

Security in Wireless Sensor Networks: A
formal verification of protocols

Conference Paper

CISTER-TR-190506

Giann Nandi*

David Pereira*

Martín Vigil

Ricardo Moraes

Analúcia Schiaffino Morales

Gustavo Araújo

Conference Paper CISTER-TR-190506 Security in Wireless Sensor Networks: A formal verification ...

© 2019 CISTER Research Center
www.cister-labs.pt

1

Security in Wireless Sensor Networks: A formal verification of protocols

Giann Nandi, David Pereira, Martín Vigil, Ricardo Moraes, Analúcia Schiaffino Morales, Gustavo Araújo

CISTER Research Centre

Polytechnic Institute of Porto (ISEP P.Porto)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail:

https://www.cister-labs.pt

Abstract

The increase of the digitalization takingplace in various industrial domains is leading developerstowards the
design and implementation of moreand more complex networked control systems (NCS)supported by Wireless
Sensor Networks (WSN). Thisnaturally raises new challenges for the current WSNtechnology, namely in what
concerns improved guaranteesof technical aspects such as real-time communicationstogether with safe and
secure transmissions.Notably, in what concerns security aspects, severalcryptographic protocols have been
proposed. Since thedesign of these protocols is usually error-prone, securitybreaches can still be exposed and
maliciously exploitedunless they are rigorously analyzed and verified. Inthis paper we formally verify, using
ProVerif, threecryptographic protocols used in WSN, regarding thesecurity properties of secrecy and authenticity.
Thesecurity analysis performed in this paper is more robustthan the ones performed in related work. Our
contributionsinvolve analyzing protocols that were modeledconsidering an unbounded number of participants
andactions, and also the use of a hierarchical system toclassify the authenticity results. Our verification showsthat
the three analyzed protocols guarantee secrecy,but can only provide authenticity in specific scenarios.

Security in Wireless Sensor Networks: A formal

verification of protocols

Giann Spilere Nandi∗, David Pereira∗, Martı́n Vigil§, Ricardo Moraes§

Analúcia Schiaffino Morales§, and Gustavo Araújo§

∗CISTER - Research Centre in Real-Time & Embedded Computing Systems– Portugal
§Universidade Federal de Santa Catarina – Brazil

Email: {giann,drp}@isep.ipp.pt {martin.vigil, ricardo.moraes, analucia.morales, gustavo.araujo}@ufsc.br

Abstract—The increase of the digitalization taking place in
various industrial domains is leading developers towards the
design and implementation of more and more complex networked
control systems (NCS) supported by Wireless Sensor Networks
(WSN). This naturally raises new challenges for the current WSN
technology, namely in what concerns improved guarantees of
technical aspects such as real-time communications together with
safe and secure transmissions. Notably, in what concerns security
aspects, several cryptographic protocols have been proposed.
Since the design of these protocols is usually error-prone, security
breaches can still be exposed and maliciously exploited unless
they are rigorously analyzed and verified. In this paper we
formally verify, using ProVerif, three cryptographic protocols
used in WSN, regarding the security properties of secrecy and
authenticity. The security analysis performed in this paper is
more robust than the ones performed in related work. Our
contributions involve analyzing protocols that were modeled con-
sidering an unbounded number of participants and actions, and
also the use of a hierarchical system to classify the authenticity
results. Our verification shows that the three analyzed protocols
guarantee secrecy, but can only provide authenticity in specific
scenarios.

Index Terms—Wireless Sensor Networks, Security, Formal
Verification

I. INTRODUCTION

The latest trends that are influencing automation technolo-

gies are the Internet of Things (IoT) and Cyber-Physical

Systems (CPS). The application of these paradigms leads to

the definition of the so-called Industry 4.0 concept, making it

possible to create intelligent products, intelligent production

and intelligent services [1].

Recent studies indicate that within a few years, there will

be billions of devices connected to the Internet, forming

the Web of Things (WoT), once the devices that make up

the IoT also become available on the World Wide Web [2].

The effective deployment of Industry 4.0 and WoT depends,

amongst other things, on the development of 5G networks,

which is a generation of telecommunication networks that

This work was partially supported by National Funds through FCT/MCTES
(Portuguese Foundation for Science and Technology), within the CISTER
Research Unit (UID/CEC/04234); also by the Norte Portugal Regional Op-
erational Programme (NORTE 2020) under the Portugal 2020 Partnership
Agreement, through the European Regional Development Fund (ERDF) and
also by national funds through the FCT, within project NORTE-01-0145-
FEDER-028550 (REASSURE). The authors would also like to acknowledge
the support from the following funding agency: CNPq-Brazil (400508/2014-
1).

will combine both wired and wireless communications from

providers of public and private access [3].

To deal with the diversity of wireless IoT systems, 5G

technology will need to integrate different networking tech-

nologies, ensuring the same level of Quality of Service (QoS)

offered by the wired technologies. In this context, several

wireless technologies are being developed and it is likely that,

in the near future, a widely-accepted standard emerges from

current wireless networking solutions, where the protocols

IEEE 802.11 and IEEE 802.15.4 are the leading candidates.

In particular, the IEEE 802.15.4 protocol is the reference

standard used in many Wireless Sensor Network (WSN)

technologies, such as ZigBee, WirelessHart, ISA100, etc.

Currently, there is a trend towards the use of these technolo-

gies in many application areas, including smart grids, smart

agriculture, structural health monitoring, and Industry 4.0. Two

of the major requirements of these applications areas are the

support of QoS and security [4], [5]. Regarding the latter

aspect, one of the main efforts must be on providing security

protocols that present proofs that they comply with the security

requirements of the target applications. Security protocols

describe the actions that need to be followed in order to

establish, despite of the possible influence of attackers, secure

data communication between the communicating devices of a

network. As WSN nodes are resource limited entities, the use

of traditional security protocols is not a suitable choice [6].

Consequently, WSN need protocol specifications that do not

require as much computation power and energy as traditional

protocols do [7].

It is known that getting security protocols to work with no

flaws is something challenging. There are numerous examples

of protocols that were considered to be secure until proven

wrong by some kind of formal verification. The classical ex-

ample is the protocol proposed by Needham and Schroeder [8],

which two decades after being proposed, Lowe [9] showed to

be not secure.

Achieving secure communication with security protocols is

the result of successfully guaranteeing security properties [6].

Two important security properties are secrecy and authenticity.

Secrecy is the ability to hide confidential information from

unauthorized participants in the network [10]; authenticity

is the guarantee regarding the identity of the sender of a

message in a hostile environment with numerous participants

978-1-7281-2927-3/19/$31.00 ©2019 IEEE 425

[10]. Lowe [11] proposes a four-level hierarchical system to

define the authenticity strength of messages exchanged by two

participants, where each level provides stronger guarantees of

authenticity than the previous one in the hierarchy. Basically,

these levels differ on: a) how confident one participant is that

another participant follows the protocol properly; b) how con-

fident participants are that they agree on the same exchanged

data; and c) whether there is an one-to-one correspondence

between messages participants exchange. There are other

security properties that can be verified in security protocols,

but, this paper only addresses secrecy and authenticity due to

the limitations of the tool used for the formal verification.

a) Contributions: We describe the efforts and techniques

used to formally verify the WSN protocols presented in [12]–

[14]. To the best of our knowledge, these protocols have not

been formally verified with respect to secrecy and authenticity.

Our approach uses ProVerif1, an automatic cryptographic

protocol verifier that is based on the Dolev-Yao model. Our

verification is not bounded either by a maximum number

of participants or a maximum number of actions. In other

words, our results are valid independently of the size of the

target WSN, as well as the number of actions that can be

performed by the involved participants. Results show that the

three protocols provide secrecy. In contrast, they differ in the

levels of authenticity they provably guarantee.

b) Paper Organization: This paper is organized as fol-

lows. In Section 2 we provide a short overview of the use of

formal methods for the verification of correctness of security

protocols. In Section 3 we present our models of the protocols

that were verified, together with the formal verification per-

formed on them. In Section 4, we point to some related work

and compare them with some aspects of our work. Finally, in

Section 5, we present our conclusion on the work described

in this paper, and point the readers to future work.

II. FORMAL VERIFICATION

Even though the execution flow of security protocols is

usually simple, it is not an easy task to design them without

any security flaw [15]. Formal verification is a methodology

that applies strong mathematical foundations and techniques

to identify possible problems in many different areas of

application.

Among the available tools to perform formal verification of

security protocols, we chose ProVerif, a tool that is based on

the Symbolic model (Dolev-Yao). Symbolic models [8], [16]

represent the attackers as agents capable of: 1) permeating

themselves in between the communication of two participants

in any process of the protocol; 2) modifying and copying

fragments of information sent in the network; 3) replicating

messages; 4) forging messages; 5) keeping track of all mes-

sages sent in the network; 6) actively participating as normal

agents in the protocol; and 7) receiving responses sent to

other participants. One of the reasons to adopt ProVerif is its

successful application in previous works, notably [17]–[20].

1http://prosecco.gforge.inria.fr/personal/bblanche/proverif/

ProVerif can be used for proving the security properties

of secrecy and authenticity. Secrecy can be defined as an

assurance that private or confidential data cannot be disclosed

to unauthorized agents [21]. For ProVerif, secrecy, in practice,

is achieved when an unauthorized agent cannot derive some

specific information from the data that is being manipulated

by the protocol [22].

Authenticity can be defined as the property of being gen-

uine, verifiable, and trustable, that is, messages are indeed

sent by whom they specify that they were sent from [21]. Au-

thenticity can be verified through correspondence assertions,

which model the relationships between events in the form of

“if an event e has been executed, then e’ has been previously

executed” [23]. With the argument that such definition was

not enough to accurately describe authenticity, Lowe [11]

proposed an hierarchical system to describe authenticity levels.

This hierarchy consists of the following levels in ascending

order of importance: aliveness, weak agreement, non-injective

agreement, and injective agreement2.

The verification of protocols using ProVerif is done by the

elaboration of queries. ProVerif is considered to be sound, but

not complete about its results [24]. The tool is capable of

providing results that fit three possible outcomes: true, false,

and could not be proved.

III. VERIFIED CRYPTOGRAPHIC PROTOCOLS

Three security protocols for WSN were formally verified

in this work. The first protocol [12], which makes use of an

Identity-Based Non-Interactive Key Distribution Scheme, aims

at having two nodes agreeing on a symmetric key without

having to exchange any sensitive data. The second protocol

[13], describes the multiple steps for a key agreement between

a base station and a node. Lastly, the third protocol [14] aims at

having two nodes agreeing on a symmetric key, but exchanging

sensitive data during the agreement.

While [12] was chosen given its relevance in the area of

WSN, [13] and [14] were chosen given the lack of details

in the papers that present them. Such shortage of information

leaves room for different interpretations, possibly influencing

the actual implementation of the protocols in many cases,

which, as a consequence, could lead to potential security

issues. By formally specifying and verifying the protocols

using strict models, we establish solid study cases where

security aspects can be verified, but still consider design

choices and assumptions, which can be found in the models

to follow.

Throughout this section, the models that were developed

in Applied Pi Calculus 3 for the formal verification are pre-

sented. Because of space constraints, we limit ourselves, in the

document, to explain the code in Listings 1-9, which describe

the functioning of each protocol, and their respective queries

for the formal verification. However, the complete models4

are also available. For further details on the description of the

2Please refer to Lowe’s work for a detailed description of each level.
3https://bensmyth.com/files/Smyth10-applied-pi-calculus.pdf
4https://gitlab.com/gspilerenandi/formalverification-wsnprotocols

426

protocols, we refer the reader to their original publications.

The design choices and assumptions below are valid to all

three protocols. If additional aspects need to be considered,

these will be explicitly presented in the text.

• External agents do not have physical access to the par-

ticipants of the WSN, i.e. nodes cannot be physically

adulterated or captured;

• The pre-deployment phase was successfully completed

and the formal verification takes place after the nodes

are already deployed in their desired locations;

• Data sent during the pre-deployment phase is not initially

available to the attackers, although it can occasionally be-

come available depending on how the protocol proceeds;

• An unbounded number of participants is considered and

run independently of each other. The participants can also

perform an unbounded number of actions.

These design choices and assumptions are valid for the three

protocols verified further in this document, but each protocol

can also present particularities, which will be explicitly pre-

sented in the text.

A. Tiny PBC

For the verification of [12], the additional design choices

and assumptions that were considered are presented below.

• Authenticity can only be verified through the analysis of

message exchanges, so the protocol had to be extended

to a point where two nodes actually exchange data;

• The pairing between two nodes happens only once per

pair of nodes, avoiding the case where the same nodes

keep agreeing on the same key an unbounded number of

times;

• Nodes will, when being introduced in the network,

broadcast their identities in accordance with the protocol

creators’ assumption that nodes know their neighbors’

identification. They also state that new nodes can be

added anytime to the network;

1) Model Presentation and Formal verification: The model

below represents the key agreement between nodes A and B

and is split and explained in separate parts.

Listing 1. TinyPBC: Node A
1 let nodeA() =

2 new IDA: id; out(CX, IDA); insert idsA(IDA); let PA = phi(EC, IDA) in new MSGA

→֒ : bitstring;

3 !(

4 get idsB(IDRAB: id) in (

5 get alreadyPaired(=IDA, =IDRAB) in (event eNodesAlreadyPairedA(IDA, IDRAB))

6 else (let PRA = phi(EC, IDRAB) in

7 let KEYA = calcPairKey(calcPrivateKey(PA, S), PRA) in

8 event eEncryptMessageA(KEYA, MSGA); out(CA,(encrypt(KEYA, MSGA), IDA, IDRAB))

→֒ ;

9 in(CB,(EMGSRA: bitstring, IDRA2: id, IDRA3: id));

10 if ((IDRA2 = IDRAB) && (IDA = IDRA3)) then let MSGRA = decrypt (EMGSRA , KEYA

→֒) in

11 if (MSGRA <> MSGA) then insert alreadyPaired(IDA, IDRAB);

12 event eADecryptsMessage(MSGRA)))

13).

The execution flow of node A is presented in Listing 1.

The process starts with node A declaring its own ID and

broadcasting it on channel CX (which is a channel created

exclusively for letting the attacker know about A’s ID). A

proceeds by mapping its own ID to a point in the elliptic curve

in order to obtain its public key (PA). A also creates a message

(MSGA) that will be encrypted and sent to B after the symmetric

key has been calculated.

In order to model the interest of A in pairing with as many

nodes as it wishes to, the instruction lines 4 to 12 is executed

an unbounded number of times. To represent the interest of A

wanting to agree with node B on a symmetric key, A uses the

table idsB to get a node ID with which A has not paired yet.

Next, A generates the symmetric key KEYA, which is calcu-

lated using PA, S (master key generated by the trusted authority

responsible for deploying the nodes), and B’s public key. A

then encrypts MSGA using KEYA, and sends it to B. A expects

to receive a message from B which should be encrypted with

a key symmetric to KEYA, but calculated on B’s side. After

receiving a message, A tries to decipher it using KEYA. If the

message is successfully deciphered, A checks if its content is

different from MSGA and then adds B to its list of paired nodes.

This last check is necessary in order to avoid a simple replay

attack.

Listing 2. TinyPBC: Node B
1 let nodeB() =

2 new IDB: id; out(CX, IDB); insert idsB(IDB); let PB = phi(EC, IDB) in new MSGB

→֒ : bitstring;

3 !(

4 get idsA(IDRBA: id) in (

5 get alreadyPaired(=IDB, =IDRBA) in (event eNodesAlreadyPairedB(IDB, IDRBA))

6 else (let PRB = phi(EC, IDRBA) in

7 let KEYB = calcPairKey(calcPrivateKey(PB, S), PRB) in

8 event eEncryptMessageB(KEYB, MSGB); out(CB, (encrypt(KEYB, MSGB), IDB, IDRBA

→֒));

9 in(CA,(EMGSRB: bitstring, IDRB2: id, IDRB3: id));

10 if ((IDRB2 = IDRBA) && (IDRB3 = IDB)) then let MSGRB = decrypt (EMGSRB ,

→֒ KEYB) in

11 if (MSGRB <> MSGB) then insert alreadyPaired(IDB, IDRBA);

12 event eBDecryptsMessage(MSGRB)))

13).

The process presented in Listing 2 is analogous to what was

described in Listing 1, but instead of modeling the interaction

of A with B, it models the interaction of B with A.

The first aspect to be verified in this protocol is the

guarantee of secrecy of the master key S, the symmetric keys

calculated by A and B, and the two messages MSGA and MSGB.

ProVerif was able to prove that these five pieces of data have

their secrecy guaranteed throughout the whole execution of

the protocol.

The correspondence between the events that were presented

in Listings 1 and 2 was used to verify the level of authenticity

that the protocol is capable of ensuring.

Listing 3. TinyPBC: Authenticity Queries 1 and 2
1 query qM: bitstring, qEC: g, qSHKEYB: g, qIDA: id, qIDB: id; event(

→֒ eADecryptsMessage(qM)) ==> inj-event(eEncryptMessageB(qSHKEYB, qM))

→֒ && qSHKEYB = calcPairKey(calcPrivateKey(phi(qEC, qIDB), S), phi(qEC

→֒ , qIDA)) && qIDB = new IDB && qIDA = new IDA && qM = new MSGB.

2 query qM: bitstring, qEC: g, qSHKEYA: g, qIDA: id, qIDB: id; event(

→֒ eBDecryptsMessage(qM)) ==> inj-event(eEncryptMessageA(qSHKEYA, qM))

→֒ && qSHKEYA = calcPairKey(calcPrivateKey(phi(qEC, qIDA), S), phi(qEC

→֒ , qIDB)) && qIDB = new IDB && qIDA = new IDA && qM = new MSGA.

In Listing 3, two authentication queries that are used for

this protocol are presented. The first one verifies whether

the message that A deciphers was previously encrypted by

a symmetric key, which was calculated using B’s private key

and A’s public key. The second verification is analogous to the

first by replacing A by B.

ProVerif was able to prove that, both interactions between

A and B, can achieve a non-injective level of authenticity, but

could not come up with a result regarding the injective level.

427

However, the traces presented by ProVerif for the “cannot be

proved” results, in our opinion, cannot be characterized as

a type of attack, given that the tool considered that, in the

vision of an attacker, the value attributed to the IDA sent by A,

is different from the value attributed to the IDA sent by B. In

other words, ProVerif considers that bound names5 with the

same value, but sent by different entities, could possibly lead

to a security breach. In this case, this is not a valid concern.

B. Herrera & Hu

For the verification of [13], the additional design choices

and assumptions that were considered are presented below.

The first three items are related to the defense mechanism,

which was partially described in the original paper, used to

avoid replay attacks.

• Each received nonce by the base station is associated with

the node that sent it. For the base station, reused nonces

are not considered valid for new key requests;

• The session number generated by the base station will

be attached to every message sent to the node that,

theoretically, started the session;

• No two nonces will be generated with the same value

throughout the protocol execution.

• The ACK message sent by the node to the base station

is encrypted with the symmetric key received by the

node. Even though there is no mention of this actually

happening in the paper, this is a common practice and

a reasonable assumption. If this was not the case, and

a plain ACK message was sent to the base station, the

protocol could terminate without correctly knowing if the

node indeed agreed on the generate key.

1) Model Explanation and Formal Verification: The model

below represents the key agreement between the node S1 and

the base station. The code is split and explained in parts. Later

the queries used to formally verify the model are presented.

Listing 4. Herrera & Hu: Node S1
1 let node() =

2 new NODEID: id; out(CPUBLIC, NODEID); new NODESKEY: skey;

3 insert idSkey(NODEID, NODESKEY);

4 !(

5 new REQUESTNONCE:nonce; event eSendIDandNonce(NODEID,REQUESTNONCE);

6 out(CN, (NODEID, BASEID, REQUESTNONCE)); in(CBS, (ENCRYPTEDSHAREDKEY:

→֒ bitstring, SIGNEDMESSAGE: bitstring, SESSIONNUMBERNODE: bitstring))

→֒ ;

7 let REQUESTNONCESEEION = checkSessionNumber(SESSIONNUMBERNODE) in

8 if ((REQUESTNONCESEEION = REQUESTNONCE)) then

9 let KNODEBS = adec(ENCRYPTEDSHAREDKEY, NODESKEY) in

10 event eDecryptSharedKey(KNODEBS, NODESKEY);

11 let HASHNODE = hash(KNODEBS) in event eHashOfTheReceivedKey(HASHNODE);

12 let UNSIGNEDHASHNODE = checkSign(SIGNEDMESSAGE, pk(BSSKEY)) in

13 if (HASHNODE = UNSIGNEDHASHNODE) then

14 event eAfterUnsigningHash(UNSIGNEDHASHNODE, REQUESTNONCE);

15 let ACKENCRYPTEDNODE = shenc(ACK, KNODEBS) in

16 event eNodeSendsACK(ACKENCRYPTEDNODE, NODEID, REQUESTNONCE);

17 out(CN, (ACKENCRYPTEDNODE, SESSIONNUMBERNODE))

18).

In Listing 4, the execution flow of the node S1 is described.

S1 starts declaring its id, NODEID, and broadcasting it on channel

CPUBLIC (which is a channel created exclusively for letting

the attacker know about S1’s ID on ProVerif). Its private key,

NODESKEY, is also generated during this initial phase of the

5Please refer to the ProVerif’s manual for more details regarding the
difference of bound names and free names

node’s process. Both NODEID and NODESKEY are stored in table

idSkey so the base station knows about these values. 6

After that, the procedure of S1 requesting a symmetric key to

the base station starts. S1 generates a nonce called REQUESTNONCE

and sends it to the base station. S1 then waits for a message con-

taining two encrypted values and a SESSIONNUMBER. S1 checks

if the session number was generated from the REQUESTNONCE,

and continues if positive. The first encrypted value undergoes

an asymmetric decryption using S1’s private key, which, if

successful, will transform the result in to a hash value. The

second encrypted data has its signature checked by using the

base station’s public key, resulting in a hash value that should be

the same as the one that was just previously calculated. If both

values are different, the protocol fails, otherwise, the protocol

was successful in delivering the symmetric key KNODEBS to S1.

For the later scenario, S1 proceeds to send an ACK message

(encrypted using KNODEBS) to the base station together with the

respective SESSIONNUMBER, as a confirmation that everything

went correctly.

Listing 5. Herrera & Hu: Base Station
1 let baseStation() =

2 in(CN, (NIDRB:id, BIDRB: id, RREQUESTNONCE: nonce));

3 if (BIDRB = BASEID) then get idSkey(=NIDRB, NODESKEY’: skey) in (

4 get pairsIdsNonces(IDCHECK: id, =RREQUESTNONCE) in (event eNonceAlreadyUsed(

→֒ RREQUESTNONCE))

5 else (

6 insert pairsIdsNonces(NIDRB, RREQUESTNONCE);

7 event eNonceStoredInTheBaseStation(NIDRB, RREQUESTNONCE);

8 new keyTag: nonce; event eCreateSharedKey(keyTag,NIDRB);

9 let KBSNODE = calcSharedKey(keyTag, NIDRB) in

10 event eAfterTheSharedKeyCreation(KBSNODE);

11 let NODEPKEY = pk(NODESKEY’) in let MSGKEY = aenc(KBSNODE,NODEPKEY) in

12 event eEncryptionOfTheSharedKey(MSGKEY); let MSGHASH = hash(KBSNODE) in

13 event eHashOfTheCreatedKey(MSGHASH); let MSGSIGNED = sign(MSGHASH, BSSKEY)

→֒ in

14 event eCreateTheSignedMessage(MSGSIGNED);

15 let SESSIONNUMBERBASE = sessionCreation(RREQUESTNONCE) in

16 out(CBS, (MSGKEY, MSGSIGNED, SESSIONNUMBERBASE));

17 in(CN, (ACKENCRYPTEDBASE: bitstring, SESSIONNUMBERBASER: bitstring));

18 if ((SESSIONNUMBERBASER = SESSIONNUMBERBASE)) then

19 let ACKDECRYPTEDBASE = shdec(ACKENCRYPTEDBASE, KBSNODE) in

20 event eBaseStationReceivesACK(ACKDECRYPTEDBASE, NIDRB, RREQUESTNONCE))

21)

22 else

23 event eIdNotFound(NIDRB).

The execution flow of the base station is described in Listing

5. The process starts by receiving an ID and a nonce together

with an identification of which entity should be receiving this

information (base station in this case). The base station then

verifies if the received ID identifies one of the nodes that were

deployed in the target environment. If negative, the process is

halted, otherwise, for the positive case, the base station checks

whether the nonce used in the request has been already sent to

the base station. If positive, then the protocol aborts, but if no

such relationship is found, the base station stores the pair of ID

and nonce in its records. The base station proceeds to generate

the symmetric key (KBSNODE) to be sent to the requesting node.

KBSNODE goes through two distinct processes. The first

process encrypts KBSNODE using the requesting node’s public

key. The second process obtainsa hash value of KBSNODE

and then signs it with the base station’s private key. These

information are sent to the requesting node together with a

SESSIONNUMBER, which was based on the nonce used for the key

6It should be obvious to the reader that this is an adaptation of what happens
in reality for the sake of modeling the protocol in ProVerif. In reality, the base

station is the entity that actually generates these two values and stores it in
the nodes.

428

request. The base station then waits for a message containing the

SESSIONNUMBER and data to be deciphered using KBSNODE. If,

after deciphering the message with KBSNODE, the ACK message

can be verified, then the protocol was successfully completed.

The information that should be kept confidential in this

protocol are: the base station’s private key BSSKEY, the node

S1’s private key NODESKEY, and the symmetric key calculated

by the base station, which can be found in the form of KBSNODE

and KNODEBS in the code. ProVerif managed to prove that their

secrecy is guaranteed.

IDS2

{KBSS1}PUS1,
{h(KBSS1)}PBS,

SNMA

{KBSS2}PUS2,
{h(KBSS2)}PBS,

SNS1

IDS1,
IDBASE,
NONCEMA

IDS2,
IDBASE,
NONCES1

{KBSS1}PUS1,
{h(KBSS1)}PBS,

SNS1

{ACK}KS1BS,
SNMA

{ACK}KS1BS,
SNS1

IDS1,
IDBASE,
NONCES1

NODE S1 MALICIOUS AGENT BASE STATION NODE S2

Fig. 1. ProVerif Trace (Herrera & Hu)

The authentication query presented on Listing 6, verified if

the ACK message received by the base station was sent by node S1

as result of a successful key agreement with the base station after

a initial key request coming from S1. ProVerif shows that there

is a trace that compromises the injective and non-injective

levels of authentication. For this attack to be successful, the

attacker needs to learn two node IDs, and one of these nodes

should to start a key request to the base station.

Fig. 1 illustrates such attack. The MALICIOUS AGENT, in

possession of IDS1 and IDBASE, makes a key request to the

base station acting as S1, but inserting its own generated nonce

(NONCEMA). The base station replies to the MALICIOUS AGENT

with the symmetric key encrypted with S1’s public key, the

signed hash of the symmetric key, and the session number

based on NONCEMA. The MALICIOUS AGENT performs another key

request to the base station, this time acting as S2, but using S1’s

nonce NONCES1. The base station will reply with the symmetric

key encrypted with S2’s public key, the signed hash of the

symmetric key, and the session number based on NONCES1.

The MALICIOUS AGENT forwards the encrypted symmetric, the

signed hash value and the session number based on NONCES1

to S1, which then replies with the encrypted ACK message that

is forwarded to the base station by the MALICIOUS AGENT.

Listing 6. Herrera & Hu: Correspondence Queries
1 query qKBSS1: shkey, qKEYTAG: nonce, qNODEID: id, qREQUESTNONCENODE: nonce,

→֒ qREQUESTNONCEBS: nonce, qACKENC: bitstring; event(

→֒ eBaseStationReceivesACK(ACK, qNODEID, qREQUESTNONCEBS))==> (inj-

→֒ event (eNodeSendsACK(qACKENC, qNODEID, qREQUESTNONCENODE)) ==> (inj-

→֒ event (eNonceStoredInTheBaseStation(qNODEID, qREQUESTNONCEBS)) ==>

→֒ inj-event (eSendIDandNonce(qNODEID,qREQUESTNONCENODE))))&& qACKENC =

→֒ shenc(ACK, qKBSS1) && qKBSS1 = calcSharedKey(qKEYTAG, qNODEID)&&

→֒ qREQUESTNONCEBS = qREQUESTNONCENODE.

Considering that the base station and the node S1 do not

agree on all the parameters of the communication during every

single step of the protocol, both the injective and the non-

injective level of correspondence cannot be considered. As a

result, the authentication from the base station to the node S1

is classified as a weak agreement, given that the base station

was not participating as a responder to S1 during its turn. The

authentication of S1 to the base station is classified as aliveness,

given that, even though S1 was participating as responder in

its turn, the base station cannot verify the identity of S1.

C. Saqib

The model coded below represents the key agreement

between two nodes, A and B, for protocol [14]. The model

is split and explained in parts.

Listing 7. Najmus: Node A
1 let nodeA() =

2 new KA: skey; new IDA: id; let PUA = calcPublicKey(KA, GP) in

3 insert publicKeysA(IDA, PUA); out(CX, PUA);

4 !(

5 get publicKeysB(IDBR1: id, PURB: pkey) in (

6 get alreadyPaired(=IDA, =IDBR1) in (event eNodesAlreadyPairedA(IDA, IDBR1))

7 else (new X: number; let XG = calcSecretKey(X, GP) in

8 event eNodeACreatesTheSecretKey(XG);

9 let KAXPUB = encryption(addsSkeyPlusNumber(KA, X), PURB) in

10 event eSendKAXPUB(KAXPUB); out(C1, (KAXPUB, IDA, IDBR1));

11 in(C2, (K2:g, IDBR2: id, IDAR: id)); if ((IDAR = IDA) && (IDBR2 = IDBR1))

→֒ then

12 let GY = decryption(K2, KA, PURB) in(event eDecryptedUsingKA(GY,KA);

13 let XGGY = calcSharedKey(XG, GY) in insert alreadyPaired(IDA, IDBR1);

14 event eNodeAComputesSharedKey(XGGY))))

15).

As presented in Listing 7, the execution flow of node A

starts with the declaring of its private key (KA), its ID, and

its public key (PUA). A then stores its pair of ID and public

key in table publicKeysA, and also broadcasts its public key on

channel CX (which is a channel created exclusively for letting

the attacker know about A’s public key on ProVerif). A starts

an unbounded number of key agreements with as many nodes

as it wishes to, as long as they have not paired with A yet.

Next, A generates a random number X and calculates a shared

key XG to be sent to B. After that, the sum of A’s private key

with X is encrypted using B’s public key PUB and sent it in

channel C1.

A then waits for a message to arrive, which should contain

the encrypted secret of B and some kind of identification that

it came from B and was addressed to A. A tries to decrypt

the received message by using its own private key KA and

the public key of the node that theoretically sent it, PUB. If

the decryption was successful, A calculates the symmetric key

XGGY, which can be later used to encrypt messages, and also

adds B to the list of already paired nodes.

Listing 8. Najmus: Node B
1 let nodeB() =

2 new KB: skey; new IDB: id; let PUB = calcPublicKey(KB, GP) in

3 insert publicKeysB(IDB, PUB); out(CX, PUB);

4 !(

5 in(C1, (K1: g, IDAR1: id, IDBR: id));

6 if (IDBR = IDB) then

7 get alreadyPaired(=IDB, =IDAR1) in (event eNodesAlreadyPairedB(IDB, IDAR1))

8 else (new Y: number; let YG = calcSecretKey(Y, GP) in

9 event eNodeBCreatesTheSecretKey(YG); get publicKeysA(=IDAR1, PURA: pkey) in

→֒ (

10 let GX = decryption(K1,KB,PURA) in event eDecryptedUsingKB(GX,KB);

11 let YGGX = calcSharedKey(GX,YG) in insert alreadyPaired(IDB, IDAR1);

12 event eNodeBComputesSharedKey(YGGX);

429

13 let KBYPUA = encryption(addsSkeyPlusNumber(KB,Y),PURA) in

14 event eSendKBYPUA(KBYPUA); out(C2, (KBYPUA, IDB, IDAR1))))

15).

In Listing 8 the execution flow of node B is described.

The node starts by having its private key, ID, and public key

declared. B then stores the pair ID and public key in table

publicKeysB and also outputs its public key on channel CX. Later

in the process, B receives an encrypted key with an indication

that it came from node A to B. B verifies if it has already

paired with A and, if not, B generates a random number Y

and calculates its secret YG. If the decryption is successful,

B calculates the symmetric key to be used later with A, and

sends the sum of its private key KB with the random number Y

encrypted with A’s public key PUA. With that, A can now also

calculate the symmetric key agreed by the two nodes.

In order to verify secrecy property of the protocol, the

following data should not be disclosed by unauthorized agents:

A’s private key (KA), B’s private key (KB), the random generated

numbers X and Y, the secret keys calculated and deciphered

by A and B (which have the form of XG, GX, YG, GY in the code),

and the symmetric keys calculated by A (XGGY) and B (YGGX).

Proverif proved that all the above values are kept confidential

throughout the whole execution of the protocol.

KAX1PUB,
IDA,
IDB

PUB
NODE B MALICIOUS AGENT

PUA

KBY1PUA,
IDB,
IDA

X1

KAX2PUB,
IDA,
IDB

X2

Y1

KAX1PUB,
IDA,
IDB

KBY1PUA,
IDB,
IDA

NODE A

Fig. 2. Najmus Trace Second Query

Listing 9. Najmus: Authentication Queries
1 query qXGGY: secretkey, qYGGX: secretkey, qKBYPUA: g, qKAXPUB: g, qKB: skey,

→֒ qKA: skey, qY: number, qX: number, qGX: secretkey, qGY: secretkey;

→֒ event(eNodeBComputesSharedKey(qXGGY)) ==> (inj-event (eSendKAXPUB(

→֒ qKAXPUB))) && qXGGY = calcSharedKey(qGX, qGY) && qGX =

→֒ calcSecretKey(qX,GP) && qGY = calcSecretKey(qY,GP) && qKAXPUB =

→֒ encryption(addsSkeyPlusNumber(qKA, qX), calcPublicKey(qKB, GP)).

2 query qXGGY: secretkey, qYGGX: secretkey, qKBYPUA: g, qKAXPUB: g, qKB: skey,

→֒ qKA: skey, qY: number, qX: number, qGX: secretkey, qGY: secretkey;

→֒ event(eNodeAComputesSharedKey(qXGGY)) ==> ((inj-event(

→֒ eNodeBComputesSharedKey(qYGGX)) ==> inj-event (eSendKAXPUB(qKAXPUB))

→֒)) && qXGGY = calcSharedKey(qGX, qGY) && qYGGX = calcSharedKey(qGX,

→֒ qGY) && qGX = calcSecretKey(qX,GP) && qGY = calcSecretKey(qY,GP) &&

→֒ qKBYPUA = encryption(addsSkeyPlusNumber(qKB, qY), calcPublicKey(qKA

→֒ , GP)) && qKAXPUB = encryption(addsSkeyPlusNumber(qKA, qX),

→֒ calcPublicKey(qKB, GP)).

Listing 1.9 presents the queries used to verify the authen-

ticity level guaranteed by the protocol. The first query verifies

the authenticity from the message coming from A to B, by

checking if the symmetric key calculated by B is the result of

a message coming from A. ProVerif is successful in proving

a non-injective level of correspondence, but was not able to

find an answer for the injective level.

The second query tries to prove the correspondence events

that precede the calculation of the symmetric key by node A.

This query verified if qXGGY contains the secret key calculated

by B, and if the symmetric key calculated by B contains

the secret key sent by A. ProVerif actually finds a trace

(represented by Fig. 2) in a situation where A tries to start a key

agreement with B, but the response from B is retained by an

attacker and never reaches A. In another attempt to establish

communication, A tries once again to agree on a key with

B, but receives the result from B’s first run of the agreement

as a response. Because of that, A and B do not agree on all

variables involved in the key agreement during every single

step of the protocol, so the authentication from B to A can

only be considered as a weak agreement. 7

IV. RELATED WORK AND DISCUSSION

Although there is a significant number of papers that

formally verify the security of protocols, the quantity drops

considerably for protocols designed specifically for WSN. For

instance, [25]–[28] formally verify WSN protocols regarding

authenticity and secrecy using ProVerif.

When compared to the mentioned related work, ours differs

in two main points. The first is that our work, and the work

presented in [28], to the best of our knowledge, are the only

ones to model WSN on ProVerif where an unbounded number

of agents are capable of performing an unbounded number

of actions. This is especially important because the security

analysis is not dependent on a specific number of individuals

and actions that describe the protocol. Most of the related work

describes only an unbounded number of agents, ignoring the

possible effect of multiple interactions of a given agent in the

network.

The second aspect distinguishing our work from others is

the way that the authenticity verification is interpreted. While

related works on WSN present their results with simple yes

or no answers, we use the authenticity hierarchy proposed

by Lowe [11] to provide a more in-depth analysis. By using

such an hierarchical system, it is possible to identify more

precisely the perspective that the participants of the network

have regarding the authenticity aspects of the protocol.

V. CONCLUSIONS AND FUTURE WORK

In this work, three security protocols for WSN were for-

mally verified using ProVerif. With the objective of having

models that were as complete as possible, an unbounded

number of messages and participants were considered. This

is a different and more in-depth approach when compared to

similar works in the area.

The protocols were analyzed regarding the secrecy of cer-

tain crucial information and also regarding the authenticity

of messages exchanged by the participants. As a result, all

protocols were able to guarantee the secrecy of their sensitive

data, but the results regarding the authenticity varied.

7Note that this attack is only valid on a scenario where A tries to establish
a key with B a second time after a failed first attempt.

430

As future work, we plan to address the vulnerabilities our

analysis revealed by proposing modifications to the vulnerable

protocols. Then, we plan to formally verify the modified

protocols with the help of ProVerif. In addition to that, a

formal verification using a computational model approach can

be carried out in order to lower the level of abstraction that

the symbolic analysis inevitably implies.

REFERENCES

[1] M. Wollschlaeger, T. Sauter, and J. Jasperneite, “The future of industrial
communication: Automation networks in the era of the internet of things
and industry 4.0,” IEEE Industrial Electronics Magazine, vol. 11, no. 1,
pp. 17–27, March 2017.

[2] A. Botta, W. de Donato, V. Persico, and A. Pescapé, “Integration of
cloud computing and internet of things: A survey,” FGCS, vol. 56, pp.
684 – 700, 2016.

[3] G. A. Akpakwu, B. J. Silva, G. P. Hancke, and A. M. Abu-Mahfouz,
“A survey on 5G networks for the internet of things: Communication
technologies and challenges,” IEEE Access, vol. 6, pp. 3619–3647, 2018.

[4] V. Gazis, M. Goertz, M. Huber, A. Leonardi, K. Mathioudakis,
A. Wiesmaier, and F. Zeiger, “Short paper: IoT: Challenges, projects,
architectures,” in 18th International Conference on Intelligence

in Next Generation Networks, 2015. [Online]. Available: https:
//doi.org/10.1109/icin.2015.7073822

[5] I. Lee and K. Lee, “The internet of things (IoT): Applications,
investments, and challenges for enterprises,” Business Horizons,
vol. 58, no. 4, pp. 431–440, jul 2015. [Online]. Available:
https://doi.org/10.1016/j.bushor.2015.03.008

[6] G. Sharma, S. Bala, and A. K. Verma, “Security frameworks for wireless
sensor networks-review,” Procedia Technology, vol. 6, pp. 978–987,
2012. [Online]. Available: https://doi.org/10.1016/j.protcy.2012.10.119

[7] B. Sun, C.-C. Li, K. Wu, and Y. Xiao, “A lightweight secure
protocol for wireless sensor networks,” Computer Communications,
vol. 29, no. 13, pp. 2556 – 2568, 2006, wirelsess Senson Networks
and Wired/Wireless Internet Communications. [Online]. Available:
https://bit.ly/2v6bX01

[8] R. M. Needham and M. D. Schroeder, “Using encryption for
authentication in large networks of computers,” Commun. ACM,
vol. 21, no. 12, pp. 993–999, Dec. 1978. [Online]. Available:
http://doi.acm.org/10.1145/359657.359659

[9] G. Lowe, “An attack on the needham-schroeder public-key authentica-
tion protocol,” Inf. Process. Lett., vol. 56, no. 3, pp. 131–133, Nov. 1995.
[Online]. Available: http://dx.doi.org/10.1016/0020-0190(95)00144-2

[10] G. Padmavathi and D. Shanmugapriya, “A survey of attacks, security
mechanisms and challenges in wireless sensor networks,” CoRR, vol.
abs/0909.0576, 2009. [Online]. Available: http://arxiv.org/abs/0909.0576

[11] G. Lowe, “A hierarchy of authentication specifications,” in Proceedings

of the 10th IEEE Workshop on Computer Security Foundations, ser.
CSFW ’97. Washington, DC, USA: IEEE Computer Society, 1997,
pp. 31–. [Online]. Available: http://dl.acm.org/citation.cfm?id=794197.
795075

[12] L. B. Oliveira, M. Scott, J. Lopez, and R. Dahab, “Tinypbc: Pairings
for authenticated identity-based non-interactive key distribution in sensor
networks,” pp. 173–180, June 2008.

[13] A. Herrera and W. Hu, “A key distribution protocol for wireless
sensor networks,” in 37th Annual IEEE Conference on Local Computer

Networks, Oct 2012, pp. 140–143.

[14] N. Saqib, “Key exchange protocol for WSN resilient against man in
the middle attack,” in IEEE International Conference on Advances in

Computer Applications (ICACA), Oct 2016, pp. 265–269.

[15] M. Avalle, A. Pironti, and R. Sisto, “Formal verification of
security protocol implementations: a survey,” Formal Aspects of

Computing, vol. 26, no. 1, pp. 99–123, dec 2012. [Online]. Available:
https://doi.org/10.1007/s00165-012-0269-9

[16] D. Dolev and A. Yao, “On the security of public key protocols,” IEEE

Trans. Inf. Theor., vol. 29, no. 2, pp. 198–208, Sep. 1983. [Online].
Available: http://dx.doi.org/10.1109/TIT.1983.1056650

[17] K. T. Nguyen, N. Oualha, and M. Laurent, Authenticated Key Agreement

Mediated by a Proxy Re-encryptor for the Internet of Things. Cham:
Springer International Publishing, 2016, pp. 339–358.

[18] L. Hirschi, D. Baelde, and S. Delaune, “A method for verifying
privacy-type properties: the unbounded case,” in Proceedings of the

37th IEEE Symposium on Security and Privacy (S&P’16), M. Locasto,
V. Shmatikov, and Ú. Erlingsson, Eds. San Jose, California, USA:
IEEECSP, May 2016, pp. 564–581.

[19] J. Diaz, D. Arroyo, and F. B. Rodriguez, “On securing online registration
protocols: Formal verification of a new proposal,” Knowledge-Based

Systems, vol. 59, no. Supplement C, pp. 149 – 158, 2014.
[20] P. Kleberger and G. Moulin, “Short paper: Formal verification of an

authorization protocol for remote vehicle diagnostics,” in EEE Vehicular

Networking Conference, Dec 2013, pp. 202–205.
[21] W. Stallings, Cryptography and Network Security: Principles and Prac-

tice, 5th ed. Upper Saddle River, NJ, USA: Prentice Hall Press, 2010.
[22] B. Blanchet, “Modeling and verifying security protocols with the

applied pi calculus and proverif,” Foundations and Trends® in Privacy

and Security, vol. 1, no. 1-2, pp. 1–135, 2016. [Online]. Available:
http://dx.doi.org/10.1561/3300000004

[23] T. Y. C. Woo and S. S. Lam, “A semantic model for authentication
protocols,” in Proceedings 1993 IEEE Computer Society Symposium on

Research in Security and Privacy, May 1993, pp. 178–194.
[24] B. Blanchet, B. Smyth, V. Cheval, and M. Sylvestre, ProVerif 1.97pl1:

Automatic Cryptographic Protocol Verifier, User Manual and Tutorial,
sep 2017.

[25] M. Alshammari and K. Elleithy, “Efficient key distribution protocol for
wireless sensor networks,” pp. 980–985, 01 2018.

[26] Q. Jiang, S. Zeadally, J. Ma, and D. He, “Lightweight three-factor au-
thentication and key agreement protocol for internet-integrated wireless
sensor networks,” IEEE Access, vol. 5, pp. 3376–3392, 2017.

[27] V. Cambazoglu, R. Gutkovas, J. Åman Pohjola, and B. Victor,
“Modelling and analysing a wsn secure aggregation protocol : A
comparison of languages and tool support,” Uppsala University,
Computing Science, Tech. Rep. 2015-033, 2015. [Online]. Available:
http://www.it.uu.se/research/publications/reports/2015-033/

[28] Y. W. Law, G. Moniava, Z. Gong, P. Hartel, and M. Palaniswami,
“KALwEN: a new practical and interoperable key management scheme
for body sensor networks,” Security and Communication Networks,
vol. 4, no. 11, pp. 1309–1329, dec 2010. [Online]. Available:
https://doi.org/10.1002/sec.256

431

Powered by TCPDF (www.tcpdf.org)

