
Scheduling Sporadic Tasks on Multiprocessors with Mutual Exclusion Constraints

Arvind Easwaran
CISTER/IPP-HURRAY,

Polytechnic Institute of Porto, Portugal
aen@isep.ipp.pt

Björn Andersson
CISTER/IPP-HURRAY,

Polytechnic Institute of Porto, Portugal
bandersson@dei.isep.ipp.pt

Abstract

Consider the problem of scheduling sporadic tasks on a
multiprocessor platform under mutual exclusion constraints.
We present an approach which appears promising for allow-
ing large amounts of parallel task executions and still ensures
low amounts of blocking.

1 Introduction

Typically, a real-time system is comprised of several tasks
that execute on a shared computing platform comprised of
(i) one or more processors and (ii) other shared resources (such
as shared data-structures, shared I/O devices), where the latter
must be managed under mutual exclusion, that is, at every in-
stant, at most one task may hold the resource.

Managing resources that must be accessed under mutual ex-
clusion has always been an important topic in the design of
real-time systems because mutual exclusion can cause an ex-
tra delay to a task that requests a resource that is already in
use by another task. Today, however, with the increasing use
of multicores, this problem is accentuated. The reason is that
the trend in development of multicore processors is to increase
the core-count but maintain the processor speed. A task which
only needs a processor to execute can typically do so without
much delays because the total amount of processing capacity is
so large. But a task which needs a processor and some other re-
sources may experience a large delay because the time for the
task that held the resource to finish its operation may be large
(since the trend is to not increase the speed of processors).

Ensuring mutual exclusion is typically straightforward.
It is common that the system designer creates a binary
semaphore [7] for each resource and initializes this semaphore
with the value one. A task requesting a resource must first
perform wait on the semaphore corresponding to the requested
resource. The task can then use the resource and when the
task desires to no longer use it, the task performs signal on the
semaphore corresponding to the resource.

Mechanisms for achieving mutual exclusion interacts with
a real-time scheduler however and dealing with those inter-
actions and analyzing those interactions are non-trivial. It

is well known that a negative phenomena, called priority-
inversion, can occur to priority-based real-time scheduling
algorithms if the priority of a task is not adjusted at run-
time to take into account the interactions between tasks that
share resources. Fortunately, the real-time systems comput-
ing community has created a family of successful protocols
for priority-based scheduling in the context of mutual exclu-
sion constraints [14, 1] where tasks are scheduled on a single
processor and these protocols have been adapted for multipro-
cessors as well [13, 12, 5, 10, 8, 6, 9, 4]. Unfortunately, these
protocols adapted to multiprocessors tend to be very conserva-
tive when deciding whether to grant a resource to a task. This
can unnecessarily cause a task to be prevented from execut-
ing and hence the poor performance of such protocols present
a major roadblock for efficiently exploiting the parallel pro-
cessing capacity of multicores in future real-time applications.
Therefore, in this paper, we discuss ideas on the design of a
new protocol for resource sharing that (i) ensures mutual ex-
clusion, (ii) limits priority-inversion, and (iii) allows a large
degree of parallel execution.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses our system model and related work. Section 3
gives an understanding of the problem on both uniprocessors
and multiprocessors. Section 4 shows a new protocol which
offers more parallelism. Finally, Section 5 gives conclusions
and open questions.

2 System model and background

2.1 System model

Task model. For the purposes of this paper, we assume
that jobs are generated by sporadic tasks [11], and are sched-
uled on a multiprocessor platform comprised of m identical
processors. A real-time system with shared resources is spec-
ified using p non-preemptable shared resources R1, . . . , Rp,
and n sporadic tasks T = {τ1, . . . , τn}. Each sporadic task τi

(1 ≤ i ≤ n) is characterized as (Ti, Ci, Di), where Ti denotes
the minimum inter-arrival time, Ci the worst-case execution
time, and Di the relative deadline. Each job of task τi requires
Ci units of processing capacity within Di time units from its
release, and this processing capacity must be supplied sequen-

1



tially, i.e., the job cannot be scheduled on more than one pro-
cessor at any given time instant. Further, any two successive
jobs of this task must be released at least Ti time units apart.

Shared resources. Jobs can issue requests for exclusive
access to the shared resources R1, . . . , Rp. A request for re-
source Rj by a job J of task τi is said to be granted as soon
as J holds the resource. Associated with such requests is the
worst-case duration of time for which jobs of τ i require re-
source Rj , denoted as CSi,j . Note that CSi,j is the largest
critical section among all requests of jobs of task τi for re-
source Rj . Once job J has executed for the amount of time
it requires Rj , the request is said to be complete and the re-
source is said to be released. If a request for a resource cannot
be immediately granted, then J is said to be blocked on R j .
And the job that holds resource Rj is said to be directly block-
ing J . Request for a resource Rk is said to be nested within
request for another resource Rj iff Rk’s request is issued after
Rj’s request but before Rj is released. In this paper we assume
that all resource requests are perfectly-nested. If some job first
requests resource Rj and then resource Rk while holding Rj ,
then it will first release Rk followed by Rj in this nesting. Fur-
ther, an outermost resource request Rj is a request which is not
preceded by any another resource request whose matching re-
lease is after the request for Rj , i.e., Rj is the first resource
requested in some nested resource access.

Multiprocessor scheduling. In general, studies on real-
time multiprocessor scheduling theory can fall into two cate-
gories: partitioned and global scheduling. Under partitioned
scheduling, each task is statically assigned to a single proces-
sor, and uniprocessor scheduling algorithms are used to sched-
ule tasks. A critical section can then be termed as local if all
tasks ever accessing the shared resources in this critical sec-
tion are assigned to the same processor, or global otherwise.
In this paper we focus on global scheduling algorithms. Under
global scheduling, tasks are allowed to migrate across proces-
sors, and algorithms that simultaneously schedule on all the m
processors are used. In this paper, for simplicity of presenta-
tion, we focus on fixed-priority global scheduling and assume
that every job of τi has higher priority than every job of τ j for
all i < j. The protocol described in Section 4 can be easily ex-
tended for dynamic-priority global schedulers with static task
preemption levels (see preemption level description in [1]).

2.2 Related work

In work on uniprocessor resource sharing, the priority ceil-
ing protocol (PCP) [14] and the stack-based resource alloca-
tion protocol (SRP) [1] have received much attention. For
multiprocessor systems, there has been a growing interest in
the area of resource synchronization. Rajkumar et. al. were
the first to propose a semaphore-based protocol for resource
sharing on multiprocessors [13, 12]. Two variants of PCP
were presented by them for systems that use partitioned, fixed-
priority scheduling. Several protocols related to multiproces-
sor PCP have since been proposed for systems scheduled un-
der partitioned, dynamic-priority (EDF) scheduling. Chen and

Tripati [5] proposed two extensions to the basic protocol, but
these extensions were only valid for periodic1 (and not spo-
radic) task systems. Further, global critical sections were as-
sumed to be non-preemptable and nesting was not allowed be-
tween global and local critical sections (each can be separately
nested however). In later work, Lòpez et. al. [10] presented
an implementation of SRP for partitioned EDF. However, this
study required that tasks sharing resources be assigned to the
same processor. Recently, Gai et. al. [8] also presented an im-
plementation of SRP for partitioned EDF and compared it to
PCP. They have implemented a FIFO-queue based spin-lock
for global critical sections, which has the potential to waste
processing time (tasks can busy-wait for other tasks accessing
global critical sections). Further, accesses to different global
critical sections are not allowed to be nested, and these critical
sections are executed in a non-preemptive manner. The latter
requires modifications in the kernel to disable preemptions.

In resource synchronization under global scheduling algo-
rithms, there have been a few recent studies [6, 9, 4]. Under
global EDF, Devi et. al. [6] proposed a FIFO-queue based spin-
lock implementation for non-nested critical sections. They also
modified the global EDF scheduler to enforce non-preemptive
critical sections. Holman and Anderson [9] have proposed var-
ious techniques for implementing non-nested critical sections
under Pfair [2] global scheduling. They allow FIFO-queue
based access to locked resources and present different tech-
niques for handling short and long critical sections. Flexible
Multiprocessor Locking Protocol (FMLP), proposed by Block
et. al. [4], can be used under partitioned EDF, global EDF,
and Pfair scheduling. They handle short critical sections using
FIFO-queue based spin-locks, and long critical sections using
priority inheritance similar to PCP. Under partitioned schedul-
ing, global critical sections are required to be non-preemptive.
Further, nested critical sections are required to have group
locks (separately for short and long sections), thus negating
the benefits of nesting.

3 Understanding the problem

We will first (in Section 3.1) see the well-known problem
of priority-inversion and the idea of how this is solved in the
context of uniprocessor scheduling. We will then see (in Sec-
tion 3.2) that transferring this idea to multiprocessor schedul-
ing can cause a limitation in efficient use of available process-
ing capacity (platform parallelism).

3.1 Uniprocessor systems

Suppose task set T is scheduled on a single processor using
fixed-priority scheduling. It is assumed that the priority of a
job is not affected by whether the job is holding a resource or
not. Figure 1 shows an example of three jobs where J1 and J3

request some shared resource R and job J2 never requests this

1A periodic task is similar to a sporadic task, except that Ti now denotes
the exact inter-arrival time instead of minimum.

2



Figure 1. Priority inversion

resource. It is assumed that J1 has higher priority than J2 and
J2 has higher priority than J3. First J3 is released. It executes
and then it requests resource R. J3 is granted the resource
R and it continues executing holding the resource. Before it
releases R however, J1 is released and since J1 has higher
priority, it preempts the execution of J3. Job J1 continues to
execute and then requests resource R. This request is denied
since R is held by job J3, i.e., job J1 is blocked and cannot
execute further. In the meantime, since job J2 was released for
execution and it has higher priority than J3, it is scheduled by
the dispatcher. This job executes for a long time and during its
execution the deadline of job J1 expires.

In the above example, even when a higher priority job J 1 is
blocked on a shared resource R held by a lower priority job J 3,
a medium priority job J2 is allowed to execute and eventually
delay the execution of job J1. Although it is inevitable that
J1 must block until J3 releases resource R, J1 must not be
required to wait for job J2 to finish executing because J2 is not
holding any resource required by J1.

The research community has invented protocols to reduce
this effect (priority-inversion), and those protocols give jobs
that hold shared resources temporarily a higher priority. Fig-
ure 2 shows the same jobs as in Figure 1 but now the priority of
job J3 is promoted when it holds resource R. In this way, we
can see that job J1 will meet its deadline, because job J2 is not
allowed to execute inbetween. There are different ways to pro-
mote the priority of a job that holds a resource; (i) the job could
be scheduled non-preemptively or (ii) the job could inherit
(transitively) the maximum priority among all jobs that are
presently blocked on the same resource or (iii) the job could
be assigned the ceiling priority of the resource2. The latter ap-
proach can be combined with a test that is performed whenever
any job requests a shared resource; the job is granted access to
the resource iff it has higher priority than the ceiling of all re-
sources that are presently locked. This protocol is known as
the Priority-Ceiling-Protocol (PCP) [14]. This protocol avoids

2The ceiling priority of a resource R is the maximum priority among all
jobs that might ever request the resource R. See [14] for more details on
ceiling priorities.

deadlocks, and ensures that a job is only ever blocked once
during its entire execution, even if it requests many resources
in a nested manner.

Figure 3 shows an example of the operation of PCP. There
are three jobs J1, J2 and J3, where J1 has higher priority than
J2 and J2 has higher priority than J3. Job J3 uses one resource
R1; job J2 uses another resource R2; and job J1 uses both
resources R1 and R2. When job J2 arrives it will not preempt
the execution of J3, because J3 holds a resource (R1) with
priority ceiling (equal to the priority of J1) higher than the
priority of J2. This priority promotion of job J3 is necessary,
because otherwise job J1 would be blocked by both J2 and J3.

3.2 Multiprocessor systems

Suppose we have the same scenario as in Figure 1, but now
the jobs are scheduled on a multiprocessor platform comprised
of 2 processors. Then, it is possible to schedule job J2 with-
out having to preempt the execution of job J3, and therefore
J2 will not interfere with the execution of job J1. This brings
us to the question, “Is it okay to schedule a medium priority
job as long as it does not preempt any resource holding lower
priority job?”. Although the answer seems positive from the
previous example, this is not true in all cases. It is actually not
just the preemption that causes a deadline miss; the preempt-
ing job may request and be granted a resource and then this
resource must be released before some high priority job can
use it (example in Figure 3). Therefore we will now pose the
question, “Should a request for a resource be granted?”, in a
multiprocessor scheduling context.

Let us consider three jobs J1, J2 and J3 as in Figure 3, but
now scheduled using a global fixed-priority strategy on a mul-
tiprocessor platform comprised of 3 identical processors. Fig-
ure 4 shows a scenario where J1 misses its deadline because
J2 was granted a resource (R2) and J1 requested resource R2

before J2 had released it. Clearly, the resource sharing pro-
tocol in this scenario takes the wrong decision of granting re-
source R2 to job J2. Note that scheduling job J2 is by itself
not a wrong decision; however granting it resource R 2 at a time

3



Figure 2. Priority inversion is reduced by temporarily giving J3 higher priority

Figure 3. Behavior of Priority Ceiling Protocol (PCP)

Figure 4. Global multiprocessor scheduling (Failure)

4



when it was known that job J1 will also request the same re-
source is a wrong choice in this scenario3. Essentially, job J1

suffers blocking twice within the same nested resource access;
once while waiting for resource R1 and again while waiting for
resource R2. An improved resource sharing scenario in which
job J2 is denied access to resource R2 is illustrated in Figure 5.

This then begs the question, “When should a request for
shared resource be granted?”. A very safe approach would be
to grant access to only one resource at a time, but this would
limit parallelism. And this limited parallelism would imply
that more work must be done at later times, which in turn can
cause deadline misses. Another approach would be to use a
PCP-like protocol (as in uniprocessors) and decide that job J2

should be denied resource R2, because J2 does not have higher
priority than the ceilings of all locked resources (namely R 1).
But this can also unnecessarily limit parallelism resulting in
the aforementioned performace drawback. In Figure 4, if job
J2 would have released resource R2 just prior to when job J1

requested access to the same resource, then it would not have
affected the finishing time of job J1. Thus we can see that a
resource request from a medium priority job can be granted if
the resource is released before any other higher priority job
requests it. Or more generally, a resource request can be
granted as long as the maximum blocking time suffered by
any higher priority job is guaranteed to be within pre-defined
bounds. In fact, in the next section, we will present a re-
source sharing protocol based on this idea. It allows paral-
lelism (=granting requests) as much as possible, yet keeping
the blocking time within limits.

4 BHP resource sharing protocol

The main idea. From the discussion in the previous section
we can draw the following conclusions about the design of a
protocol which avoids priority inversion and allows a large de-
gree of parallel execution:

• A priority-inheritance mechanism should be used in or-
der to avoid priority inversion but a PCP-like mechanism
should not be used (because it would restrict parallel exe-
cution too much).

• If a high-priority task requests to execute but it does not
request a shared resource then this task should be allowed
to continue to execute.

• There should be a mechanism for preventing deadlock.
(This is needed since we do not use PCP.)

• For each task-resource pair, there should be an associated
counter variable. This counter specifies the amount of
blocking that the task can tolerate to be blocked when re-
questing the resource. For every resource request, the pro-
tocol should check so that granting the request does not

3J1 was released before J2 was granted access to R2, and at that time we
knew that J1 needs resource R2.

violate any tolerated blocking of any other task-resource
pairs.

• If a task is blocked for one time unit because the task re-
quested a resource then the corresponding counter of this
task-resource pair should be decremented by one (since
the amount of tolerable blocking is one time unit less).

In this section, we will create a protocol based on these ideas
and this protocol will avoid priority inversion and allow a large
degree of parallel execution. We will first present notations that
is needed. Then present the dispatching algorithm for global
scheduling; it uses the counters as mentioned above. We will
then show how the counters as updated and discuss subtle is-
sues with the protocol.

Notations. We use the following notations.

• t: Denotes the current time instant.

• LPBi: Denotes the Lower Priority Blocking for jobs of
task τi. Our protocol guarantees that for each nested
resource access (the entire nesting) by jobs of task τ i,
the maximum time for which this job will be blocked
by lower priority jobs is at most LPBi. If a job has
two completely separate nested resource accesses during
its execution, then it will incur a maximum blocking of
2LPBi. Our protocol guarantees a value of max{CSk,l}
for LPBi, where k > i and l ranges over all resources
that jobs of τi access.

• MTRk,l: Minimum Time to Request resource Rl count-
ing from the start of the nesting, among all non-outermost
accesses to this resource by jobs of task τk. For example,
suppose jobs of τk request resource Rl in three nestings
during their execution; 1) Rj requested and then Rl with
a minimum gap of 10 time units, 2) Rl alone requested,
and 3) Rj requested and then Rl with a minimum gap of
5 time units. Then, MTRk,l in this case is 5.

• �Rl�k: For each task τk and each resource Rl, �Rl�k de-
notes the maximum blocking (in future) that the currently
active job of τk can incur in its current resource nesting.
If the job is currently not in any nesting or if �R l�k is
currently irrelevant, then it is set to ∞. The value is ini-
tialized to ∞, and only updated by our protocol.

• PTYi: Priority of jobs of task τi at the current time
instant. PTYi is initialized to i, but can be temporar-
ily modified by our protocol (PIP-like updates). A job
of task τi has higher priority than a job of task τj iff
PTYi < PTYj , or PTYi = PTYj and i > j4.

BHP Protocol. The Bounded Blocking with High
Parallelism resource sharing protocol is given by Algorithm 1,
and the update to �Rl�k is performed by Algorithm 2. Both
these algorithms are executed at each time instant t, with Al-
gorithm 2 being executed first.

4The last condition ensures that any lower priority job of task τi that is
promoted to level j has higher priority than jobs of task τj

5



Figure 5. Global multiprocessor scheduling (Success)

Algorithm 1 Global scheduling with resource sharing
1: n assigned← 0
2: for each ready job J in priority order (based on PTYi) do
3: if n assigned < m then
4: if J is not requesting any resource then
5: Execute job J .
6: n assigned← n assigned + 1
7: else
8: Let Rj denote the resource requested.
9: if all resources in the nesting to which

10: this request belongs are unlocked then
11: if ∀k : �Rj�k ≥ CSij or
12: PTYi < PTYk then
13: Execute J and set PTYi equal to the
14: smallest PTYk such that �Rj�k
15: has a finite value (this update to PTYi

16: is reset when resource Rj is released).
17: n assigned← n assigned + 1
18: end if
19: end if
20: end if
21: end if
22: end for

We now explain the BHP protocol using examples illus-
trated in Figure 6. The figure illustrates two scenarios sepa-
rated by the thick vertical line. In both the scenarios job J 1

has higher priority than job J2 and J2 has higher priority than
job J3, and these jobs are scheduled on 2 identical processors.
Further, job J1 requests resource R1, job J2 requests resource
R1 followed by resource R2 in a nested manner, and job J3

requests resource R2. In the scenario on the left, job J2 locks
resource R1 and then job J1 blocks because it needs R1. Then,
job J3 arrives and requests to lock resource R2. This request
is granted because the maximum time for which J3 will lock
R2 is such that it will not delay the execution of job J2 (R2

will be released before t1 in the figure). In fact, the proto-
col will allow J3 to lock R2 even if it delays the execution of
J2, as long as this delay does not increase the blocking time
of J1 beyond LPB1. This scenario is depicted on the right-
hand-side of the figure (interval (t2, t3] is bigger than inter-
val (t3, t4]). In summary, when J3 requests resource R2, it is
granted access as long as the total blocking suffered by J2 is
such that it does not unnecessarily increasing the blocking of
J1. The adjustment of blocking parameters in Lines 24 and 28
of Algorithm 2 ensures this property. The BHP protocol thus
allows lower priority jobs to lock resources even when depen-
dent (through nesting) resources are locked by higher prior-
ity jobs, and thereby improves parallelism when compared to
other existing approaches.

It can be shown that the BHP protocol prevents deadlocks
(due to check in Line 9 of Algorithm 1), and ensures that the
maximum lower priority blocking suffered by any job of task
τi is LPBi. The latter is true because of the following reasons.

• The protocol allows a lower priority job to lock a resource
iff it does not violate the blocking constraint in Line 11 of
Algorithm 1. This constraint checks, for each higher pri-
ority task τk, whether the maximum blocking time CS i,j

is smaller than permitted blocking time of resource R j

(�Rk�j).

6



Figure 6. Example illustrating the BHP protocol

Algorithm 2 Update rules for �Rl�k

1: if A job of task τi performs an outermost request for
2: resource Rj (first request of a nested access) then
3: �Rj�i ← LPBi.
4: if Rj is currently locked by a job of task τk and
5: PTYk > PTYi then
6: PTYk ← PTYi (this update to PTYk is reset
7: when resource Rj is released).
8: end if
9: �Rl�i ←MTRi,l for each non-outermost resource Rl

10: in this nested access.
11: for each non-outermost resource Rl in this
12: nested access do
13: if Rl is currently locked by a job of task τk and
14: PTYk > PTYi then
15: PTYk ← PTYi (this update to PTYk is reset
16: when resource Rl is released).
17: end if
18: end for
19: end if
20: if a job of task τi is granted access to a resource Rj (in response

to an earlier request) then
21: �Rj�i ←∞
22: end if
23: if A job of task τi is blocked in the interval (t− 1, t] then
24: �Rl�i ← �Rl�i − 1, for all l s.t. �Rl�i �=∞.
25: else
26: if A job of task τi is directly blocking some job in the
27: interval (t− 1, t] then
28: �Rl�i ← �Rl�i − 1, for all l s.t. �Rl�i �=∞.
29: end if
30: end if

• The initialization of blocking parameters (Lines 3 and 9
in Algorithm 2) ensure that the total direct blocking that
a lower priority job can induce on a job of task τ i is
bounded by LPBi. Further, the updates to these param-
eters, in Lines 24 and 28 of Algorithm 2, ensure that the
total blocking (direct and indirect) incurred by jobs of τ i

is bounded by LPBi.

Although the BHP protocol prevents deadlocks, ensures
bounded blocking, and improves the parallelism in task exe-
cutions when compared to existing studies, it incurs overheads
in terms of memory requirements for �R l�k (O(np)) and on-
line time-complexity for updates to �R l�k (O(np)).

5 Conclusions and open questions

In this paper, we have discussed that there is a tradeoff be-
tween blocking and parallelism, and we have proposed the
BHP protocol which allows as much parallelism as possible,
keeping blocking within pre-defined limits. We may note that
we are not the first ones to propose that a request for a re-
source should undergo a check, to calculate the time when the
resource will be released. In fact, SIRAP [3] (a protocol for hi-
erarchical scheduling) used such a test to decide if a job which
requests a resource will finish execution before its budget ex-
pires, and if the answer is no then the request is denied.

Although the BHP protocol addressed some issues concern-
ing the efficient use of parallelism in task executions, some
open questions still remain. One of them is “Moving from
uniprocessors to multiprocessors, whether it is still relevant
to treat processors in a special manner when compared to
other shared resources?”. In multiprocessors, there is a very
clear trade-off between mutually exclusive access to shared re-
sources and ability to exploit processing parallelism. Then,
it would be interesting to consider processors as just another

7



shared resource (although preemptable), and integrate their
scheduling directly into the resource sharing protocol. An-
other question is “How to integrate the loss of parallelism due
to shared resources in schedulability analysis?”. There are two
factors leading to loss of parallelism; blocking from lower pri-
ority jobs and blocking from higher priority jobs 5. The for-
mer is accounted for in the blocking factor (LPB in our case).
However, accounting for the latter is still an open problem.

References

[1] T. P. Baker. Stack-based scheduling for realtime pro-
cesses. Journal of Real-Time Systems, 3(1):67–99, 1991.

[2] S. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel.
Proportionate progress: a notion of fairness in resource
allocation. Algorithmica, 15(6):600–625, 1996.

[3] M. Behnam, I. Shin, T. Nolte, and M. Nolin. SIRAP: A
synchronization protocol for hierarchical resource shar-
ing in real-time open systems. pages 279–288, 2007.

[4] A. Block, H. Leontyev, B. B. Brandenburg, and J. H. An-
derson. A flexible real-time locking protocol for multi-
processors. In Proc. of Real-time and Embedded Comput-
ing Systems and Applications Conference, pages 47–56,
2007.

[5] C.-M. Chen and S. K. Tripathi. Multiprocessor priority
ceiling based protocols. Technical report, 1994.

[6] Um. C. Devi, H. Leontyev, and J. H. Anderson. Efficient
synchronization under global edf scheduling on multipro-
cessors. In Proc. of Euromicro Conference on Real-Time
Systems, pages 75–84, 2006.

[7] E. W. Dijkstra. Co-operating sequential processes. Pro-
gramming Languages, pages 43–112, 1968.

[8] P. Gai, G. Lipari, and M. Di Natale. Minimizing mem-
ory utilization of real-time task sets in single and multi-
processor systems-on-a-chip. In Proc. of IEEE Real-Time
Systems Symposium, page 73, 2001.

[9] P. Holman and J. H. Anderson. Locking in pfair-
scheduled multiprocessor systems. In Proc. of IEEE
Real-Time Systems Symposium, page 149, 2002.

[10] J. M. López, J. L. Dı́az, and F. D. Garcı́a. Utilization
bounds for EDF scheduling on real-time multiprocessor
systems. Journal of Real-Time Systems, 28(1):39–68,
2004.

[11] A.K. Mok. Fundamental Design Problems of Distributed
Systems for the Hard-Real-Time Environment. PhD the-
sis, PhD Thesis, Department of Computer Science, Mas-
sachusetts Institute of Technology (MIT), 1983.

5Higher priority blocking arises when processors are idle because higher
priority jobs have locked resources required by lower priority jobs.

[12] R. Rajkumar. Synchronization in Real-Time Systems: A
Priority Inheritance Approach. Kluwer Academic Pub-
lishers, 1991.

[13] R. Rajkumar, L. Sha, and J. P. Lehoczky. Real-time syn-
chronization protocols for multiprocessors. pages 259–
269, 1988.

[14] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority in-
heritance protocols: An approach to real-time synchro-
nization. IEEE Transactions on Computers, 39(9):1175–
1185, 1990.

8


