

Sporadic Multiprocessor Scheduling with
Few Preemptions

Björn Andersson

www.hurray.isep.ipp.pt

Technical Report

TR-070501

Version: 1.0

Date: May 2007

Sporadic Multiprocessor Scheduling with Few Preemptions
Björn ANDERSSON

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail: bandersson@dei.isep.ipp.pt

http://www.hurray.isep.ipp.pt

Abstract
Consider the problem of scheduling a set of n sporadically arriving tasks with the goal of meeting deadlines
on a computer system comprising m processors. Processors are identical. A task τi is characterized by its
minimum inter-arrival time Ti and its execution time Ci. Tasks can be preempted and they can migrate
between processors. We propose an algorithm with utilization bound no lower than 88% and it generates few
preemptions.

Sporadic Multiprocessor Scheduling with Few Preemptions

Björn Andersson
IPP-HURRAY! Research Group,

Polytechnic Institute of Porto (ISEP-IPP),
Rua Dr. António Bernardino de Almeida 431,

4200-072 Porto, Portugal
bandersson@dei.isep.ipp.pt

Abstract

Consider the problem of scheduling a set ofn sporadi-
cally arriving tasks with the goal of meeting deadlines on
a computer system comprisingm processors. Processors
are identical. A taskτi is characterized by its minimum
inter-arrival time Ti and its execution timeCi. Tasks can
be preempted and they can migrate between processors. We
propose an algorithm with utilization bound no lower than
88% and it generates few preemptions.

1. Introduction

Consider the problem of preemptive scheduling ofn spo-
radically arriving tasks onm identical processors. A taskτi

is given a unique index in the range 1..n and a processor is
given a unique index in the range 1..m. A taskτi generates a
(potentially infinite) sequence of jobs. The time when these
jobs arrive cannot be controlled by the scheduling algorithm
and the time of a job arrival is unknown to the scheduling
algorithm before the job arrives. It is assumed that the time
between two consecutive jobs from the same taskτi is at
leastTi. Every job released from taskτi requests to finish
the execution ofCi time units at mostTi time units after
its arrival. It is assumed that 0≤ Ci ≤ Ti andTi andCi

are real numbers. A processor can execute at most one job
at a time, and a job cannot execute on two or more proces-
sors simultaneously. The utilization is defined asUs = 1

m
·∑n

i=1
Ci

Ti
. The utilization boundUBA of an algorithmA is

the maximum number such that ifUs ≤ UBA then all tasks
meet their deadlines when scheduled byA.

Multiprocessor scheduling algorithms are often catego-
rized aspartitionedor global scheduling[11, 9, 13]. Global
scheduling algorithms store tasks that have arrived but not
finished their execution in one queue which is shared among
all processors. At every moment them highest-priority

tasks among the tasks that have arrived but not finished their
execution are selected for execution on them processors.
In contrast, partitioned scheduling algorithms partitionthe
set of tasks such that all tasks in a partition are assigned
to the same processor. Tasks are not allowed to migrate
from one processor to another processor, and hence the
multiprocessor scheduling problem is transformed to many
uniprocessor scheduling problems. This simplifies schedul-
ing and schedulability analysis because the wealth of results
in uniprocessor scheduling can be reused. Unfortunately,
all partitioned multiprocessor scheduling algorithms have a
utilization bound of 50% or less. Global scheduling can
achieve a utilization bound of 100% using a family of al-
gorithms calledpfair scheduling[5, 1]. But this great uti-
lization bound comes at a price; all task parameters must be
multiples of a time quantum and in every time quantum, a
new task is selected for execution. As a result, the number
of preemptions can be high [8]. We believe (as do Baker,
see [4, page 12]) it is desirable to achieve a high utilization
bound without suffering from a large number of preemp-
tions.

In this paper we propose an algorithm for scheduling
sporadic tasks. Its utilization bound is no lower than 88%.
The algorithm assigns tasks to processors. A few tasks
are assigned to two processors and they are carefully dis-
patched to ensure that they never execute on the two proces-
sors simultaneously; the other tasks are assigned to only one
processor. This design circumvents the limitation of parti-
tioned scheduling (the utilization bound of 50%) yet, it re-
tains the advantages of partitioned scheduling in that (i) the
time complexity of dispatching is independent of the num-
ber of processors and (ii) most tasks do not need to migrate
at all and if a task is of the type that needs to migrate then it
only needs to execute on two processors.

The algorithm generates few preemptions. LetTMIN

denote the minimum of allTi. Let njobsp(t) denote the
maximum number of jobs that can arrive during a time inter-
val of lengtht and are assigned to only execute on processor

p. It holds that during a time interval of lengtht, the algo-
rithm generates at most12 · ⌈t/TMIN ⌉ + 2 + njobsp(t)
preemptions on processorp.

The remainder of this paper is organized as follows.
Section 2 discusses the role of preemptions in real-time
scheduling. It also discusses how to design a scheduling
algorithm with high utilization bound and few preemptions.
This discussions leads to our design, which is presented in
Section 3 and its performance is proven. Section 4 gives
conclusions.

2. Background

We say that a taskτi is preempted at timet if (i) τi ex-
ecuted just before timet (let p denote this processor) and
(ii) τi did not execute on processorp just after timet and
(iii) τi has remaining execution time at timet. With this
definition, a job that starts executing is not preempted and
a job that finishes executing is not preempted either. Also,
observe that a job may execute just before timet and also
just after timet but these executions are on different proces-
sors so with our definition there is a preemption at timet.
We believe this captures the notion of preemption used in
the research community.

Preemptions are important to meet deadlines in real-time
scheduling on both a uniprocessor and on a multiprocessor.
In fact, every non-preemptive scheduling algorithm has a
utilization bound of 0% (see Example 2 in [2]).

Although preemption is useful, it is important to not
overuse it because a preemption has an associated operat-
ing system overhead [15, 14, 12]. The exact cost of a pre-
emption is application and architectural dependent and we
will not discuss that (see [6] for an excellent coverage). We
will count the number of preemptions and in order to do
so we need a metric. One metric could be the maximum
number of preemptions that a job can suffer from. This is
problematic though because there are task sets for which
all scheduling algorithms that meet deadlines cause an in-
finite number of preemptions per job (one such task set is
m=1, n=2, T1=10, C1=5, T2=10k, C2=5k and letk be an
integer which approaches infinity). Another metric could
be the number of preemptions in a time interval divided by
the number of jobs that arrive in the time interval. Unfortu-
nately, this metric is problematic as well because there are
task sets sets for which all scheduling algorithms that meets
deadlines generate a preemption and no job arrives in this
interval; and hence the number of preemptions per job is
infinite (see Example 3 in [2]).

We will express an upper bound on the number of pre-
emptions in a time interval as a function of the duration of
this time interval and the number of jobs that arrive in this
time interval. For this metric, one can show (see Exam-
ple 4 in [2]) that an inherent property of pfair scheduling is

that the number of preemptions can be large. (The fact that
pfair scheduling can cause many preemption has also been
pointed out by Devi and Anderson [8].) And that enforcing
that the pfair constraint only needs to be satisfied when a
job arrives was a promising technique to reduce the number
of preemptions. The algorithm BF [16] and variants of BF
[7, 10] do that. An algorithm known as EKG [3] can be con-
figured to achieve a utilization bound 100% and with even
fewer preemptions. This is possible because it requires that
only a subset of tasks must satisfy the pfair constraint when
jobs arrive. Unfortunately, these algorithms were only de-
signed to schedule periodically arriving tasks; that is, tasks
where the time between two consecutive jobs of taskτi is
exactlyTi. This model allows algorithms to know, at every
time, when the next job arrives and it permits these algo-
rithms to calculate the amount of time that a task should
be assigned in the time interval until the next job arrival.
But for sporadic tasks, this technique cannot be used: the
time of next arrival is unknown. For this reason, we will
reason about how to design an algorithm for sporadic tasks;
this reasoning takes as starting point partitioned scheduling,
and then (in Section 3) we will present the new algorithm
based on that reasoning.

It is well-known that partitioned scheduling has a uti-
lization bound of at most 50%. For illustrative purpose, the
argument is repeated in Example 1.

Example 1. Considern = m + 1 tasksτi with Ti = 1 and
Ci = 0.5 + ǫ. In partitioned scheduling, tasks cannot mi-
grate; they are assigned to a processor and always execute
there. Sincen > m, there is one processor which is as-
signed two or more tasks. Therefore, the utilization of this
processor will be at least 1 + 2ǫ, and this is more than
100%. By choosingm →∞ and ǫ → 0 the task set will
haveUs → 0.5 and a deadline is missed. Hence, the uti-
lization bound of every partitioned scheduling algorithm is
50% or less.

This example stresses the fact that deadlines can be
missed simply because a task could not be assigned to a
processor, although there was plenty of idle time in the
overall system. The idle time was spread out on different
processors and could not be used. However, if in the same
previous example a task is given some utilization on one
processor and some utilization on another processor then it
is possible to assign tasks such that the utilization on every
processor reaches 100%. This approach was used in EKG.
For many tasks, it gives utilization to only a single proces-
sors but for a few tasks, it gives utilization to two proces-
sors. For those tasks, it is imperative however that a task
does not execute on two processors simultaneously. This
property was ensured for those tasks by giving such tasks
execution such that the amount of execution between two
consecutive arrivals divided by the time between these two

2

(a) The reserves on processors for the task that is assigned to two processors.

(b) In order to ensure that the split tasks meet deadlines forall possible arrivals, it is necessary to increase the
size of the reserves.

Figure 1. How to perform run-time dispatching of tasks that a re assigned to two processors.

consecutive arrivals is exactly equal to the utilization ofthe
task on that processor. For sporadically arriving tasks such
a scheme is not possible because the next arrival time is un-
known. One can however, subdivide the timeline into time
slots of duration S and ensure that each task that executes
on two processors is given execution proportional to its uti-
lization on these time slots. This approach does not require
knowledge of future arrival times.

Figure 1 presents an example that illustrates how to
perform such run-time dispatching. The taskτ2 has
C2/T2=0.55. We can see (in Figure 1(a)) thatτ2 is assigned
a reserve of 40% of the processing capacity of processorP1

andτ2 is assigned a reserve of 15% of the processing capac-
ity of processorP2. This processing capacity is distributed
in each time interval of durationS. If τ2 arrives exactly
in the beginning of a time slot and if the deadline ofτ2 is
exactly at the end of a time slot thenτ2 is given enough ex-
ecution and hence it will meets its deadlines. But for other
arrival times this may not be the case. Consider Figure 1(b).
Here we can see the arrival time of a job of taskτ2. For this
arrival time, it is necessary that the reserves ofτ2 are larger

in order to meets its deadline. We will let the reserves of a
processor assigned to a task be the same for all time slots.
Consequently, the reserve on processor 1 given to taskτ2

will be more than 40% regardless of when and ifτ2 arrives.
It is necessary to assign a value toS and several choices

are possible. ChoosingS to be small implies that the re-
serves only need to be increased by a small amount to meet
deadlines and this offers a high utilization bound. On the
other hand, choosingS to be large implies that the num-
ber of preemptions is small. As a compromise, we choose
S=TMIN /4.

3. The new algorithm

The new algorithm brings the ideas that were successful
for the design of EKG and exploits them for sporadically
arriving tasks. The new algorithm consists of two steps.
First, tasks are assigned to processors. Some tasks may be
assigned to two processors, meaning that this task may ex-
ecute on any of these two processors but it is not permitted

3

1. for p in 1..m do 18. for i := L+1 to n do
2. U[p] := 0 19. if U[p]+Ci/Ti ≤ SEPthen
3. lo split[p] := 0 20. U[p] := U[p] + Ci/Ti

4. hi split[p] := 0 21. τi.processorid1 := p
5. end for 22. τi.processorid2 := p
6. Letτheavy denote the set of tasks such thatCi/Ti > SEP 23. else
7. Letτ light denote the set of tasks such thatCi/Ti ≤ SEP 24. if p+1≤ m then
8. L := | heavy| 25. hi split[p] := SEP-Ci/Ti

9. Order tasks such thatτi with i in 1..L are all inτheavy 26. lo split[p+1] :=Ci/Ti-hi split[p]
10. andτi with i in L+1..n are all inτ light 27. τi.processorid1 := p
11. Sort tasks in L+1..m such thatTL+1 ≤ TL+2 ≤ . . . ≤ Tm 28. τi.processorid2 := p+1
11. for i in 1..L do 29. U [p] := U [p] + hi split[p]
12. p := i 30. U [p+1] := U [p+1] + lo split[p+1]
13. U[p] := U[p] + Ci/Ti 31. p := p+1
14. τi.processorid1 := p 32. else
15. τi.processorid2 := p 33. declare FAILURE
16. end for 34. endif
17. p := L + 1 35. end if

36. end for
37. declare SUCCESS

Figure 2. An algorithm for assigning tasks to processors.

to execute on both processors simultaneously. We refer to
such a task assplit tasks. Naturally tasks that are not split
tasks are refered to asnon-split tasks. The algorithm for
task assignment is presented in Figure 2 and it is performed
before run-time. Then, at run-time, the tasks are dispatched;
Figure 3 presents this algorithm. Let us now understand the
behavior, the rationale of the design of the new algorithm
and then prove its performance.

Figure 2 presents the algorithm for assigning tasks to
processors. The algorithm assigns tasks to processors such
that on all processors the utilization does not exceed 100%.
The algorithm treatsheavyand light tasks differently. A
taskτi is heavy ifCi/Ti > SEP, otherwise it is light. SEP
means separator. The exact value of SEP will be specified
later. First, the algorithm assigns heavy tasks to their own
dedicated processors (at lines 11-16); no other task will be
assigned to these processors. The main idea of the algo-
rithm is that there is a current processor, with indexp and
tasks are considered one by one; indexi denotes the current
task. The task currently under consideration is attempted to
be assigned to the current processorp. This is performed
at line 19. If the condition stated in that line is true then
the task can be assigned to processorp. If the condition is
false, the utilizaton of the task is assigned to two proces-
sors (at lines 25-30) and the task assigned to the current
processorp and processorp + 1. Then the processor with
a higher index is considered (line 31). As already pointed
out, the algorithm assigns heavy tasks to some processors
and light tasks to some other processors.L separates these
tasks: heavy tasks are assigned to processors with indices

ranging from 1 up toL, while light tasks are assigned to
processors with indices ranging fromL + 1 up tom. The
performance of the task assignment scheme (presented in
Figure 2) is given by Lemma 1.

Lemma 1. If 0 ≤ SEP ≤ 1 and a task set satisfiesUs ≤
SEP and the algorithm in Figure 2 is used then the algo-
rithm in Figure 2 declares SUCCESS.

Proof. The proof is by contradiction. Suppose that the
lemma was false then there is a task set that satisfiesUs ≤
SEP and the algorithm in Figure 2 is used and the algo-
rithm in Figure 2 declares FAILURE.

Let us consider the value ofi when the algorithm de-
clared failure. Let us delete all tasks with a higher index
than i. We obtain that the algorithm still declares failure.
If there was any task withCj /Tj > SEP then this task is
deleted and this processor is deleted. If we rerun the al-
gorithm with the new task set then it still declares failure.
We can repeat this argument until it holds for all tasks that
∀j : Cj /Tj ≤ SEP. Consequently we now have a task set
{τ1, τ2, . . . , τn} that satisfies

Us ≤ SEP (1)

and∀j: Cj /Tj ≤ SEP and the algorithm in Figure 2 is used
and the algorithm in Figure 2 declares FAILURE. From
line 19 and lines 25-30 we obtain:

∀p ∈ 1..m − 1 : U [p] = SEP (2)

U [m] + Cn/Tn > SEP (3)

4

Combining Equality 2 and Inequality 3 and using the
knowledge thatτ1, τ2, . . ., τn−1 are assigned on processors
P1,P2,. . .,Pm yields:

n∑

i=1

Ci/Ti > SEP · m (4)

Dividing by m and using the definition ofUs yields

Us > SEP (5)

This contradicts Inequality 1 and hence the lemma is cor-
rect.

We are now in position to see a precise statement of the
dispatcher used at run-time. Figure 3 presents this algo-
rithm. There is a constant,α which will be specified later
in this paper. It is assumed that if the arraysplit tasks
is indexed out of bounds then it returns NULL. It is also as-
sumed that ifswitch to is called with a NULL parameter
then the processor is kept idle.

The variablerq (on line 11), means run-queue and it is
a variable which store tasks that are ready for execution or
are executing. This ready queue consists of two types of
tasks (i) tasks that may execute on two different processors
(calledsplit tasks) and (ii) tasks that may only execute
on a single processor (callednon split tasks). It can
be seen (from the algorithm that assigns tasks to processors,
in Figure 2) that at mostm-1 tasks are splittasks and there
can be at most one task split between processorp andp+1.
For this reason, we only need an array ofm-1 elements for
storing the split tasks. For the non-split tasks, however, it is
necessary to store a priority queue for each processor (see
line 8). This priority queue (line 6) contains data structures
of the typetask struct and they are ordered in EDF
order. On line 24 in Figure 3, a task struct is inserted in a
queue; it is assumed that if this task struct is already in the
queue then this operation takes no effect. Analogously, on
line 34 in Figure 3, a task struct is removed from a queue;
it is assumed that if this task struct is not in the queue then
this operation takes no effect.

Each task is represented in the operating system by a
variable of the typetask struct (shown in lines 1-
5). The notationτi refers to the task struct of taskτi.
The variablesprocessor id1 and processor id2
state which processor a task is assigned to. If a task is
only assigned to one processor thenprocessor id1 and
processor id2 are set to the id of this processor. The
values ofprocessor id1 and processor id2 are
outputs from the algorithm in Figure 2. The variableT state
Ti of a task. The variabled state the absolute deadline of
the current job of a task.

The variablet0 and t1 (on line 15) stores the current
time slot of length S. This is the time slot discussed in

Figure 1. t0 is the start time of the time slot, whereast1
is the finishing time of the time slot. For a processorp,
the time interval [t0,t1) can be divided into three subin-
terval [t0,timea[p]), [timea[p],timeb[p]) and [timeb[p],t1).
A processorp is said to be in statea if the current time
is in [t0,timea[p]); the processor is in statex if the cur-
rent time is in [timea[p],timeb[p]) and the processor is in
stateb if current time is in [timeb[p],t1). There is an ar-
ray: state. The variablestate[p] stores the state of
processorp. timea[p] and timeb[p] are computed based on
the lo split andhi split (which were computed in
the algorithm in Figure 2) andα (which control how much
larger the reserve needs to be in order to ensure that split
tasks meet their deadlines for all arrival times).

The event handler ”‘when the current time becomes =
t1 do”’ calculates the times that govern when processors
should perform state transition. In particular, when the time
becomest1 then new values oft0,timea, timeb andt1 are
calculated (as shown on lines 50-53).

The scheduling is performed by the lines 16-77. It is a
state machine executing on each processor and it reacts on
events. The main idea is that if a processorp is in statea
then it executes the reserve that it shares the processorp−1,
whereas if a processorp is in stateb then it executes the re-
serve that it shares the processorp+1 and if a processorp is
in statex then it uses EDF to dispatch a non-split tasks as-
signed to processorp. Observe however that if the task that
was intended to be executed on the reserve does not need to
execute then the non-split task with the earliest deadline is
selected.

We will now assign values to the parameters SEP andα.
From the task assignment presented in Figure 2, we know
that if a taskτi is assigned to two processorp andp+1 then
it holds that:

lo split[p + 1] + hi split[p] =
Ci

Ti

(6)

For this purpose of understanding how to choose SEP andα,
Figure 4 is instrumental. Consider taskτi in Figure 4(a) and
this particular arrival time. From this figure and considering
p=1 and considering lines 50-53 in Figure 3 we obtain that:

x = S · (α + lo split[p + 1]) (7)

and

y = S · (α + hi split[p]) (8)

and

4 · S + (S − (x + y)) = Ti (9)

If τi missed a deadline it must have been that it used all the
time available in the reserves. That is, it must have been
that:

4 · (x + y) < Ci (10)

5

1. type taskstruct =record 41. when the current time becomes = timea[p]do
2. processorid1, processorid2 : integer 42. state[p] := x
3. T : time 43. call dispatch
4. d : time span 44. end when
5. end record 45. when the current time becomes = timeb[p]do
6. type EDF readyqueue = priority queue of taskstruct 46. state[p] := b
7. type rq split andnon split = record 47. call dispatch
8. nonsplit tasks : array[1..m] of EDF readyqueue 48. end when
9. split tasks : array[1..m-1] of readytask 49. when the current time becomes =t1 do

10. end record 50. t0 := t1
11. rq : rqsplit and non split 51. t1 := t0 + S
12. hi split, lo split : array[1..m] of floating point number 52. timea[p] :=t0 + S · (lo split[p] + α)
13. state : array[1..m] of enumerated variable{a,x,b} 53. timeb[p] :=t1 - S · (hi split[p] + α)
14. timea, timeb : array[1..m] of time 54. state[p] := a
15. t0, t1 : time 55. call dispatch
16. when the system bootsdo 56. end when
17. t1 := current time;S=TMIN/4 57. procedure dispatchis
18. call ”when the current time becomes =t1 do” 58. if state[p]=athen
19. end when 59. if rq.split tasks[p-1]6= NULL then
20. when a job of taskτi arrivesdo 60. switchto(rq.split tasks[p-1])
21. if τi.processorid1=por τi.processorid2=p then 61. else
22. τi.d := current time +τi.T 62. switchto(rq.nonsplit tasks[p].peek)
23. if τi.processorid2=τi.processorid1 then 63. end if
24. insert(rq.nonsplit tasks[p],τi) 64. elseif state[p]=bthen
25. else 65. if rq.split tasks[p]6= NULL then
26. rq.split tasks[p] :=τi 66. switchto(rq.split tasks[p])
27. end if 67. else
28. call dispatch 68. switchto(rq.nonsplit tasks[p].peek)
29. end if 69. end if
30. end when 70. else
31. when a job of taskτi finishes executiondo 71. if rq.nonsplit tasks[p].peek6= NULL then
32. if τi.processorid1=por τi.processorid2=p then 72. switchto(rq.nonsplit tasks[p].peek)
33. if τi.processorid2=τi.processorid1 then 73. else
34. remove(rq.nonsplit tasks[p],τi) 74. switchto(NULL)
35. else 75. end if
36. rq.split tasks[p] := NULL 76. end if
37. end if 77. end when
38. call dispatch
39. end
40. end when

Figure 3. An algorithm for run-time dispatching on processo rs L+1..m.

Combining Inequality 10 and Equality 9 yields:

4 · (x + y)

4 · S + (S − (x + y))
<

Ci

Ti

(11)

Let us apply Equality 7 and Equality 8 on Inequality 11.
Then apply Inequality 6 yields:

4 · (2α + Ci

Ti
)

5 − (2α + Ci

Ti
)
− Ci

Ti

< 0 (12)

One can show that if we chooseα asα = 9
2 − 2

√
5 then it

holds for allCi/Ti such that 0≤ Ci/Ti ≤ 1 then the left-
hand side of Inequality 12 is non-negative. Hence we have
that if α = 9

2 − 2
√

5 and if the taskτi arrives as show by
Figure 4(a) thenτi meets its deadline.

Let us now assume that we have selectedα = 9
2 − 2

√
5

≈ 0.0278 and let us consider how it impacts a taskτj that
is only assigned to a single processor. Figure 4(b) shows a
specific scenario. Let us explore how much processorp in
Figure 4(b) can be utilized. From this figure we obtain that:

x = S · (α + lo split[p]) (13)

and

z = S · (α + hi split[p]) (14)

and

4 · S + (x + z) = Tj (15)

6

(a) The reserves must be large enough to ensure that a taskτi that is assigned to two processors receives
enough execution even when it arrives at an unfavorable time.

(b) The reserves must not be too large because then they can cause interference on another taskτj which is
only assigned to a single processor.

Figure 4. How to inflate the reserves properly.

If task τj missed its deadline for the scenario shown in Fig-
ure 4(b) then the processorp was busy during the time from
when the jobτj arrived until its deadline expired. (This is
true becauseτj is a non-split task and non-split tasks are al-
lowed to be executed in statea andb with a lower priority
than the tasks that were assigned these reserves. See line 62
and line 68 in the algorithm in Figure 3.) Because of this
deadline miss it holds that:

5 · (x + z) + Cj > Tj (16)

Dividing Inequality 16 byTj and applying Equality 15
yields:

5 · (x + z)

4 · S + (x + z)
+ Cj/Tj > 1 (17)

Applying Equality 13 and Equality 14 and rewriting yields:

5 · (2α + lo split[p] + hi split[p])

4 + (2α + lo split[p] + hi split[p])
+ Cj/Tj > 1

One can show that for theα selected and for losplit[p] +
hi split[p] ≥ 0 it holds that:

18 − 8
√

5 + lo split[p] + hi split[p]

≥ 5 · (2α + lo split[p] + hi split[p])

4 + (2α + lo split[p] + hi split[p])
(18)

Combining these yields:

18 − 8
√

5 +

lo split[p] + hi split[p] + Cj/Tj > 1 (19)

Rewriting yields:

lo split[p] + hi split[p] +
Cj

Tj

> 8
√

5 − 17 (20)

As a consequence of this reasoning, it follows that if

lo split[p] + hi split[p] +
Cj

Tj

≤ 8
√

5 − 17 (21)

thenτj meets its deadline for the scenario depicted in Fig-
ure 4(b).

We have now shown that the choiceα = 9
2 − 2

√
5 ≈

0.0278 and SEP=8
√

5-17 ≈ 0.88854382 causes deadlines
to be met in the examples shown in Figure 4(a) and Fig-
ure 4(b). We use these parameters in the remainder of the
paper and prove the utilization bound of the algorithm. We
will do so by first stating lemmas that ensure that (i) heavy
tasks meet their deadlines, (ii) split tasks do not execute on
two or more processors simultaneously and (iii) split tasks

7

meet their deadlines. Using these lemmas and reasoning
about non-split tasks will give us the utilization bound.

Lemma 2. Assume that tasks assigned to processors 1..L
are dispatched by any work-conserving algorithm. Then all
tasks assigned to processors 1..L meet their deadlines.

Proof. Follows from the fact that we assume 0≤ Ci ≤ Ti

(which was stated in the introduction).

Lemma 3. Assume that tasks are assigned using the algo-
rithm presented in Figure 2 (with SEP=8

√
5-17) and tasks

on processors 1..L are dispatched by any work-conserving
uniprocessor scheduling algorithm and tasks on processors
L+1..m are dispatched using the algorithm presented in
Figure 3 (withα = 9

2 − 2
√

5 andS=TMIN /4). Then it
holds for every taskτi thatτi never executes on two or more
processors simultaneously.

Proof. If τi is a nonsplit task then the truth of the lemma
is obvious. We will now prove that the lemma is true also
for the case whenτi is a split task. Suppose that the lemma
was incorrect then there must be a timet when a split task
τi executed on two processor simultaneously. Observe that
the algorithm presented in Figure 2 assigns a task to at most
two processors. Henceτi executes on two processors. Let
these processors be denotedp andp+1. Due to the assump-
tion on the falsity of the lemma it holds that processorp and
processorp+1 executeτi at timet. From the algorithm Fig-
ure 3 it follows thatt ≤ timea[p+1] and timeb[p] ≤ t. As a
consequence, it follows that:

timeb[p] ≤ timea[p + 1] (22)

This can obviously be rewritten as:

0 ≤ timea[p + 1] − timeb[p] (23)

Using lines 50-53 in the algorithm presented in Figure 3
yields:

1 ≤ lo split[p + 1] + hi split[p] + 2 · (9

2
− 2

√
5) (24)

From our choice of SEP we have that:

lo split[p + 1] + hi split[p] ≤ 8
√

5 − 17 (25)

Combining Inequality 25 with Inequality 24

1 ≤ −8 + 4
√

5 (26)

But this is impossible. Hence the lemma is true.

Lemma 4. Assume that tasks are assigned using the algo-
rithm presented in Figure 2 (with SEP=8

√
5-17) and tasks

on processors 1..L are dispatched by any work-conserving
uniprocessor scheduling algorithm and tasks on processors
L+1..m are dispatched using the algorithm presented in
Figure 3 (withα = 9

2 − 2
√

5 andS=TMIN /4). Then it
holds that every split task meet its deadline.

Proof. Suppose that the lemma was false then there would
be a split task that misses a deadline. We can delete all
non-split tasks and then we obtain the same schedule be-
cause split tasks are executed with higher priority (see the
algorithm presented in Figure 3). And hence there is still
a split task that misses a deadline. Let us consider the first
time that a deadline was missed. Letτi denote the task that
released this job. SinceTi ≥ TMIN andS=TMIN /4 we
obtain that:Ti ≥ 4S. LetAi denote the time time when this
job arrived. Consequently the deadline (that was missed) is
at timeAi+Ti. We know (from the algorithm in Figure 2)
that a split task is only permitted to execute on two proces-
sors and they have consecutive index. Letp andp+1 be de-
note those processor whereτi is permitted to execute. From
the algorithm in Figure 2, we also have that:

Ci/Ti = hi split[p] + lo split[p + 1] (27)

Let x andy be denoted as:

x = S · (α + lo split[p + 1]) (28)

and

y = S · (α + hi split[p]) (29)

Since a deadline was missed for this taskτi it implies that
(i) ∀ t ∈ [Ai,Ai+Ti) such that at timet processorp+1 was
in statea, it holds thatτi executed and (ii)∀ t ∈ [Ai,Ai+Ti)
such that at timet processorp was in stateb, it holds thatτi

executed. Consequently, the amount of time thatτi is given
execution during [Ai,Ai+Ti) is at least:

⌈Ti/S⌉ · (x + y)

−min(⌈Ti/S⌉ · S − Ti, (x + y)) (30)

Since less thanCi time units was performed by taskτi dur-
ing [Ai,Ai+Ti) it follows that:

⌈Ti/S⌉ · (x + y)

−min(⌈Ti/S⌉ · S − Ti, (x + y)) < Ci (31)

Applying Inequalities 27, 28, 29 and the value ofα yields:

⌈Ti/S⌉ · S · (Ci/Ti + 9 − 4
√

5)

−min(⌈Ti/S⌉ · S − Ti, S · (Ci/Ti + 9 − 4
√

5)) < Ci (32)

We also know from the assumptions of the lemma that:

Ci/Ti ≤ 8
√

5 − 17 (33)

and due to the choice ofS:

4 · S ≤ Ti (34)

8

Dividing Inequality 32 byTi and then subtracting both sides
by Ci/Ti yields:

⌈Ti/S⌉ · (S/Ti) · (Ci/Ti + 9 − 4
√

5)

−min(⌈Ti/S⌉ · S/Ti − 1,

(S/Ti) · (Ci/Ti + 9 − 4
√

5)) − Ci/Ti < 0 (35)

One can show that under the assumption of Inequality 34
it holds that for everyCi/Ti such that 0≤ Ci/Ti ≤ 1 then

0 ≤ ⌈Ti/S⌉ · (S/Ti) · (Ci/Ti + 9 − 4
√

5)

−min(⌈Ti/S⌉ · S/Ti − 1,

(S/Ti) · (Ci/Ti + 9 − 4
√

5)) − Ci/Ti (36)

Inequality 36 contradicts Inequality 35 and hence the
lemma is correct.

We saw in Lemma 4 that all split tasks meet their dead-
lines. In the following, we will prove that also the non-split
tasks meet their deadlines.

Theorem 1. Assume that tasks are assigned using the algo-
rithm presented in Figure 2 (with SEP=8

√
5-17) and tasks

on processors 1..L are dispatched by any work-conserving
uniprocessor scheduling algorithm and tasks on processors
L+1..m are dispatched using the algorithm presented in
Figure 3 (with α = 9

2 − 2
√

5 and S=TMIN /4). If Us

≤ 8
√

5-17 then all deadlines are met and no task executes
on two or more processors simultaneously.

Proof. From Lemma 2 it follows that all heavy tasks meet
their deadlines and clearly they do not execute on two or
more processors simultaneously. For the processors L+1..m
that schedules light tasks, we know (from the algorithm pre-
sented in Figure 2) that∀p: U[p] ≤ 8

√
5-17. From Lemma 4

it follows that also all light tasks that are split meet their
deadlines and clearly (from Lemma 3) it holds that they do
not execute on two or more processors simultaneously.

It remains to prove that on processors L+1..m, all non-
split tasks meet their deadlines. We will do so now.

Suppose that a non-split task missed its deadline. If there
are many jobs that missed a deadline then let us consider
the job with the earliest deadline. Letτi denote the task that
released that job and letp denote the processor to whichτ
was assigned. LetAi denote the time when this job arrived
and consequently the deadline of this job is at timeAi+Ti.
We know that the processorp is busy during [Ai,Ai+Ti)
(This is true becauseτi is a non-split task and non-split tasks
are allowed to be executed in statea andb with a lower
priority than the tasks that were assigned these reserves. See
line 62 and line 68 in the algorithm in Figure 3.) LetQ
denote the latest time beforeAi+Ti such that processorp is
busy during the time interval [Q,Ai+Ti). We know that this

interval [Q,Ai+Ti) is non-empty becauseQ ≤ Ai. We can
delete all jobs with arrival times beforeQ; the job released
by τi is still missed. Let us consider another job released
from a non-split taskτj . If this job arrived later thanAi+Ti-
Tj then its deadline is later thanAi+Ti. Such a job can be
deleted and because of EDF scheduling, the job released by
τi still misses its deadline. LetL denote the length of the
busy period; that is,L=Ai+Ti-Q. Observe thatL ≥ Ti and
Ti ≥ 4 · S and this gives us:

L ≥ 4 · S (37)

Let x denote (losplit[p]+α) · S and let z denote
(hi split[p]+α) · S. We know that split tasks meet their dead-
lines and hence an upper bound on the amount of work that
is performed by split tasks on processorp during the time
interval of lengthL is at most:

⌊L

S
⌋ · (x + z) +

min(L − ⌊L

S
⌋ · S, x + z) (38)

Let NS[p] denote the set of tasks that are only assigned to
processorp. Since a deadline was missed and the processor
was busy during the time interval of lengthL, it follows
that:

(
∑

τj∈NS[p]

⌊ L

Tj

⌋ · Cj) +

⌊L

S
⌋ · (x + z) +

min(L − ⌊L

S
⌋ · S, x + z) > L (39)

Dividing by L and using the definition ofx andz and using
the knowledge thatCj

Tj
≥ ⌊ L

Tj
⌋ · Cj

L
. yields:

(
∑

τj∈NS[p]

Cj

Tj

) +

⌊L

S
⌋ · S · (lo split[p] + hi split[p] + 9 − 4

√
5)

L
+

min(1 − ⌊L

S
⌋ · S

L
,

S · (lo split[p] + hi split[p] + 9 − 4
√

5)

L
) > 1

One can show that for theα selected and for losplit[p] +
hi split[p] ≥ 0 andL ≥ 4 · S it holds that:

18 − 8
√

5 + lo split[p] + hi split[p] ≥

⌊L

S
⌋ · S · (lo split[p] + hi split[p] + 9 − 4

√
5)

L
+

min(1 − ⌊L

S
⌋ · S

L
,

S · (lo split[p] + hi split[p] + 9 − 4
√

5)

L
)

9

And combining them yields:

(
∑

τj∈NS[p]

Cj

Tj

) +

18 − 8
√

5 + lo split[p] + hi split[p] > 1

Rewriting yields:

(
∑

τj∈NS[p]

Cj

Tj

) +

lo split[p] + hi split[p] > 8
√

5 − 17 (40)

From the algorithm in Figure 2 we haveU [p] ≤ 8
√

5-17.
Hence we obtain that:

(
∑

τj∈NS[p]

Cj

Tj

) +

lo split[p] + hi split[p] ≤ 8
√

5 − 17 (41)

Inequality 41 contradicts Inequality 40 and henceτi does
not miss its deadline. It follows that the statement of the
theorem is true.

The number of preemptions is stated in Theorem 2.

Theorem 2. Assume that tasks are assigned using the algo-
rithm presented in Figure 2 (with SEP=8

√
5-17) and tasks

on processors 1..L are dispatched by any work-conserving
uniprocessor scheduling algorithm and tasks on processors
L+1..m are dispatched using the algorithm presented in
Figure 3 (with α = 9

2 − 2
√

5 and S=TMIN /4). Let
njobsp(t) denote the maximum number of jobs that can
arrive during a time interval of lengtht and are assigned
to only execute on processorp. It holds that during a
time interval of lengtht, the algorithm generates at most
12 · ⌈t/TMIN ⌉ + 2 + njobsp(t) preemptions on proces-
sorp.

Proof. In a time interval, there are12 · ⌈t/TMIN ⌉ + 2
preemptions due to the execution of reserves. There are
njobsp(t) preemptions due to EDF scheduling in statex.
Adding these preemptions gives us the theorem.

4. Conclusions

We have proposed an algorithm for scheduling sporadic
tasks. Its utilization bound is 88% and it generates few pre-
emptions. We left open the important question on how to
extend this algorithm for sporadic tasks where the deadline
of a task is not equal to its minimum inter-arrival time.

References

[1] J. Anderson and A. Srinivasan. Mixed pfair/erfair scheduling
of asynchronous periodic tasks.Journal of Computer and
System Sciences, 68(1):157–204, 2004.

[2] B. Andersson. Sporadic multiprocessor scheduling with
few preemptions. Technical report, IPP-HURRAY Research
Group. Institute Polytechnic Porto, HURRAY-TR-070501,
Available at http://www.hurray.isep.ipp.pt, May 2007.

[3] B. Andersson and E. Tovar. Multiprocessor scheduling with
few preemptions. In12th IEEE International Conference on
Embedded and Real-Time Computing Systems and Applica-
tions, 2006.

[4] T. P. Baker. Comparison of empirical success rates of global
vs. partitioned fixed-priority EDF scheduling for hard real
time. Technical report, Department of Computer Science,
Florida State University, Tallahassee, July 2005.

[5] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel.
Proportionate progress: A notion of fairness in resource al-
location.Algorithmica, 15(6):600–625, June 1996.

[6] J. Calandrino, H. Leontyev, A. Block, U. Devi, and J. Ander-
son. Litmusrt: A testbed for empirically comparing real-time
multiprocessor schedulers. InProceedings of the 27th IEEE
Real-Time Systems Symposium, 2006.

[7] H. Cho, B. Ravindran, and E. D. Jensen. An optimal real-
time scheduling algorithm for multiprocessors. InProc. of
the IEEE Real-Time Systems Symposium, pages 101–110,
Rio de Janeiro, Brazil, Dec. 5–8, 2006.

[8] U. Devi and J. Anderson. Tardiness bounds for global edf
scheduling on a multiprocessor. In26th IEEE Real-Time Sys-
tems Symposium, 2005.

[9] S. K. Dhall and C. L. Liu. On a real-time scheduling prob-
lem. Operations Research, 26(1):127–140, 1978.

[10] A. Khemka and R. K. Shyamasundar. Multiprocessor
scheduling of periodic tasks in a hard real-time environment.
In Proc. of the International Parallel Processing Symposium,
1992.

[11] J. Leung and J. Whitehead. On the complexity of fixed-
priority scheduling of periodic real-time tasks.Performance
Evaluation, 2(4):237–250, 1982.

[12] J. C. Mogul and A. Borg. The effect of context switches on
cache performance. InProceedings of Architectural Support
for Programming Languages and Operating Systems, 1994.

[13] D.-I. Oh and T. P. Baker. Utilization bounds for n-processor
rate monotone scheduling with static processor assignment.
Real Time Systems Journal, 15(2):183–192, 1998.

[14] V. Padmanabhan and D. Roselli. The real cost of context
switching. Technical report, UC Berkeley, 1994.

[15] F. Sebek. The real cost of task pre-emption - measuring real-
time-related cache performance with a hw/sw hybrid tech-
nique. Technical report, Mälardalens Högskola, Västerås,
August 2002.

[16] D. Zhu, D. Mossé, and R. Melhem. Multiple-resource peri-
odic scheduling problem: how much fairness is necessary?
In Proc. of the IEEE Real-Time Systems Symposium, pages
142–151, Cancun, Mexico, Dec. 3–5, 2003.

10

A. Background: Details

Example 2. The most interesting part of the schedule in this
example is shown in Figure A. Considerm+1 tasks to be
scheduled on a multiprocessor withm identical processors
where the scheduling algorithm is non-preemptive. Tasks
are permitted to change priorities at any time. Because non-
preemptive scheduling is used, the only migration permitted
is that jobs of the same task may execute on different proces-
sors. We assume that the scheduling algorithm is permitted
to insert idle time. Let the tasks be characterized as follows.
T1=1 andC1=2. For all i=2..m+1: Ti= ǫi−1, Ci=2ǫi. We
chooseǫ <1/2. We letOi denote the time whenτi arrives
for the first time. The scheduling algorithm is not permit-
ted to chooseOi. Let us consider an arbitrary job release
by τ1. LetA1 denote the arrival time of that job and lets1

denote the start time of the execution of that job. Because
the execution time ofτ1 is twice as long asT2 we know
that every timeτ1 executes,τ2 can arrive at least once such
that s1 ≤ A2 < A2+T2 ≤ s1+C1, and hence there is a
time whenτ1 andτ2 must execute simultaneously. Repeat-
ing this argument, we obtain that there is a time when all
tasks have to execute. All them+1 tasks must execute on
different processors and we only havem processors. Hence
a deadline is missed. Here,Us=2 · (m+1)/m. Choosing
ǫ → 0 yields that the utilization bound is zero. Naturally
this example can be used to show that the utilization bound
of every non-preemptive uniprocessor scheduling algorithm
is zero as well. This reasoning can be performed for both
periodically and sporadically arriving tasks. Consequently,
the utilization bound of non-preemptive scheduling is zero
for any number of processors and for both periodically ar-
riving tasks and sporadically arriving tasks.

Example 3. Considerm processors andn=m + 1 tasks.
The tasks are characterized by∀i ∈ 1..m+1: Ci=m/(m+1),
Ti=1 andm ≥ 4 and they all arrive simultaneously at time
0. Consider[1/(2(m +1)), 1− 1/(2(m+ 1))]. In this time
interval, a task must execute at leastm/(m+1)-1/(m+1) ≥
0.6 time units in order to meet deadlines. Since each task
must execute at least 0.6 time units in this interval, at least
one task is preempted in the time interval. Also, no tasks
arrive in the time interval. Consequently, the number of
preemptions divided by the number of arriving jobs in this
interval is infinite.

Example 4. Considern=6 tasks to be scheduled onm=5
processors. We consider the special case when all tasks ar-
rive at time 0 and all tasks arrive periodically.primes(k)
denotes thekth prime number. LetT1=2 · primes(5)=22,
T2=2 · primes(6)=26, T3=2 · primes(7)=34, T4=2
· primes(8)=38, T5=2 · prime(9)=46 and T6=2 ·
primes(10)=54. Let C1=13, C2=15, C3=19, C4=21,
C5=24 and C6=28. This task set hasUs=0.6639. Let

lcm denotelcm(T1,T2,. . .,Tn). lcm is 57366738 and the
number of jobs during [0,lcm) is 10320350. We will now
compute the number of preemptions. We will use pfair al-
gorithms to schedule this task set and we will assume that
the tasks arrive as frequently as permitted by the sporadic
model.

The schedule generated by the pfair algorithms,PD2

[5], early-release ER pfair [1] and bounded fairness (BF)
[16] are illustrated in Figure A. PD2 causes 15.47 pre-
emptions/job during [0, lcm). The result is 3.75 for early-
release pfair, and 3.82 for bounded fairness. We have se-
lected this example for illustrative purpose but there are
task sets where the number of preemptions is even larger.
If all Ti andCi of tasks are multiplied byk · lcm (where
k is a positive integer) then the number of preemptions per
job becomes at leastk · lcm times greater forPD2. With
this reasoning, it is easy to see that the number of preemp-
tions divided by the number of jobs can approach infinity
for PD2. By multiplyingCi of all tasks by a constant such
thatUs becomes 100% we obtain that ER obtains an infinite
number of preemptions per job as well.

All these three algorithms use the concept of lag of a
taskτi at timet. The lag is defined aslag(τi,t)=t · Ci/Ti

allocated(τi,[0,t)). (We let allocated(τi,[0,t)) denote the
amount of time thatτi was allocated during the time inter-
val [0,t)). The reason for the difference in the number of
preemptions is that the constraints on lag(i,t) are differ-
ent. PD2 requires at everyt:-1<lag(i,t)<1. ER pfair re-
quires at everyt: lag(i,t)<1 and bounded fairness requires
at thoset where a task arrives:-1<lag(i,t)<1.

We can see that relaxing the pfair constraint, as BF does,
is useful in order to reduce the number of preemptions. In
this example we assumed thatTi andCi are integers; this
is different from what we assume in the other parts of the
paper and the reason for doing this is that pfair algorithms
are only defined for the case whereTi andCi are integer.

11

Figure 5. All non-preemptive scheduling algorithms have th e utilization bound 0.

Figure 6. Pfair scheduling algorithms cause a large number o f preemptions. The marks above the
time line show the arrival times and deadlines of tasks. An ar row pointing upwards indicate an arrival
time; an arrow pointing downwards indicate a deadlines. The Gantt charts below the time line show
the schedule of PD2, Early-Release Pfair and Bounded fairness. For each schedu ling algorithm,
the Gantt chart shows the execution of each of the 6 tasks. A bl ack filled box indicates that a task
executes; a white box indicates that a task does not execute. Consequently, a black box followed
by a white box indicates a context switch. If a job makes a cont ext switch but if it has remaining
execution, then it is a preemption.

12

