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Abstract

This paper proposes a new strategy to integrate shared
resources and precedence constraints among real-time
tasks, assuming no precise information on critical sections
and computation times is available. The concept of band-
width inheritance is combined with a greedy capacity shar-
ing and stealing policy to efficiently exchange bandwidth
among tasks, minimising the degree of deviation from the
ideal system’s behaviour caused by inter-application block-
ing. The proposed Capacity Exchange Protocol (CXP) fo-
cus on exchanging extra capacities as early, and not neces-
sarily as fairly, as possible. This loss of optimality is worth
the reduced complexity as the protocol’s behaviour never-
theless tends to be fair in the long run and outperforms
other solutions in highly dynamic scenarios, as demon-
strated by extensive simulations.

1 Introduction

The resource reservation approach is particularly inter-
esting to open real-time systems where new services can
enter the system at any time without any previous knowl-
edge about their execution requirements and tasks’ inter-
arrival times. Tasks can be accepted based only on ex-
pected requirements and handled through dedicated servers
that prevent the served tasks from demanding more than the
reserved amount.

The Capacity Sharing and Stealing (CSS) scheduler [14]
was proposed to better handle soft tasks’ overloads in highly
dynamic open systems, effectively lowering the mean tar-
diness of periodic guaranteed services. It offers the flexi-
bility to consider the coexistence of guaranteed and best-
effort servers in the same system, reducing isolation in a
controlled fashion in order to donate reserved, but still un-
used capacities to currently overloaded servers. However,
tasks were assumed to be independent. A challenging prob-

lem in open real-time systems is how to schedule tasks that
share resources and exhibit precedence constraints, without
a complete knowledge about their behaviour.

The purpose of this paper is to address both problems,
proposing the Capacity Exchange Protocol (CXP), integrat-
ing the concept of bandwidth inheritance [9] with the greedy
capacity sharing and stealing policy of CSS. Rather than
trying to account borrowed capacities and exchanging them
later in the exact same amount, CXP focus on greedily ex-
changing extra capacities as early, and not necessarily as
fairly, as possible. The achieved results suggest that the fol-
lowed approach effectively minimises the impact of band-
width inheritance on blocked tasks, outperforming other
available solutions.

2 System model

This work focus on dynamic open real-time systems.
Services can arrive at any time, requesting a previously un-
known amount of the system’s resources and stay in the sys-
tem for an unknown period of time. If, given the current
system’s load, the request can be guaranteed, the service is
accepted and the requested amount is reserved.

A service can be composed by a set of real-time and
non-real-time tasks which can generate a virtually infinite
sequence of jobs. The ;%" job of task 7; arrives at time i j,
is released to the ready queue at time r; ;, and starts to be
executed at time s; ; with deadline d; ; = a; ; + T, with T
being the period of 7;. The arrival time of a particular job
is only revealed during execution, and the exact execution
requirements e; ; and which resources will be accessed and
by how long will be held can only be determined by actually
executing the job to completion until time f; ;. These times
are characterised by the relations a; ; < r; ; < ;5 < fi ;.

Tasks may simultaneously need exclusive access to one
or more of the system’s resources R, during part or all of
their execution. If task 7; is using resource R;, it locks that
resource. Since no other task can access R; until it is re-



leased by 7, if 7; tries to access R; it will be blocked by
7;. Blocking can also be indirect (or transitive) if although
two tasks do not share any resource, one of them may still
be indirectly blocked by the other through a third task.

Tasks may also exhibit precedent constraints among
them. A task 7; is said to precede another task 7y if 7
cannot start until 7; is finished. Such a precedence relation
is formalised as 7; < 75, and guaranteed if f; ; < sp ;.
Precedence constraints are defined in the service’s descrip-
tion at admission time by a directed graph G, where each
node represents a task and each directed arc represents a
precedence constraint 7; < 7 between two tasks 7; and 7.
Given a partial order < on the tasks, the release times and
the deadlines are said to be consistent with the partial order
ifry <1y =mr; <rpyandd; ; <dy ;.

Tasks are associated to servers characterised by a pair
(Qi,T;), where Q); is the server’s maximum reserved capac-
ity and 7; its period. These values are based on average esti-
mations for soft tasks. The schedulability of hard real-time
tasks can be guaranteed as long as it is possible to perform
an accurate analysis and bound the execution times of hard
tasks, their minimum inter-arrival times, and the duration of
the accessed critical sections and maximum blocking time,
independently of the behaviour of other tasks in the system.
This may be possible in open systems if resources are or-
derly accessed through library functions whose WCET can
be determined. Please refer to [13] for a detailed analysis.

3 Capacity Sharing and Stealing

The CSS scheduler [14] extends CBS [1] to efficiently
handle soft-tasks’ overloads in highly dynamic open real-
time systems, effectively minimising the mean tardiness of
guaranteed periodic jobs. It offers the flexibility to consider
the coexistence of guaranteed isolated and best-effort non-
isolated servers, combining the ability to efficiently reclaim
unused allocated capacities when jobs complete in less than
their budgeted execution time with the ability to steal re-
served capacities from inactive non-isolated servers used to
schedule sporadic best-effort jobs.

CSS reduces isolation in a controlled fashion in order
to donate reserved, but still unused, capacities to currently
overloaded servers. For an isolated server, a specific amount
of the CPU is ensured to be available every period. On the
other hand, an inactive non-isolated server can have some
or all of its reserved capacity stolen by active overloaded
servers.

A server S; is active at instant ¢ if (i) the served task is
ready to execute; (ii) is executing; or (iii) the server is sup-
plying its residual capacity to other servers until its dead-
line. S; is inactive if (i) there are no pending jobs to serve;
and (ii) the server has no residual capacity to supply to the
other servers.

State transitions are determined by the (i) arrival of a new
job, (ii) capacity exhaustion, or (iii) non-existence of pend-
ing jobs at replenishment time. An inactive server becomes
active with the arrival of the new jth job at time a; j, if
a;j > d;j—1. If a;; < d; ;—1, the job is only released at
the next 5;’s replenishment instant r;. On the other hand,
an active server becomes inactive if (i) all its reserved ca-
pacity is consumed and there are no pending jobs to serve
(capacity exhaustion can occur while supplying its residual
capacity to other servers or using its capacity to finish a job);
or (ii) there are no pending jobs at replenishment time.

To eliminate the need of extra queues or additional
servers’ states to dynamically account consumed capacities,
each server keeps a pointer to the currently consumed ca-
pacity, ensuring that at time ¢, the currently executing server
S; is using a residual capacity c, originated by an early
completion of another active server, its own reserved ca-
pacity ¢;, or is stealing capacity cs from an inactive non-
isolated server (by that order). The server to which the
accounting is going to be performed is dynamically deter-
mined at the time instant when a capacity is needed, using
the following rules:

e Rule A: Whenever a server S; completes its k" job
and there is no pending work, its remaining capacity
c; > Oisreleased as residual capacity ¢, = c; that can
immediately be reclaimed by eligible active servers,
until the currently assigned S;’s deadline d; ;. S; is
kept active with its current deadline.

e Rule B: The next server S; scheduled for execution
points to the earliest deadline server .S, from the set
of eligible active servers with residual capacity ¢, > 0
and deadlines d, < d; . S; consumes the pointed
residual capacity c¢,, running with the deadline d,. of
the pointed server. Whenever c,. is exhausted and there
is pending work, S; disconnects from S, and selects
the next available server ). (if any).

e Rule C: If all available residual capacities are ex-
hausted and the current £*" job is not complete, the
server consumes its own reserved capacity c; either
until job’s completion or ¢;’s exhaustion. On a ¢;’s
exhaustion, S; is kept active with its current deadline
di .

e Rule D: With pending work and no reserved capacity
left, S; connects to the earliest deadline server S, from
the set of eligible inactive non-isolated server with re-
maining capacity ¢ > 0 and deadlines d; < d; . S;
steals the pointed inactive capacity ¢, running with its
current deadline d; ;. Whenever c, is exhausted and
the job has not been completed, the next non-isolated
capacity ¢, is used (if any).



Note that at a particular time ¢ there is only one server
pointing to another server. Also note that a CSS server sus-
pends its capacity recharging and deadline update until a
specific replenishment time r;, set to the current server’s
deadline, implementing a hard reservation (refer to [16] for
a description of hard vs soft reservations). At replenishment
time 7;, unconsumed capacities are discarded.

As jobs’ execution requirements are not known before-
hand, it makes sense to devote as much excess capacity
as possible to the currently executing server, maximising
its chances to complete the current job before its deadline
(Rule B). A greedy capacity reclaiming has a reduced com-
putational complexity and minimises deadline postpone-
ments and the number of preemptions [11].

When all valid residual capacities and the reserved ca-
pacity of server S; are exhausted and there is still pending
work, S; is allowed to steal inactive non-isolated capacities
to handle its current overload (Rule D). However, capacity
stealing is interrupted whenever .S, is preempted or a replen-
ishment event occurs on the capacity being stolen. Also,
since \S; keeps its current deadline d; ;, > ds when stealing
non-isolated capacities, capacity stealing is also interrupted
when a new job for the inactive non-isolated server S, ar-
rives. Naturally, Ss becomes active with its current remain-
ing capacity.

CSS (i) achieves isolation among guaranteed tasks; (ii)
efficiently reclaims unused computation time, exploiting
early completions; (iii) allows an overloaded server to steal
reserved capacities from inactive non-isolated servers; and
(iv) reduces the mean tardiness of periodic guaranteed jobs
by assigning all available capacity to the currently executing
server.

4 Sharing resources in open systems

A great amount of work has been addressed to minimise
the adverse effects of blocking when considering shared re-
sources among tasks. Resource sharing protocols such as
the Priority Ceiling Protocol [18], Dynamic Priority Ceiling
[6], and Stack Resource Policy [2] have been proposed to
provide guarantees to hard real-time tasks accessing mutu-
ally exclusive resources. Solutions based on these protocols
were already proposed [8, 5, 4, 3] but they all require a prior
knowledge of the maximum resource usage and cannot be
directly applied to open real-time systems.

The Bandwidth Inheritance (BWI) protocol [9], on the
other hand, extends CBS to work in the presence of shared
resources without requiring any prior knowledge about the
tasks’ structure and temporal behaviour by adopting the Pri-
ority Inheritance Protocol (PIP) [18] to handle task block-
ing. Although the PIP was initially thought in the context of
fixed priority scheduling, it can be applied to dynamic pri-
ority scheduling, holding its basic properties: it limits the

worst-case blocking that must be endured by a job j to the
duration of at most min(n,m) critical sections where n is
the number of jobs with lower priority than j and m the
number of different semaphores used by j.

However, the main drawback of BWI is its unfair-
ness when distributing the original bandwidth reservations,
which can have a huge negative impact in the overall sys-
tem’s performance. A blocking task can use most (or all)
of the reserved capacity of one or more blocked tasks, with-
out any later compensation of the tasks it blocked. Blocked
tasks may then lose deadlines that could otherwise be met.
At the same time, servers keep postponing their deadlines
and recharging their capacities on every capacity exhaus-
tion. This behaviour potentially severely delays blocked
tasks with earlier deadlines, which may finish later than
tasks with longer deadlines. It is known that allowing a task
to use resources allocated to the next job of the same task
may cause future jobs of that task to miss their deadlines by
larger amounts [14, 10].
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Figure 1. Sharing resources with BWI

Figure 1 illustrates these problems with a simple ex-
ample. Three servers S; = (2,5), S2 = (1,3), and
Ss = (1,5), characterised by reserved capacity and period
respectively, serve three tasks with execution times equal
to their respective servers’ reserved capacity. Tasks 71 and
7o share access to resource R for the entire duration of their
execution times, while 73 is independent from the other two.

Note how an early arrival of the second job of task 7; at
time ¢ = 4 allows 77 to consume 3 units of execution in the
interval [0, 5], more than its initial reservation. The nonex-
istence of a compensation mechanism and the automatically
deadline update are responsible for the deadline miss of the
second job of task 75.

To address this issue, BWE [20] and CFA [17] inte-
grate bandwidth compensation mechanisms into BWI, try-



ing to fairly compensate blocked servers in exactly the same
amount of capacity that was consumed by the blocking task
while executing in the blocked server. The approach used
in BWE is to only exchange capacities between tasks in
the same resource sharing group. When a task uses other
servers’ capacities, it will later try to compensate blocked
servers in the exactly same amounts. To achieve this, BWE
stores a global n * n matrix (n is the number of servers in
the system) to record the amount of budget that should be
exchanged between servers, a budget list at each server to
keep track of available budgets, and dynamically manages
resource groups at each blocking and releasing of a shared
resource. CFA’s approach follows a similar goal and re-
quires each server to manage two task lists with different
priorities and a counter that keeps track of the amount of
borrowed capacity from a higher priority server, convert-
ing the inheritor into a debtor. Contracted debts are payed
by blocking servers, until the blocked servers’ counters are
successively decremented to zero or can be cleared at times
called singularities, defined as instants in the evolution of
the system in which the last pending job is executed.

While both approaches will generally improve the per-
formance of BWI, their increased computational complex-
ity and the fact that CSS tends to fairly distribute residual
capacities in the long run [14], lead us to propose an ef-
ficient capacity exchange protocol that merges the benefits
of a smart greedy capacity reclaiming and stealing policy
with the concepts of bandwidth inheritance and hard reser-
vations, allowing reserved capacities to be exchanged more
intelligently and with a lower overhead.

4.1 The Capacity Exchange Protocol

Each server maintains only one list of served tasks or-
dered by tasks’ deadlines. Initially, each server has only
its dedicated task in its task list and, as long as no task is
blocked, servers behave as in the original CSS scheduler.
With bandwidth inheritance, a task can be added to more
than one task list and be executed on more than its dedi-
cated server, using the following rules:

e Rule E: When a high priority task 7; is blocked by a
lower priority task 7; when accessing a resource R, 7;
is inherited by server .S;. The execution time of 7; is
now accounted to the server, currently pointed by S;.
If task 7; has not yet released the shared resource R
when S; exhausts all the capacity it can use, 7; contin-
ues to be executed by the earliest deadline server with
available capacity that needs to access R, until 7; re-
leases R.

¢ Rule F: If a blocking task 7; is inherited by a blocked
server S;, delaying the execution of task 7;, then 7; is
also added to S;’s task list. When task 7; is unblocked

it is executed by the earliest deadline server which has
7; in its task list until it is finished or the server ex-
hausts all the capacity it can use(whatever comes first).

e Rule G: If at time ¢, no active server with pending jobs
can continue to execute using some of the rules B, C,
or D, and there is at least one active server .S, with
residual capacity greater than zero, available residual
capacities with deadlines greater than the one assigned
to the current job jy, 5 of the earliest deadline server S,
with pending work can be used to execute jp, 5, through
bandwidth inheritance.

The integration of the bandwidth inheritance mechanism
in the dynamic budget accounting of CSS is described in
Rule E. Recall that the currently executing server always
consumes the pointed capacity, either its own or another
valid available capacity in the system.

Rule F allows a blocked task 7; that has been delayed in
its execution to be executed by the earliest deadline server
with available capacity which has 7; in its task list, that may
now be different from .S;. Note that capacity exchange due
to blocking is performed without the goal of a fair compen-
sation, reducing the complexity and overhead of CXP.

The hard reservation approach has the advantage of a
more constant rate in tasks’ execution. However, in gen-
eral, it may cause the loss of more deadlines since once
a server’s capacity is depleted capacity recharging is sus-
pended until the server’s next activation. To minimise this
drawback Rule G allows the use of bandwidth inheritance
to execute unfinished tasks, including those from servers
that do not directly or indirectly share any resource with
the selected server, if at a particular time no active server
in the system is able to reclaim new residual capacities or
steal inactive non-isolated capacities to continue executing
its pending work after a capacity exhaustion.

Since the queue of active servers is ordered by deadlines,
CXP easily keeps track of the earliest deadline server with
pending work and no capacity left S, as well as the earli-
est deadline server with available residual capacity S, when
traversing the queue to select the next running server. If the
end of the queue of active servers is reached without finding
a server with pending work and available capacity, server S,
is selected as the running server and inherits the first task of
Sp’ list, executing it consuming its own residual capacity.
Since a server always starts to consume the earliest residual
capacity available, no overhead is introduced to correctly
account for the consumed capacity.

Note that Rules A and B of the original CSS scheduler
ensure that residual capacities originated by earlier com-
pletions can be reclaimed by any active eligible server.
Blocked servers can then take advantage of any residual ca-
pacity, even if it is released by a server that does not share
any resource with the reclaiming server. It has been proved



that residual capacity tends to be reclaimed in a fair manner
among needed servers across the time line [11, 14].

While preserving the isolation principles of independent
tasks and inheritance properties of critical sections of BWI,
CXP introduces significant improvements in the system’s
performance by efficiently exchanging capacities between
hard reservation servers. Figure 2 illustrates CXP’s be-
haviour when scheduling the same set of tasks used to anal-
yse the BWI’s drawbacks in Figure 1.
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Figure 2. Sharing resources with CXP

At time t = 1, task 75 is added to server Sp’s task list
(Rule F). At time t = 2, task 75 is unblocked and is exe-
cuted by server Sy, since it is the earliest deadline server
with remaining capacity with 7o in its task list (the same
happens at time ¢ = 8). Note that despite the earlier arrival
of task 7y ’s second job at time ¢ = 4, S;’s deadline is not set
to d; 2 = 9 and the job is only released at time ¢ = 5, imple-
menting a hard reservation (see Section 3 for details). Also
note that capacities are exchanged between all the system’s
servers and not only within a specific resource group, max-
imising the use of extra capacities to handle overloads and
still meet deadlines. An overload of the independent task 73
was handled by reclaiming the residual capacity originated
by an earlier completion of task 7 at time ¢t = 12.

S Handling precedence constraints

Additional constraints on real-time systems arise when
the execution of the data’s producer must precede the exe-
cution of the consumer of that data. Such precedence con-
straints may affect the system’s schedulability, and in more
complex scenarios, both shared resources and precedence
constraints can be present among tasks.

It is well known that precedence constraints can be guar-
anteed in real-time scheduling by priority assignment since,
in dynamic scheduling, any task will always precede any
other task with a later deadline. This suggests that prece-
dence constraints that are consistent with the tasks’ dead-
lines do not affect the schedulability of the task set. In fact,
the idea behind the consistency with the partial order is to
enforce a precedence constraint by using an earlier dead-
line.

Formal work exists showing how to modify deadlines in
a consistent manner so that EDF can be used without vi-
olating the precedence constraints. Garey et al. [7] show
that the consistency of release times and deadlines can be
used to integrate precedence constraints in the task model.
Spuri and Stankovic [19] introduce the concept of quasi-
normality to give more freedom to the scheduler so that
it can also obey shared resource constraints, and provide
sufficient conditions for schedules to obey a given prece-
dence graph, proving that with deadline modification and
some type of inheritance it is possible to integrate prece-
dence constraints and shared resources. Mangeruca et al.
[12] consider situations where the precedence constraints
are not all consistent with the tasks’ deadlines and show
how schedulability can be recovered by considering a con-
strained scheduling problem based on a more general class
of precedence constraint.

However, all these works base their modifications of
deadlines on a previous knowledge of the tasks’ execution
times. To make use of these previous results in open real-
time systems, the consistency of release times and dead-
lines with the partial order must be enforced considering
estimated execution times when applying some known tech-
nique at admission time. This immediately raises two ques-
tions: (i) what happens if a precedent task requires more
capacity than declared? (ii) how can a task know if its pre-
decessors have already finished? CXP provides answers for
both questions and can be used to handle blocking due to
precedence violations in the same way as for a critical sec-
tion blocking, minimising the impact of misbehaved tasks
on the overall system’s performance. We base our approach
on the idea that if task 7; < 7; has not yet finished at time
i k» when the k" instance of 7; is selected to execute, it is
blocking its successor.

Given a partial order < on the tasks, servers’ state
changes in CXP allow an easy verification of the current
condition of a precedent task 7;. Recall that a server that
has completed its job is only kept active until its deadline
if it is supplying some residual capacity originated by an
earlier completion of its previous job.

o Rule H: If a precedent server S; is active at time s; j,
S; checks the current value of S;’s residual capacity.
If its equal to zero, then 7; has not yet been completed
and must be added to S;’s task list.



Note that a server that is scheduled for execution al-
ready checks the current state of the residual capacity of
earlier deadline servers as it tries to consume them before
its own reserved capacity which allows us to handle prece-
dence constraints as an access to a shared resource without
requiring any previous knowledge about tasks’ exact com-
putations times.

Figure 3 shows a possible scheduling of three servers
S = (2,8), S2 = (4,10), and S3 = (3,15) used to
serve three tasks, based on their estimated average execu-
tion times and periods, that exhibit the precedence con-
straints 71 < Ty < T3.
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Figure 3. Precedence constraints with CXP

Time ¢ = 3 illustrates the situation where the successor
server knows it has to complete its predecessor’s task. Since
S is still active and its residual capacity is set to zero, task
71 has not yet been completed and must continue to be ex-
ecuted in Sy prior to 75’s execution. On the other hand, at
time ¢ = 6 and ¢ = 10, servers can start executing their
dedicated tasks. At time t = 6, So becomes inactive by
completing 7o and exhausting its capacity. Its inactive state
clearly indicates that task 7 has been completed and S5 is
not able to supply any residual capacity to other servers. At
time ¢ = 10, however, the predecessor server S; is active
but with residual capacity available. This is only possible
when a server has completed its current task using less that
its budgeted capacity.

6 Evaluation

Extensive simulations were conducted to evaluate CXP’s
flexible management of the original reserved capacities in
the presence of shared resources and precedence constraints
in dynamic open systems. Multiple and independent runs
with initial conditions and parameters but different seeds
for the random values were used to drive the simulations
[15], using a discrete uniform distribution.

The first study compared the cumulative capacity that

was consumed by the shortest period (SP) and longest pe-
riod (LP) tasks of a randomly generated task set when tasks
share resources to the amount of capacity that would be con-
sumed if the same set of tasks did not shared any resources.

Different sets of 5 tasks were randomly generated, with
varied execution requirements ranging from 20 to 60 units,
and period distributions ranging from 100 to 300 time units,
always ensuring a system’s utilisation U < 1. An isolated
server was assigned to each task, with a reserved capacity
@; equal to the task’s execution requirements and period 7;
equal to the task’s period. Each job consumed the totality of
its dedicated server’s capacity accessing the shared resource
R, with a new job being released immediately after a task
has completed its current job.
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Figure 4. Capacity consumed by the SP task

Each simulation ran until ¢ = 250000, producing a large
variety of inheritance and preemption situations among
tasks, and was repeated several times to ensure that stable
results were obtained. The cumulated capacities consumed
by the SP and LP tasks were recorded every 200 time ticks
and the mean values of all generated samples plotted in Fig-
ures 4 and 5, respectively.
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Figure 5. Capacity consumed by the LP task

Sustaining the conclusions drawn from the examples in
Section 4, the results show that BWI is affected by the ab-
sence of a compensation mechanism. In contrast, CXP’s
efficient capacity exchange mechanism ensures that both
tasks are able to get their allocated capacities even when
accessing a shared resource.



A second study compared the efficiency of the studied
protocols BWI, BWE, CFA and CXP in lowering the mean
tardiness of a set of periodic jobs with variable execution
times in highly dynamic scenarios. By focusing on the
mean tardiness of tasks, the study evaluated the algorithms’
ability to effectively reclaim available capacities to compen-
sate blocked tasks.

At each simulation run, a random number of servers with
a system’s utilisation up to 70% contended for the system’s
resources with a dynamic traffic that demanded up to 30%
of the system’s capacity. All servers were generated with
varied reserved capacities (); ranging from 15 to 50 units of
execution and period distributions ranging from 50 to 500
time units, creating different types of load, from short to
long deadlines and capacities. Tasks arrived at randomly
generated times and remained in the system for a variable
period of time with each job having an execution time in
the range [0.8Q;, 1.2Q);] of its dedicated server’s reserved
capacity, originating both overloads and residual capacities
due to early completions. There were 6 resources, whose
access and duration of use was randomly distributed by the
servers, creating direct and transitive blocking situations
and distinct resource groups.

For a fair performance comparison against the other al-
gorithms only isolated servers were used in CXP, disabling
its ability to steal non-isolated capacities on overloads.
The significant improvement on the system’s performance
achieved by allowing active overloaded servers to steal in-
active non-isolated capacities, particularly in the presence
of a large variation in jobs’ computation times is detailed in
[14].

Figure 6 illustrates the performance of the evaluated pro-
tocols as a function of the system’s load, measuring the
mean tardiness of periodic tasks under random workloads
for different probabilities of jobs’ overload. The mean tar-
diness was determined by Y., trd;/n, where ¢rd; is the
tardiness of task 7;, and n the number of evaluated tasks.
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Figure 6. Performance in dynamic scenarios

As expected, the achieved results clearly justify the use
of a capacity exchange mechanism to minimise the impact

of blocking on the system’s performance. BWE and CFA
outperform BWI and achieve a similar performance when
scheduling tasks with variable execution times since both
algorithms are unable to reclaim residual capacities orig-
inated by early completions and exchange capacities only
within resource groups, wasting available resources to han-
dle overloads and minimise the number of deadline misses.
Also, both algorithms immediately recharge a server’s ca-
pacity and extend its deadline at every capacity exhaustion,
contributing for future jobs of that task to miss their dead-
lines by larger amounts. On the other hand, CXP effec-
tively improves system’s performance, outperforming the
currently available solutions. Its greedy capacity reclaim-
ing policy does not restrict capacity exchanging within re-
source groups and takes advantage of early completions to
advance tasks’ execution, and the use of hard reservations
in conjunction with bandwidth inheritance maximises the
amount of capacity that can be exchanged among servers
without postponing deadlines.

A third study evaluated the complexity of the different
approaches followed in BWE, CFA, and CXP by measur-
ing their overhead in terms of the needed time and mem-
ory consumption to schedule the randomly generated tasks
sets of the second study, using the base BWI protocol as a
reference. Although the three algorithms need almost the
same time as BWI to schedule each task set they substan-
tially differ in terms of data storage demands to manage
the capacity exchange process. BWE’s memory demands
grow polynomially with the number of servers and shared
resources. Recall that BWE requires a global n*n matrix to
record the amount of capacity that must be exchanged be-
tween servers and an extra list at each server to keep track
of available capacities, which required an average of 38.2%
more memory than BWI. CFA enhances BWI by adding a
new task queue to each server and one extra variable for
each contracted debt between servers S; and S;, which de-
manded an average of 17.8% more memory than BWI. On
the other hand, CXP focuses on exchanging reserved capac-
ities as early, and not necessarily as fairly, as possible. As
such, it does not account the amount of borrowed capacity
on each server neither manages individual resource groups.
Such policy only demanded an average of 5.7% more mem-
ory than BWI, as the number of tasks in each server’s task
list can be higher in CXP when applying Rules F and G.

The fourth study compared the time and memory needed
by CXP to schedule the same task set with and without
precedence constraints among its tasks. 10000 tasks sets
were randomly generated, with different system’s utilisation
in the range [0.6, 1.0]. For each task set, a random set of
precedence constraints consistent with the tasks deadlines
was determined. Each job had random execution require-
ments in the range [0.7Q);, 1.3Q;] of its dedicated server’s
reserved capacity. Achieved results allow us to conclude



that CXP is able to handle precedence constraints among
tasks whose exact behaviour is not known beforehand with-
out any noticeable overhead.

7 Conclusions

To schedule tasks that share access to some of the sys-
tem’s resources and exhibit precedence constraints, with-
out a complete and previous knowledge of their behaviour
is a very challenging problem. This paper addressed both
types of constraints and proposed the Capacity Exchange
Protocol (CXP), a new strategy that integrates the concept
of bandwidth inheritance with the efficient greedy capacity
sharing and stealing policy of CSS to minimise the degree
of deviation from the ideal system’s behaviour caused by
inter-application blocking.

CXP focus on greedily exchanging extra capacities as
early, and not necessarily as fairly, as possible, achieving a
better system’s performance when compared against other
solutions, has a lower overhead, and introduces a novel
approach to integrate precedence constraints into the task
model.
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