its deadline.
Note that the above intervals are of the form[start, end).

We note three cases:

• Case 1:0 ≤ ϕ < x
Then (see Figure 7(b)) the lastx − ϕ time units of the low
reserve forτi within the timeslot in which it is released are
available to it and also the entirey time units of the respec-
tive high reserve, thusChead = x − ϕ + y. Additionally,
only the firstϕ time units of the low reserve within the
timeslot where the deadline ofτi lies are available to it and
the respective high reserve is entirely unavailable to (as it
lies past the deadline), thusCtail = ϕ.

• Case 2:x ≤ ϕ < S − y
Then (see Figure 7(c)) the low reserve forτi within the
timeslot in which it is released is entirely unavailable to it
but the entirey time units of the respective high reserve are
available to it, thusChead = y. Additionally the entirex
time units of the low reserveτi within the timeslot where
its deadline lies are available to it and the respective high
reserve is entirely unavailable to it (as it lies past the
deadline), thusCtail = x.

• Case 3:S − y ≤ ϕ < S
Then (see Figure 7(d)) the low reserve forτi within the
timeslot in which it is released is entirely unavailable to
it and only the lastS − ϕ time units of the respective
high reserve are available to it, thusChead = S − ϕ.
Additionally the entirex time units of the low reserveτi

within the timeslot where its deadline lies are available to
it and the firstϕ − (S − y) time units of the respective
low reserve are also available to it thusCtail = ϕ−S+x+y.

In any of the three cases,Chead+Ctail = x+y = S · Ci

Ti
,

thus

Ctotal =

(

Ti

S
− 1

)

· S ·
Ci

Ti

+ S ·
Ci

Ti

= Ci

which proves that the deadline of the split task is met despite
zero reserve inflation.

8

We are now going to prove that no non-split tasks ever
miss deadlines in a 100% utilised processor, under the
above assumptions.

In uniprocessor EDF with arbitrary deadlines, if a dead-
line is missed, a necessary and sufficient condition (as
per [6] where the arbitrary deadline model was used and
Di denoted the relative deadline) that there exists some

L ∈ ∪n
i=1 ∪β∈N {Ti · β + Di}

such that

n
∑

j=1

max

(⌊

L − Dj

Tj

⌋

+ 1, 0

)

· Cj > L

where N denotes the set of natural numbers, i.e.
{0, 1, 2, ...} andN

+ = N\{0}.
In the case thatDj = Tj, ∀j, the above is simplified to

∃L ∈ ∪n
i=1 ∪β∈N+ {Ti · β} :

n
∑

j=1

⌊

L

Tj

⌋

· Cj > L

Since however, on any processorp, the non-split tasks,
which are scheduled under EDF, also receive interference
from the split tasks during time intervals which correspond
to the reserves of the latter, in our case, for a deadline to
be missed on some processorp, the respective necessary
condition is:

∃L ∈ ∪n
i=1 ∪β∈N+ {Ti · β} :

∑

τj∈NS[p]

⌊

L

Tj

⌋

· Cj +

⌈

L

S

⌉

· S · Usp > L (31)

whereNS[p] is the set of non-split tasks on processorp.
Recall that we have selectedS such that

Ti

S
∈ N

+, ∀i ∈ {1, 2, .., n} (32)

Let us consider the value ofL in the inequality which
forms part of Statement 31. For this value ofL, it holds that
there exists a task with indexk such that

L

Tk

∈ N
+ (33)

Applying the value ofk on Statement 32 yields:

Tk

S
∈ N

+ (34)

Combining Statements 33 and 34 yields:

L

S
∈ N

+ (35)

Applying Statement 35 to Statement 31 yields:

∃L ∈ ∪n
i=1 ∪β∈N+ {Ti · β} :

∑

τj∈NS[p]

⌊

L

Tj

⌋

· Cj + L · Usp > L (36)

Relaxing and simplifying Statement 36 in turn yields
(using the notation that we have used elsewhere):

∑

τj∈NS[p]

Cj

Tj

+ Usp > 1 ⇔ Unsp + Usp > 1 (37)

Taking this all together, we have that ifUsp + Unsp ≤ 1
then all deadlines are met (which proves the theorem).

Note that Theorem 2 regarding worst-case preemption
counts still holds.

An interesting corollary of Theorem 3 is that if all in-
terarrival times are integer multiples ofTMIN, our algo-
rithm has a utilisation bound of 100% even withδ = 1 (thus
with very few preemptions). On the other hand, for systems
wheres ≪ TMIN, the above approach towards achieving
100% utilisation would be impractical (asδ ≫ 1 would be
needed, resulting in numerous preemptions).

5. Conclusions

We have proposed an algorithm for scheduling sporadic
tasks. It is configurable for a utilisation bound as high
as 88% with few generated preemptions. Alternatively, it
may be configured for a utilisation bound arbitrarily close
to 100% with increased preemptions. In the case that the
interrarival times of all tasks are rational multiples of each
other, we showed that the utilisation bound can reach ex-
actly 100%. We left open the important question on how to
extend this algorithm for sporadic tasks where the deadline
of a task is not equal to its minimum interarrival time.

Acknowledgements

This work was partially funded by the Portuguese Sci-
ence and Technology Foundation (Fundação para a Ciência
e a Tecnologia - FCT) and the ARTIST2 Network of Excel-
lence on Embedded Systems Design.

References

[1] J. Anderson and A. Srinivasan. Mixed Pfair/ERfair schedul-
ing of asynchronous periodic tasks.Journal of Computer
and System Sciences, 68(1):157–204, 2004.

9

[2] B. Andersson. Sporadic multiprocessor scheduling with
few preemptions. Technical report, IPP-HURRAY Research
Group. Institute Polytechnic Porto, HURRAY-TR-070501,
available online at http://www.hurray.isep.ipp.pt/privfiles/tr-
hurray-070501.pdf, May 2007.

[3] B. Andersson and E. Tovar. Multiprocessor scheduling with
few preemptions. InProc. of the 12th IEEE International
Conference on Embedded and Real-Time Computing Sys-
tems and Applications, pages 322–334, 2006.

[4] T. P. Baker. Comparison of empirical success rates of
global vs. partitioned fixed-priority EDF scheduling for
hard real time. Technical Report TR-050601, Department
of Computer Science, Florida State University, Tallahas-
see, available at http://www.cs.fsu.edu/research/reports/tr-
050601.pdf, July 2005.

[5] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel.
Proportionate progress: A notion of fairness in resource al-
location.Algorithmica, 15(6):600–625, June 1996.

[6] S. K. Baruah, A. K. Mok, and L. E. Rosier. Preemptively
scheduling hard-real-time sporadic tasks on one processor.
In Proceedings of the 11th IEEE Real-Time Systems Sympo-
sium, pages 182–190, 1990.

[7] J. Calandrino, H. Leontyev, A. Block, U. Devi, and J. An-
derson. LITMUSRT: A testbed for empirically comparing
real-time multiprocessor schedulers. InProceedings of the
27th IEEE Real-Time Systems Symposium, pages 111–123,
2006.

[8] H. Cho, B. Ravindran, and E. D. Jensen. An optimal real-
time scheduling algorithm for multiprocessors. InProc. of
the 27th IEEE Real-Time Systems Symposium, pages 101–
110, 2006.

[9] U. Devi and J. Anderson. Tardiness bounds for global EDF
scheduling on a multiprocessor. InProc. of the 26th IEEE
Real-Time Systems Symposium, pages 330–341, 2005.

[10] A. Khemka and R. K. Shyamasundar. Multiprocessor
scheduling of periodic tasks in a hard real-time environment.
In Proc. of the 6th International Parallel Processing Sympo-
sium, pages 76–81, 1992.

[11] D. Zhu, D. Mossé, and R. Melhem. Multiple-resource peri-
odic scheduling problem: how much fairness is necessary?
In Proc. of the IEEE Real-Time Systems Symposium, pages
142–151, 2003.

Appendix A

Lemma 1. For any interval of lengthΛ ≥ δ · S, if tsp

denotes the cumulative time within said interval belonging
to the reservesx, z of split tasks on some processor, it holds
that

Λ − tsp

Λ
≥

δ · (S − x − z)

δ · S + (x + z)

Proof. Irrespective of the actual value ofΛ, tsp (the cumu-
lative time belonging to reserves for split tasks within thein-
terval in consideration) cannot be more than what it would
have been within an interval of the same lengthΛ whose
start is offset byS− z time units relative to timeslot bound-
aries. Then, it holds fortsp that

tsp ≤

⌊

Λ

S

⌋

· (x + z) + min(Λ −

⌊

Λ

S

⌋

· S, x + z) (38)

The right-hand side of Inequality 38
(

which we will de-
note ash(Λ)

)

is a continuous function ofΛ ∈ [δ · S..∞).
It is piecewise differentiable, non-decreasing in intervals
(k · S, k · S + (x + z)) and constant in intervals(k · S +
(x + z), (k + 1) · S), ∀k ∈ N.

dh(Λ)

dΛ
=

{

1, k · S < Λ < k · S + x + z

0, k · S + x + z < Λ < (k + 1) · S
(39)

Then we have

d

dΛ

(

h(Λ)

Λ

)

=

{

Λ−h(Λ)
Λ2 ≥ 0, k·S<Λ<k·S+x+z

−h(Λ)
Λ2 < 0, k·S+x+z<Λ<(k+1)·S

(40)
The global maximum forh(Λ)

Λ over[δ·S, ∞) then occurs
for some value ofΛ belonging to the set

{k · S + (x + z)} ∩ [δ · S, ∞), ∀k ∈ N

which is the same as the set

{k · S + (x + z)}, ∀k ∈ {δ, δ + 1, δ + 2, ...}

Additionally, for any integerk ≥ δ, it holds that

h(Λ)

Λ

∣

∣

∣

∣

∣

Λ=k·S+(x+z)

−
h(Λ)

Λ

∣

∣

∣

∣

∣

Λ=(k+1)·S+(x+z)

=

(k + 1)(x + z)

k · S + (x + z)
−

(k + 2)(x + z)

(k + 1) · S + (x + z)
=

(x + z) · S − (x + z)2

(k · S + (x + z)) · ((k + 1) · S + (x + z))
=

(x + z) · (S − x − z)

(k · S + (x + z)) · ((k + 1) · S + (x + z))
≥ 0

thereforeh(Λ)
Λ is maximised over[δ · S, ∞) for Λ =

δ·S+(x+z). Equivalently,Λ−h(Λ)
Λ = 1−h(Λ)

Λ is minimised
over[δ · S, ∞) for Λ = δ · S + (x + z) and the respective
minimum is δ·(S−x−z)

δ·S+(x+z) (which proves the lemma).

10

