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Abstract

Consider the problem of scheduling n sporadic tasks so as to meet deadlines on m identical processors. A task is
characterised by its minimum interarrival time and its worst-case execution time. Tasks are preemptible and may
migrate between processors. We propose an algorithm with limited migration, configurable for a utilisation bound of
88% with few preemptions (and arbitrarily close to 100% with more preemptions).
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Abstract sor scheduling problems. This simplifies scheduling and
schedulability analysis as the wealth of results in unipsac
Consider the problem of schedulingsporadic tasks so  sor scheduling can be reused. Unfortunately, all parttibn
as to meet deadlines om identical processors. A task scheduling algorithms have utilisation bounds of 50% or
is characterised by its minimum interarrival time and its less. Global scheduling may achieve a utilisation bound of
worst-case execution time. Tasks are preemptible and mayl00% using thefair [5, 1] family of algorithms. Yet, this
migrate between processors. We propose an algorithm withgreat utilisation bound comes at a price; all task pararaeter
limited migration, configurable for a utilisation bound of must be multiples of a time quantum and in every quantum
88% with few preemptions (and arbitrarily close to 100% a new task is selected for execution. Preemption counts can
with more preemptions). thus be high [9]. Like Baker (see [4, p. 12]), we desire a
high utilisation bound without too many preemptions.

This paper proposes an algorithm for schedutingpo-

1. Introduction radic tasks om: processors. It assigns at maest-1 tasks to
two processors (carefully dispatched so that they never ex-
Consider the problem of preemptively schedulingpo- ecute on both simultaneously) and the rest to only one pro-

radically arriving tasks om identical processors. A task cessor. This design circumve.n_ts the Iimitatio_n (i.e. the ut
is uniquely indexed in the range .and a processor like-  1Sation bound o_f 50%) pf part_ltloned schedullng yet retains
wise in the range In. A taskr; generates a (potentially !ts_advantages in that (i) the time complg_xny of dispatghin
infinite) sequence of jobs. The arrival times of these jobs |s_|ndependent of processor count and (ii) most tasks do not
cannot be controlled by the scheduling algorithm andsare Migrate at all and those few that do, only do so between two
priori unknown. We assume that the time between two suc-Processors each and (iii) few preemptions are generated.
cessive jobs by the same taskis at leastT;. Every job The algorithm is configurable with a parametéercon-
by 7; requires at most’; time units of execution over the trolling the frequency of migration of tasks assigned to two
next7T; time units after its arrival. We assume tlatand processors. The utilisation bound of the algorithm is
C; are real numbers andQ C; < T;. A processor executes
at most one job qt a time and no job may e>_<eCL_Jte on multi- 4. (m —5) -1
ple processors simultaneously. The utilisation is defireed a
s =L . 3" £ The utilisation bound/B, of an al- o

gorithm A is the maximum number such that all tasks meet ~ (88% ford=4). Let TMIN denote the minimum of all
their deadlines when scheduled Ryif U, < UB,4. T;. Letnjobs,(t) denote the maximum number, over an in-

Multiprocessor scheduling algorithms are often cate- terval of lengtht, of arrivals of jobs assigned (split or non-
gorised agartitionedor global. Global scheduling stores ~ SPIit) on processop. During the same interval the algo-
tasks which have arrived but not finished execution in one fithm generates at most- ¢ - [¢/TMIN] + 2 +njobs,(t)
queue, shared by all processors. At any moment,the Préemptions on processpr
highest-priority tasks among those are selected for execu- This paper is organised as follows. Section 2 explores the
tion on them processors. In contrast, partitioned schedul- design of a scheduling algorithm with high utilisation bdun
ing algorithms partition the task set such that all tasks in a and few preemptions leading to our design (Section 3) and
partition are assigned to the same processor. Tasks may ngtroof of its performance. Section 4 explores special cases
migrate from one processor to another. The multiprocessorwhere the new algorithm can achieve a utilization bound of
scheduling problem is thus transformed to many uniproces-100%. Section 5 concludes.



capacity reserved forz; on processor P; We must use a larger capacity reserve for 7> on processor P;.
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(a) The reserves on processors for the task that is assigried proces-  (b) In order to ensure that the split tasks meet deadlinealfgossible
sors. arrivals, it is necessary to increase the size of the reserve

Figure 1. How to perform run-time dispatching of tasks that a re assigned to two processors.

2. Background tioned scheduling and the new algorithm based on it is pre-
sented in Section 3.

A task with outstanding computation at timgis said It is well-known that partitioned scheduling has a utili-
to be preempted at timeif it executes on processerjust sation bound of at most 50%. For illustrative purposes, the
beforet but not just aftert. With this definition, a job that argumentis repeated in Example 1.
starts executing is not preempted, nor is one that finishes ex
ecuting. Also, if a job is executing both just before and just
after ¢t but on different processors (hence migrates), with
our definition there is preemption at timeWe believe that
this captures the notion of preemption used in the researc
community.

Preemptions are important for meeting deadlines in real-
time scheduling on both uniprocessors and multiprocessors
In fact, every non-preemptive scheduling algorithm has a
utilisation bound of 0% (see Example 2 in [2]). Although  This example shows that deadlines can be missed be-
preemption is useful, it is not to be overused as it has assocause a task could not be assigned to a processor although
ciated operating system overheads. Exact preemption costghere was plenty of idle time in the overall system. The
are application- and architecture-dependent and we will no jdle time was spread out on different processors and could
discuss those (see [7] for excellent coverage). not be used. However, if a task is given some utilisation

We will express an upper bound on the count of preemp-on one processor and some on another processor (without
tions in a time interval as a function of its duration and the executing on both simultaneously) then it is possible to as-
number of job arrivals within it. By this metric, one can sign tasks such that deadlines are met even with the utilisa-
show (see Example 4 in [2]) that pfair scheduling is inher- tion on every processor reaching 100%. This approach was
ently prone to high preemption counts (as also shown byused in EKG where many tasks utilise only one processor
Devi and Anderson [9]). A promising technique for reduc- but a few utilise two. This was ensured by enforcing that
ing preemptions is the enforcement of the pfair constraint the amount of execution of any such task between two con-
only upon job arrivals. The algorithm BF [11] and vari- secutive arrivals divided by the time between those is ex-
ants [8, 10] do that. Under the EKG algorithm [3], con- actly equal to its utilisation on that processor. For spirad
figurable for a utilisation bound of 100%, only a subset of tasks this scheme is impossible as the time of the next ar-
tasks need satisfy the pfair constraint when jobs arrive. rival is unknown. One may however subdivide the timeline

Unfortunately, BF, its variants and EKG were only de- into fixed-length timeslots of duratiofi equal toTMIN /§
signed for strictly periodic tasks, whose job arrival times (where TMIN is the shortest interarrival time of all tasks
are foreknowable. This permits the calculation of the time andd is a positive integer set by the designer) and ensure
budget to be granted to a task over the interval until the nextthat each task utilising two processors is given execution
arrival of some job. For sporadic tasks, where the time of proportional to its utilisation in these timeslots (posgib
next arrival is unknown, this technique cannot be used. adjusted for worst-case arrival phasings relative to tlotes

We will thus reason about how to design an algorithm for boundaries). This approach requires no knowledge of future
sporadic tasks; this reasoning takes as starting poinit part arrival times. See Figure 1.

Example 1. Consider n=m+1 tasks with T;=1 and
C;=0.5+¢ and partitioned scheduling. As>m, one pro-
peessor is assigned two or more tasks hence its utilisation is
at leastl1+2¢>100%. If m—oo ande—0, the task set has
U,—0.5 and a deadline is missed. The utilisation bound of
every partitioned scheduling algorithm is thus 50% or less.



1. for p:=1tom do 20. for i:=L+1ton do
2. Ulp] :=0 21. if U[p]+Cy/T; < SEP then
3. lo_split[p] := 0 22. U[p] := U[p] + Ci/T;
4. hi_split[p] := 0 23. T;.processaidl := p
5. endfor 24. T;.processaid2 := p
6. Letr"<*¥ denote the set of tasks such tiayT; > SEP  25. ese
7. Letr'"" denote the set of tasks such tiiayT; < SEP 26. if p+t1< mthen
8. L:=|rheewy) 27. hisplit[p] := SEP— U[p]
9.  Order tasks such that with 7 in 1..L are all in7¢2v¥ 28. lo_split[p+1] := C;/T; — hi_split[p]
andr; with ¢ in L+1.n are all in!%9ht 29. 7;.processaidl := p
10. ifL>m 30. T;.processaid2 := p+1
11. declare FAILURE 31. Ulp] := U[p] + hi_split[p]
12. dse 32. Ulp+1] := U[p+1] + lo_split[p+1]
13. for :=1toLdo 33. p:=ptl
14. p:=i 34. dse
15. U[p] := U[p] + Ci/T; 35. declare FAILURE
16. T;.processaidl :=p 36. endif
17. T;.processaid2 := p 37. end if
18. end for 38. end for
19. p=L+1 39. declare SUCCESS
40. endif
Figure 2. The algorithm for assigning tasks to processors.
3. The new algorithm first z time units of each timeslot of lengthi for 7; to ex-

ecute on processgr+ 1 and the lasy time units for it to
We outline our algorithm, then prove its utilisation and €X€CUte On processpr Reserves:, y for each split task

preemption count bounds as functions of a parametset must .l.Je appropriately sized so as to (i) rulelout any overlap
by the designer), balancing utilisation vs preemptions. and (ii) ensure the schedulability of the split task and also
that (iii) on each processor utilised upS&P, all non-split

tasks (scheduled under EDF whenever their host processor
is not executing split tasks) also meet their deadlines.

The offline algorithm for task partitioning and splitting
is described in detail in pseudocode in Figure 2. As for the

3.1 Outline

Recall thatn sporadic tasks are to be scheduledron

identical processors. L&MIN be defined as online dispatching algorithm, it is described in high-leve
pseudocode in Figure 3.
TMIN = min(Ty, T3, ..., Ty) 1) Since dedicated processors for tasks with utilisation

aboveSEP are likewise utilised abovBEP and the utili-

Our algorithm divides time into slots of length sation of those for remaining tasksSEP, then if the algo-

TMIN rithm ensures that remaining tasks (split or not) are schedu
S = —5 (2 lable, it follows that its utilisation bound is at les8EP.
o We proceed with the derivation of optimal reserve sizing
Tasks whose utilisation exceeds some thresliiP (givend) such that any split task will always be schedulable

(corresponding to the utilisation bound of our algorithm, ynder our algorithm and, subject to this finding, next de-
whose derivation for a givehis explored later in the paper)  termine what the maximum value f8EP (givend) is, for

are each granted a dedicated processor — hence never miggnich any task set with utilisation up &EP will always be
deadlines. Remaining tasks are assigned next-fit to remainychedulable under our algorithm (i.e. its utilisation bdun

ing processors such that their utilisation is exaBtP. To | at, we derive worst-case preemption counts over any time
achieve this though, whenever assigning a task would causgnterval as a function of its length, for a givén

the utilisation of a processor to excegddP, “task splitting”
is performed as follows:

Said task (say;) is “split” between that processor (in-
dexedp) and the next onep(+ 1) (i.e. may utilise both but
not simultaneously). This is accomplished by reserving the  We observe the following:

3.2 Observations



1.while TRUE do timeslot boundaries. These then become:

2. if firstiteration()then //some variables set just once

3. p:=gethostprocessor(); . . .

4. hitask:=gethi_task(p);//split task run at timeslot end y =8 (a+ hisplit(i)) Q)

5. lo_task:=getlo_task(p);//split task run at timeslot start

6. y:=optimally sizereserve(hitask,p,S)//using Eq. 3 z=5(a+ lo_split(i)) 4)

7. x:=optimally.sizereserve(latask,p,S){/using Eq. 4

8. endif

9. _ o wherehi_split, lo_split denote the respective “uninflated”
10. t:=(currenttime()-tboot) mod S; //since timeslot start . . X
11 reservey for which the following holds:

12. if 0<t<x then //within reserve for low split task

13. if hasarrivedbut not completed(latask)then . e N g
14, executdo.task(p): hi_split(i) + lo_split(i) = T (5)
15. dse ) )
16.  executenonsplit taskwith_earliestdeadline(); For any split taskr; to always be schedulable, it must
17. endif hold that:
18. end if
19. 5-(z+y) C;
20. if x<t<S-ythen //not within a reserve of a split task Yy > (6)
21. executenon.split taskwith_earliestdeadline(); (0+1)- % —(x4+y) — T;
22. end if
23. Equations 2, 3, 4, 5 and Inequality 6 combined yield:
24. if S-y<t<Sthen //within reserve for high split task
25. if hasarrived but.not completed(hitask)then U-(1-0)
26. executehi_task(p); Q2 ¢ (7)
28. executenonsplittaskwith-earliestdeadiine(); whereU = <: is the utilisation of the task in question
29. endif - T '
30. end if For a giveny, what is of interest is the optimal (i.e. smallest)
31. _ value fora (as a function of) which will satisfy schedula-
32.end while bility for all permissible utilisations. The function

Figure 3. A high-level overview of the dis- U-(1-0)

patching algorithm, which runs on every non- as(U) = U5 (8)

dedicated processor

has a maximum &y = /¢ - (6 + 1) — 4, which is
1
Let z, y be the reserves of some split taskon proces- as(Uo) =5 = Vé-(6+1)+0 )
sorsp + 1, p respectively. Depending on the phasing of the ) ) _ )
arrival and deadline of; relative to timeslot boundaries, The optimal valug(as(Uo)) for a givend is plotted in

the fraction of time available for; between its arrival and ~ Figure 4 for various values ot _ _
deadline may differ fron£%. Yet, as reserves are made Finally, it must be that no temporal overlap is possible
available periodically and the interarrival time of anyktés either (i) between the reserves on different processors of

atleast - S, said fraction is in any case lower bounded by any given split tasks; or (i) between the reserves of dif-
ferent split tasks on the same procegsofFor these cases

to be satisfied, the following (necessary and sufficient) set

i k- (z+y) _ i-(z+y) of constraints (see Figure 5) applies:
o (k+1)-S—(z+y) (6+1) IR — (2 4y)

This is because, any two consecutive windows of exe- (hi-split(i) + o) + (lo_split(i) + o) < 1V split7; (10)
cution (consisting of adjacent reservyeandx merged) for
the split task are separated by intervéls;z—y time units
long, of split task idleness, and any interval fully contag
x of the former, may fully contain up te+1 of the latter.

Were reserves andy to be sized such th&rtg_:%’ by 1Sincehi_split(i) utilises processop, in which it is associated with

inspection, the above lower bound would be less tgan the reserve placed at the end of a timeslot, we will occa#iionae for it

thus deadlines could potentially be missed. It is thu%S neC_the equivalent notatiohi_split[p], with angular brackets instead of paren-
. ) theses. Similarly, foto_split(z), utilising processop + 1, in which it is

essary to inflate reserves by some faetmo as to always  associated with the reserve towards the start of the timesie will be

meet deadlines irrespective of arrival phasings relative t usinglo_split[p + 1].

(hi_split[p] + «) + (lo_splitlp] + o) < 1Vp  (11)




07 Assume that deadlines on procesgdny one or more

000 Jooss7e non-split tasks are in fact missed. lidbe the earliest time
0.07 that a deadline miss occurs ahd L < t be the earliest in-
oo o 0001 stant such that the processor will have been busy during the
004 s entire intervalt — L, t). Then, Iettﬁesgf“"d denote the cu-
222 <002 L o mulative execution requirement of all jobs of non-splikes
001 AT AN which arrived att — L or later and whose deadlines lie no

0 S A later thant, lett,, denote the time available to (and used

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

up in its entirety by) non-split tasks for execution withiret
interval [t — L, t) and lett,, denote the cumulative exe-

Figure 4. Optimal « as a function of parame- o .
cution time of split tasks on processprover [t — L, t).

ter § .
Obviously,

tnsp =L —t 13

(a) S (b) s nsp sp ( )
Having a missed deadline by a non-split task is equiva-
P S-(hi_split(i)+a) ¢ P S-(lo_split[p]+a) S:(hi_split[p]+a) ¢ |ent to
T ™ I ™

p+1 | S(lo_split(iy+) . tii;?and > tnsp (14)

T T
Regardinggemand, it follows from [6] that
Figure 5. (a) Reserves of the same split task
7; on processors p and p + 1. (b) Reserves of pdemand Z {ﬂJ - C; (15)

different split tasks on the same processor  p. P e T;

whereNS[p] is the set of non-split tasks on procesgor
Then, by combining Statements 13, 14 and 15 we obtain

From our earlier assumptions though (see Equation 5),

we have
demand (13), (15) L
tdemand > ¢ o 20 > {iJ Cj>L—tg
Ci ] Tj ENS[p]
hi-split(i) + lo_split(i) = — < SEPV splitr; (16)
i At this point, we note that
and
hi_split[p] + lo_split[p] = Ulp] < SEP V. L L
i_split[p] + lo_split[p] = U[p] < P > {?JLES L.
Thus, Inequalities 10 and 11 are satisfied if the following 7, €NS[p] -7 rENS[p] 7
(sufficient) condition holds: C.
=L —L = LUy, 17
SEP<1-2-«a (12) TjENS[p]

Let us then request that the sufficient constraint ex-  ith Uy, denoting the cumulative utilisation of non-
pressed by Inequality 12 holds, while at the same time notgpit tasks on processpr Then

restricting our reasoning to a specific value $&P within
that range. I
Recapitulating then, if reserves of all split tasks are in- an ;. _ —lsp

flated by the optimady, subject to the constraint expressed 16) =L Unsp > L = tap & Unsp > (18)
by Inequality 12, these tasks (which only execute within
their reserves but when doing so have priority over nort-spli
tasks) will always be schedulable. The question then arises
What is the maximum utilisatiorSEP) for non-dedicated

processors such that non-split tasks will likewise always

Let x, z denote the split task reserves (respectively, low
and high) on processer(which belong to different tasks).
We then have

be schedulable? Equivalently, what is the lowest proces- =S (a+losplitlp]) (19)
sor utilisation for which it would be possible for non-split
tasks to miss deadlines? This, we proceed to derive: z =5 (a+ hi_split[p]) (20)



and clearly, since, the cumulative utilisation of splitdas
on processap (equal tolo_split[p] + hi_split[p]) represents
a fraction of the total utilisation of processpr(which in
turn does not exceeskEP),

Usp = lo_split[p] + hi_split[p] < SEP  (21)

We draw attention to the fact that> T}, with T; denot-
ing the interarrival time of whichever task misses its dead-
line (for which in turn it holds tha; > TMIN = ¢ - S,
from Equations 1 and 2), thus > ¢ - S. It then holds that

tsp

L— < §-(S—z—2)
L —68S4(x+=2)
as derived by use of Lemma 1 in Appendix A for=

(A more intuitive explanation is that any two consecutive
windows of execution, corresponding to adjacent reserves

(22)

andz merged, for the split task are separated by intervals,

S — x — z time units long, of split task idleness, and any
time interval fully containing: of the latter there can fully
contain up tok + 1 of the former.)

Then, by combining Inequalities 18 and 22 we get

§-(S—z—2)

-S4+ (x+2)

Adding U, to both sides and rewriting, using Equa-
tions 19 and 20 yields:

< Unsp (23)

§5-S—6-S-(Usp+2-a)

Us Usp + Unsp (24
.- ST U010 ) <Usp+ Unsp  (24)
Further rewriting yields:
0-(1=Usp—2-a)
US Uns US P 25
p o Unsp = Dop b+Usp+2-a (25)

Then, as long as the cumulative utilisation of split and
non-split tasks on some processor (correspondirdg ;o
Unsp) does not exceed the right-hand side of Inequality 25,
it is not possible for any non-split task to miss its dead-

SEP(
1

o

‘o
.9)0

T e 7
0.856 89

0.8 079¢

1 0657

0 T T T T T T T T T T T T 1 B
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 6. The utilisation bound ( SEP) of our

algorithm for various values of parameter ¢
Up=3-(/o-(0+1)-0)—1 (26)
and that the respective minimum is
SEP(§ (Vo-(64+1)=6)—1 (27)

Note also that (as can be verified via substitution of the

value fora given by Equation 9), it holds that
SEP({)=1—-4-« (28)

Figure 6 shows the utilisation bound of our algorithm
(SEP) for different values of the paramet&r

Equation 27 (or, equivalently, Equation 28) thus suggests
the highest value that we could use for the vari&i® (al-
ready restricted to at most— 2 - « by our earlier assump-
tions, so as to avoid reserve overlap) so that no deadlines
(whether by split or non-split taks) are ever missed on non-
dedicated processors utilised utoP. This means that, if
we use the above value fSEP, then the utilisation bound

line. Note that the right-hand side of Inequality 25, which of our algorithm isSEP.

expresses the maximum cumulative utilisation so that no  Our reasoning so far thus suffices as proof to the follow-
deadlines by non-split tasks are missed, is a function ofing theorem:

Usp. In other words, it depends on what fraction of pro-

cessor utilisation corresponds to split and what to noit-spl Theorem 1. Assume that tasks are assigned to processors

tasks. Then, the utilisation bound (by definition, insevait
to what share of the utilisation is for split/non-split tayk
of our algorithm would correspond to the minimum for the
above expression, over the entire range of variéh)e

The right-hand side of Inequality 25 is a continuous and
differentiable function ot/,. If we substitute the optimal
« as a function ob (derived earlier and given by the right-

(and split, where necessary) according to the algorithm of
Figure 2 and dispatched using the algorithm in Figure 3,
using fora, SEP the values dictated by the right-hand side
of Equations 9 and 27 respectively, given some value for
parameter by the designer.

Then, if the system utilisation does not exceed the utilisa-
tion bound given by Equation 27, all deadlines are met and

hand side Equation 9) then, using calculus, one may see thaho task executes on two or more processors simultaneously.

it is minimised for



3.3 Reasoning about preemptions in Figure 6, our algorithm attains high utilisations even fo
very low values ob.
An upper bound on the number of preemptions within ~ For example, selecting = 3 overd = 4 results in a
a given interval as a function of its length is provided by 25% reduction of the linear term of the expression for the
Theorem 2. number of preemptions (see Theorem 2) with a sacrifice of

less thand% in terms utilisation, which remains high, at
Theorem 2. Assume that tasks are assigned to processorsgsy; (see Figure 6).

(and split, where necessary) according to the algorithm of
Figure 2 and dispatched using the algorithm in Figure 3,
using fora, SEP the values dictated by Equations 9 and
27 respectively, given some value for parametday the
designer.

Let njobs,(t) denote the maximum number of jobs by The right-hand side of Equation 27 can be written as
tasks (split or non-split) assigned to procesgothat may

4. On attaining a utilisation bound of exactly
100%

arrive during a time interval of length. Then, during a (VO-(0+1)—0)(/0-(6+1) +9) -1

time interval of lengtft, the algorithm generates at mdst VOo-(6+1)+06

§-[t/TMIN] + 2 + njobs,(t) preemptions on processpr ) 1

-4 1 =4 — 1

Proof. Observe that preemptions may only occur on in- §-(6+1)+9 1+ % +1

stants which coincide either with (i) task arrivals or (iiltfv

the boundaries of split task reserves. An upper bound on the Then, hm SEP(6) = lim 4- 1 _1=1

number of such instants within a given time window is thus d—o0 d—o0 1+441

also an upper bound for the number of preemptions within

that time window. In other words, by increasingy one may reach utilisa-
On processop there can be at mostjobs,(t) instants tion bounds arbitrarily close to unity (100%, in percentage

of the first type(as per the definition o:ijobsp(t)) within terms). Yet the question arises: Is it possible (assuming to

any interval of lengttt. Regarding the number of timeslot  tal freedom in the selection of integer parametfor a
boundaries which are contained within the same interval, utilisation bound ofxactly100% to be attained, using our
we reason as follows: algorithm? We will proceed to prove that this is the case if

Every timeslofk - S, (k+1)-S) Vk € Ncontainsthree ~ minimum interarrival times of all tasks are a rational multi
instants corresponding to reserve boundaries. Moreover, @les of TMIN.
time window of lengtht can overlap (fully or partially) with Theorem 3. If Vi € {1, 2, ..., n} it holds that} is a

at mOSt(TMIN] <0 [TMH\J timeslots. There can thus be rational multiple of TMIN, then, using for integer parame-

atmost3-J- [ Ty | +2 preemptions due to the implemen- ter ¢ the value™N wheres denotes the greatest number
tation of the reserves. The additional two preemptions are .S . :
such thatvi : <X € N*, our algorithm, witha: = 0, has a

due to unfavorable alignment of the time window relativeto ~ .7 .
reserve boundaries g utilisation bound of 100%.

Adding these preemption counts gives us the figure sug-proof. Consider the greatest non-negative numbsuch

gested by the theorem. that, for every task; in the systemZ: is an integer. Such a
U number always exists if all task interarrival times area-ati
nal multiples ofTMIN, as we assumed. Let us then choose
3.4 Discussion of tradeoffs associated with a timeslot length o5 = s or equivalentlys = TX and
the selection of parameter ¢ explore whether a utilisation bound 80% is attainable.

Previously, we derived an expression for the optimal re-

We showed previously how the utilisation bound of our serve inflation factoey, as a function ob (see Equation 9).
algorithm increases witld (see Equation 27). Unfortu- Yet, that was for the general case, whereas now we addi-
nately, so does the number of preemptions (see Theorem 2)tionally assume that all task interarrival times are raion
Let us reason about this tradeoff: multiples of TMIN and also assume a specific criterion for

According to Theorem 2, the number of preemptions in- selectings. We first proceed to show that, in this case, the
creases linearly witld. For practical purposes, this means optimal inflation factor isx = 0, in other words that (i) any
that in cases where having fewer preemptions matters moresplit task will always meet its deadline without any inflatio
than increased utilisation, the designer should opt for aofits reserves and subsequently that (ii) non-split taskg m
value foré no more than that past which diminishing re- fully utilise the remaining (i.e. not claimed by split tayks
turns (in terms of utilisation) occur. Fortunately, as seen processor utilisation.



(a) :
(% —1) timeslots of length S

/—’/R

e S— e S—..

—(p-oS-p-

...e—S—e——S5—
—p-e

T T T T T T

(b)
(% —1) timeslots of length S

(% —1) timeslots of length S

/—/R

e——S—e——S—— ...
—p—e —p—e

y y y y
X X X X
! 1

% —1) timeslots of length S

/—/R

—S—e—S——- ... .e——S—e—S—
——(p—e ——(p—=

y y
X X x x

T T T T T T t

P
p+1

Figure 7. In the case that all task minimum in-
terarrival times divided by the timeslot length

yield integers, there is no need for the infla-
tion of the reserves of split tasks, as their
schedulability does not depend on their off-

set relative to timeslot boundaries.

Assumea = 0 and consider a split task arriving ¢
time units past a timeslot boundary (see Figure 7(a)). It
follows that its deadline will also lieo time units past some
other a timeslot boundary. Then the interval between its
arrival and deadline spans the last- ¢ time units of the
timeslot in which it arrives,% — 1 subsequent timeslots in
their entirety and the firgp time units of the timeslot after
those.

Within each of the subseque@— 1 timeslots to the one
in which it arrived, the time reserves fay on the two pro-
cessors which it utilises are cumulativelyt y time units.

By substitutingx = 0 into Equations 3 and 4 we obtain

y =S - hi_split(i) (29)

x =S -lo_split(i) (30)

thus, each of the subsequégt— 1 timeslots to the one
in which r; arrived, provides for the execution ef exactly

Ci

S - (hi_split(i) + lo-split(i)) = S - T

time units. It then follows that upon reaching its deadline
C:
- —1 g + Ctail

7; will have executed for
S >'S T,

time units, where’,,..q IS the time available for the ex-
ecution ofr; within the interval from its release to the end
of the timeslot in which it was released afig,;; is the time
available for the execution af within the interval from the
start of the timeslot where its deadline lies until its déel|
Note that the above intervals are of the fouturt, end).

We note three cases:

T;
C’ifoiial = Ohead + <

eCaseli<p<=zx
Then (see Figure 7(b)) the last— ¢ time units of the low
reserve forr; within the timeslot in which it is released are
available to it and also the entigetime units of the respec-
tive high reserve, thu€',..q = = — ¢ + y. Additionally,
only the firsty time units of the low reserve within the
timeslot where the deadline of lies are available to it and
the respective high reserve is entirely unavailable tot(as i
lies past the deadline), thdg,;; = .

eCase2zrx<p<S—y
Then (see Figure 7(c)) the low reserve fqrwithin the
timeslot in which it is released is entirely unavailabletto i
but the entirg, time units of the respective high reserve are
available to it, thusCy,..q = y. Additionally the entirex
time units of the low reserve; within the timeslot where
its deadline lies are available to it and the respective high
reserve is entirely unavailable to it (as it lies past the
deadline), thu€’;,;; = x.

eCase3dS—y<p<S

Then (see Figure 7(d)) the low reserve forwithin the
timeslot in which it is released is entirely unavailable to
it and only the lastS — ¢ time units of the respective
high reserve are available to it, thU%,..q = S — ¢.
Additionally the entirex time units of the low reserve;
within the timeslot where its deadline lies are available to
it and the firstp — (S — y) time units of the respective
low reserve are also available to it thlig,;; = ¢—S+z+y.

Inany of the three caseSy,coa +Crait = z+y = S- %
thus
otal = _ 1 . - —_ . —_— = i
Ciotal <—S )STZ-JFSTZ- C

which proves that the deadline of the split task is met despit
zero reserve inflation.



We are now going to prove that no non-split tasks ever  Applying Statement 35 to Statement 31 yields:
miss deadlines in a 100% utilised processor, under the
above assumptions.

In uniprocessor EDF with arbitrary deadlines, if a dead- 3L € Uiy Ugen+ {Ti - B}
line is missed, a necessary and sufficient condition (as L
per [6] where the arbitrary deadline model was used and {TJ Cj+L-Ugp>L (36)
D; denoted the relative deadline) that there exists some r;ENS[p) -7

Relaxing and simplifying Statement 36 in turn yields

L e Uy Upen {Ti - B+ Di} (using the notation that we have used elsewhere):

such that
- L— D, > G U, 516 Upy 4+ Usp > 1 (37)
Zmax J +1,0]) - Cj > L Tj sp nsp sp
= Tj T,ENS[p] -

where N denotes the set of natural numbers, i.e.  Taking this all together, we have thatlit, + U, <1
{0, 1, 2,...} andN*T = N\{0}. then all deadlines are met (which proves the theoren).

In the case thab; = Tj, V7, the above is simplified to . .
Note that Theorem 2 regarding worst-case preemption

counts still holds.

An interesting corollary of Theorem 3 is that if all in-
terarrival times are integer multiples @ftMIN, our algo-
rithm has a utilisation bound of 100% even with- 1 (thus

Since however, on any processgrthe non-split tasks, with very few preemptions). On the other hand, for systgms
which are scheduled under EDF, also receive interference/Vnéres << TMIN, the above approach towards achieving
from the split tasks during time intervals which correspond 100% utilisation would be impractical (as>> 1 would be
to the reserves of the latter, in our case, for a deadline to"€eded, resulting in numerous preemptions).
be missed on some procesggrthe respective necessary
condition is: 5. Conclusions

"L
3L € Uy Ugens {Ti- B} 2 Y {TJ -C; > L
j=1 "7

N We have proposed an algorithm for scheduling sporadic
3L € Uiny Ugen+ {T5 - O} : tasks. It is configurable for a utilisation bound as high
L L as 88% with few generated preemptions. Alternatively, it
-C =18 -Ugyp>1L 31 . L L '
{ J it {S-‘ v (1) may be configured for a utilisation bound arbitrarily close
to 100% with increased preemptions. In the case that the
whereNS|p] is the set of non-split tasks on procesgor interrarival times of all tasks are rgmonal multiples otka
Recall that we have selectétsuch that other, we showed that the utilisation bound can reach ex-
actly 100%. We left open the important question on how to
extend this algorithm for sporadic tasks where the deadline
of a task is not equal to its minimum interarrival time.

ENS[p] -7

T; .

5 € Nt Vvie {1,2,.,n} (32)
Let us consider the value df in the inequality which

forms part of Statement 31. For this valuelgfit holds that  Acknowledgements
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Appendix A (k-S+(x+2) - (k+1)- S+ (z+2) —
Lemma 1. For any interval of lengthA > § - S, if ¢, thereforew is maximised ovefd - S, oo) for A =
denotes the cumulative time within said interval belonging 6-S+(z+2). Equivalently,A%(A) = 1—# is minimised
to the reserves, z of split tasks on some processor, it holds over[d - S, oo) for A = § - S + (z + z) and the respective
that minimum is‘s'(s’iﬁzg (which proves the lemma). O

Aty S 0-(S—z—2) 9-S+(w+z
A TS+ (z+2)

Proof. Irrespective of the actual value af ¢,, (the cumu-
lative time belonging to reserves for split tasks withinithe
terval in consideration) cannot be more than what it would
have been within an interval of the same lengttwhose
start is offset byS — z time units relative to timeslot bound-
aries. Then, it holds fot;, that
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