S |

IPP HURRAY!

‘ Vo 4
Www.hurraw.pt /

Technical Report

Sporadic Multiprocessor Scheduling with
Few Preemptions

Bjorn Andersson

TR-070501
Version: 1.0
Date: May 2007

Sporadic Multiprocessor Scheduling with Few Preemptions
Bjorn ANDERSSON

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. Antonio Bernardino de Almeida, 431
4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509
E-mail: bandersson@dei.isep.ipp.pt
http://www.hurray.isep.ipp.pt

Abstract

Consider the problem of scheduling a set of n sporadically arriving tasks with the goal of meeting deadlines
on a computer system comprising m processors. Processors are identical. A task ti is characterized by its
minimum inter-arrival time Ti and its execution time Ci. Tasks can be preempted and they can migrate
between processors. We propose an algorithm with utilization bound no lower than 88% and it generates few
preemptions.

Sporadic Multiprocessor Scheduling with Few Preemptions

Bjorn Andersson
IPP-HURRAY! Research Group,
Polytechnic Institute of Porto (ISEP-IPP),
Rua Dr. Antonio Bernardino de Almeida 431,
4200-072 Porto, Portugal
bandersson@dei.isep.ipp.pt

Abstract tasks among the tasks that have arrived but not finished their
execution are selected for execution on theprocessors.
Consider the problem of scheduling a seto$poradi- In contrast, partitioned scheduling algorithms partitiba

cally arriving tasks with the goal of meeting deadlines on set of tasks such that all tasks in a partition are assigned
a computer system comprisimg processors. Processors to the same processor. Tasks are not allowed to migrate
are identical. A taskr; is characterized by its minimum from one processor to another processor, and hence the
inter-arrival time 7} and its execution timé€;. Tasks can multiprocessor scheduling problem is transformed to many
be preempted and they can migrate between processors. Weniprocessor scheduling problems. This simplifies schedul
propose an algorithm with utilization bound no lower than ing and schedulability analysis because the wealth oftgsul
88% and it generates few preemptions. in uniprocessor scheduling can be reused. Unfortunately,
all partitioned multiprocessor scheduling algorithmséav
utilization bound of 50% or less. Global scheduling can
achieve a utilization bound of 100% using a family of al-
gorithms calledpfair scheduling5, 1]. But this great uti-
lization bound comes at a price; all task parameters must be
Consider the problem of preemptive scheduling spo- multiples of a time quantum and in every time quantum, a
radically arriving tasks om identical processors. A task new task is selected for execution. As a result, the number
is given a unique index in the rangerland a processoris of preemptions can be high [8]. We believe (as do Baker,
given a unique index in the rangerh.. A taskr; generatesa see [4, page 12]) it is desirable to achieve a high utilizatio
(potentially infinite) sequence of jobs. The time when these bound without suffering from a large number of preemp-
jobs arrive cannot be controlled by the scheduling algorith tions.
and the time of a job arrival is unknown to the scheduling In this paper we propose an algorithm for scheduling
algorithm before the job arrives. It is assumed that the time sporadic tasks. Its utilization bound is no lower than 88%.
between two consecutive jobs from the same tasis at The algorithm assigns tasks to processors. A few tasks
leastT;. Every job released from task requests to finish are assigned to two processors and they are carefully dis-
the execution of”; time units at mosf; time units after patched to ensure that they never execute on the two proces-
its arrival. It is assumed that @ C; < T; andT; andC; sors simultaneously; the other tasks are assigned to oely on
are real numbers. A processor can execute at most one jolprocessor. This design circumvents the limitation of parti
at a time, and a job cannot execute on two or more proces+tioned scheduling (the utilization bound of 50%) yet, it re-
sors simultaneously. The utilization is definedlas= L - tains the advantages of partitioned scheduling in thahé) t
o % The utilization bound’ B4 of an algorithmA is time complexity of dispatching is independent of the num-
the maximum number such thatlif, < U B4 then alltasks ber of processors and (ii) most tasks do not need to migrate

1. Introduction

meet their deadlines when scheduleddy at all and if a task is of the type that needs to migrate then it
Multiprocessor scheduling algorithms are often catego- only needs to execute on two processors.
rized agpartitionedor global schedulingl11, 9, 13]. Global The algorithm generates few preemptions. U&IN

scheduling algorithms store tasks that have arrived but notdenote the minimum of all;. Let njobs,(t) denote the
finished their execution in one queue which is shared amongmaximum number of jobs that can arrive during a time inter-
all processors. At every moment the highest-priority val of lengtht and are assigned to only execute on processor

p. It holds that during a time interval of lengththe algo- that the number of preemptions can be large. (The fact that
rithm generates at mose - [t/ TMIN| + 2 + njobs,(t) pfair scheduling can cause many preemption has also been
preemptions on processpr pointed out by Devi and Anderson [8].) And that enforcing

The remainder of this paper is organized as follows. that the pfair constraint only needs to be satisfied when a
Section 2 discusses the role of preemptions in real-timejob arrives was a promising technique to reduce the number
scheduling. It also discusses how to design a schedulingof preemptions. The algorithm BF [16] and variants of BF
algorithm with high utilization bound and few preemptions. [7, 10] do that. An algorithm known as EKG [3] can be con-
This discussions leads to our design, which is presented infigured to achieve a utilization bound 100% and with even
Section 3 and its performance is proven. Section 4 givesfewer preemptions. This is possible because it requirds tha
conclusions. only a subset of tasks must satisfy the pfair constraint when
jobs arrive. Unfortunately, these algorithms were only de-
signed to schedule periodically arriving tasks; that isk¢a
where the time between two consecutive jobs of tasis
exactlyT;. This model allows algorithms to know, at every
time, when the next job arrives and it permits these algo-
rithms to calculate the amount of time that a task should
be assigned in the time interval until the next job arrival.
But for sporadic tasks, this technique cannot be used: the
time of next arrival is unknown. For this reason, we will
reason about how to design an algorithm for sporadic tasks;
this reasoning takes as starting point partitioned sclirgiul
and then (in Section 3) we will present the new algorithm
based on that reasoning.

It is well-known that partitioned scheduling has a uti-

2. Background

We say that a task; is preempted at timeif (i) ; ex-
ecuted just before time (let p denote this processor) and
(ii) = did not execute on processpiust after timet and
(iii) = has remaining execution time at tinie With this
definition, a job that starts executing is not preempted and
a job that finishes executing is not preempted either. Also,
observe that a job may execute just before tinaand also
just after timet but these executions are on different proces-
sors so with our definition there is a preemption at time
We believe this captures the notion of preemption used in
the research commgmty. . . . __lization bound of at most 50%. For illustrative purpose, the

Preempnons are |mp9rtantto meet deadlines in real't'meargument is repeated in Example 1.
scheduling on both a uniprocessor and on a multiprocessor.

In fact, every non-preemptive scheduling algorithm has a gxample 1. Considern = m + 1 tasksr; with 7; = 1 and
utilization bound of 0% (see Example 2 in [2]). C; = 0.5 + ¢. In partitioned scheduling, tasks cannot mi-
Although preemption is useful, it is important to not grate; they are assigned to a processor and always execute
overuse it because a pl’eemptlon has an associated Operqhere' Sincen > m, there is one processor which is as-
ing system overhead [15, 14, 12]. The exact cost of a pre-signed two or more tasks. Therefore, the utilization of this
emption is application and architectural dependent and weprocessor will be at least 1 +¢ and this is more than
will not discuss that (see [6] for an excellent coverage). We 100%. By choosingr — oo and e — O the task set will
will count the number of preemptions and in order to do hayer, — 0.5 and a deadline is missed. Hence, the uti-

so we need a metric. One metric could be the maximum jization bound of every partitioned scheduling algorithsn i
number of preemptions that a job can suffer from. This is 5oy or less.

problematic though because there are task sets for which
all scheduling algorithms that meet deadlines cause an in- This example stresses the fact that deadlines can be
finite number of preemptions per job (one such task set ismissed simply because a task could not be assigned to a
m=1,n=2,T1=10, C1=5, T,=10k, C5=5k and letk be an processor, although there was plenty of idle time in the
integer which approaches infinity). Another metric could overall system. The idle time was spread out on different
be the number of preemptions in a time interval divided by processors and could not be used. However, if in the same
the number of jobs that arrive in the time interval. Unfortu- previous example a task is given some utilization on one
nately, this metric is problematic as well because there areprocessor and some utilization on another processor then it
task sets sets for which all scheduling algorithms that meet is possible to assign tasks such that the utilization onyever
deadlines generate a preemption and no job arrives in thisprocessor reaches 100%. This approach was used in EKG.
interval, and hence the number of preemptions per job is For many tasks, it gives utilization to only a single proces-
infinite (see Example 3 in [2]). sors but for a few tasks, it gives utilization to two proces-
We will express an upper bound on the number of pre- sors. For those tasks, it is imperative however that a task
emptions in a time interval as a function of the duration of does not execute on two processors simultaneously. This
this time interval and the number of jobs that arrive in this property was ensured for those tasks by giving such tasks
time interval. For this metric, one can show (see Exam- execution such that the amount of execution between two
ple 4 in [2]) that an inherent property of pfair scheduling is consecutive arrivals divided by the time between these two

capacity reserved for 7, on processor P,

time

capacity reserved for z, on processor P,
(a) The reserves on processors for the task that is assigre processors.

We must use a larger capacity reserve for 7, on processor ;.

time

(b) In order to ensure that the split tasks meet deadlineslfpossible arrivals, it is necessary to increase the
size of the reserves.

Figure 1. How to perform run-time dispatching of tasks that a re assigned to two processors.

consecutive arrivals is exactly equal to the utilizatiorhaf in order to meets its deadline. We will let the reserves of a
task on that processor. For sporadically arriving task& suc processor assigned to a task be the same for all time slots.
a scheme is not possible because the next arrival time is unConsequently, the reserve on processor 1 given to#task
known. One can however, subdivide the timeline into time will be more than 40% regardless of when and,ifarrives.
slots of duration S and ensure that each task that executes |t is necessary to assign a valued@nd several choices
on two processors is given execution proportional to its uti are possible. Choosing§ to be small implies that the re-
lization on these time slots. This approach does not requireserves only need to be increased by a small amount to meet
knowledge of future arrival times. deadlines and this offers a high utilization bound. On the
Figure 1 presents an example that illustrates how to other hand, choosing to be large implies that the num-
perform such run-time dispatching. The task has ber of preemptions is small. As a compromise, we choose
C,/T»=0.55. We can see (in Figure 1(a)) thatis assigned S=TMIN /4.
a reserve of 40% of the processing capacity of proceBsor
andr, is assigned a reserve of 15% of the processing capac- .
ity of processorP,. This processing capacity is distributed 3. The new algorithm
in each time interval of duratio§. If =, arrives exactly
in the beginning of a time slot and if the deadlinerefis The new algorithm brings the ideas that were successful
exactly at the end of a time slot thenis given enough ex- for the design of EKG and exploits them for sporadically
ecution and hence it will meets its deadlines. But for other arriving tasks. The new algorithm consists of two steps.
arrival times this may not be the case. Consider Figure 1(b).First, tasks are assigned to processors. Some tasks may be
Here we can see the arrival time of a job of tagkFor this assigned to two processors, meaning that this task may ex-
arrival time, it is necessary that the reserves,adire larger ~ ecute on any of these two processors but it is not permitted

1. for pin1.m do 18.for i:=L+1tondo
2. Up]:=0 19. if U[p]+Ci/T; < SEPthen
3. losplit[p] :=0 20. U[p] := U[p] + Ci/T;
4. hisplit[p] :=0 21. 7;.processaidl := p
5. end for 22. T;.processaid2 := p
6. Letr"***¥ denote the set of tasks such thay7; > SEP 23. dse
7. Let7'9" denote the set of tasks such tiiayT; < SEP 24. if p+1< mthen
8. L :=]| heavy| 25. hisplit[p] := SEPC,/T;
9. Order tasks such that with 7 in 1..L are all inr"¢@¥ 26. lo_split[p+1] := C;/T;-hi_split[p]
10. andr; with i in L+1.n are all in7t9ht 27. 7;.processaidl := p
11. Sorttasks in L+lm suchthatl',+1 < Tr42 < ... <Th 28. T;.processaid2 := p+1
11.for¢in1..Ldo 29. Ulp] := U[p] + hi_split[p]
12. p:=i 30. Ulp+1] := U[p+1] + lo_split[p+1]
13. U[p]:=Ulp] + Ci/T; 31 p:i=ptl
14. 7;.processaidl :=p 32. ese
15. 7;.processaid2 :=p 33. declare FAILURE
16. end for 34. endif
17.p=L+1 35. endif
36. end for

37. declare SUCCESS

Figure 2. An algorithm for assigning tasks to processors.

to execute on both processors simultaneously. We refer toranging from 1 up tol, while light tasks are assigned to
such a task asplit tasks Naturally tasks that are not split processors with indices ranging from+ 1 up tom. The
tasks are refered to ason-split tasks The algorithm for performance of the task assignment scheme (presented in
task assignment is presented in Figure 2 and it is performedrigure 2) is given by Lemma 1.
before run-time. Then, at run-time, the tasks are dispdtche
Figure 3 presents this algorithm. Let us now understand the
behavior, the rationale of the design of the new algorithm
and then prove its performance.

Figure 2 presents the algorithm for assigning tasks to Proof. The proof is by contradiction. Suppose that the
processors. The algorithm assigns tasks to processors sudemma was false then there is a task set that satifies
that on all processors the utilization does not exceed 100%.5E P and the algorithm in Figure 2 is used and the algo-
The algorithm treathieavyand light tasks differently. A rithmin Figure 2 declares FAILURE.
task; is heavy ifC;/T; > SEP, otherwise it is light. SEP Let us consider the value afwhen the algorithm de-
means separator. The exact value of SEP will be specifiedclared failure. Let us delete all tasks with a higher index
later. First, the algorithm assigns heavy tasks to their ownthani. We obtain that the algorithm still declares failure.
dedicated processors (at lines 11-16); no other task will belf there was any task witlt’;/7; > SEP then this task is
assigned to these processors. The main idea of the algodeleted and this processor is deleted. If we rerun the al-
rithm is that there is a current processor, with ingeand gorithm with the new task set then it still declares failure.
tasks are considered one by one; indeenotes the current We can repeat this argument until it holds for all tasks that
task. The task currently under consideration is attemmted t Vj : C;/T; < SEP. Consequently we now have a task set
be assigned to the current procesgorThis is performed {71, 72, ..., 7, } that satisfies
at line 19. If the condition stated in that line is true then
the task can be assigned to procegsolf the condition is Us < SEP ()

false, the utilizaton of the task is assigned to two proces-andv;: C;/T; < SEP and the algorithm in Figure 2 is used

sors (at lines 25-30) and the task assigned to the currentind the algorithm in Figure 2 declares FAILURE. From
processop and processop + 1. Then the processor with |ine 19 and lines 25-30 we obtain:

a higher index is considered (line 31). As already pointed

Lemmal. If 0 < SEP < 1 and a task set satisfids, <
SEP and the algorithm in Figure 2 is used then the algo-
rithm in Figure 2 declares SUCCESS.

out, the algorithm assigns heavy tasks to some processors Vpel.m—1:Ulp| =SEP 2)
and light tasks to some other processdrseparates these
tasks: heavy tasks are assigned to processors with indices Ulm]+ C,/T, > SEP 3)

Combining Equality 2 and Inequality 3 and using the Figure 1. ¢y is the start time of the time slot, whereas

knowledge thaty, 7, ..., 7,1 are assigned on processors is the finishing time of the time slot. For a procesgor

Py ,Ps,...,P,, yields: the time interval {y,t;) can be divided into three subin-
terval [to,timea[p]), [timea[p],timeb[p]) and [timeb[p},).

- A processorp is said to be in state if the current time
Zci/ﬂ > SEP-m (4) is in [to,timeal[p]); the processor is in stakeif the cur-
=1 rent time is in [timea[p],timeb[p]) and the processor is in
Dividing by m and using the definition df’ yields stateb if current time is in [timeb[p}:). There is an ar-
ray: st at e. The variablest at e[p] stores the state of
Us > SEP (5) processop. timea[p] and timeb[p] are computed based on

. _ . _ thel o_split andhi _split (which were computed in
This contradicts Inequality 1 and hence the lemma is cor- the algorithm in Figure 2) and (which control how much
rect. u larger the reserve needs to be in order to ensure that split

. . . tasks meet their deadlines for all arrival times).
We are now in position to see a precise statement of the

dispatch d at i Fi 3 s this al The event handler When the current time becomes =
ispatcner used at run-ime. Figure > presents this ago—tl do™ calculates the times that govern when processors
rithm. There is a constant, which will be specified later

o . . : should perform state transition. In particular, when theeti
in this paper. It is assumed that if the arsgyl i t _t asks P P

. .) becomes; then new values ofy,ti , timeb andt, are
is indexed out of bounds then it returns NULL. It is also as- ! 0.7Umea, tme !

. : ! calculated (as shown on lines 50-53).
sumed that iswi t Ch‘t 0 |s_called with a NULL parameter The scheduling is performed by the lines 16-77. Itis a
then the processor is keptidle.

. . .. state machine executing on each processor and it reacts on
The variablerq (on line 11), means run-queue and it is g P

i-ble which store tasks that dv i events. The main idea is that if a procespas in statea
avariable wnich store tasks that are ready 1or EXECUtion Oy, o, jt executes the reserve that it shares the procpssbr
are executing. This ready queue consists of two types of

. : whereas if a processpris in stateb then it executes the re-
tasks (i) tasks that may execute on two different processors

. N serve that it shares the procesgarl and if a processaris
(called_spl i t tasks)and (i) tasks thatmay only execute in statex then it uses EDF to dispatch a non-split tasks as-
on a single processor (callesbn_spl i t _t asks). It can

) . signed to processgr. Observe however that if the task that
be seen (from the algorithm that assigns tasks to ProCeSSOrSy as intended to be executed on the reserve does not need to

in Figure 2) that at most-1 t.aSkS are splitasks and there execute then the non-split task with the earliest deadtine i
can be at most one task split between processordp+1. selected

For this reason, we only need an arrayhofl elements for We will now assign values to the parameters SEP@nd

storing the split tasks. For the non-split tasks, howevés, i From the task assignment presented in Figure 2, we know

necessary to store a priority queue for each processor (seﬂqat if a taskr, is assigned to two processeandp+1 then
line 8). This priority queue (line 6) contains data struesir

) it holds that:
of the typet ask_struct and they are ordered in EDF !
order. On line 24 in Figure 3, a task struct is inserted in a lo_split[p + 1] + hi_split[p] = Gi (6)
gueue; it is assumed that if this task struct is already in the T;

queue then this operation takes no effect. Analogously, onFor this purpose of understanding how to choose SERand

line 34 in Figure 3, a task struct is removed from a queue; Figure 4 is instrumental. Consider tagkn Figure 4(a) and

it is assumed that if this task struct is not in the queue thenthis particular arrival time. From this figure and considgri

this operation takes no effect. p=1 and considering lines 50-53 in Figure 3 we obtain that:
Each task is represented in the operating system by a

variable of the typet ask_struct (shown in lines 1- z =5 (a+losplitlp+1]) (1)
5). The notationr; refers to the task struct of task. and

The variablespr ocessor _i d1 and pr ocessor _i d2

state which processor a task is assigned to. If a task is y =5 (a+ hisplit[p)) (8)

only assigned to one processor th@rocessor _i d1 and
processor i d2 are set to the id of this processor. The
values of processor i d1 and processor i d2 are 4-S+(S—(z+y)=T; 9)
outputs from the algorithm in Figure 2. The variablstate
T; of a task. The variabld state the absolute deadline of
the current job of a task.

The variablet, andt; (on line 15) stores the current
time slot of length S. This is the time slot discussed in 4-(z+y) <C; (20)

and

If 7, missed a deadline it must have been that it used all the
time available in the reserves. That is, it must have been

1. typetaskstruct =record 41. when the current time becomes = timeafid
2. processaidl, processaid?2 : integer 42. state[p] := x
3. T : time 43. call dispatch
4. d : time_span 44. end when
5. end record 45. when the current time becomes = timeb[ghd
6. typeEDF.readyqueue = priority queue of tasitruct 46. state[p] :=b
7. typerg-splitandnonsplit =record 47. call dispatch
8. nonsplittasks : array[1m] of EDF_readyqueue 48. end when
9. splittasks : array[1m-1] of readytask 49. when the current time becomests do
10. end record 50. to ;=11
11. rq: rgsplitandnon.split 51. t1:=to+S
12. hisplit, lo_split : array[1.mm] of floating point number 52. timea[p] :tp + S - (lo_split[p] + «)
13. state : array[Im] of enumerated variabléa,x,b} 53. timeb[p] :=¢t1 - S - (hi_split[p] + «)
14. timea, timeb : array[In] of time 54. state[p] :=a
15. o, t1 : time 55. call dispatch
16. when the system bootdo 56. end when
17. t1 = current time;S=TMIN /4 57. proceduredispatchis
18. call 'when the current time becomests do” 58. if state[p]=athen
19. endwhen 59. if rq.splittasks[p-1]# NULL then
20. when a job of taskr; arrivesdo 60. switchto(rq.splittasks[p-1])
21. if 7;.processaidl=por r;.processaid2=pthen 61. dse
22. 7;.d ;= current time +r;.T 62. switchto(rg.nonsplit_tasks[p].peek)
23. if 7;.processaid2=r;.processaidl then 63. end if
24, insert(rg.norsplit_tasks[p],) 64. elseif state[p]=bthen
25. ese 65. if rq.splittasks[p]# NULL then
26. rq.splittasks[p] :=7; 66. switchto(rq.splittasks[p])
27. end if 67. else
28. call dispatch 68. switchto(rg.nonsplit_tasks[p].peek)
29. end if 69. end if
30. end when 70. else
31. when a job of taskr; finishes executiodo 71. if rg.nonsplit_tasks[p].peekt NULL then
32. if 7;.processaidl=por 7;.processaid2=pthen 72. switchto(rg.nonsplit_tasks[p].peek)
33. if 7;.processaid2=r;.processaidl then 73. dse
34. remove(rg.narsplit_tasks[p], =) 74. switchto(NULL)
35. else 75. end if
36. rq.splittasks[p] := NULL 76. end if
37. end if 77. endwhen
38. call dispatch
39. end
40. end when
Figure 3. An algorithm for run-time dispatching on processo rs L+1.m.
Combining Inequality 10 and Equality 9 yields: Let us now assume that we have selected % —2V5
4o (x+ ‘ ~ 0.0278 and let us consider how it impacts a taskhat
y) C;

IS+ =z 1) < T (12) is only assigned to a single processor. Figure 4(b) shows a
Y g specific scenario. Let us explore how much procegsar

Let us apply Equality 7 and Equality 8 on Inequality 11. Figure 4(b) can be utilized. From this figure we obtain that:

Then apply Inequality 6 yields:

420+ %) . x=5"(a+ losplit[p]) (13)
— 7 <0 (12)
5—(2a+7) T and
One can show that if we chooseasa = % —2v/5 then it z =28 (a+ hi_split[p]) (14)
holds for all C;/T; such that 0< C;/T; < 1 then the left-
hand side of Inequality 12 is non-negative. Hence we haveand
that if = § — 2v/5 and if the taskr; arrives as show by
Figure 4(a) them; meets its deadline. 4-S+(x+2)=1T; (15)

e

bl

| P4
|) 7

=t

- -
RSN

1

(a) The reserves must be large enough to ensure that atdkkt is assigned to two processors receives
enough execution even when it arrives at an unfavorable time

v

X Z X z X Z X time

X X Z
-

i
i
|
o] [5] [a]s] [afel [a]el [
o
i

5

o]
|

Tz" [Tklfi
"
1

45 5§

o - -]

| |
g 2%

time

g T e

5 1

(b) The reserves must not be too large because then they oae itderference on another taskwhich is
only assigned to a single processor.

Figure 4. How to inflate the reserves properly.

If task 7; missed its deadline for the scenario shown in Fig- Combining these yields:

ure 4(b) then the processpwas busy during the time from

when the jobr; arrived until its deadline expired. (This is 18 — 85 +

true because; is a non-split task and non-split tasks are al- lo_split]p] + hi_split[p| + C;/T; > 1 (19)
lowed to be executed in stateandb with a lower priority

than the tasks that were assigned these reserves. See line gewriting yields:

and line 68 in the algorithm in Figure 3.) Because of this

deadline miss it holds that: lo_split[p] + hi_split[p] + % > 85 — 17 (20)
5 (z+2)+C; > T (16) _ T _
Dividing Inequality 16 byT; and applying Equality 15 As a consequence of this reasoning, it follows that if
ields: ;
y lo_splitlp] + hi_splitlp] + 2L < 8V5—17 (21)
5-(x+ 2) T;
T Sx(z22 +C;/T; > 1 a7)
St (@tz) thenr; meets its deadline for the scenario depicted in Fig-
Applying Equality 13 and Equality 14 and rewriting yields: ure 4(b).
5 - (2a + lo_split[p] + hi_split[p]) We have now shown that the choiee= % —2V5 ~
4+ (2a + lo_split[p] + hi_split[p]) +0/T5 > 1 0.0278 and SEP=85-17 ~ 0.88854382 causes deadlines

to be met in the examples shown in Figure 4(a) and Fig-
ure 4(b). We use these parameters in the remainder of the
paper and prove the utilization bound of the algorithm. We
18 — 8v/5 + lo_split[p] + hi_split[p] will do so by first stating lemmas that ensure that (i) heavy
5 (2 + lo_split[p] + hi_split[p]) tasks meet their deadlines, (ii) split tasks do not execnte o

~ 4+ (2a + lo_split]p] + hi_split[p]) (18)

One can show that for the selected and for Iaplit[p] +
hi_split[p] > 0 it holds that:

two or more processors simultaneously and (iii) split tasks

meet their deadlines. Using these lemmas and reasoningProof. Suppose that the lemma was false then there would
about non-split tasks will give us the utilization bound. be a split task that misses a deadline. We can delete all
non-split tasks and then we obtain the same schedule be-
cause split tasks are executed with higher priority (see the
algorithm presented in Figure 3). And hence there is still
a split task that misses a deadline. Let us consider the first
Proof. Follows from the fact that we assume0C; < T; time that a deadline was missed. ketlenote the task that
(which was stated in the introduction). a released this job. Sincg& > TMIN and S=TMIN/4 we
obtain thatT; > 4S5. Let A; denote the time time when this
job arrived. Consequently the deadline (that was missed) is
at time A;+T;. We know (from the algorithm in Figure 2)
that a split task is only permitted to execute on two proces-
sors and they have consecutive index. hendp+1 be de-
note those processor whetds permitted to execute. From
the algorithm in Figure 2, we also have that:

Lemma 2. Assume that tasks assigned to processois 1..
are dispatched by any work-conserving algorithm. Then all
tasks assigned to processorsllmeet their deadlines.

Lemma 3. Assume that tasks are assigned using the algo-
rithm presented in Figure 2 (with SEP%&-17) and tasks

on processors 1L are dispatched by any work-conserving
uniprocessor scheduling algorithm and tasks on processors
L+1..m are dispatched using the algorithm presented in
Figure 3 (withaw = § — 2+/5 and S= TMIN /4). Then it
holds for every task; thatr; never executes on two or more

processors simultaneously. Ci /T, = hi_split[p] + lo_split[p + 1] 27)

Proof. If ; is a nonsplit task then the truth of the lemma
is obvious. We will now prove that the lemma is true also Letz andy be denoted as:

for the case whenm; is a split task. Suppose that the lemma

was incorrect then there must be a titnehen a split task =25 (a+losplitp+1]) (28)
7; executed on two processor simultaneously. Observe that

the algorithm presented in Figure 2 assigns a task to at mos@nd

two processors. Hence executes on two processors. Let o

these processors be denoteandp+1. Due to the assump- y =S (a+ hisplit[p]) (29)
tion on the falsity of the lemma it holds that processand
processop+1 executer; at timet. From the algorithm Fig-
ure 3 it follows thatt < timeap+1] and timebp] < ¢. As a
consequence, it follows that:

Since a deadline was missed for this tasht implies that
() Vt € [A;,A;+T3) such that at timeé processop+1 was
in stateq, it holds thatr; executed and (ii¥ ¢ € [A;,A;+T3)
such that at time processop was in staté, it holds thatr;
timeb|p] < timealp + 1] (22) executed. Consequently, the amount of time that given
This can obviously be rewritten as: execution during;, 4;+1;) s at least:

0 < timealp + 1] — timeb[p] (23) [Ti/S]- (z+y)

Using lines 50-53 in the algorithm presented in Figure 3 —min([Ti/S]- 8 = Ti, (z +)) (30)

yields: Since less thaty; time units was performed by taskdur-

1 < lo_split[p + 1] + hi_split[p] + 2 - (g _ovE) (24) N9[Ai AT itfollows that

From our choice of SEP we have that: [T:/S] - (x +y)
lo_split[p + 1] + hi_split[p] < 8v/5 — 17 (25) —minl[T/S1- S =T (@ +y)) < G (31)
Combining Inequality 25 with Inequality 24 Applying Inequalities 27, 28, 29 and the valueoyields:
1< -8+4V5 (26) [T;/S] -5 (Cs/Ti +9 — 4V5)
But this is impossible. Hence the lemma is true. O —min([T;/S] -8 —T;,S - (C;/T; + 9 — 4V/5)) < C; (32)

Lemma 4. Assume that tasks are assigned using the algo-\ve also know from the assumptions of the lemma that:
rithm presented in Figure 2 (with SEP%&-17) and tasks

on processors 1L are dispatched by any work-conserving C;T; < 85— 17 (33)
uniprocessor scheduling algorithm and tasks on processors

L+1..m are dispatched using the algorithm presented in and due to the choice of:

Figure 3 (witha = § — 2\/5 and S= TMIN /4). Then it

holds that every split task meet its deadline. 4-S<T; (34)

Dividing Inequality 32 byI’; and then subtracting both sides interval [Q,A;+T;) is non-empty becausg < A;. We can

by C;/T; yields: delete all jobs with arrival times beforg; the job released
by 7; is still missed. Let us consider another job released
[Ti/S7]- (S/Ti) - (Ci/Ti+9 — 4V5) from a non-split task;. If this job arrived later tham;+7;-
—min([T;/S]-S/T; — 1, T; then its deadline is later tha#;+7;. Such a job can be

N . A deleted and because of EDF scheduling, the job released by
(S/T) - (Co/Ti +9 = 4V5)) = Ci/T; < 0 (35) 7; still misses its deadline. Let denote the length of the

One can show that under the assumption of Inequality 34Pusy period; that isL=A,+T;-Q. Observe thal. > T; and

it holds that for every”;/T; such that 0< C;/T; < 1 then T > 4 - S and this gives us:
L>4-5 37
0 < [T;/S1-(S/T;) - (Ci/ Ty + 9 — 4V5) N 4D
—min([T,/S] - S)T; -1 Let = denote (lasplitfp]+a) - S and let z denote

(hi_split[p]+c) - S. We know that split tasks meet their dead-
(S/T3) - (Ci/Ti +9 — 4V5)) — Gi/T; (36) lines and hence an upper bound on the amount of work that
is performed by split tasks on procesgoduring the time

Inequality 36 contradicts Inequality 35 and hence the interval of lengthl is at most:

lemmais correct. .
= 15 @+ +

We saw in Lemma 4 that all split tasks meet their dead- _ L
lines. In the following, we will prove that also the non-spli min(L — LgJ S, +2) (38)

tasks meet their deadlines. Let NS|p] denote the set of tasks that are only assigned to

Theorem 1. Assume that tasks are assigned using the algo-Processop. Since a def';\dlin_e was missed and_the processor
rithm presented in Figure 2 (with SEP5&-17) and tasks ~ Was busy during the time interval of length it follows

on processors 1L are dispatched by any work-conserving that:
uniprocessor scheduling algorithm and tasks on processors (Z L£J O +
L+1..m are dispatched using the algorithm presented in I
Figure 3 (witha = 2 — 2V/5 and S=TMIN /4). If U,
< 8V/5-17 then all deadlines are met and no task executes 5] (x+2)+
on two or more processors simultaneously.

L
: n(L— | =] - L 39
Proof. From Lemma 2 it follows that all heavy tasks meet min(LSJ Sz +2)> (39)

their deadlines and clearly they do not execute on two or Dividing by L and using the definition af andz and using
more processors simultaneously. For the processorsiutl.. the knowledge tha% > L] % yields:
that schedules light tasks, we know (from the algorithm pre- ’ ’

sented in Figure 2) that: U[p] < 81/5-17. From Lemma 4 (Z G
it follows that also all light tasks that are split meet their
deadlines and clearly (from Lemma 3) it holds that they do
not execute on two or more processors simultaneously.

7 ENS[p] 7
S - (lo_split[p] + hi_split[p] + 9 — 4/5)

:] +
It remains to prove that on processors L+#4,.all non- S L
split tasks meet their deadlines. We will do so now. min(1 — LEJ) §
Suppose that a non-splittask missed its deadline. If there ST L
are many jobs that missed a deadline then let us consider S - (lo_split[p] + hi_split[p] + 9 — 4\/5)) 51

the job with the earliest deadline. Letdenote the task that L
released that job and Iptdenote the processor to whieh ope can show that for the selected and for lsplit[p] +
was assigned. Let; denote the time when this job arrived pj_gpjit[p] > 0 andZ > 4 - S it holds that;

and consequently the deadline of this job is at timeT;. B -

We know that the processeris busy during J;,4;+T}) 18 — 8v/5 + lo_split[p] + hi_split[p] >
(Thisis true because is a non-splittask and non-splittasks L = S - (lo_split[p] + hi_split[p] + 9 — 41/5)
are allowed to be executed in stateandb with a lower L§J ' L T
priority than the tasks that were assigned these reserees. S) L, S
line 62 and line 68 in the algorithm in Figure 3.) Lét min(1 — L§J "
denote the latest time beforg+T; such that processeris S - (lo_split[p] + hi_split[p] + 9 — 4/5)
busy during the time interval],A;+T;). We know that this i)

And combining them yields: References

(ﬁ) + [1]
T;
Tj GNS[p]
18 — 8v/5 + lo_split[p] + hi_split[p] > 1 2]
Rewriting yields:
(3]
C.
(>)+
J
T, €N S[p]
lo_split[p] + hi_split[p] > 8V/5 — 17 (40) [4]

From the algorithm in Figure 2 we havélp] < 8/5-17.
Hence we obtain that:

[5]
C .
(=)+
rjeNZS[m T [6]

lo_split[p] + hi_split[p] < 8V5 — 17 (41)

Inequality 41 contradicts Inequality 40 and hengaloes (7]
not miss its deadline. It follows that the statement of the
theorem is true. O

(8]
The number of preemptions is stated in Theorem 2.

Theorem 2. Assume that tasks are assigned using the algo- (]
rithm presented in Figure 2 (with SEP%&-17) and tasks [10
on processors 1L are dispatched by any work-conserving
uniprocessor scheduling algorithm and tasks on processors
L+1..m are dispatched using the algorithm presented in
Figure 3 (witha = § — 2v/5 and S=TMIN /4). Let [11]
njobsy(t) denote the maximum number of jobs that can
arrive during a time interval of length and are assigned
to only execute on processer It holds that during a
time interval of length, the algorithm generates at most
12 - [t/TMIN]| + 2 + njobs,(t) preemptions on proces- [13]
sorp.

[12]

Proof. In a time interval, there aré2 - [t/TMIN]| + 2 [14]
preemptions due to the execution of reserves. There argq g
njobs,(t) preemptions due to EDF scheduling in state
Adding these preemptions gives us the theorem. [

) [16]
4. Conclusions

We have proposed an algorithm for scheduling sporadic
tasks. Its utilization bound is 88% and it generates few pre-
emptions. We left open the important question on how to
extend this algorithm for sporadic tasks where the deadline
of a task is not equal to its minimum inter-arrival time.

10

J. Anderson and A. Srinivasan. Mixed pfair/erfair schiaty
of asynchronous periodic taskslournal of Computer and

System ScienceB8(1):157-204, 2004.
B. Andersson. Sporadic multiprocessor scheduling with

few preemptions. Technical report, IPP-HURRAY Research
Group. Institute Polytechnic Porto, HURRAY-TR-070501,

Available at http://www.hurray.isep.ipp.pt, May 2007.
B. Andersson and E. Tovar. Multiprocessor schedulinthwi

few preemptions. 112th IEEE International Conference on
Embedded and Real-Time Computing Systems and Applica-

tions 2006.
T. P. Baker. Comparison of empirical success rates dialo

vs. partitioned fixed-priority EDF scheduling for hard real
time. Technical report, Department of Computer Science,

Florida State University, Tallahassee, July 2005.
S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel.

Proportionate progress: A notion of fairness in resouree al

location. Algorithmicg 15(6):600-625, June 1996.
J. Calandrino, H. Leontyev, A. Block, U. Devi, and J. Ande

son. Litmusrt: A testbed for empirically comparing reahé
multiprocessor schedulers. Rroceedings of the 27th IEEE

Real-Time Systems Symposi2@006.
H. Cho, B. Ravindran, and E. D. Jensen. An optimal real-

time scheduling algorithm for multiprocessors. Proc. of
the IEEE Real-Time Systems Symposipages 101-110,

Rio de Janeiro, Brazil, Dec. 5-8, 2006.
U. Devi and J. Anderson. Tardiness bounds for global edf

scheduling on a multiprocessor.26th IEEE Real-Time Sys-

tems Symposiun2005.
S. K. Dhall and C. L. Liu. On a real-time scheduling prob-

lem. Operations Researci26(1):127-140, 1978.

] A. Khemka and R. K. Shyamasundar. Multiprocessor

scheduling of periodic tasks in a hard real-time environtmen
In Proc. of the International Parallel Processing Symposium

1992.
J. Leung and J. Whitehead. On the complexity of fixed-

priority scheduling of periodic real-time taskBerformance

Evaluation 2(4):237-250, 1982.
J. C. Mogul and A. Borg. The effect of context switches on

cache performance. Broceedings of Architectural Support

for Programming Languages and Operating Systel894.
D.-I. Oh and T. P. Baker. Utilization bounds for n-preser

rate monotone scheduling with static processor assignment

Real Time Systems Jourpab(2):183—-192, 1998.
V. Padmanabhan and D. Roselli. The real cost of context

switching. Technical report, UC Berkeley, 1994.
F. Sebek. The real cost of task pre-emption - measugaf r

time-related cache performance with a hw/sw hybrid tech-
nique. Technical report, Malardalens Hogskola, Vaster

August 2002.
D. Zhu, D. Mossé, and R. Melhem. Multiple-resourceiper

odic scheduling problem: how much fairness is necessary?
In Proc. of the IEEE Real-Time Systems Sympaospages
142-151, Cancun, Mexico, Dec. 3-5, 2003.

A. Background: Details lem denotelem(T},Ts,. .., T,). lem is 57366738 and the
number of jobs during [0jcm) is 10320350. We will now
Example2. The most interesting part of the schedule in this cOmpute the number of preemptions. We will use pfair al-
example is shown in Figure A. Consider+1 tasks to be gorithms to schedule this task set and we will assume that
scheduled on a multiprocessor with identical processors ~ the tasks arrive as frequently as permitted by the sporadic
where the scheduling algorithm is non-preemptive. Tasksmodel.
are permitted to change priorities at any time. Because non- The schedule generated by the pfair algorithrd)?
preemptive scheduling is used, the only migration perahitte [S], early-release ER pfair [1] and bounded fairness (BF)
is that jobs of the same task may execute on different procest16] are illustrated in Figure A. PD? causes 15.47 pre-
sors. We assume that the scheduling algorithm is permitted€mptions/job during [0, lcm). The result is 3.75 for early-
to insert idle time. Let the tasks be characterized as fallow release pfair, and 3.82 for bounded fairness. We have se-
Ty=1 and C,=2. For all i=2..m+1: T;= €~1, C;=2¢t. We lected this example for illustrative purpose but there are
chooser <1/2. We letO; denote the time when arrives task sets where the number of preemptions is even larger.
for the first time. The scheduling algorithm is not permit- If all 7; and C; of tasks are multiplied by - lcm (where
ted to choos®);. Let us consider an arbitrary job release & is a positive integer) then the number of preemptions per
by 7;. Let A, denote the arrival time of that job and let job becomes at leadt - lcm times greater forP D2. With
denote the start time of the execution of that job. Becausethis reasoning, it is easy to see that the number of preemp-
the execution time of; is twice as long ag» we know tions divided by the number of jobs can approach infinity
that every timer, executesr, can arrive at least once such for PD?. By multiplyingC; of all tasks by a constant such
that s; < A, < Ax+Ty < s1+C, and hence there is a thatU, becomes 100% we obtain that ER obtains an infinite
time whenr; andr, must execute simultaneously. Repeat- Number of preemptions per job as well.
ing this argument, we obtain that there is a time when all Al these three algorithms use the concept of lag of a
tasks have to execute. All the+1 tasks must execute on taskr; at time¢. The lag is defined a&g(7;,t)=t - Ci/T;
different processors and we only haveprocessors. Hence allocated(r;,[0,¢)). (We let allocatedf;,[0,¢)) denote the
a deadline is missed. Heré,=2 - (m+1)/m. Choosing amount of time that; was allocated during the time inter-
¢ — 0 yields that the utilization bound is zero. Naturally Vval[0.t)). The reason for the difference in the number of
this example can be used to show that the utilization boundPreemptions is that the constraints on lagf) are differ-
of every non-preemptive uniprocessor scheduling algorith ent. PD? requires at every:-1<lag(i,t)<1. ER pfair re-
is zero as well. This reasoning can be performed for both quires at every: lag(i,t)<1 and bounded fairness requires
periodically and sporadically arriving tasks. Consequgnt at thosef where a task arrives:-&lag(i,t)<1.
the utilization bound of non-preemptive scheduling is zero ~ We can see that relaxing the pfair constraint, as BF does,
for any number of processors and for both periodica”y ar- iS Useful in Ol‘der to I’educe the number Of pl’eemptions. In
riving tasks and Sporadica”y arriving tasks. thIS example we assumed ﬂﬁtand Cl are integers; th|S
is different from what we assume in the other parts of the
Example 3. Considerm processors angh=m + 1 tasks. paper and the reason for doing this is that pfair algorithms
The tasks are characterized Wy € 1.m+1: C;=ml/(m+1), are only defined for the case whefgandC; are integer.
T;=1 andm > 4 and they all arrive simultaneously at time
0. Considef1/(2(m+1)),1—1/(2(m+1))]. Inthis time
interval, a task must execute at least(m+1)-1/(m+1) >
0.6 time units in order to meet deadlines. Since each task
must execute at least 0.6 time units in this interval, attleas
one task is preempted in the time interval. Also, no tasks
arrive in the time interval. Consequently, the number of
preemptions divided by the number of arriving jobs in this
interval is infinite.

Example 4. Considern=6 tasks to be scheduled on=5
processors. We consider the special case when all tasks ar-
rive at time 0 and all tasks arrive periodicallyrimes(k)
denotes th&*" prime number. LeT ;=2 - primes(5)=22,
To=2 - primes(6)=26, T5=2 - primes(7)=34, T,=2

- primes(8)=38, T5=2 - prime(9)=46 and Tg=2
primes(10)=54. LetC1=13, (=15, C3=19, C4=21,
C5=24 and Cz=28. This task set ha$/,=0.6639. Let

11

Tz

\J

A % s HCy . fune

Figure 5. All non-preemptive scheduling algorithms have th e utilization bound 0.

T
T2
Tz
T4
Ts

-
=

Ts

.
Ll

0 22 34 44 54 68 78 92 102 e
PD?
ER

BF

Figure 6. Pfair scheduling algorithms cause a large number o f preemptions. The marks above the
time line show the arrival times and deadlines of tasks. An ar row pointing upwards indicate an arrival
time; an arrow pointing downwards indicate a deadlines. The Gantt charts below the time line show
the schedule of PD?, Early-Release Pfair and Bounded fairness. For each schedu ling algorithm,
the Gantt chart shows the execution of each of the 6 tasks. A bl ack filled box indicates that a task
executes; a white box indicates that a task does not execute. Consequently, a black box followed
by a white box indicates a context switch. If a job makes a cont ext switch but if it has remaining
execution, then it is a preemption.

12

