

Scheduling parallel real-time tasks in
multiprocessor platforms

PhD Thesis

CISTER-TR-181118

2018/11/06

Cláudio Maia

PhD Thesis CISTER-TR-181118 Scheduling parallel real-time tasks in multiprocessor ...

© CISTER Research Center
www.cister.isep.ipp.pt

1

Scheduling parallel real-time tasks in multiprocessor platforms

Cláudio Maia

*CISTER Research Centre

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail: clrrm@isep.ipp.pt

http://www.cister.isep.ipp.pt

Abstract

FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Scheduling Parallel Real-Time Tasks in

Multiprocessor Platforms

Cláudio Roberto Ribeiro Maia

Doctoral Program in Electrical and Computer Engineering

Supervisor: Luís Miguel Pinho Nogueira

Co-Supervisor: Luís Miguel Rosário da Silva Pinho

November 6, 2018

c© Cláudio Roberto Ribeiro Maia, 2018

Scheduling Parallel Real-Time Tasks in Multiprocessor
Platforms

Cláudio Roberto Ribeiro Maia

Doctoral Program in Electrical and Computer Engineering

November 6, 2018

Resumo

No passado era suficiente aumentar a frequência de execução em processadores mononúcleo, de

modo a adicionar novas funcionalidades de software. No entanto, devido a limitações no meio

físico, os fabricantes de processadores deixaram de fabricar processadores mononúcleo em fa-

vor de processadores multinúcleo. Enquanto, no âmbito geral, esta adaptação é benéfica para

a indústria de software, dado que permite a inclusão de funcionalidades mais exigentes e com-

plexas nas aplicações, a utilização de sistemas comerciais de hardware (conhecidos como COTS

- Commercial-Off-The-Shelf) em ambientes de tempo-real apresenta um desafio ainda em aberto.

De facto, em sistemas de tempo-real, a previsibilidade é considerada mais importante do que o

desempenho e é um requisito para a exactidão, num domínio que é sobejamente conhecido pelos

seus rigorosos requisitos temporais.

Podemos apontar duas razões principais para este desafio. Em primeiro lugar, as arquitecturas

COTS são desenhadas para sistemas em que o desempenho no caso médio é importante, e por con-

seguinte, recursos como componentes de memória (i.e., memória principal, memória cache, etc.),

periféricos e barramentos, são partilhados entre os vários núcleos do sistema. Consequentemente,

se não houver cuidado, desvios temporais, daqueles que foram estimados em tempo de desenho

da aplicação, podem ocorrer (devido a interferência) sempre que núcleos diferentes acedem si-

multaneamente aos recursos partilhados do sistema. Em segundo lugar, a plataforma de hardware

não só suporta execução concorrente ao nível dos núcleos, mas também suporta execução paralela

ao nível da plataforma. Por conseguinte, o objectivo principal para a comunidade de sistemas de

tempo-real é encontrar soluções eficientes para lidar com o comportamento paralelo e inerente

à plataforma, e ao mesmo tempo, assegurar a previsibilidade das aplicações, tendo em consider-

ação os recursos partilhados da plataforma. Nesta dissertação, este objectivo é dividido em dois

problemas distintos que são abordados de forma independente, nomeadamente: (i) o problema

de escalonamento de tarefas paralelas com restrições temporais em plataformas multiprocessador;

(ii) o problema da partilha de recursos em plataformas multiprocessador.

O primeiro problema (o problema de escalonamento de tarefas paralelas com restrições tempo-

rais em plataformas multiprocessador) é coberto usando duas perspectivas diferentes. A primeira

perspectiva foca-se no tempo de resposta de tarefas paralelas e de tempo-real utilizando o modelo

síncrono de tarefas paralelas. O modelo considerado tem como alvo tarefas com prioridades fixas,

compostas por vários segmentos, em que cada segmento é composto por um número arbitrário

de unidades de execução independentes e que podem ser executadas em paralelo. Para alcançar

este objectivo, novos conceitos, tais como decomposição do carry-out e janela deslizante, são

introduzidos de modo a derivar um cenário no pior caso que permita computar o pior tempo de re-

sposta de cada tarefa que executa no sistema. Na segunda perspectiva, o problema é analisado con-

siderando uma abordagem mais dinâmica. Uma abordagem multifase é apresentada para analisar a

escalonabilidade das tarefas de tempo-real seguindo um modelo fork-join antes e durante o tempo

de execução. Esta abordagem tem a particularidade de, durante o tempo de execução, utilizar o

algoritmo de work-stealing para reduzir o tempo médio de resposta das tarefas de tempo-real.

i

ii

O segundo problema (o problema da partilha de recursos em plataformas multiprocessador) é

abordado considerando uma plataforma na qual o barramento é partilhado entre os vários núcleos

e, por conseguinte, é uma fonte de interferência sempre que pedidos de memória são feitos em

simultâneo pelos vários núcleos do sistema. Para resolver este problema, o modelo de 3 fases é

utilizado. Em primeiro lugar, uma análise empírica é realizada para comparar o desempenho de

diferentes políticas de atribuição de prioridades com uma implementação da política de escalona-

mento global Earliest Deadline First (EDF) que considera interferência entre tarefas. De seguida,

um teste de escalonabilidade para o modelo de 3 fases é proposto, tendo em consideração a inter-

ferência no barramento e a interferência entre tarefas.

Abstract

In the past, increasing the frequency in single-core processors was enough to accommodate new

software features. However, due to physical limitations, processor manufacturers stopped releas-

ing single-core processors in favour of multicore ones. While this move is beneficial for the

software industry overall, as it allows the inclusion of more complex and demanding features into

applications, the use of Commercial-Off-The-Shelf (COTS) multicore platforms in real-time sys-

tems still remains a challenge. In fact, in the real-time systems domain, predictability is considered

more important than performance, and is a requirement for correctness in a domain well-known

for their stringent timing requirements.

Two main reasons can be identified for such a challenge. First, COTS multicore architectures

are designed for average-case performance and due to this, resources, such as memory components

(i.e., main memory, memory caches, etc.), peripheral devices, and buses, are shared among the

different cores. Consequently, if care is not taken, timing deviations, from the ones estimated

at design time, may occur due to interference whenever different cores simultaneously access

shared resources. Second, the platform not only supports concurrent execution at a core level but

it also supports parallel execution at the platform level. Therefore, the major goal for the real-

time systems community is to find efficient ways of dealing with the inherent parallel behaviour

of the platform, and at the same time, be able to ensure application predictability by taking into

account the shared resources in the platform. In this dissertation, this goal is divided into two

distinct problems which are dealt independently from each other: (i) the problem of scheduling

parallel real-time tasks in multiprocessor platforms; and (ii) the problem of sharing resources in

multiprocessor platforms.

The first problem (scheduling parallel real-time tasks in multiprocessor platforms) is covered

from two different perspectives. In the first one, we focus on the response-time of synchronous

parallel real-time tasks. The model under consideration targets tasks with fixed priorities, com-

posed of several segments, each with an arbitrary number of parallel and independent units of

execution that can be executed in parallel. New concepts such as carry-out decomposition and

sliding window are introduced to derive a worst-case scenario that allows one to compute the

worst-case response-time of each task executing in the system. In the second perspective, the

problem is analysed considering a more dynamic approach. A multi-stage approach is presented

to analyse the schedulability of fork-join real-time tasks before and during runtime. The partic-

ularity of this approach is that during runtime the work-stealing algorithm is used to reduce the

average response-time of real-time tasks.

The second problem (sharing resources in multiprocessor platforms) is addressed by consid-

ering a platform where the memory bus is shared among cores. Consequently, it is a source of

interference whenever simultaneous memory requests are issued by the cores in the platform. To

solve this problem, the 3-phase task model is used. First, an empirical analysis is performed where

the performance of different priority assignment policies is compared against an implementation

of the global Earliest Deadline First (EDF) scheduling policy that considers inter-task interfer-

iii

iv

ences. Then, a schedulability test for the 3-phase task model is derived by taking into account the

bus interference and task interference.

Acknowledgements

Many people contributed to this endeavour in many different ways. Thus, I would like to take this

opportunity to show my respect and gratitude to all of them.

First of all, I am very grateful to my advisors, Luís Miguel Pinho and Luís Miguel Nogueira,

for everything that they did for me. In the first place, for guiding me in the selection of a research

topic and afterwards, for the time, support and long discussions about the research work that

led to dissertation you are reading. In addition, for all the time and effort spent reviewing my

work, including this dissertation. Finally, for teaching other valuable things related to life. Their

friendship and professional collaboration meant a lot to me.

A PhD degree cannot be obtained without family support. For that, I have to thank my family

in general, but specially my parents, Carlos and Maria, my wife Joana and our newborn Dinis,

which also contributed to this research work in its own way, and finally, my brother Luís and his

family.

To the people that collaborated with me, namely: Marko Bertogna, Daniél Gracia Perez,

Patrick Yomsi and Geoffrey Nellisen. The hours we spent together discussing complex problems

were very valuable to me. I learned several different things with all of you and I felt that not only

I was improving as a researcher but also as a human being.

Finally, I would like to thank CISTER Research Centre as an institution for the opportunity

and trust they gave me in order to pursue this degree. Moreover, as a research centre is just a

hollow space without people, I also want to thank and give a warm appreciation to my co-workers

at CISTER for sharing their insights, ideas, different visions and cultural perspectives, not only

about my work but about life in general. A special thanks goes to David Pereira, André Pedro

and José Fonseca for their friendship and support.

This research work was partially supported by National Funds through FCT (Portuguese Foun-

dation for Science and Technology) and by ESF (European Social Fund) through POPH (Por-

tuguese Human Potential Operational Program), under PhD grant SFRH / BD / 88834 / 2012.

Cláudio Maia

v

vi

“The loneliness of a PhD student is equivalent to the loneliness of a long distance runner.

”

C. Maia, 2013

vii

viii

List of Publications

The following publications were developed in the scope of the research activities presented in

this dissertation.

Journals

• Cláudio Maia, Patrick Meumeu Yomsi, Luís Nogueira, and Luis Miguel Pinho. Real-time

semi-partitioned scheduling of fork-join tasks using work-stealing. EURASIP Journal on

Embedded Systems, 2017(1):31, Sep 2017b. ISSN 1687-3963. doi:

10.1186/s13639-017-0079-5

Conferences (in chronological order)

• Cláudio Maia, Luís Nogueira, and Luís Miguel Pinho. Supporting real-time parallel task

models with work-stealing, March 2012. Research Poster at The Designing for Embedded

Parallel Computing Platforms: Architectures, Design Tools, and Applications

(DEPCP’2012) (DATE Workshop)

• Cláudio Maia, Luís Nogueira, Luís Miguel Pinho, and Marko Bertogna. Response-time

analysis of fork/join tasks in multiprocessor systems. In Proceedings of Work-in-Progress

Session of the 25th Euromicro Conference on Real-Time Systems, ECRTS ’13, Paris,

France, July 2013. Work in Progress Session

• Cláudio Maia, Marko Bertogna, Luís Nogueira, and Luis Miguel Pinho. Response-time

analysis of synchronous parallel tasks in multiprocessor systems. In Proceedings of the

22nd International Conference on Real-Time Networks and Systems, RTNS ’14, pages

3:3–3:12, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2727-5. doi:

10.1145/2659787.2659815

• Cláudio Maia, Patrick Meumeu Yomsi, Luís Nogueira, and Luis Miguel Pinho.

Semi-partitioned scheduling of fork-join tasks using work-stealing. In 2015 IEEE 13th

International Conference on Embedded and Ubiquitous Computing, pages 25–34, Oct

2015. doi: 10.1109/EUC.2015.30

• Cláudio Maia, Luís Nogueira, Luis Miguel Pinho, and Daniel Gracia Pérez. A closer look

into the aer model. In 2016 IEEE 21st International Conference on Emerging Technologies

and Factory Automation (ETFA), pages 1–8, Sept 2016. doi: 10.1109/ETFA.2016.7733567

• Cláudio Maia, Geoffrey Nelissen, Luís Nogueira, Luis Miguel Pinho, and Daniel Gracia

Pérez. Schedulability analysis for global fixed-priority scheduling of the 3-phase task

model. In 2017 IEEE 23rd International Conference on Embedded and Real-Time

ix

x

Computing Systems and Applications (RTCSA), pages 1–10, Aug 2017a. doi:

10.1109/RTCSA.2017.8046313

Contents

Resumo i

Abstract iii

Acknowledgements v

List of Publications ix

1 Introduction 1

1.1 Parallelism . 2

1.1.1 Example of an OpenMP Task . 3

1.2 Parallelism and Real-Time Systems . 4

1.3 Resource Sharing . 5

1.4 Thesis Statement . 6

1.5 Contributions . 7

1.6 Thesis Structure . 8

2 Background and Related Work 9

2.1 Task Characterisation . 9

2.2 Platform Characterisation . 11

2.2.1 Processors . 12

2.2.2 Memory . 12

2.2.3 Memory Bus . 14

2.3 Multiprocessor Scheduling . 17

2.4 Parallel Real-Time Systems . 19

2.4.1 Parallel Task Models . 19

2.4.2 Earlier Parallel Models . 20

2.4.3 Recent Parallel Models . 21

3 Schedulability of Synchronous Parallel Tasks 25

3.1 Introduction . 25

3.2 System Model . 26

3.3 Critical Interference of Parallel Tasks . 27

3.4 Response-Time Analysis . 32

3.5 Sliding Window Technique . 33

3.6 Decomposing the Carry-out Job . 34

3.7 Workload of a Task Within a Window . 35

3.8 Schedulability Condition . 38

3.9 Complexity . 39

xi

xii CONTENTS

3.10 Evaluation . 39

3.11 Summary . 41

4 Applying Work-stealing to Real-time Systems 43

4.1 Introduction . 43

4.2 Randomised Work-stealing . 44

4.3 Limitations of Randomized Work-stealing with Respect to Real-Time Systems . . 45

4.4 Literature on Real-Time Work-Stealing . 46

4.5 A New Data Structure . 48

4.6 Semi-partitioned Scheduling . 49

4.7 System Model . 50

4.7.1 Earliest Deadline First . 50

4.7.2 Multiframe Task Model . 51

4.8 Semi-partitioned Scheduling and Work-Stealing 52

4.8.1 Task Assignment Phase . 53

4.8.2 Offline Scheduling Phase . 54

4.8.3 Online Scheduling Phase . 55

4.8.4 Example . 56

4.9 Tasks with Density Greater Than 1 . 57

4.10 Schedulability Analysis . 59

4.11 Simulation Results . 63

4.11.1 Selected Heuristics . 63

4.11.2 FFDO versus WFD . 64

4.11.3 Overheads of the Approach . 68

4.12 Summary . 69

5 Schedulability of the 3-Phase Task Model 71

5.1 Introduction . 71

5.2 System Model . 72

5.3 Runtime Execution Model . 73

5.4 3-Phase vs. G-EDF in COTS Systems . 73

5.4.1 Priority Assignment Policies . 73

5.4.2 Simulator’s Scheduling Behaviour . 75

5.4.3 Experimental Settings . 76

5.4.4 Experimental Results . 77

5.5 Global Fixed-Priority Scheduling of the 3-Phase Task Model 82

5.5.1 Scheduling Policy . 82

5.5.2 Background . 84

5.5.3 A Different Perspective . 87

5.5.4 Schedulability Analysis . 89

5.5.5 Experimental Results . 95

5.6 Summary . 97

6 Conclusion 99

6.1 Future Work . 101

References 103

List of Figures

1.1 Graphical representation of the code presented in Listing 1.1 4

2.1 Memory hierarchy in current COTS platforms 13

2.2 Example of a 3-phase task model schedule . 16

2.3 Example of a fork/join task τi . 21

2.4 Example of a synchronous parallel task τi . 22

3.1 Task τi interfering on task τk . 30

3.2 Densest possible packing of threads within the problem window 33

3.3 Densest possible packing of threads when a task skips some segment 35

3.4 Example of a decomposed job . 35

3.5 Response-time analysis details . 36

3.6 Number of schedulable task sets detected by the considered tests for m = 4 40

3.7 Number of schedulable task sets detected by the considered tests for m = 8 40

4.1 Work-stealing deque data structure . 44

4.2 Priority inversion scenario . 46

4.3 Fork-join task . 50

4.4 Illustrative example of the proposed approach 56

4.5 Task decomposition with one task . 58

4.6 Result of applying the proposed approach to a task set that contains a task with

density greater than 1 . 59

4.7 Analysis proposed by Dorin et al. in [Dorin et al., 2010]. 60

4.8 Result after the offline analysis . 61

4.9 Example of work-stealing and intermediate deadline computation 62

4.10 Possible cases for the admission control test . 62

4.11 Percentage of unallocated tasks . 64

4.12 Comparison between FFDO and WFD . 65

4.13 Simulation results for FFDO and WFD . 67

5.1 Simulation results for m = 2, E-phase smaller than A and R-phases 80

5.2 Simulation results for m = 2, E-phase larger than both A and R-phases 80

5.3 Simulation results for m = 4, E-phase smaller than A and R-phases 81

5.4 Simulation results for m = 4, E-phase larger than both A and R-phases 81

5.5 Comparison between m = 2 and m = 4, E-phase larger than both A and R-phases 82

5.6 Simulation results for m = 8 cores, slowdown = 1.5x 83

5.7 Problem Window . 84

5.8 Computing the overlap lower-bound for ρ = 2,m = 3 in [Alhammad and Pelliz-

zoni, 2014] . 87

xiii

xiv LIST OF FIGURES

5.9 Pessimism of the analysis in [Alhammad and Pellizzoni, 2014] 87

5.10 Our schedulability analysis approach . 88

5.11 Computing an upper-bound on bus holes . 92

5.12 Bus holes . 93

5.13 Schedulability ratio for m = 4 and as a function of the number of cores 95

5.14 Schedulability ratio for m = 2 and as a function of the memory ratio 96

Acronyms

BFD Best-fit Decreasing

COTS Commercial Off-the-shelf

CPU Central Processing Unit

DAG Directed Acyclic Graph

DBF Demand Bound Function

DRAM Dynamic Random Access Memory

EDF Earliest Deadline First

FFD First-fit Decreasing

FCFS First Come, First Serve

FIFO First-In, First-Out

GMF Generalized Multiframe model

LIFO Last-In, First-Out

MPI Message Passing Interface

POSIX Portable Operating System Interface

RAM Random Access Memory

TDMA Time-division Multiple Access

WCET Worst-case Execution Time

WFD Worst-fit Decreasing

xv

Chapter 1

Introduction

The multiprocessor trend restarted recently (first multiprocessor systems appeared in the 60s/70s)

and is moving at a fast pace. In 2001, Sun Microsystems and IBM (in a separated effort) manu-

factured the dual-core processors. Later on, in 2006, this type of processors became a mainstream

technology powered by Intel and AMD. This shift in paradigm (moving from uniprocessor to mul-

tiprocessor systems) occurred due to the physical limitations of computer chips. Increasing the op-

erating frequency and voltage of the chips leads to an exponential increase in power consumption

and heat dissipation issues. In order to overcome such physical limitations, chip manufacturers

increased the number of computing units operating in parallel per single chip, while maintaining a

lower frequency of operation, i.e., multicore systems. As a result of this paradigm shift, computing

systems are gradually becoming multiprocessor, with each chip being composed of multiple core

units. Nowadays, different platforms present a varying number of cores per chip, ranging from the

tenths up to the hundreds. Some notable examples of such platforms are TILE64 from Tilera [Bell

et al., 2008], the Epiphany processors designed by Adapteva [Adapteva, 2014] and the MPPA-256

Manycore Processor developed by Kalray [de Dinechin et al., 2013]. Future generations of pro-

cessors are expected to integrate thousands of simple processors in a single chip [Asanovic et al.,

2006].1

Perhaps the advantage of multicore systems that immediately stands out is the opportunity

they offer to increase application performance by allowing each application to execute its code

simultaneously and in parallel. However, while sequential programs execute faster if the clock

speed of the processors is increased (under the assumption that concurrency is neglected), this

is not the case for multicore platforms due to certain restrictions, such as workload distribution,

synchronisation and coordination operations frequently occurring between cores, and the existence

of shared resources. Hence, to obtain the best efficiency possible and take complete advantage

of these platforms, sequential programs need to be rewritten and such restrictions be taken into

account. This aspect is specially relevant in the real-time systems domain, the domain covered in

this dissertation, where predictability is of utmost importance. In this domain and for efficiency

1In this dissertation, the terms multicore and multiprocessor are used interchangeably. Nevertheless, a clarification

for the difference that exists between a core and a processor is given in the next chapter.

1

2 Introduction

purposes, the move to a multiprocessor centred paradigm imposes new challenges as it requires

moving out from traditional multiprocessor scheduling2 algorithms that are focused on sequential

tasks to scheduling algorithms that contemplate parallel tasks.

In this chapter we start by introducing relevant concepts related to parallelism and provide an

example of how it can be exploited by applications, in Section 1.1. Then, we focus on the challenge

of exploiting parallelism in real-time systems and the problem of resource sharing introduced by

multiprocessor platforms, in Section 1.2 and Section 1.3, respectively. With both of these in mind

(parallelism and resource sharing), we explicitly state which problems this dissertation intends to

solve, in Section 1.4, and its contributions, in Section 1.5. Finally, the thesis structure is presented

in Section 1.6.

1.1 Parallelism

Parallelism in computer programs can be exploited either explicitly, by using explicit parallel

programming languages, or implicitly, by using implicit parallel programming languages [Freeh,

1996].

An explicit parallel programming language provides special constructs that allow the program-

mer to identify the opportunities for parallelism and break the program by its logical functionality.

This division by functionality results in units of execution (commonly known as tasks or threads)

that may be simultaneously executed in parallel in each of the platform’s cores. The advantage of

using such approach is that the programmer can write very efficient code at the cost of the time

needed to produce it.

By using an implicit parallel programming language, the programmer relies on the compiler

to automatically manage and extract parallelism at compile time in an implicit manner. The disad-

vantage of this approach is that it is compiler dependent and therefore not all parallelism may be

discovered.

Besides the type of programming languages, as described above, there are other important

aspects that require special attention from the programmer when developing parallel applications,

as for instance the selection of programming models and frameworks/libraries.

Two well-known programming models [Diaz et al., 2012] exist for the development of parallel

applications - shared memory and distributed memory models. In the shared memory model, all

processors have access to the same random access memory (RAM) and tasks exchange data by

accessing the shared memory. In the distributed memory model, each processor has access to its

own private memory. If by any means a task needs data residing in another’s processor memory,

then both processors need to communicate by exchanging messages via a communication channel.

Several existing frameworks/libraries support the aforementioned models of computation (e.g.,

OpenMP [OpenMP, 2011] or POSIX threads [Gallmeister, 1995] for shared memory, and Mes-

sage Passing Interface (MPI) [MPI, 2014] for distributed memory, to name a few). The goal of

2The decision process that deals with the allocation of workload to system resources and its sequencing over a period

of time is known as scheduling.

1.1 Parallelism 3

Listing 1.1: Simple OpenMP Example

some i n i t i a l i s a t i o n code

pragma omp p a r a l l e l num_th reads (4)

{

. . . some comput ing i n t e n s i v e p a r a l l e l code . . .

}

c l e a n up code

such frameworks/libraries is to enhance the programming languages and runtime environments

with specific features that allow a programmer to focus on the functionality of a computer pro-

gram, instead of focusing on the specific details of parallelisation. Some of these features include

mechanisms for task creation and destruction, task synchronisation and scheduling, among others.

Thus, a big advantage of such parallel frameworks/libraries is that they ease the programmer’s

effort by reducing the complexity of developing parallel programs.

1.1.1 Example of an OpenMP Task

Due to its importance and dominance in traditional multicore architectures, where all cores have

access to the same memory address space, let us focus on the shared memory model and more

specifically on OpenMP. Using OpenMP, a programmer has full control over the code paralleli-

sation, thus making it an explicit parallel programming framework/library. Hence, programmers

can annotate their programs to expose opportunities for parallelism and suggest a possible parallel

decomposition to the framework’s runtime. The annotations act as hints for parallelisation which

may be considered by the runtime environment, as a function of the system load and with the

objective of exploiting the maximum amount of parallelism possible.

Listing 1.1 presents a simple OpenMP example to show the reader of how such frameworks/li-

braries operate. In the example, the main thread of execution sequentially executes some initiali-

sation code. After completing the initialisation phase, the main thread requires from the runtime

the creation of 4 threads. Each of threads is responsible for the execution of the parallel block

defined within the pragma omp parallel. After completing their execution, each of the parallel

threads synchronise with the main thread so that the clean up code is executed. Then, the program

ends its execution.

This model of execution is known as the fork-join model due to the fact that the main thread

forks into several threads that join into a single main thread at the end of their execution. Figure 1.1

depicts a graphical representation of the code in Listing 1.1.

4 Introduction

Figure 1.1: Graphical representation of the code presented in Listing 1.1

1.2 Parallelism and Real-Time Systems

A common definition found in the literature defines a real-time system as a system where its cor-

rect behaviour not only depends on the logical correctness of the system, but also on the time at

which the operations are performed [Stankovic, 1988]. This type of systems is known for their

predictability and stringent design requirements [Durrieu et al., 2014b; Leteinturier, 2007; Monot

et al., 2010]. While in the past these systems were targeted at control applications, which are

marked by their limited processing, a new set of applications (ranging from smart grids to au-

tonomous driving) is demanding high processing in conjunction with real-time performance, and

thus, powerful hardware is required to satisfy their needs [Pinho et al., 2015]. In fact, the required

computing capacity they need can be obtained from state of the art multiprocessor platforms.

In particular, real-time systems may take advantage of the platform’s parallelism by distributing

workload among the different cores for simultaneous execution, while using efficient scheduling

techniques and consequently, better manage system resources.

However, bringing parallelism into real-time systems is not an easy task. Specially when the

scheduling of applications is considered. Liu and Layland [Liu and Layland, 1973] observed the

complexity of multiprocessor scheduling by stating the following:

“... bringing in additional processors adds a new dimension to the scheduling problem.

The simple fact that a task can use only one processor even when several processors

are free at the same time adds a surprising amount of difficulty to the scheduling of

multiple processors.”

While the uniprocessor scheduling problem reduces to deciding when to schedule each task,

a new dimension adds to this one when shifting to multicores as it must also be decided where to

execute each task.

Traditional multiprocessor scheduling deals with the scheduling of sequential tasks, that is,

tasks which can only run in a single core. With this type of tasks, parallelism can only be ex-

ploited by increasing the number of tasks executing in the system and increasing the number of

cores does not increase the execution speed for each task. This model of execution is known as

1.3 Resource Sharing 5

inter-task parallelism. Most results in real-time scheduling are devoted to the study of sequential

tasks executing on multiple processors (see [Davis and Burns, 2011a] for a comprehensive and up-

to-date survey). However, the shift from uniprocessors to multiprocessors revealed that scheduling

real-time tasks is no longer a problem of scheduling sequential tasks. A real-time task may now

exploit intra-task parallelism and be split into a set of sub-tasks that can be executed simultane-

ously in different processors at the same time instant (i.e., potentially overlapping in time). Such

a task is commonly denoted as a parallel real-time task or in short a parallel task.

On one hand, it is possible to take advantage of available cores to improve the execution of

complex tasks with tighter timing constraints, whenever there is an opportunity in the system for

the parallel execution of sub-tasks. On the other hand, such an approach requires efficiency from

the system scheduler as now there is the need to map individual sub-tasks to each of the available

cores. If the task’s parallelism is rather regular, then it may be possible to find a mapping of tasks

to cores at design time, such that the workload is balanced and the overall execution time of the

task is reduced. But if the task’s parallelism is irregular, then a static assignment of sub-tasks to

cores may produce sub-optimal schedules where the workload is imbalanced (that is, some cores

are excessively loaded while others are lightly loaded or even idle). Thus, the system scheduler

must be efficient and capable of dynamically balance the workloads during runtime by taking

into account the current system state and the dynamic nature of the tasks. The introduction of

dynamic load balancing algorithms in the real-time systems domain is rather challenging due to

the difficulty in guaranteeing the predictability of the system under analysis.

In the recent literature of real-time systems it is possible to find a few works that tackle paral-

lel real-time tasks. Some of these works, namely [Lakshmanan et al., 2010] and [Saifullah et al.,

2011], assume a model of execution similar to the fork-join model presented above in Figure 1.1.

Nevertheless, analysing models that can leverage parallelism can be challenging from a schedu-

lability viewpoint. For instance, usually there exists an execution dependency between different

task segments 3 which imposes a partial order on execution.

1.3 Resource Sharing

In current multiprocessor architectures cores are not independent entities. They share physical

resources, such as memory buses, memory controllers, last level caches, etc., among themselves.

While sharing resources may be beneficial for the threads of the same application, it may not be for

threads of distinct applications as they compete for the resources, thereby introducing a problem

of predictability for the real-time systems domain. In order to understand the implications of this

problem, the reader needs to first understand how real-time systems are analysed with respect to

their timing properties.

An important restriction that underpins the design of real-time systems is that (desirably) all

timing properties should be met under all possible conditions. Consequently, these systems are

3A segment of a parallel real-time task is a region that is composed of an arbitrary number of sub-tasks where all

sub-tasks can execute in parallel and independently from sub-tasks in other segments

6 Introduction

analysed taking into account worst-case scenarios by the means of a schedulability analysis. The

outcome of such analysis is a yes or no answer stating whether the system meets its deadlines or

not, or in other words, whether it is schedulable or not.

An important parameter used in the definition of real-time applications and in the schedula-

bility analysis is the worst-case execution time (WCET). The WCET is an upper-bound on the

application’s execution time considering the maximum time that it takes to execute in isolation in

a given hardware platform4. WCET is also the parameter that is affected during runtime whenever

there is contention in the system. Specifically, when two (or more) applications executing in two

(or more) cores access shared resources simultaneously, the application’s WCET may increase,

which may jeopardize the results obtained offline from schedulability analysis.

Contention may occur due to several reasons, for instance a shared resource may only admit

one access at a time (as it typically occurs in buses) or the state of a resource may be modified by

one application accessing it in a way that it affects a concurrent application, causing a slowdown

to the latter application (this behaviour is typically seen in shared caches) [Abel et al., 2013].

Several studies, as for instance [Zhuravlev et al., 2010], [Nowotsch and Paulitsch, 2012],

[Radojković et al., 2012], show that due to shared resource contention, the execution times of

applications may vary significantly. In particular, a common observed effect is the slowdown of

applications due to co-running applications, i.e., applications running on cores that share a re-

source. As an example on the amount of slowdown that can be observed due to shared resource

contention, the authors in [Nowotsch and Paulitsch, 2012] observed a maximum slowdown of 5.1x

in application execution, compared to execution in isolation, when multiple cores access network

and memory concurrently. An even higher slowdown was observed by the authors in [Nélis et al.,

2016]. In their research, they observed a slowdown of 8x due to co-running applications.

Solutions exist for the problem of contention in shared resources. For the cache contention

problem, existing solutions apply cache partitioning strategies to eliminate interference between

tasks from different cores, and consequently, bound the interference in the resulting non-partitioned

shared caches. For the problem of bus contention, existing solutions use protocols to arbitrate the

access to shared resources and analyse them accordingly in order to derive safe bounds. Such

protocols can be time driven, e.g., Time-division Multiple Access protocol (TDMA); event driven,

e.g., First Come, First Serve, Round Robin, etc.,; or a mix of both [Abel et al., 2013].

The conclusion that must be drawn from the above results is that special care must be taken

when executing real-time applications in multicore platforms due to the existence of shared re-

sources.

1.4 Thesis Statement

Moving from uniprocessor systems to multiprocessor systems is likely to fail if one does not take

into account the problems that arise from such evolution, as the ones described above. Treating

applications as if they are executing in a uniprocessor system while ignoring the parallel nature

4WCET and other parameters are formally described in the next chapter.

1.5 Contributions 7

of the platform leads to an underutilization of system resources on one hand, and on the other

hand, to an increase in interference due to co-running tasks. A clear aspect that still needs to

be addressed by the real-time systems community is the lack of efficient models to handle the

execution of parallel real-time applications and, ideally, that also cover the problem of resource

sharing. Thus, the end goal of this dissertation is to have new models or enhance existing ones in

order to derive the sound schedulability analysis that is needed by real-time applications running

in multiprocessor systems.

This dissertation addresses the following two problems:

1. Problem of scheduling parallel real-time tasks in multiprocessor systems;

2. Problem of resource sharing in multiprocessor systems.

In particular, and related to each general problem above, we want to answer the following

questions:

1. Is it possible to compute response-time upper bounds for parallel tasks when executing in

multiprocessor systems?

2. Considering a scenario with co-running tasks and a shared resource, is it possible to compute

upper-bounds on the interference imposed by co-running tasks in a multiprocessor system?

Motivated by the problems and questions above, the central proposition of this thesis is the

following:

Real-time systems can be provided efficient schedulability tests that allows one to take advan-

tage of multiprocessor systems. Supported models can consider intra-task parallelism or inter-task

parallelism with shared resources. When dealing with intra-task parallelism, load-balancing is

considered either naturally or via work-stealing. When dealing with shared resources, a model

that decouples memory accesses from execution is effective when compared to other models that

do not take shared resources into account.

1.5 Contributions

Considering the problems and questions above, this research work proposes the following con-

tributions. For the first problem and first question, two contributions are proposed. The first

contribution, presented in Chapter 3, considers a parallel task model that generalises the fork-join

model presented above, known as the synchronous task model. Under this model, the worst-case

scenario is derived in order to compute the worst-case response-time bounds for multiprocessor

systems composed of identical processors. The second contribution, presented in Chapter 4, takes

advantage of work-stealing [Blumofe and Leiserson, 1999] to reduce the average response-time of

real-time tasks in order to create additional room in the schedule for less-critical tasks. The pre-

sented approach is a multi-stage approach that analyses the schedulability of the real-time tasks

before and during runtime.

8 Introduction

For the second problem and second question, the contribution proposed, presented in Chap-

ter 5, uses a task model known as the 3-phase task model. In this model, memory accesses are

decoupled from execution in order to circumvent the uncontrolled sources of interference, oc-

curring due to co-running tasks in multiprocessor systems. An empirical analysis is carried first

to compare the performance of different priority assignment policies against an implementation

of global Earliest Deadline First (EDF) scheduling policy that considers inter-task interferences.

Then, a schedulability test for the 3-phase task model is derived using a different analysis perspec-

tive. Instead of analysing the system following the standard’s core’s perspective, a bus perspective

is used.

1.6 Thesis Structure

The remainder of this dissertation is structured as follows:

Chapter 2 details the most important properties about the platform and real-time tasks that

are relevant for this dissertation. Moreover, it reviews the most important results found in the

literature regarding the problem of scheduling parallel real-time tasks and the problem of memory

bus contention.

Chapter 3 presents the schedulability analysis of fixed-priority synchronous parallel tasks ex-

ecuting in homogeneous multiprocessor systems.

Chapter 4 presents an approach that takes advantage of the work-stealing algorithm in a semi-

partitioned scheduling setting for scheduling fork-join tasks. The proposed approach is a multi-

stage approach that consists of an offline stage and an online stage. During the offline stage,

tasks are mapped to cores so as to fill the capacity of the cores as much as possible. During

the online stage, a variant of work-stealing is used among cores to balance the workload and

consequently, to reduce, whenever possible, the response-time of the tasks that were accepted

offline. The schedulability analysis for the approach is presented as well as the experimental

results showing its viability.

Chapter 5 is focused on the problem of memory bus contention in real-time systems. It presents

an empirical study that compares the performance of different priority assignment policies con-

sidering the 3-phase task model. Then, a schedulability test for the 3-phase task model is derived

considering an approach that analyses the system from a bus perspective instead of following the

common core’s perspective. Results show that memory bus contention is a relevant problem in

current multiprocessor platforms and that the 3-phase task model is a viable model to circumvent

it.

Chapter 6 completes this dissertation by presenting some concluding remarks about the re-

search work presented in this manuscript and outlining future work.

Chapter 2

Background and Related Work

A real-time system is designed (in its simpler form) to capture events from the environment using

sensors and respond to those events in a timely manner through actuators (i.e., in a generic sense,

we denote the system that is being monitored and controlled as controlled system). In the context

of real-time systems, timely manner means before a deadline, which is the maximum time within

which a response must be produced. In these systems, the response time of the system, that is (in

a non-formal manner) the time that it takes to fully respond to an input event or stimulus, is an

important metric to consider as its performance may be affected depending on how long it takes to

respond to the stimulus. In some cases, if the response time takes more time than the one expected

at design time, catastrophic consequences may occur.

This chapter covers the main concepts related to the theory of real-time systems. It starts by

characterising real-time tasks in Section 2.1, followed by the characterisation of the platform in

Section 2.2. Concerning the platform, the main components are covered, namely the processors,

the memory and the memory bus. Next, as scheduling is used throughout this dissertation, we

devote our attention to multiprocessor scheduling theory in Section 2.3 to convey the concepts

needed for the reader in order to understand the contributions of this dissertation. Finally, as

this dissertation is also partly focused on the scheduling of parallel real-time tasks, we present in

Section 2.4 the most relevant properties of parallel real-time systems.

2.1 Task Characterisation

A real-time application is modelled as a set of tasks, commonly denoted as τ . Each task τi in the

set τ has functional and timing requirements (among other non-functional requirements) that must

be guaranteed during runtime so that the result of its execution is deemed correct.

A real-time task can be classified as hard, firm or soft, according to the time instant at which

its response should be completed. If a response to an event should always occur within a time

period no greater than its deadline, then the task is classified as a hard real-time task. In this

case, having a result after the deadline may cause catastrophic consequences for the controlled

system. Hard real-time tasks should be guaranteed before the execution of the system, by using

9

10 Background and Related Work

offline schedulability analysis techniques. A task is classified as firm if producing a response to an

event after the deadline is useless for the controlled system. In this case no serious consequences

may result from the deadline miss. Finally, a task is classified as a soft real-time task if deadline

misses are tolerated, as long as they are bounded. For this latter case, in case a deadline miss

occurs, the output value still presents some utility for the system, however the controlled system

suffers a performance degradation. Both firm and soft real-time tasks can be guaranteed by using

schedulability analysis techniques that can be applied during the execution of the system.

Each new release of a task is denoted as a job meaning that a new instance of such task is being

released into the system for execution. Tasks may have different release patterns, according to the

frequency at which they are released into the system. Thus, tasks can be classified as periodic,

sporadic or aperiodic.

A task that has periodic releases is denoted as a periodic task. Periodic tasks are characterized

by a period, usually denoted as Ti, which indicates the frequency of release of each of its jobs. It

is a common assumption found in the literature that during runtime a periodic task may release a

potentially infinite sequence of jobs, where each job is released Ti time units apart from each other.

In a sporadic task, the release of each of its jobs is separated by a minimum inter-arrival interval,

also denoted as Ti. The interpretation for this parameter is that consecutive jobs of a sporadic task

are at least separated Ti time units apart from each other. Nevertheless, at runtime the frequency

of release may be larger than Ti. Similarly, as it happens to periodic tasks, the number of jobs

released by sporadic tasks may potentially be infinite. Finally, in aperiodic tasks, task releases

do not follow a well-known pattern and therefore do not have a period or a minimum inter-arrival

time.

If all tasks in the set τ are released in the system at the same time instant, then the tasks’ release

is denoted as synchronous. On the other hand, if tasks are released at different time instants (e.g.,

separated by some time offset), then the tasks’ release is denoted as asynchronous.

Besides the period, there are two other important parameters that are used in the definition of

real-time tasks, namely the worst-case execution time and deadline.

Several aspects influence the execution time of a task, as for instance its inputs, the scheduling

algorithm, the platform, among others. The impact of these aspects during each task’s execution

can be observed in the duration of each of its jobs, that is, different jobs may have different

execution times. Thus, in order to keep the system predictable throughout its execution, the worst-

case execution time (WCET), denoted as Ci, is used. The task’s WCET is an upper-bound on the

time that it takes to execute the task in isolation in a given hardware platform.

The deadline, usually denoted as (Di), represents the time instant at which the job of a task

must complete its execution. Tasks can be further characterized according to the relation that exists

between the deadline and the period. A task has a constrained deadline when its deadline is no

greater than the period (Di ≤ Ti). A special case of constrained deadline tasks is known as implicit

deadline tasks and occurs when the task’s deadline equals its period (Di = Ti). Finally, a task is

2.2 Platform Characterisation 11

said to have an arbitrary deadline if there is no restriction on the value of the deadline Di.
1

Two other task properties can be defined, namely utilization and density. The utilization of task

τi, denoted as Ui, is defined as Ui =
Ci

Ti
. The task’s utilization represents the percentage of time the

task is allocated to a given processor by executing Ci time units every Ti time units. The density

of task τi, denoted as λi, is defined as λi =
Ci

min(Di,Ti)
. The task’s density represents the percentage

of time the task is allocated to a given processor by executing Ci time units every Di time units.

While for implicit deadline task sets the density equals the utilization of the task, for constrained

deadline task sets the result is different. These two properties can be also defined for task sets.

Thus, the total utilization of a set of n tasks τ is defined as Uτ
def
= ∑

n
i=1Ui. The total utilization

of a task set represents the percentage of time the processor is allocated for the execution of the

n tasks given that each task executes for Ci time units every Ti time units. Therefore, it indicates

the minimum capacity that the platform must provide in order to execute the task set τ . The total

density of a set of n tasks τ is defined as λτ
def
= ∑

n
i=1 λi.

A task set τ is said to be feasible if there exists some scheduling algorithm that can schedule

all possible job sequences released by the tasks belonging to τ , without missing any of the task’s

deadlines. A feasibility test determines if the task set τ executing on a given platform Π is feasible

on that platform.

A task is said to be schedulable, with respect to a given scheduling algorithm, if it completes

execution before its deadline when scheduled using that scheduling algorithm. In other words, the

scheduling algorithm guarantees that the worst-case response time of the task is no greater than its

deadline. The schedulability of task sets with respect to a scheduling algorithm and a platform can

be evaluated through a schedulability test. That is, a schedulability test determines if a task set τ

scheduled using a scheduling algorithm S in a given platform Π is schedulable using S on Π.

A schedulability test can be sufficient, necessary or exact. A sufficient test implies that if the

test is passed, then the task set is schedulable, however if the test is not satisfied then the task set

under evaluation may be schedulable or not. Nothing can be concluded from the test and another

test shall be used. A necessary test entails that if the test is passed, then the task set may be

schedulable but not necessarily. However, if the test is not passed, then the task set is certainly not

schedulable. An exact test is both necessary and sufficient.

2.2 Platform Characterisation

In this section, the most important hardware components are described, i.e., the ones that have

influence in this dissertation’s contributions and somehow, the ones that have the most impact

in the execution of a real-time task. We start by introducing the notion of processor, core and

multiprocessor system, the memory, and finally, we discuss the influence that the memory bus has

in the execution of real-time systems.

1Without loss of generality, in this dissertation all time intervals and task parameters are assumed to be integer

multiples of the system clock.

12 Background and Related Work

2.2.1 Processors

Several terms are used as synonyms for the central processing unit (CPU) in a computing system,

as for instance processor or core, sometimes causing confusion. Specially when these terms are

generalized to include multiple processing units, such as multiprocessors or multicores. Thus, in

order to avoid confusion we clarify each of these terms in this section.

Originally, the CPU was a processor chip made of millions of transistors containing a single

processing unit and a few other units to perform several operations (e.g., arithmetic, logic, etc.).

Consequently, the term processor is used as a synonym for CPU.

In a multiprocessor system, the platform contains several CPUs, each in a physical chip. How-

ever, with the advent of multicore systems, each chip started to include more than one processing

unit per chip. Thus, in this configuration, each processing unit is denoted as a core. As it was

explained in the introductory chapter, the reason for such a paradigm shift had to do with the

physical limitations of chips. Hence, the industry opted to increase the parallelism provided in

a single chip by the inclusion of several cores instead of increasing the processing speed of each

processing unit (in a single chip).

In this dissertation, the term processor and core are used interchangeably and as a synonym

for a single processing unit in the system.

Multiprocessor systems can be classified into three classes according to the characteristics

of the processors present in the platform. If each processor in the platform presents the same

computing capacity, i.e., meaning that the frequency is equal in all processors, then the platform is

said to have identical or homogeneous processors (as for instance [Bell et al., 2008] and [Adapteva,

2014]). In this class, all processors are interchangeable as a task takes the same amount of time

to complete its WCET (in isolation) in every processor. If different processors in the platform

have different computing capacities, the platform is said to be composed of uniform or related

processors. In this case the rate of execution of a task depends on the frequency of the processor

in which it executes. Finally, there is the heterogeneous or unrelated processor class. In this class,

processors are different among themselves and consequently, the execution time of the tasks may

differ between processors and some tasks may not be able to execute in all/some processors. An

example of a platform belonging to this class is the MPPA-256 Manycore Processor developed by

Kalray [de Dinechin et al., 2013].

In this dissertation we only consider identical multiprocessor platforms.

2.2.2 Memory

In the past years dynamic random access memory (DRAM) speed did not increase in the same

proportion as CPU speed. In fact, the achieved improvement is much less than the one observed in

the CPU. The difference in speed between both components leads to a speed gap that eventually

causes memory accesses (even in those cases where a program is composed of only a few mem-

ory instructions) to dominate the total time spent executing a program. This phenomenon was

predicted in [Wulf and McKee, 1995] and is known as the memory wall.

2.2 Platform Characterisation 13

Figure 2.1: Memory hierarchy in current COTS platforms

In order to overcome the limitations of such a small increase in memory speed and at the same

time attempt to decrease the memory access latencies, a hierarchical approach is used in modern

computing systems.

The memory hierarchy is organized in several levels where each level is smaller in size and

faster than the subsequent level in the hierarchy (when moving away from the processor chip). The

faster memories that are closer to the processor are denoted as caches and, usually, are located

within the processor chip. Caches act as a buffer for the data residing in main memory2 and

work according to the principle of locality which states that programs are likely to reuse data and

instructions they have used recently.

Let us use Figure 2.1 to explain the reader how data traverses the memory hierarchy. The

hierarchy in the figure has 3 levels, cache L1 (private to the core connected to it), cache L2 (shared

between the cores connected to it) and finally, main memory (shared by all cores in the system).

In our example, we assume a task is running in a single processor and it does not migrate to the

other processor. When executing a task, the processor looks first for program data/instructions in

cache L1. If data/instructions are found in that cache then there is a cache hit and the processor

can use them without requesting data/instructions from the other levels. Otherwise, a cache miss

occurs (data/instructions are not in the cache) and a request is made to the subsequent level. In

our example, that level is L2. Then, the process is repeated. A hit or a miss may occur. If a hit

occurs data is moved to level L1, otherwise a data request is made to main memory in order to be

retrieved and stored temporarily in the cache.

The memory hierarchy is developed to improve the average memory access time and con-

sequently, the average execution time of programs. However, such design approach, which is

typically found in Commercial Off-the-shelf (COTS) platforms, is a source of unpredictability in

the context of real-time systems. Cache properties like data replacement strategy, size, organi-

zation and access order influence the cache hit/miss ratio and make it difficult to predict cache

2The main memory is usually found outside the processor chip.

14 Background and Related Work

behaviour. Besides these properties, one needs also to consider the interference due to task pre-

emptions (when one task is interrupted during execution to allow another, usually more urgent,

task to execute) and migrations (when one task resumes its execution in a different core than the

one where it was executing before being interrupted) which incur additional cache misses.

In this dissertation, we assume that the platform follows an hierarchy equal to the one depicted

in Figure 2.1. However, caches and main memory are treated as black boxes. In fact, in the

literature it is possible to find several works that are devoted to the topic of adding predictability to

caches. The interested reader may look for the following work as a starting point [Gracioli et al.,

2015].

2.2.3 Memory Bus

Cache unpredictability is not the only problem that is found when using a memory hierarchy sim-

ilar to the one depicted in Figure 2.1. There is another important problem that arises from the way

that memory is designed. If one looks carefully to the memory hierarchy depicted in Figure 2.1,

one may easily see that with the exception of private memory levels, multicore processors share

paths to the different levels in the memory hierarchy. These paths are part of the system memory

bus and because they are shared, they may lead to contention when more than one core simul-

taneously perform a memory request to the same shared level of memory. For instance, when a

memory request is made to main memory or even level L2.

In order to avoid the undesired effects of bus contention, COTS manufacturers add arbitration

mechanisms to the system memory bus. Nevertheless, the arbiters employed in general-purpose

systems are: (1) often undocumented and their implementation is hidden; (2) not controlled by the

operating system and consequently, the exact time instants at which the memory requests are made

are unknown as they are a result of cache misses; and (3) unfair and consequently may re-order

memory requests (subject to the arbiter’s own rules) and neglect task priorities (which are defined

at the operating system level) in order to optimize, for instance, memory bandwidth [Dasari et al.,

2013]. Thus, these arbitration mechanisms have a direct impact on system performance and the

response time of tasks. In fact, if their behaviour is not accounted for in the WCET analysis of the

tasks composing a system, the actual worst-case time observed at runtime may drastically deviate

from the predictions made at design time.

The memory bus contention problem is a well-known problem in the real-time systems com-

munity and several authors have already devoted their efforts to it. In the following paragraphs,

we cover the most relevant work that has been done in the research of the memory bus contention

problem.

Deterministic architectures (such as MERASA [Ungerer et al., 2010], PRET [Lickly et al.,

2008]) consisting of mechanisms to control interference at the hardware level have already been

proposed in the past. Nevertheless, this type of solutions is very specific, leading the stakeholders

(usually due to the costs involved in the development of specific hardware platforms) to adopt

general-purpose platforms to implement their products.

2.2 Platform Characterisation 15

2.2.3.1 Time-Driven vs. Event-Driven Approaches

Arbitration approaches can be classified into two distinct classes [Abel et al., 2013]: time-driven

and event-driven.

Time-driven approaches, such as the ones proposed in [Kelter et al., 2011], [Chattopadhyay

et al., 2010], [Schranzhofer et al., 2010], employ Time-division Multiple Access (TDMA) as the

bus arbitration policy. The idea behind these approaches is to time-partition the access to the bus

into time slots and generate a bus schedule. At runtime, the arbiter uses the generated bus schedule

to grant permission to a given core to access the bus. A core is allowed to access the bus if the

current time slot is assigned to that core, otherwise the core has to wait until the next available

time slot that is assigned to it. TDMA-based approaches provide temporal isolation between cores

and thus have the advantage of allowing each core to be analysed in an independent manner. As

each core may only perform memory requests in its assigned time slot, cores cannot interfere with

each other. However, for memory operations to be efficient there must be an alignment between

memory requests and each core’s assigned slots, otherwise many slots may be wasted.

Event-based approaches provide bounds on the interference that a resource may suffer in a

worst-case scenario by knowing the maximum number of memory accesses that a task may request

and the arbitration policy of a given resource.3 Some works in the literature ([Pellizzoni et al.,

2010], [Schliecker et al., 2010]) use the concept of arrival curves [Thiele et al., 2000]. For instance,

in [Pellizzoni et al., 2010] arrival curves are used to model the maximum amount of memory traffic

produced by all tasks executing in a given core in a given time interval. Then, the derived curves

are used to compute bounds on the delay incurred by a given task considering the arrival curves

derived for the cores not executing the analysed task and peripheral buses. In [Schliecker et al.,

2010], arrival curves are used to model the load of each processor in the system. Other works,

as for instance [Ivers et al., 2006], estimate the maximum delay a task may suffer due to memory

interference when executing in a system where resources are shared.

2.2.3.2 Co-Scheduling Approaches

Co-scheduling approaches have also been proposed to circumvent the memory bus contention

problem. The idea behind such approaches is to decouple memory requests from the actual task’s

execution such that all the code and data needed during execution are loaded in a core’s local

memory before beginning the task’s execution. By pre-loading the task’s code and data in the

core’s local memory, a core can execute the task without suffering any kind of interference.

Co-scheduling was the target of research in [Schranzhofer et al., 2010] where the authors

analyse different resource access models. In particular, depending on the studied model, accesses

to shared resources either occur in specific phases (as in a pure co-scheduling approach) or occur,

without any restriction, throughout the task’s execution. The objective of that study was to evaluate

which model performs better, considering the interaction with shared resources, in terms of worst-

case response times and schedulability. The conclusion is that a model with 3 phases is the one that

3In this context, a worst-case scenario is a scenario that maximizes the effects of interference on memory requests.

16 Background and Related Work

Figure 2.2: Example of a 3-phase task model schedule

performs best when compared to models where no restriction is posed on the accesses to shared

resources.

The 3-phase task model is a generalization of the PRedictable Execution Model (PREM) [Pel-

lizzoni et al., 2011]. In PREM, tasks consist of only two phases (known as the predictable in-

tervals): a memory phase and an execution phase. In the memory phase, tasks fetch data and

instructions from main memory into the core’s local memory while in the execution phase, tasks

execute without requiring any access to the shared memory and thereby minimizing any possible

interference during their execution. The 3-phase task model generalizes PREM by adding a third

phase in which the modified data is pushed back from the core’s local memory into the main mem-

ory. Moreover, tasks that follow this execution model never access the bus during their execution

phase, instead, all the bus accesses are performed during the first and third phases. Figure 2.2

depicts a schedule where four tasks execute in a multiprocessor platform, each executing in a pro-

cessor. The memory phases (A and R, where A stands for Acquisition and R stands for Restitution)

require the use of the bus while the execution phases (in the figure represented by the letter E) do

not require any access to the memory bus.

The 3-phase task model has been subject to experiments carried out to evaluate the applicabil-

ity of the model in different domains. In [Durrieu et al., 2014a], the authors use the 3-phase task

model to model periodic tasks in a flight management system. Moreover, in [Girbal et al., 2015],

the authors show that executing tasks in a multicore system leads to increases in the WCET mea-

sured in isolation of up to 3x the value in isolation, and that by using the 3-phase task model it is

possible to obtain an interference-free execution in a multicore system. A similar observation was

made in [Nowotsch and Paulitsch, 2012] where the authors evaluate the effects of having multiple

applications of different criticality levels executing in a multicore platform. More precisely, the

authors observed a maximum slowdown of 5.1x in application execution when multiple cores ac-

cess network and memory concurrently. Both of these results show that special care must be taken

when executing safety-critical applications in multicore platforms due to the increase in WCET as

a result of interference related to concurrent accesses to shared resources. A similar result to both

of these works is presented in Chapter 5.

In [Becker et al., 2016], the 3-phase task model is applied to AUTOSAR applications in order

to obtain a contention free execution in a many-core architecture. In [Tabish et al., 2016], the

authors integrate the 3-phase task model with TDMA managed accesses to a system bus, as a

2.3 Multiprocessor Scheduling 17

way to serialize memory phases in multicore operating systems for embedded scratchpad-based

multicore architectures.

None of the above mentioned works tackle the problem of how to globally schedule 3-phase

tasks in a multicore system. To the best of our knowledge, the only work that provides a solution

to this problem is the work presented by Alhammad and Pellizzoni [Alhammad, 2016; Alhammad

and Pellizzoni, 2014]. In this dissertation, we fill that gap in the literature and propose in Chapter 5

a solution to this problem that improves the work proposed by [Alhammad, 2016; Alhammad and

Pellizzoni, 2014].

2.3 Multiprocessor Scheduling

Before presenting the most important concepts of real-time multiprocessor scheduling, let us

present some properties of scheduling algorithms that are useful for understanding some concepts

proposed in this dissertation.

A scheduling algorithm is said to be preemptive if it is capable of suspending a job during

execution and later resume it from the point where it was suspended. Usually, preemption opera-

tions occur due to the arrival of higher priority tasks into the system. A non-preemptive scheduling

algorithm does not suspend tasks. Once the tasks are allocated into the processor, tasks execute

continuously until completion, time instant at which another task is selected for execution. A

scheduling algorithm is said to be work-conserving if it never idles a processor when there is a

ready task4 waiting to be executed. A scheduling algorithm is said to be optimal if it schedules all

the task sets that are feasible and that abide by the task model.

Two important metrics are used to quantitatively compare different scheduling algorithms:

the utilization bound and resource augmentation bound ([Kalyanasundaram and Pruhs, 1995] and

[Phillips et al., 1997]).

The utilization bound of a given scheduling algorithm A on a platform Π, consisting of m unit-

speed processors, is defined as the largest utilization Ub such that all implicit-deadline task sets

composed of sequential tasks with utilization U ≤Ub are deemed schedulable by A when executed

in platform Π.

While the utilization bound is based on the utilization factor and therefore on the properties of

the task set, a resource augmentation bound quantifies the processor speed-up factor with respect to

an optimal scheduling algorithm. That is, it quantifies how much one has to increase the processor

speed in order to guarantee the schedulability of a task set using a given scheduling algorithm A

instead of an optimal one.

Formally, a scheduling algorithm A has a resource augmentation bound b on a given platform

Π, consisting of m unit-speed processors, if it successfully schedules all the feasible task sets,

which are schedulable by an optimal algorithm on Π, on a platform where the processors are b

times as fast than the ones in Π.

Real-time multiprocessor scheduling theory deals with two problems [Davis and Burns, 2011a]:

4A ready task is a task that is waiting for access to the processor.

18 Background and Related Work

• the allocation problem - the decision problem of how a set of n tasks should be allocated on

a set of m processors;

• the priority problem - the decision problem of choosing the order a set of tasks should follow

so that each task’s deadline is met.

Concerning the allocation problem, tasks can be classified according to the type of migration

that their jobs are allowed to perform. In the most restrictive type, tasks are pinned to proces-

sors and no migration is allowed to occur during execution, meaning that all the task’s jobs must

execute in the processor where they were assigned initially. Task-level migration allows a task

to migrate and execute on multiple processors but migrations may only occur at job-boundary.

Finally, job-level migration allows jobs to migrate to other processors during execution, but it is

forbidden for a job to execute simultaneously on different processors.

Regarding the priority problem, tasks have fixed task priority if each task is assigned a priority

and the same priority is applied to all its jobs; fixed job priority when each job of a task may have

a different priority, but the priority of a job does not change until the job finishes its execution; and

dynamic priority when the priority of the jobs may change during execution.

Two paradigms are usually used to distinguish real-time multiprocessor scheduling algorithms

[Carpenter et al., 2004]: partitioned and global scheduling.

In partitioned scheduling, each task is assigned to a processor and is not allowed to migrate5

among cores. Each processor has its own subset of tasks to execute and is treated independently

with respect to task scheduling. Thus, each processor uses a uniprocessor scheduling algorithm to

schedule the tasks assigned to it. Consequently, different algorithms may be in use during system

execution, one per core. Due to the restrictions of no migration, partitioned approaches are not

work-conserving.

In global scheduling, a global scheduler selects the next task from a global queue of ready

tasks, that is shared by all processors, and assigns it to an idle core. At any given time instant t,

the m higher priority tasks are assigned to m cores. Tasks are allowed to migrate among the cores.

Partitioned scheduling has the advantage of reducing the problem of real-time multiprocessor

scheduling to a set of uniprocessor problems by treating each processor independently. This is

advantageous as it reduces the number of migrations occurring in the system and consequently,

runtime overheads are also reduced. The biggest disadvantage of partitioned approaches is that

they require the use of bin packing in order to optimally assign tasks to processors, a problem that

is known to have NP-hard complexity.

Global scheduling offers the advantage of using the system resources in a more effective man-

ner but incur higher runtime overheads due to task migration and contention in the global runtime

queue.

5Task migration causes overhead due to the need of reloading the task’s instructions and data into the core’s local

memory where the task migrated to. In the worst-case it means that task’s instructions and data have to be fetched from

the main memory. Even though the migration overhead may be included in the WCET of the migrating task, in practice

this may affect the performance of the system [Bastoni et al., 2011].

2.4 Parallel Real-Time Systems 19

Concerning schedulability, in the worst case, partitioned scheduling algorithms (even for an

optimal algorithm) cannot guarantee that task sets with utilization greater than m+1
2

are schedulable

on a platform with m cores [Carpenter et al., 2004]. This result means that nearly fifty percent

of the platform may be unused. This utilization bound is also known as the maximum utilization

bound for global fixed-task, fixed-job priority scheduling algorithms for implicit-deadline task sets

executing on a platform with m homogeneous cores [Andersson et al., 2001]. Moreover, Leung

and Whitehead [Leung and Whitehead, 1982] prove that partitioned and global approaches for

fixed-priority task scheduling are incomparable. Thus, there are task sets that are feasible under

partitioned scheduling that are not under global scheduling and vice-versa.6

Both global and partitioned approaches suffer from scheduling anomalies where favourably

changing some parameters of the tasks, as for instance the computation times or periods, may

cause problems in terms of schedulability of previously feasible task sets. For instance, in [An-

dersson and Jonsson, 2000] the authors provide examples for preemptive global scheduling. In a

particular example, they show that changing the task period (and therefore varying the processor

load) of higher priority tasks leads to an increase in the interference suffered by a lower priority

task, or even to the unschedulability of the system. Many examples of such favourable modifica-

tions that lead to anomalous behaviour exists.

An alternative approach to multiprocessor scheduling combines features of both partitioned

and global scheduling as a way to improve the utilization bounds of partitioned scheduling algo-

rithms. This approach is denoted as semi-partitioned scheduling ([Anderson et al., 2005], [Ander-

sson and Tovar, 2006], [Kato et al., 2009]). In this approach, there is an offline allocation of tasks

to processors as in partitioned scheduling, however some tasks (those that cannot be assigned to a

single processor due to use of bin packing) are allowed to migrate between different processors,

thus having a global scheduling behaviour.

2.4 Parallel Real-Time Systems

This dissertation also considers the scheduling of parallel real-time tasks. Thus, in order to provide

the reader with the background needed to understand the contributions being proposed, this section

and its subsections detail the most relevant properties of parallel real-time systems.

2.4.1 Parallel Task Models

As stated in the introductory chapter, the major property that parallel task models for real-time

systems try to take advantage of is intra-task parallelism. Opposed to inter-task parallelism7, intra-

task parallelism allows simultaneous execution of tasks by dividing a task in a set of sub-tasks on

several cores in parallel. In order to keep up with the pace, the real-time systems community had to

6For more information about schedulability results for different algorithms used for partitioned and global schedul-

ing the interested reader may consult the following survey [Davis and Burns, 2011a].
7Recall that with inter-task parallelism, parallelism can only be exploited by increasing the number of tasks execut-

ing in the system and increasing the number of cores does not increase the execution speed for each task.

20 Background and Related Work

adapt to the new hardware trends and was forced to develop new models to cope with parallelism

in real-time systems for the sake of efficiency. Consequently, it is already possible to find a few

models and results concerning the multiprocessor scheduling of parallel real-time tasks.

Several models exist: the fork-join model, the synchronous task model and directed acyclic

graph (DAG) model (a general model of parallel tasks)8. For each of these models, the following

two necessary conditions hold: (i) the utilisation of an individual task can be greater than 1 but it

has to be no greater than the number of processors available in the platform; (ii) the critical path

length of the parallel task should always be no greater than the task’s deadline, for all tasks in the

task set under the penalty that a task does not complete its execution within the deadline.

2.4.2 Earlier Parallel Models

In this section initial results (yet applicable) to tackle parallelism in real-time systems are pre-

sented, while more recent models are presented in the subsequent subsections.

Drozdowski [Drozdowski, 1996] considers the problem of scheduling parallel tasks with the

objective of minimising the makespan. Han and Lin [Han and Lin, 1989] prove that the problem

of scheduling parallelisable jobs with a fixed priority is NP-Hard.

Goossens and Berten [Goossens and Berten, 2010] redefined a classification from the parallel

literature. Following this classification, a job may be classified as rigid, moldable or malleable. A

job is rigid if the number of processors assigned to it is determined a priori, and this number does

not change throughout execution. A job is said to be moldable if the number of processors assigned

to it is determined by the scheduler, and it does not change throughout execution. Finally, a job is

said to be malleable if the number of processors assigned to it is determined by the scheduler at

runtime. Taking into account this classification, a task is said to be rigid if all of its jobs are rigid;

moldable if all of its jobs are moldable; and malleable if all of its jobs are malleable.

Considering works on moldable tasks, Manimaran et al. [Manimaran et al., 1998] proposed

a variant of non-preemptive Earliest Deadline First (EDF) that considers parallel real-time tasks.

Kato and Ishikawa [Kato and Ishikawa, 2009] proposed the Gang EDF algorithm, which applies

EDF to the traditional gang scheduling scheme.

Concerning rigid tasks, Goossens and Berten [Goossens and Berten, 2010] not only provided

the above-mentioned classification for parallel real-time tasks but also proposed a scheduling al-

gorithm for parallel rigid real-time tasks based on gang scheduling.

Malleable tasks were covered by Jansen [Jansen, 2002], Collette et al. [Collette et al., 2008],

and Korsgaard and Hendseth [Korsgaard and Hendseth, 2011]. Jansen [Jansen, 2002] focused on

minimising the makespan but without considering real-time constraints. Collette et al. [Collette

et al., 2008] studied the problem of global scheduling of sporadic task systems on multiprocessors

8Several works, as for instance [Bonifaci et al., 2013; Liu and Anderson, 2010; Saifullah et al., 2014] are addressing

the directed acyclic graph model. The study of tasks’ schedulability under this model is out of scope of this dissertation.

The interested reader is redirected to the mentioned works.

2.4 Parallel Real-Time Systems 21

Figure 2.3: Example of a fork/join task τi. This task has two sequential segments (s1 and s3) with

one thread each, and one parallel segment s2 composed of 4 threads.10

considering job-level parallelism. Korsgaard and Hendseth [Korsgaard and Hendseth, 2011] pro-

posed a sustainable schedulability test for malleable tasks scheduled with global Earliest Deadline

First (EDF)9.

2.4.3 Recent Parallel Models

In this section, we devote our attention to the works proposed in the literature that are strictly

related to the contributions of this dissertation. Thus, we present the most important works that

focus on the fork-join task model and synchronous task model.

2.4.3.1 Fork-Join Parallel Tasks

The fork-join task model, depicted in Figure 2.3, is a model used by some frameworks (as for

instance [OpenMP, 2011], [Oracle, 2011], [Frigo et al., 1998]). In its basic form, the job of a

task has two sequential segments and a parallel segment. But, in fact and generally speaking, the

fork-join model imposes a restriction in which each parallel segment should always be preceded

by a sequential segment and succeeded by another sequential segment. Sequential segments have

a single unit of execution and the parallel segments are composed of several independent threads

that are allowed to execute in parallel if the platform allows.

Lakshmanan et al. [Lakshmanan et al., 2010] study the scheduling of periodic fork-join real-

time tasks on multiprocessor platforms. In their model, each task is divided into sequential and

parallel segments. Parallel segments must be preceded and followed by a sequential segment.

All parallel segments must have the same number of threads, and the number of threads cannot

be greater than the number of processors in the platform. In order to schedule such tasks in a

multiprocessor platform, the authors propose the decomposition of fork-join tasks using the task

9Global EDF is the extension of the Earliest Deadline First algorithm to homogeneous multiprocessor systems.

The EDF algorithm [Liu and Layland, 1973] for single core assigns the highest priority to the job that has the earliest

deadline among all the jobs ready to execute. The global version of the algorithm considers for execution, at any time

t, the m ready jobs with earliest deadline on a platform with m cores.
10Pi represents the critical path length of the task. Its definition can be found in the next chapter.

22 Background and Related Work

Figure 2.4: Example of a synchronous parallel task τi. This task has a sequential segment (s1)

with one thread, and two parallel segments s2 and s3 composed of 4 threads and two threads

respectively.

stretch transform algorithm. Then, for the decomposed task set, a resource augmentation bound

of 3.42 is obtained when the task set is scheduled using partitioned Deadline Monotonic11.

In [Wang and Parmer, 2014], the Fork-Join OS (FJOS) is presented. FJOS is an operating

system based on Composite OS, and its behaviour is compared with the GOMP [FSF, 2014]

implementation on Linux. Moreover, the schedulability analysis technique proposed in [Axer

et al., 2013] is adapted to include overheads based on real measurements in FJOS. As in [Axer

et al., 2013], such an approach is also based on partitioned fixed-priority scheduling for real-time

systems.

2.4.3.2 Synchronous Parallel Tasks

Saifullah et al. [Saifullah et al., 2011] generalise the fork-join model presented in [Lakshmanan

et al., 2010], denoted as synchronous task model. In the synchronous parallel task model, tasks

are composed of several segments, each containing one or more independent threads. Segments

have precedence constraints among themselves, and within a segment all threads are released

simultaneously and may execute in parallel. Moreover, the threads belonging to a segment can

only start their execution after the threads in the previous segment finish theirs, thus creating a

synchronization point. In this model (depicted in Figure 2.4), there is no restriction on the number

of segments per task, and on the number of threads per segment. To analyse the schedulability

of the model, the authors in [Saifullah et al., 2011] propose an algorithm to decompose implicit-

deadline parallel tasks into constrained-deadline sequential tasks. For the decomposed task sets

they derive resource augmentation bounds of 4 and 5 for the global Earliest Deadline First (EDF)

scheduling algorithm and partitioned deadline monotonic, respectively.

The authors in [Chwa et al., 2013] analyse the behaviour of synchronous parallel real-time

tasks under global EDF. In particular, they derive a schedulability condition by extending the

11Deadline Monotonic is a scheduling algorithm that assigns a fixed priority to each task which is inversely propor-

tional to its relative deadline Di. At any time instant, the task that has the shortest relative deadline is the one selected

for execution.

2.4 Parallel Real-Time Systems 23

traditional interference-based analysis to accommodate the parallel behaviour of the tasks. The

concept of critical interference is introduced in order to capture the interference of parallel threads

within the segments.

In Chapter 3, we borrow the concept of critical interference from [Chwa et al., 2013] to propose

tighter schedulability conditions for the fixed-priority scheduling of synchronous parallel tasks.

24 Background and Related Work

Chapter 3

Schedulability of Synchronous Parallel

Tasks

3.1 Introduction

Having parallelism at the platform level allows real-time systems developers to support applica-

tions with higher complexity. However, as it was explained in Chapter 1, higher complexity may

require that applications take advantage of intra-task parallelism in order to improve their execu-

tion times, possibly with tighter timing constraints.

Intra-task parallelism can be harnessed by splitting a task into a set of sub-tasks that can be ex-

ecuted simultaneously in different processors at the same time instant (i.e., potentially overlapping

in time). Models such as the fork-join model or its generalization, the synchronous task model,

are good candidates for harnessing intra-task parallelism in real-time systems.

In this chapter we focus on the schedulability analysis of fixed-priority synchronous parallel

tasks executing in homogeneous multiprocessor systems. Tighter upper-bounds on the workload

within a window of interest are derived which allows one to compute response-time upper bounds

of the interfering jobs, similarly to the technique proposed in [Bertogna and Cirinei, 2007] for

sequential task sets. The presented approach improves over the work reported in [Chwa et al.,

2013], providing tighter schedulability conditions and extending the analysis to fixed-priority task

systems.

The chapter starts by detailing the model and the assumptions used throughout the chapter, in

Section 3.2. After presenting the system model, we introduce the notion of critical interference in

parallel real-time tasks in Section 3.3. Using this notion, we proceed to the response-time analysis

in Section 3.4 by introducing two techniques, the sliding window technique (Section 3.5) and the

decomposition of the carry-out (Section 3.6), which allows one to find the densest possible packing

of jobs of a parallel task in an interval of time. All the workload terms needed for the schedulability

condition are described in Section 3.7 and the condition itself in Section 3.8. Finally, the results

are presented in Section 3.10.

25

26 Schedulability of Synchronous Parallel Tasks

3.2 System Model

Let τ = {τ1, ...,τn} denote a set of n synchronous parallel sporadic tasks. Each task τi in τ releases

an infinite sequence of jobs that are allowed to execute in more than one core at the same time

instant and are separated by at least Ti time units. Each task has a deadline Di ≤ Ti (i.e., commonly

referred to as constrained deadline model), meaning that each of its jobs needs to complete its

execution at most Di time units after its release.

In addition, each task τi is characterised by a sequence of segments si = {σi,1, ...,σi,si
}, where

each segment σi, j is composed of a set of mi, j parallel jobs, {Ji, j,1, ...,Ji, j,mi, j}, each one having the

same priority as the task that spawns it.

Parallel jobs, or in short p-jobs, are independent sequential threads that may be executed in

parallel, i.e., in different processors at the same time instant. Before a segment starts executing

any of its p-jobs, all the p-jobs of the preceding segment (if any) must have been completed. That

is, for all σi,ℓ,σi,r ∈ si such that ℓ < r, the sub-tasks belonging to σi,r cannot start executing unless

those of σi,ℓ have completed. Other than the processing units and segment precedence constraints

we assume no other shared resources exist in our system.1

As mentioned in the previous chapter, our platform π
def
= {π1,π2, . . . ,πm} comprises m homo-

geneous cores, i.e., all the cores have the same computing capabilities and are interchangeable.

In this work, similarly to the work proposed by Saifullah et al. in [Saifullah et al., 2011], we

allow the number of p-jobs of a segment to be greater than the number of cores. That is, mi, j may

be greater than m for some segment σi, j. We denote the maximum degree of parallelism of a task

as mi and define it as mi = max j{mi, j}.

Each p-job instance Ji, j,k is characterized by a worst-case execution time Ci, j,k. The worst-case

execution time Ci, j of each segment σi, j is given by:

Ci, j =
mi, j

∑
k=1

Ci, j,k. (3.1)

Then, the overall worst-case execution time Ci of a task τi is defined as:

Ci =
si

∑
j=1

Ci, j. (3.2)

Both equations above represent the time it takes to execute a segment (Equation 3.1) or a task

(Equation 3.2) in a dedicated single processor platform, i.e., without any parallelism at all.

The minimum worst-case execution time Pi of a task τi is the time τi takes to execute when

the number of processing units m is infinite, i.e., the critical path length of task τi. Formally, Pi is

defined as:

Pi =
si

∑
j=1

Pi, j, (3.3)

1A task which consists of a single sub-task in each of its segments is considered a sequential task.

3.3 Critical Interference of Parallel Tasks 27

where Pi, j represents the worst-case execution time of the largest p-job(s) of segment σi, j. For-

mally,

Pi, j =
mi, j

max
k=1

{
Ci, j,k

}
. (3.4)

The utilisation Ui of task τi is the ratio between the task’s overall worst-case execution time

and period, Ui =
Ci

Ti
. For the task set τ , the total utilisation is defined as U(τ) = ∑

n
i=1Ui.

The worst-case response-time of τi, denoted as Ri, is given by the maximum amount of time

that elapses between the release time (ri) of any job of τi and its completion time.

When dealing with parallel tasks several factors influence the computation of Ri, namely the

inter-task and intra-task interferences (detailed further in the next sections); the precedence con-

straints between the segments of a parallel task; the degree of parallelism2 of each segment; and

the number of cores provided by the hardware platform. As it may be extremely difficult to derive

the exact worst-case response time of a task considering all the above factors, a typical approach

found in the real-time systems literature is to compute an upper bound Rub
i on the response-time

of task τi.

A fully preemptive system is assumed where any executing p-job may be preempted and re-

sumed later without any cost. At any given instant, the m ready p-jobs with the highest priority

are the ones executing in the cores. Ties are broken arbitrarily. Moreover, as we are dealing with

fixed-priority task systems, we assume that tasks are indexed in priority order, with task τ1 being

the highest priority one.

Regarding task set feasibility, there are two necessary conditions for the feasibility of fork-join

and synchronous parallel task models: (1) U(τ) ≤ m, which states that the total utilisation of the

task set should not be greater than the number of cores in the system (m); and (2) Pi ≤ Di, which

states that the critical path length of a task should not be greater than its deadline. Moreover, it is

not guaranteed that parallel task sets with U(τ) ≤ m are schedulable in a system with m cores as

there exist task sets with a total utilization greater than and arbitrarily closer to 1 (U ≈ 1) that are

unschedulable in a system with m processor cores, as shown in [Lakshmanan et al., 2010].

As a final remark, it is important to note that with the synchronous parallel task model there

may be feasible task sets in which some task has a utilisation larger than 1. With such tasks serial-

isation techniques are not possible as the derived sequential task would be clearly unschedulable.

Table 3.1 presents a summary of the important notation defined and used throughout this and

the following chapter for quick reference.

3.3 Critical Interference of Parallel Tasks

Interference is an important concept widely used in real-time systems. For traditional sequential

task sets, the interference a task τk suffers over an interval of length L, denoted as Ik(L), is defined

as the sum of all intervals of time in which τk is ready to execute but it cannot execute due to the

2Degree of parallelism is a metric that indicates the number of cores in a multiprocessor system actually executing

a particular task in a given time period.

28 Schedulability of Synchronous Parallel Tasks

Table 3.1: Summary of notation

Symbol Description

m Number of processors in the platform

n Number of tasks in the task set

τ Set of periodic or sporadic tasks

Ui Utilisation of task τi, i.e., Ci

Ti

U(τ) Total utilisation of the task set τ

Ti Period of task τi

Di Relative Deadline of task τi

Ci Overall worst-case execution time requirement of τi

Pi Minimum worst-case execution time of task τi

si Number of segments in task τi

mi Maximum degree of parallelism of task τi

Ci, j Overall worst-case execution time of segment σi, j

Pi, j Minimum worst-case execution time of segment σi, j

mi, j Number of p-jobs within segment σi, j

Ci, j,k Worst-case execution time of p-job Ji, j,k

ri Release time of a job of task τi

di Absolute deadline of a job of task τi

Ri Worst-case response time of task τi

Rub
i Upper-bound of Ri

L Generic interval [rk,rk +Rub
k]

Ik(L) Critical interference on task τk in any interval L

Ii,k(L) Critical interference of task τi on task τk in any interval L

I
p
i,k(L) Critical interference of task τi on task τk with depth at least p in

any interval L

W
p

i (L) Workload of task τi of at least p p-jobs in any interval L

execution of other higher priority tasks in the system. In particular, the interference of a higher

priority task τi over task τk over an interval of length L is denoted as Ii,k(L), and is defined as

the sum of all intervals of time in which τi is executing but τk is not, even though it is ready to

execute. Intuitively, the interference that a task suffers cannot be greater than the total workload

of the higher priority jobs.

Two types of interference need to be considered when dealing with synchronous parallel tasks,

namely inter-task and intra-task interferences. Inter-task interference is the interference caused on

a given job by other higher priority jobs executing in the system in a given time interval. This is

the same as the standard interference widely used in traditional sequential models (we formally

define it in Section 3.3). Intra-task interference is only related to parallel task models, and can be

defined as the self-interference caused by the execution of parallel jobs of the same task instance.

3.3 Critical Interference of Parallel Tasks 29

In order to compute the interference of a parallel task, we adopt the concept of critical thread3,

as previously defined in [Chwa et al., 2013].

Definition 1. A thread is critical if it is the last one to complete among the threads belonging to

the same segment.

For deriving the worst-case response time of a task, it is then sufficient to characterize the

interference imposed to its critical threads, as they are the ones suffering the largest interference.

Definition 2. The critical interference Ik(L) on task τk in any interval of length L is defined as the

cumulative time in which a critical thread of task τk is ready to execute but it cannot due to the

execution of other parallel jobs.

Given the above definitions, the following theorem simply follows.

Theorem 1. Given a set of synchronous parallel tasks τ scheduled by any work-conserving4 al-

gorithm on m identical cores, the worst-case response-time of each task τk can be upper bounded

by Rub
k if

Pk + Ik(R
ub
k)≤ Rub

k . (3.5)

Proof. Consider the job of τk that leads to the worst-case response time Rk. Let rk be its re-

lease time. Within a scheduling window [rk,rk +Rub
k], Equation (3.5) guarantees that all sk critical

threads have sufficient time to execute Pk time-units, while accommodating the interference suf-

fered from other threads, accounted for in Ik(R
ub
k). Since the execution requirement of each criti-

cal thread cannot exceed the minimum worst-case execution time of the corresponding segment,

Equation (3.3) guarantees that all critical threads complete their execution within the considered

interval, proving the theorem.

The problem of the above theorem is that computing the exact interference imposed on the

considered task is difficult (due to the different possible interleavings that tasks may have when

executing in the system). To sidestep this problem, a common approach is to express the total

interference as a function of individual task interfering contributions, and upper bound such con-

tributions with the worst-case workload executed by each task in the considered window.

Definition 3. The critical interference Ii,k(L) imposed by task τi on task τk in any interval of length

L is defined as the cumulative workload executed by p-jobs of task τi while a critical thread of τk

is ready to execute but is not executing.

Differently from the sequential case, each task τi may contribute with different p-jobs at the

same time to the individual interference on a task τk. In the particular case when i = k, the critical

interference Ik,k(L) may include the interfering contributions of (non critical) p-jobs of task τk on

itself, i.e., the intra-task interference.

3While we prefer using the term parallel job instead of thread, we decided here to keep the name “thread” for

homogeneity with the original definition. However, both terms are interchangeably used in this chapter.
4As it was mentioned in Chapter 2, a scheduling algorithm is said to be work-conserving if it never idles a core

when there is a ready task waiting to be executed.

30 Schedulability of Synchronous Parallel Tasks

Figure 3.1: Task τi interfering on task τk

The next lemma allows expressing the total interference as a function of single task interfer-

ences.

Lemma 1. For any work-conserving algorithm, the following relation holds:

Ik(L) =
1

m
∑
∀τi

Ii,k(L). (3.6)

Proof. From the work-conserving property of the considered scheduler, it follows that whenever

a critical thread of τk is interfered, all m cores are busy executing other p-jobs. Therefore, the total

amount of workload executed by p-jobs interfering with critical threads of τk within the considered

window is mIk(L), giving the following relation:

∑
∀τi

Ii,k(L) = mIk(L).

The lemma simply follows by rephrasing the terms.

As previously mentioned, the individual interference Ii,k(L) accounts for all p-jobs of τi inter-

fering with τk, including p-jobs that are executing at the same time. In order to capture how many

parallel jobs of τi may simultaneously interfere with task τk, we will borrow from [Chwa et al.,

2013] the concept of at least p-depth critical interference5.

Definition 4. The at least p-depth critical interference of τi on τk in any interval of length L,

denoted as I
p
i,k(L), is defined as the total amount of time in which a critical thread of τk is ready to

execute but cannot execute while there are at least p threads of task τi simultaneously executing in

the system.

To better understand the meaning of I
p
i,k(L), consider the example in Figure 3.1, where task τi

interferes with τk’s execution with two threads for five time-units, one thread for seven time-units,

and three threads for three time-units. In this case, I1
i,k(L) = 15, I2

i,k(L) = 8, and I3
i,k(L) = 3.

5Note that we are simplifying the analysis and notations with respect to [Chwa et al., 2013], without making use of

the “exact” p-depth interference, which, to our belief, is not needed for the purposes of this paper. Also the theorems

presented in this section have therefore subtle differences from the corresponding ones in [Chwa et al., 2013]. This is

for instance the case of Lemma 2, which differs from a similar result proved in [Chwa et al., 2013] in that the notion of

“at least p-depth critical interference” is used instead of the “exact p-depth critical interference”.

3.3 Critical Interference of Parallel Tasks 31

The following lemma allows establishing a relation between the overall critical interference

on a task τk and the at least p-depth critical interference of each task τi on τk.

Lemma 2. For any work-conserving algorithm, the following relation holds:

Ik(L) =
1

m
∑
∀τi

m

∑
p=1

I
p
i,k(L). (3.7)

Proof. Considering each single interfering task τi, the amount of execution by all p-jobs of τi

interfering with τk within the considered window equals ∑
m
p=1 I

p
i,k(L). The Lemma follows from

Lemma 1.

We will now extend to the parallel task model considered in this paper two results proved in

[Bertogna et al., 2005] and [Bertogna and Cirinei, 2007] for sequential tasks.

Lemma 3.

∑
∀τi

m

∑
p=1

min
(

I
p
i,k(L),x

)
≥ mx ⇔ Ik(L)≥ x.

Proof. If. We would like to prove that if Ik(L)≥ x, then ∑∀τi
∑

m
p=1 min

(
I

p
i,k(L),x

)
≥ mx.

For a given length L, let ξ be the number of at least p-depth critical interferences I
p
i,k(L) ≥ x,

namely:

ξ =

∣∣∣∣
{

I
p
i,k(L)≥ x

}
∀i,p

∣∣∣∣ .

If ξ >m, then ∑∀τi
∑

m
p=1 min

(
I

p
i,k(L),x

)
≥ ξ x>mx. Otherwise, (m−ξ)≥ 0, and, using Lemma 2,

∑
∀τi

m

∑
p=1

min
(

I
p
i,k(L),x

)
= ξ x+∑

∀τi

∑
p:I

p
i,k<x

I
p
i,k(L)

= ξ x+mIk(L)−∑
∀τi

∑
p:I

p
i,k≥x

I
p
i,k(L) [Lemma 2]

≥ ξ x+mIk(a,b)−ξ Ik(a,b)

= ξ x+(m−ξ)Ik(a,b)

≥ ξ x+(m−ξ)x = mx. [using Ik(L)≥ x]

Only if. From Lemma 2, we have

Ik(L) =
1

m
∑
∀τi

m

∑
p=1

I
p
i,k(L)

≥
1

m
∑
∀τi

m

∑
p=1

min
(

I
p
i,k(L),x

)
≥

1

m
mx = x.

32 Schedulability of Synchronous Parallel Tasks

Theorem 2. Given a set of synchronous parallel tasks τ scheduled by any work-conserving algo-

rithm on m identical cores, the worst-case response-time of each task τk can be upper bounded by

Rub
k if

∑
∀τi

m

∑
p=1

min
(

I
p
i,k(R

ub
k),Rub

k −Pk +1
)
< m(Rub

k −Pk +1)

Proof. If the inequality holds, Lemma 3 gives

Ik(R
ub
k)< Rub

k −Pk +1.

Since a discrete time model is used, we have

Ik(R
ub
k)≤ Rub

k −Pk.

The theorem then follows from Theorem 1.

In the following section, the above theorem is used to derive a sufficient schedulability test for

synchronous parallel task systems scheduled with a global fixed priority algorithm.

3.4 Response-Time Analysis

In order to exploit the theorem proved in the previous section to analyse the schedulability of

parallel task systems, it is necessary to compute the critical interference terms. Since finding

such terms is known to be a difficult problem for multiprocessor systems, a common approach

is to use upper bounds that are easier to compute. An upper bound on the interference of a task

τi in a window of length L is given by the maximum workload that τi can execute within the

considered window. However, computing the maximum workload that can be executed by τi in a

generic window is also a difficult task. To sidestep this problem, a typical technique is to consider

pessimistic scenarios in which the workload in a given window cannot be smaller than in the

worst-case situation. We hereafter describe the pessimistic scenario considered in this paper.

Consider a window of length L that spans the interval [rk,rk +L] of a given (interfered) task

τk. We call this interval of time the problem window. Within this window, we provide an upper

bound on the execution of an interfering task τi. As commonly adopted in the literature, we will

call carry-in job the first instance of τi executing in the problem window, having a release time

before and deadline inside the window. By contrast, the carry-out job has its release time within

(or before) and deadline after the window. Note that in this chapter, we consider that a job that

has both release time and deadline outside the window is considered to be a carry-out job. All τi’s

instances whose release time and deadline are entirely contained within the considered window

will be denoted as body jobs.

As shown in [Bertogna and Cirinei, 2007], the densest possible packing of sequential jobs of

a task τi is found when:

3.5 Sliding Window Technique 33

Figure 3.2: Densest possible packing of threads within the problem window

1. A job starts executing at the beginning of the problem window, and completes as close as

possible to its response time. In other words, the job starts executing Ri−Pi time-units after

its release time, in correspondence to the beginning of the problem window.

2. All subsequent jobs of τi are executed as soon as possible after being released, i.e., respect-

ing the period Ti.

Such a situation is depicted in Figure 3.2 for a parallel task τi in the problem window.

3.5 Sliding Window Technique

An important observation to make is that the scenario described above may not represent the worst-

case workload in the synchronous parallel task model considered in this chapter. This happens

because the parallel task structure is characterized by precedence constraints that may affect the

densest possible packing of p-jobs. Consider the example in Figure 3.2, where a task composed of

three segments is considered in the above scenario. The carry-in job is fully contained inside the

problem window L, while the carry-out is only partially contained. Now, if the window is shifted

right by one segment (as represented by the window L′ in the figure), the carry-in contribution

decreases by one p-job, while the carry-out contribution increases by three p-jobs, leading to a

larger task workload within the considered window.

In order to properly consider the worst-case workload contribution of each task in the problem

window, we check all different meaningful alignments of the problem window with respect to the

task structure. Note that shifting right the window of interest, the workload contribution has a dis-

continuity whenever one of the extreme points of the window coincides with a segment boundary.

Therefore, we can check all possible scenarios in which the window of interest is shifted to the

right from the original configuration, such that either (i) the window starts at the beginning of a

segment of the carry-in job, or (ii) the window ends at the end of a segment of the carry-out job.

Formally, we consider the worst-case workload of a task τi in a window of length L, taking the

maximum workload of the considered task, over all possible configurations in which the window

34 Schedulability of Synchronous Parallel Tasks

is shifted right from the original configuration by a ∈ Γ1 ∪Γ2, where Γ1 and Γ2 are the sets of

significant offsets to check corresponding to scenario (i) and (ii), respectively (see Figure 3.5).

Before deriving the formal offset values to check, let ηi(a,L) be the carry-out length for task

τi in a window of length L and offset a. Then,

ηi(a,L) = min(L,(L+Ri−Pi +a) mod Ti) .

We note that the meaningful offsets to consider in scenario (i) correspond to the best-case

starting times of each segment σi, j of τi, i.e., ∑
j
x=1 Pi,x,∀ j ∈ [1,si]. Moreover, all offsets greater

than Pi−ηi(0,L) can be ignored, since they would cause the end of the window to fall beyond the

end of the carry-out job, resulting in a smaller workload. Therefore,

Γ1
.
=

{
j

∑
x=1

Pi,x ≤ Pi−ηi(0,L),∀ j ∈ [1,si]

}
.

The offsets to consider in scenario (ii) correspond to the difference (when positive) between the

best-case starting times of each segment σi, j and the original carry-out length ηi(0,L), i.e.,

Γ2
.
=

{
max

(
0,

j

∑
x=1

Pi,x−ηi(0,L)

)
,∀ j ∈ [1,si]

}
.

3.6 Decomposing the Carry-out Job

One last observation concerns predictability, as defined in [Ha and Liu, 1994]6. A schedulability

test needs to be predictable, in that it should consider all possible execution times of a task system,

as long as they do not exceed the given worst-case execution time. In other words, we would

like the response-time provided by our analysis to be sufficiently robust to consider all possible

execution requirements of the given tasks, including when some segment σi, j requires less than

Ci, j time-units, or when a task may skip some of the segments. A schedulability test that does not

properly consider situations when execution requirements are reduced is by no means sufficiently

robust for critical applications.

The problem with the above approach is that a larger workload may fit the considered window

if the carry-out skips some segment. Consider the example in Figure 3.3. In the upper scenario, the

original situation is depicted, with the carry-out job contributing to the workload in the window

of interest with its first two segments. However, when the second segment of the carry-out job is

skipped, a worse situation is found, as shown in the lower part of the figure, since a segment with

a higher parallelism may enter the window, resulting in a larger workload.

Considering all possible combinations of execution times appears overly complicated as it

requires a combinatorial exploration of the possible segment instances of each task. To solve

this problem and therefore allowing our analysis to be sufficiently robust, we will consider a

6In [Baruah and Burns, 2006], a broader concept is defined, i.e., “sustainability”, which generalizes the notion of

predictability.

3.7 Workload of a Task Within a Window 35

Figure 3.3: Densest possible packing of threads when a task skips some segment

Figure 3.4: Example of a decomposed job

pessimistic situation in which the carry-out job is decomposed, re-aligning the parallel segments

such that the segments with higher parallelism are shifted to the beginning of the job’s execution.

Thus, segments are ordered by their number of p-jobs following a non-increasing pattern where

segments with a higher number of p-jobs execute first, as depicted in Figure 3.4.

Replacing the original carry-out job by a decomposed job results in placing the parallel seg-

ments with higher parallelism within the window of interest, which allows us to obtain a sound

upper bound on the workload of the carry-out job.

We are now ready to derive an upper bound of the workload that each task may impose on a

window of length L.

3.7 Workload of a Task Within a Window

Before presenting the analytical derivation of the workload components, we introduce the notion

of “at least p-depth workload”.

Definition 5. The at least p-depth workload of a task τi in a window of length L, denoted as W
p

i (L),

is the sum of all intervals in which at least p threads of τi execute simultaneously in parallel.

Note that the following relation holds by the definition of I
p
i,k(L):

I
p
i,k(L)≤W

p
i (L).

The above relation, together with Theorem 2, gives the following lemma.

Lemma 4. Given a set of synchronous parallel tasks τ scheduled by any work-conserving algo-

rithm on m identical cores, the worst-case response-time of each task τk can be upper bounded by

36 Schedulability of Synchronous Parallel Tasks

Figure 3.5: Response-time analysis details

Rub
k if

∑
∀τi

m

∑
p=1

min
(

W
p

i (R
ub
k),Rub

k −Pk +1
)
< m(Rub

k −Pk +1)

It now only remains to derive an upper bound on W
p

i (L). We will compute such an upper

bound by considering the at least p-depth contributions of carry-in, body and decomposed carry-

out of each task τi in the worst-case scenario summarized in Figure 3.5, for all significant offsets

a ∈ Γ1∪Γ2.

To compute the at least p-depth workload of the decomposed carry-out job, it is necessary to

consider the first ηi(a,L) units of the decomposed carry-out job. The following function computes

the at least p-depth workload executed within the first x units of a generic job of τi.

g
p
i (x) =





0, if x≤ 0

∑
z
j=1:mi, j≥p Pi, j +(x−∑

z
j=1 Pi, j), if 0 < x≤ Pi

and mi,z+1 ≥ p

∑
z
j=1:mi, j≥p Pi, j, if 0 < x≤ Pi

and mi,z+1 < p

∑∀ j:mi, j≥p Pi, j, otherwise,

(3.8)

where z represents the index of the last segment that is fully included in the interval, so that (z+1)

is the index of the segment that may execute partially within the carry-out interval.

The number of body jobs of τi executing in L is given by

βi(L) =

⌊
L+Ri−Pi

Ti

⌋
−1. (3.9)

Note that βi(L) does not depend on a because the range in which a is varied never influences the

3.7 Workload of a Task Within a Window 37

number of body jobs. The at least p-depth workload of the body jobs of τi executing in L is then

given by

b
p
i (L) = βi(L) ∑

∀ j:mi, j≥p

Pi, j. (3.10)

The carry-in length αi(a,L) can be derived as7

αi(a,L) = L−ηi(a,L)−βi(L)Ti.

The at least p-depth carry-in contribution can then be derived by computing the workload executed

within the last αi(a,L) units of the carry-in job. The following function (from [Chwa et al., 2013])

computes the at least p-depth workload executed within the last x units of a job of τi.

f
p
i (x) =





0, if x≤ 0

∑
si

j=h:mi, j≥p Pi, j +(x−∑
si

j=h Pi, j), if 0 < x≤ Pi

and mi,h−1 ≥ p

∑
si

j=h:mi, j≥p Pi, j, if 0 < x≤ Pi

and mi,h−1 < p

∑∀ j:mi, j≥p Pi, j, otherwise,

(3.11)

where h represents the index of the earliest segment that is fully included in the interval, so that

(h−1) is the index of the segment that may execute partially within the carry-in interval.

Considering Equation 3.8, Equation 3.10 and Equation 3.11, an upper bound on the at least

p-workload of a task τi in a window of length L and offset a is given by:

Ŵ
p

i (L,a) = f
p
i (αi(a,L))+b

p
i (L)+ g̃

p
i (ηi(a,L)), (3.12)

where g̃ denotes that the function g is applied to the decomposed job. An upper bound on the

worst-case workload of τi with depth at least p in a window of length L is then derived as

Ŵ
p

i (L) = max
a∈Γ1∪Γ̃2

{
Ŵ

p
i (L,a)

}
, (3.13)

where Γ̃2 denotes that the offsets in this set are computed, again, considering the decomposed job.

Note that the above expression can be used to bound the inter-task workload from interfering

tasks.

Before applying Lemma 4, a bound should also be provided to the intra-task interference,

accounting for the workload of p-jobs from the same task. An upper bound on the intra-task

7When Ri = Pi and L≥ Ti, the first job of τi executing in the window of interest is accounted for in the carry-in and

not in the body contribution despite it has both release time and deadline within the window.

38 Schedulability of Synchronous Parallel Tasks

workload of task τk with depth at least p can be given by:

Ŵ
p

k = ∑
∀ j:mk, j≥p+1

Pk, j, (3.14)

where the sum is extended over all segments with parallelism at least p+1 instead of p since the

p-jobs of the critical threads do not contribute to the critical interference.

3.8 Schedulability Condition

Given the worst-case inter-task and intra-task workloads presented in the previous sections, we are

now in a position for deriving an upper bound on the worst-case response time of a parallel task.

Lemma 5. Given a set of synchronous parallel tasks τ scheduled by any work-conserving algo-

rithm on m identical cores, the worst-case response-time of each task τk can be upper bounded by

Rub
k if

∑
∀τi 6=k

mi

∑
p=1

min
(

Ŵ
p

i (R
ub
k),Rub

k −Pk +1
)

+
mk

∑
p=1

min
(

Ŵ
p

k ,R
ub
k −Pk +1

)

< m(Rub
k −Pk +1).

Proof. The proof simply follows from Lemma 4, using the derived upper bounds instead of the

real p-depth workload, and extending the p-indexed sum over the maximum number of p-jobs of

each task8.

For the special case of global fixed-priority scheduling, the interfering workload may be lim-

ited to the set of tasks having higher priority than τk. The following theorem can then be used to

derive Rub
k in a fixed priority setting.

Theorem 3. Given a set of synchronous parallel tasks τ scheduled by global fixed-priority on m

identical cores, an upper bound Rub
k on the worst-case response-time of a task τk can be derived

by the fixed-point iteration of the following expression, starting with Rub
k = Pk:

Rub
k ← Pk +

⌊
1

m

(
∑
∀i<k

mi

∑
p=1

min
(

Ŵ
p

i (R
ub
k),Rub

k −Pk +1
)
+

mk

∑
p=1

min
(

Ŵ
p

k ,R
ub
k −Pk +1

))⌋
.

Proof. If the iteration ends before Rub
k reaches Dk, it is easy to see that the condition of Lemma 5

is satisfied, proving the theorem.

8As in [Chwa et al., 2013], we are not taking advantage of the fact that carry-in and carry-out contributions may

be less dense than in the considered scenario when there is some segment σi, j with a parallelism mi, j greater than the

number of processors m.

3.9 Complexity 39

A schedulability test for systems scheduled with global fixed-priority is easily derived by com-

puting Rub
k for each task τk in priority order, starting from the highest priority one, and checking

whether Rub
k ≤ Dk for all tasks. If not, the test is not able to guarantee the schedulability of the

system. Note that, updating response time upper bounds in priority order allows one to optimally

exploit Theorem 3, since every task can use the most updated response times of the higher priority

tasks, leading to smaller inter-task interferences.

3.9 Complexity

The complexity of the proposed response-time analysis is pseudo-polynomial in the task param-

eters, as is the original response-time analysis for sequential task sets presented in [Bertogna and

Cirinei, 2007]. However, with respect to the sequential analysis, an additional si term has to be

considered to account for the sliding window technique that repeats the workload computation for

all segment starting times of the carry-in and carry-out jobs.

To obtain a faster analysis, a simple method is to consider the complete execution of the carry-

in and carry-out job instances. To do that, it is sufficient to replace Ŵ
p

i (L) in Theorem 3 with the

following term:

Ŵ
p

i (L) =

(⌊
L+Ri−Pi

Ti

⌋
+1

)
∑

∀ j:mi, j≥p

Pi, j. (3.15)

As we will show in the experimental section, this method allows obtaining a faster worst-case

response time computation without significant schedulability losses.

3.10 Evaluation

This section presents the simulation results to evaluate the behaviour of our schedulability analysis,

comparing it to the approach proposed by [Chwa et al., 2013]. We only show the results for the

implicit deadline case, which are however representative of the general behaviour. Concerning the

simulation environment, we use a similar setting as in [Chwa et al., 2013]. We start by generating a

task set with m tasks, creating new task sets by adding a new task to the previous one until the task

set utilization exceeds the number of processors. The above procedure is repeated until 40,000

task sets are generated.

The percentage of parallel tasks in the task set is controlled by a parameter that generates a

random percentage value in the interval [0,100]. The periods of sequential tasks are uniformly

generated in [100,1000], with Ci uniformly chosen from [1,Ti]. For parallel tasks, the number

of segments si is uniformly generated in [1,5]; the number of threads per segment mi, j is uni-

formly generated in the interval [1,3m/2]; the worst-case execution times of the threads in each

of the segments is uniformly chosen in the interval [1,Ti/si]; periods are uniformly generated in

[100,10000].

For the generated task sets, we compare the number of schedulable task sets detected by our

analysis (PAR-RTA) with the approach proposed in [Chwa et al., 2013], denoted as PAR-EDF.

40 Schedulability of Synchronous Parallel Tasks

As the authors in [Chwa et al., 2013] show that PAR-EDF outperforms approaches that use de-

composition techniques to schedule parallel tasks, we do not perform this comparison ourselves.

In our results, we also show the performance of the faster method (PAR-RTA-UP) presented in

Section 3.9 that uses the workload upper bound given by Equation (3.15).

Figure 3.6: Number of schedulable task sets detected by the considered tests for m = 4

Figure 3.7: Number of schedulable task sets detected by the considered tests for m = 8

Figure 3.6 shows the results for m = 4. Both our approaches clearly outperform PAR-EDF,

detecting 230% more schedulable task sets. Interestingly, the faster method using the simplified

upper bound has a performance very similar to the complete method (within 1%)9. Increasing the

number of processors, the situation is similar. Figure 3.7 shows the case with m = 8. While the

9We found a similar result for sequential task sets, comparing the test in [Bertogna and Cirinei, 2007] with a pes-

simistic version that accounts for a complete carry-out contribution.

3.11 Summary 41

number of schedulable task sets detected by all tests decreases, the relative performances remain

the same.

3.11 Summary

In this chapter the problem of scheduling parallel real-time tasks in a multiprocessor system com-

posed of m homogeneous cores was addressed. Considering the synchronous task model, we de-

rived upper-bounds on the workload within a window of interest in order to compute response-time

upper bounds of the interfering jobs. Two techniques are used for the derivation of the contribution

of the worst-case workload in a window of interest. The first technique introduced is the sliding

window technique which allows one to check all the different meaningful alignments that may

occur in the problem window with respect to the task structure. The second technique considers

the decomposition of the carry-out job in order to make the proposed approach sustainable. That

is, the decomposition of the carry-out job requires that parallel segments of the carry-out job are

re-aligned such that the segments with higher parallelism are shifted to the beginning of the job’s

execution. Consequently, more workload is moved inside the window of interest. Both techniques

make our analysis sufficiently robust to be considered in more critical scenarios.

Regarding the obtained results, the presented approach improves over the state of the art re-

ported in [Chwa et al., 2013], by providing tighter schedulability conditions and extending the

analysis to fixed-priority task systems. In addition, we clearly outperform the work in [Chwa

et al., 2013], in the number of schedulable task sets.

Future work includes the application of the improvement proposed by Nan Guan et al. in

[Guan et al., 2009] for synchronous parallel real-time tasks. Precisely, we can simplify the as-

sumption that every higher priority task has carry-in and make our analysis less pessimistic by

considering that only (m− 1) tasks contribute for the carry-in term as presented in [Guan et al.,

2009].

In the subsequent chapter, we continue to explore the parallelism provided by current multi-

core systems. Instead of considering a purely global scheduling approach, we introduce a novel

approach that combines a semi-partitioned scheduling with a variant of work-stealing.

42 Schedulability of Synchronous Parallel Tasks

Chapter 4

Applying Work-stealing to Real-time

Systems

4.1 Introduction

Work-stealing is a load-balancing algorithm that allows an idle core to randomly steal workload

from a busy core (usually referred to as the victim) with the objective of reducing the average

response time of parallel tasks. Several properties make it a viable algorithm to be used in mul-

tiprocessor scheduling. Namely, it is capable of load balancing workloads, provide good data

locality and, due to its random stealing behaviour, contention can also be reduced.

While randomness in the selection of a victim is traditionally acceptable in several computing

domains, no guarantee can actually be provided regarding the timing behaviour of tasks due to the

possibility of priority inversion. Hence, if one wants to use work-stealing in real-time systems, it

has to modify the original algorithm to circumvent this issue.

This chapter starts by detailing the behaviour of work-stealing and presenting its limitations

with respect to real-time systems (Section 4.2 and Section 4.3). Then, Section 4.4 presents works

found in the literature that apply work-stealing in real-time systems and Section 4.5 introduces a

new data structure that may be used in the context of these systems. In Section 4.6 semi-partitioned

scheduling is introduced and in Section 4.7 the system model used throughout this chapter is

detailed. An approach that combines a variant of work-stealing with semi-partitioned scheduling is

presented, in Section 4.8. The approach consists of an offline stage and an online stage. During the

offline stage, a multi-frame task model is adopted to perform the fork-join task-to-core mapping so

as to improve the schedulability and the performance of the system. During the online stage, the

variant of work-stealing is used among cores to improve the system responsiveness as well as to

balance the execution workload. The end goal of this approach is to reduce the average response

time of tasks and create additional room in the schedule for less-critical tasks (e.g., aperiodic and

best-effort tasks).1.

1Note that the balance of the platform workload at runtime also allows for a better control of the platform energy

consumption [Aydin and Yang, 2003; Kang and Waddington, 2012].

43

44 Applying Work-stealing to Real-time Systems

Finally, the schedulability analysis for the approach is presented in Section 4.10 and different

experiments considering different allocation heuristics are also performed. Results are presented

in Section 4.11.

4.2 Randomised Work-stealing

Blumofe et al. ([Blumofe and Leiserson, 1999]) proposed a randomised work-stealing scheduler

with provable time and space bounds for parallel applications with fully-strict computations (in a

fully-strict computation a task only synchronises with its parent). The randomised work-stealing

scheduler consists of a pool of worker threads (usually there is a one-to-one mapping of worker

threads to cores) where each worker thread maintains a local double-ended queue. A double-ended

queue, depicted in Figure 4.1, is a concurrent data structure that operates as a queue and stack by

allowing push and pop operations at both ends [Knuth, 1997] (in short deque).

Figure 4.1: Work-stealing deque data structure

When a task spawns a new sub-task, the parent task is suspended and pushed into the deque

and the just spawned child task starts executing. When the child completes its execution, the parent

task is popped from the deque and resumes its execution. Worker threads access their local deques

as a stack by pushing and popping tasks from the bottom of the deque, in a Last-in, First-Out

(LIFO) order. However, whenever a worker thread becomes idle, as a result of the local deque

becoming empty, it turns into a thief and it may steal work from other randomly selected busy

worker threads, known as the victims. When stealing work from a victim, thieves treat the victim’s

deque as a queue and steal work that was enqueued first (the topmost task), by following a First-

In, First-Out (FIFO) order. If the chosen victim has a task in its deque, this task is stolen and it

is executed by the thief. Otherwise, if no task is found in the deque of the selected victim, a new

random victim is selected. The selection process continues until either a new task is found in a

victim’s deque or no task is found and the thief suspends its execution.

The main benefits of randomised work-stealing are threefold: (i) the reduction of contention;

(ii) the load balancing of the workloads; and (iii) providing good data locality [Blumofe and

Leiserson, 1999].

Contention is reduced by design as instead of a single concurrent work queue shared among

worker threads, worker threads own their local copy of a deque. Moreover, the way worker threads

operate on the deques also contributes to a reduction in contention. Indeed, worker threads execute

their own work from one end of the deque and steal work from the other end of a victim’s deque.

Two aspects contribute to a good load balancing strategy. The first aspect relies on the fact

that early executed tasks may generate more work than later generated tasks. That is, due to

the way that tasks are pushed into the deque, a parent is pushed to the deque while the child is

4.3 Limitations of Randomized Work-stealing with Respect to Real-Time Systems 45

executing. Consequently, parents become candidates to be stolen thereby increasing the chance

of further parallel decompositions. The second aspect relates to the fact that idle worker threads

have the initiative and look for work in other worker threads’ deques while busy threads execute

their work. Not only this contributes to load balancing, but also to a reduction of overhead, as it

is the responsibility of the idle worker to perform all the migration operations (instead of a busy

worker).

Finally, randomised work-stealing offers good data locality as long as tasks that are close

together in the computation graph (as for instance, nearest neighbour tasks) are scheduled in the

same processor. Nevertheless, further work has been done in order to improve the data locality of

randomised work stealing for parallel workloads as for instance [Acar et al., 2000] and [Narlikar,

2002].

4.3 Limitations of Randomized Work-stealing with Respect to Real-

Time Systems

While randomness in the selection of a victim is traditionally acceptable in several computing

domains, no guarantees can actually be provided regarding the timing behaviour of the tasks.

Thus, the general purpose randomised version of work stealing does not present a deterministic

and predictable behaviour that allows it to be used in real-time systems as is. There are two main

reasons that need to be considered. The first reason is that in randomised work-stealing the tasks’

response times are unbounded, i.e., as new tasks are spawned these are pushed into the bottom

of a worker’s deque making a task at the top to wait unboundedly if all workers are busy. The

second reason is that using one deque per core is a source of priority inversion if different task

priorities are considered. In the randomised approach, worker threads steal tasks from randomly

selected deques of other threads. If different task priorities are considered (as it is typically the

case in real-time systems), high priority tasks may eventually be pushed to the thread’s deque

after lower priority tasks. This behaviour may lead to priority inversion and consequently deadline

misses as in the end of the deque there may be lower priority tasks to be stolen by thief threads. A

motivational example to this problem is presented next.

Example 4.3.1. Let us assume a system with two cores and two worker threads, WT1 and WT2. In

core 1, WT1 is executing a low priority task (τl), and in core 2, WT2 is executing a high priority task

(τ1
h). Now let us further assume that τl spawns low priority subtasks which are pushed into core 1’s

deque. If at this particular time instant a new high priority task becomes ready to execute (let us

denote it τ2
h), τl is preempted. If during its execution τ2

h also spawns new subtasks, these subtasks

are enqueued into core 1’s deque, pushing older subtasks (the ones with low priority) to the "end"

of the queue, according to the rules of randomised work-stealing. If at this time instant, core 2

becomes idle, its worker thread is allowed to steal work from core 1’s deque. Since randomised

work-stealing works by stealing older subtasks from the deque, it will steal and execute those of

low priority (the subtasks of τl).

46 Applying Work-stealing to Real-time Systems

Figure 4.2: Priority inversion scenario. State of the system when WT2 steals work from WT1.

Clearly, Example 4.3.1 describes a priority inversion scenario (the state of the system when

the priority inversion occurs is depicted in Figure 4.2). In order to have a correct behaviour, from

a real-time systems perspective, both cores should have been executing the subtasks spawned by

τ2
h in parallel2. However, if stealing was not allowed, core 2 would have been idle and the system

would have been wasting resources.

The example above shows that if one wants to have deterministic and predictable work-

stealing, the randomised work-stealing algorithm needs to be modified. In particular, all the

introduced modifications should be handled carefully not only to assure the timeliness of real-

time tasks, but also to take into consideration the impact of task migration and its effects on the

predictability of the system.

4.4 Literature on Real-Time Work-Stealing

In the literature, there are only a few papers that apply work-stealing in real-time settings or use it

for the scheduling of tasks with priorities. In this section we cover the papers that we are aware of.

Nogueira and Pinho [Nogueira and Pinho, 2012] propose a server-based approach combined

with work-stealing to support parallel tasks. The same authors, in [Nogueira et al., 2012], propose

an approach that combines global EDF with work-stealing, albeit this approach only covers simple

fork-join tasks.

Mattheis et al. [Mattheis et al., 2012] devote their attention to the application of work-stealing

for stream processing applications running in soft real-time systems. In particular, a few vari-

ants of randomized work-stealing are proposed considering different queuing orders, enqueueing

policies, and stealing policies, with the objective of achieving fairness in task execution and mini-

mizing latency. For one of the variants, i.e., global enqueueing policy, the authors provide a bound

on the latency. Their results show that for streaming applications the proposed bound is safe for

strategies that employ a global queue in addition to local queues. Moreover, they also show that

these strategies perform better than randomized work-stealing, without reducing the throughput

2The scenario will be the same even if task τ2
h is executed in core 1, and task τl in core 2 (which is common in

regular global scheduling systems).

4.4 Literature on Real-Time Work-Stealing 47

of applications while maintaining a minimal overhead. Even though the target of this work is

soft real-time systems, no schedulability analysis is given for the proposed strategies nor tardiness

bounds for the execution of the tasks. In addition, we suspect that for tasks with irregular paral-

lelism the proposed bound does not hold as different worker threads may have to execute different

amounts of work.

Imam and Sarkar [Imam and Sarkar, 2015], in parallel to the work developed in this dis-

sertation, present a decentralized work-stealing scheduler that considers fixed-priority tasks in a

non-preemptive manner. The proposed algorithm takes into account global priorities and steals

are performed even if the worker thread is not idle in order to avoid priority inversions. Simi-

lar to what is presented in this dissertation, in Section 4.5, tasks are classified according to their

priority and consequently, are stored in the respective deque. The authors evaluate how different

pool implementations, using different types of queues/deques, perform in different benchmarks.

Their results show that centralized queues present more overhead than decentralized ones and that

decentralized pools handle the scheduling of global priorities as well as global queues but with

low overhead. Moreover, the authors did not observe any increase in overheads due to the increase

in the frequency of steals, occurring due to the handling of global priorities.

Li et al. [Li et al., 2016] compare randomized work-stealing against a deterministic centralized

greedy scheduler for scheduling soft real-time parallel tasks. The authors divide their study into

two parts. In the first part they show that in many scenarios, work-stealing has smaller response-

times with low variation and a better speedup than the centralized greedy scheduler. This result is

easily understandable due to the higher overheads that the centralized greedy scheduler poses in

the manipulation of its centralized queue of ready nodes. The low variation in the response times

achieved by the work-stealing scheduler leads to the second part of their work where they study

the performance of work-stealing for the scheduling of soft-real time tasks. In the second part of

their work, the authors integrate work-stealing into federated scheduling3.

The motivation for using federated scheduling is to decide the core assignment for the tasks

offline and then, following that assignment, use work-stealing online to schedule those tasks ex-

clusively in the dedicated cores. Their results show that work-stealing has a lower deadline miss

ratio (i.e., missed deadlines over number of jobs in an interval of time), lower relative response-

times and a smaller number of required cores when compared to the centralized greedy scheduler.

The conclusion of their study is that work-stealing can improve the response-time of the tasks and

therefore is a good candidate for soft real-time systems.

3Federated scheduling is a scheduling technique for parallel real-time tasks. Federated scheduling either admits a

task set providing as a result a core assignment for each task or declares the task set unschedulable. To provide the core

assignment, each task with a utilization greater than 1 (denoted as a high utilization task) is allocated ηi cores according

to the following expression ηi = ⌈
Ci−Pi

Di−Pi
⌉. During runtime, each high utilization task is ensured to execute exclusively

in ηi cores. All the remaining tasks, are partitioned in the remaining cores.

48 Applying Work-stealing to Real-time Systems

4.5 A New Data Structure

As observed in Section 4.3, the randomised behaviour of work-stealing must be modified if one

wants to use it for scheduling parallel real-time tasks. However, as we will see next, the deque is

no longer a viable data structure and the behaviour of task selection must be slightly modified as

well.

Let us focus on a simple approach that considers task priorities and follows the same philoso-

phy of having a single deque per worker thread. Such an approach requires a global data structure

that holds information about which worker thread contains the highest priority task. Instead of

randomly selecting a victim, and therefore avoiding priority inversion, whenever a worker thread

is idle it must first consult the global data structure. Based on the information contained in the

structure, it accesses the respective deque to look for the workload to be stolen. The thief iterates

through the tasks in the respective deque until it finds one with a priority equal to the highest

priority task. The thief steals and executes it. The problem with this approach is that it greatly

increases the theft time, and therefore cannot be considered a valid solution.

As alternative, one may think of priority queues, often used in single core schedulers, as a

viable solution when moving to a parallel context. Nevertheless, concurrent priority queues are

hard to make both scalable and fast [Lenharth et al., 2011]. Furthermore, the semantics of priority

queues naturally suggest an ordered insertion method, which is against the work-stealing deque

philosophy.

A viable solution that circumvents the limitations of the above approaches consists in having

each worker thread store ready tasks in a priority ordered list, where each element is a deque that

stores tasks of a given priority, in a similar fashion to Multi-Level Queue Scheduling [Silberschatz

et al., 2008]. This list supports the same operations as the ones supported by randomized work-

stealing operating in a single deque, that is, push and pop performed by the owner worker thread

on the bottom of the deque to insert and remove a task, respectively; and steal which is invoked by

a thief in order to steal a task from the top of the highest priority deque. In addition, there is the

need of using a global data structure that keeps information about which worker thread holds the

highest priority task at any given instant of time. Such a structure is accessed whenever a worker

thread becomes idle.

With both of the above data structures, work stealing can be made deterministic (i.e., without

random steals) and more predictable as now thieves know which victim(s) hold the highest priority

task(s). However, this does not suffice to achieve a fully predictable execution as two different

worker threads may be executing different tasks with different priorities and spawn new sub-tasks

into their deques at any given time instant. Again, a case of priority inversion, but this time due to

the scheduling rule that a steal operation may only occur whenever a worker thread becomes idle.

To achieve a fully predictable execution one must avoid priority inversion. Thus, a worker

should always check if there is a higher priority task in the system before executing any local

tasks. This entails that a worker should steal even when there may be lower priority work in one

of its deques.

4.6 Semi-partitioned Scheduling 49

In our opinion, there is a trade-off that should be decided by the system designer. That is,

either steal immediately when there is higher priority work in the system or wait until a worker

becomes completely idle before stealing higher priority work at the cost of allowing a few priority

inversions.

We believe that work-stealing is amenable of being used in real-time systems but in a con-

trolled setting (at least while there is no deterministic version of the algorithm with the respective

schedulability analysis). Thus, we selected a setting where work-stealing is combined with semi-

partitioned scheduling with task-level migration and a multiframe task model in order to reduce

the average response-time of tasks. Consequently, additional room can be created in the schedule

for less-critical tasks (e.g., aperiodic and best-effort tasks).

4.6 Semi-partitioned Scheduling

Semi-partitioned scheduling ([Anderson et al., 2005], [Andersson and Tovar, 2006], [Kato et al.,

2009]) combines properties from both partitioned and global scheduling approaches as a way to

increase the processor utilization bounds observed in partitioned scheduling (i.e., 50%).

As stated in Chapter 2, in semi-partitioned scheduling, a subset of tasks is statically assigned

into the cores as in partitioned scheduling, with no possible migrations for these tasks at runtime;

and the remaining tasks in the set are scheduled by using a global scheduling algorithm in order

to improve the processor utilization. The globally scheduled tasks are allowed to migrate between

the cores.

Considering the time instant at which a migration occurs, semi-partitioned scheduling can be

further classified into two subcategories: (1) Task-level migration [Dorin et al., 2010], where

several jobs of a migrating task are allowed to be assigned to different cores, but once a job is

assigned to a core, migration of this job prior to its completion is forbidden; and (2) Job-level

migration [Kato et al., 2009], where several jobs of a migrating task are allowed to be assigned to

different cores, and migration of each job prior to its completion is also allowed.

Unfortunately, to the best of our knowledge, very few techniques exist in the literature for the

analysis of semi-partitioned scheduling of parallel tasks. Bado et al. [Bado et al., 2012] proposed

a semi-partitioned approach with job-level migration for fork-join tasks, which is similar to the

one in [Lakshmanan et al., 2010], but due to the assignment methods proposed in their paper for

the offsets and local deadlines, they did not provide any guarantee on the fact that parallel jobs

(in short p-jobs) actually execute in parallel. While their work is similar to ours with respect

to the adopted class of schedulers (semi-partitioned), we differ in that we relax the constraint of

restricting the task parallelism and we use task-level migration instead of job-level migration, thus

further reducing the number of migrations at runtime.

50 Applying Work-stealing to Real-time Systems

Figure 4.3: Fork-join task. In the figure, the task structure is represented together with its timing

properties (upper right side) and its serialized representation (lower right side).

4.7 System Model

In this chapter, we use the fork-join task model. As described in Chapter 2, the fork-join model

is more restrictive than the synchronous model. Specifically, in the fork-join model only the even

segments of a parallel task can have an arbitrary number of p-jobs. The odd segments have a single

p-job that, with the exception of the first p-job, synchronises the computation occurring in the even

segments.

Even though we follow a more restrictive task model, most of the notation presented in the

previous chapter is still valid and will be used throughout this chapter. New notation is introduced

when it is required to do so.

The left side of Figure 4.3 illustrates a fork-join task τi with ni = 5 segments, three are sequen-

tial segments (σ1,σ3 and σ5) with one p-job each and two are parallel segments: σ2 containing

three p-jobs and σ4 containing two p-jobs. All the p-jobs in the parallel segments are independent

from each other (other than the processing units and segment precedence constraints there are no

other shared resources among the p-jobs) and therefore can execute in parallel. On the upper right

side of the figure it is possible to observe the task structure framed according to the timing proper-

ties of the task (P,D,T) and on the bottom right side it is possible to observe the task’s serialized

representation (i.e., task execution without parallelism).

Every p-job is assumed to execute on at most one core at any time instant and can be preempted

prior to its completion by another p-job with a higher priority. A preempted p-job resumes its

execution on the same core where it was executing prior to preemption. Moreover, we assume that

each preemption is performed at no cost or penalty.

4.7.1 Earliest Deadline First

In this chapter, we assume that each of the m cores runs a fully preemptive Earliest Deadline

First (EDF)4 scheduler (also known as partitioned EDF). The advantage of using EDF is that it

4As the reader may recall (from Chapter 2), EDF scheduling policy dictates that the smaller the absolute deadline

of a job, the higher its priority.

4.7 System Model 51

was proven in [Liu and Layland, 1973] that task sets with a total utilization no greater than 1

are schedulable with EDF. In addition, as we are dealing with sporadic tasks with constrained

deadlines (i.e., Di ≤ Ti), the schedulability analysis of EDF for this particular task model can be

performed using the processor demand approach [Baruah et al., 1990].

The processor demand bound function approach works as follows. For each task τi executing

in an interval [t1, t2], the processor demand is the amount of computation time c(t1, t2) requested

by τi’s instances that have release time and deadline within the interval [t1, t2]. Then, a task set is

feasible if and only if for all tasks the processor demand in any interval of time does not exceed

the available time (t2− t1), i.e., ∀t1, t2,c(t1, t2)≤ t2− t1. Thus, one needs to compute the number of

instances for each task τi in the interval [t1, t2] in order to compute the processor demand in such

interval. For a task τi the number of instances can be expressed as follows:

ηi(t1, t2) = max
{

0,
⌊ t2 +Ti−Di−oi

Ti

⌋
−
⌈ t1−oi

Ti

⌉}

, where oi is the release time of τi’s first instance.

The processor demand in [t1, t2] is given by:

c(t1, t2) =
n

∑
i

ηi(t1, t2) ·Ci

When all tasks are released at t = 0, ηi is simplified and the processor demand c(0, t), for

interval [0, t], is known as the demand bound function, i.e.,

dbf(t) =
n

∑
i

⌊ t +Ti−Di

Ti

⌋
·Ci

.

Hence, a synchronous task set composed of sporadic tasks with constrained deadlines is

schedulable by EDF if and only if dbf(t)≤ t,∀t ≥ 0.

4.7.2 Multiframe Task Model

The multiframe task model was introduced by Mok and Chen [Mok and Chen, 1997] to generalize

the Liu and Layland model [Liu and Layland, 1973]. The idea behind this model is to allow

system designers to model tasks in which different instances (or frames as they are named in this

model) may have different execution times from one another but follow a known execution pattern.

Instead of using a single value for the WCET, each task is modelled by defining a static and finite

list of execution times, corresponding to successive jobs or frames. Thus, a periodic sequence that

may (possibly) repeat infinitely is obtained where the execution time of each frame is bounded

above by the corresponding value in the sequence.

The model introduced by Mok and Chen was generalized by Baruah et al. [Baruah et al., 1999].

In the generalized multiframe model, known as GMF, task parameters such as deadline and period

52 Applying Work-stealing to Real-time Systems

are allowed to differ from one another.5

Formally, the multiframe task model assumed in this chapter is represented by a tuple (E,D,T),

where E is an array of k ≥ 1 execution times (C0,C1, . . . ,Ck−1), i.e., the number of frames of the

task, and T is the period that separates each frame. The execution time of the i-th frame is given by

C(i−1)mod k, where i≥ 1. The deadline of each frame is D time units after its release, with D≤ T .

In this chapter, the multiframe task model is used in the second phase of the proposed ap-

proach. As the reader will see in the next section, the second phase of the proposed approach

requires one to find an execution pattern such that a task that is deemed unschedulable when fully

assigned into a single core, may be deemed schedulable if an execution pattern is found in which

different frames of the task execute in different cores.

4.8 Semi-partitioned Scheduling and Work-Stealing

Semi-partitioned scheduling was chosen in the context of our work because it allows one to: (1)

apply all the body of knowledge that exists for single core scheduling. This is needed when-

ever some task is assigned into a core in a partitioned manner; and (2) take advantage of global

scheduling in order to schedule parallel tasks simultaneously in different cores and consequently,

use work-stealing as a load balancing mechanism.

The proposed approach consists of three phases, referred to as task assignment, offline schedul-

ing, and online scheduling. The intuitive idea behind each phase is summarized below:

1. Task assignment. In this phase tasks are categorized according to their density. Then, a

task-to-core assignment heuristic is applied to determine the set of non-migrating and the

set of migrating tasks. The proposed heuristic considers the demand of each core after each

“new” task is assigned by using the demand bound function (see Section 4.7.1). In this

process, sequential tasks are evaluated first so that the capacity of the cores is filled as much

as possible and thus, let the work stealing mechanism be exploited by parallel tasks in order

to potentially decrease their response times.

2. Offline scheduling. In this phase the execution pattern of each migrating task is determined

so as to meet all the timing requirements of the system. By recurring to the multiframe

task model (see Section 4.7.2), the heuristic tries to find an execution sequence so that

jobs (or frames) of each migrating task are mapped to the cores. Then, on each core the

schedulability can be verified by using uniprocessor schedulability techniques.

3. Online scheduling. In this phase the structure of each parallel task is considered and work-

stealing is applied among cores that share a copy of a migrating task. Specifically, an idle

core with a copy of a migrating task can contribute to the execution of this task by stealing

workload from another core and executing the stolen workload. Before stealing any work-

load, an admission control test is performed on the stealing core in order not to jeopardize

5The GMF was further generalized by different authors in different directions. The interested reader is redirected to

the following works for more information, [Baruah, 2003], [Moyo et al., 2010], [Baruah, 2010].

4.8 Semi-partitioned Scheduling and Work-Stealing 53

the schedulability of the tasks already assigned to this core in Phase 1 (Task assignment)

and Phase 2 (Offline Scheduling).

In the proposed approach, all the allocation decisions are made at design time. During runtime,

only a selected subset of cores is allowed to execute the few tasks that migrate and this decision is

made based on the multiframe task’s execution pattern. This behaviour has a direct consequence

on the number of migrations when compared to a fully global approach. As only a few tasks

migrate in our approach, the number of migrations is reduced. In addition, this number is further

reduced by considering task-level migration instead of job-level migration.

4.8.1 Task Assignment Phase

In the task assignment phase a variant of the first-fit decreasing (FFD) heuristic is proposed, here-

after referred to as FFDO. FFDO first divides tasks into two classes:

1. Light tasks with a density λi ≤ 0.5.6 This class most likely consists of sequential tasks

and parallel tasks for which work-stealing is of little interest as the gain obtained by load-

balancing the workload is small.

2. Heavy tasks with a density λi > 0.5. This class most likely consists of tasks for which the

gain relative to applying work-stealing is high.

The next step is to apply the classical FFD to light sequential tasks first and then to heavy

sequential tasks. After this step is completed, FFDO selects the light parallel tasks and then the

heavy parallel tasks, again using FFD as the packing heuristic. Intuitively, by assigning sequential

tasks first followed by the parallel tasks, the probability of having parallel tasks unallocated after

the first phase increases.

All the tasks successfully assigned to the cores are referred to as non-migrating tasks and the

remaining tasks, i.e., those that cannot be assigned by the heuristic to any core without jeopardizing

its schedulability, are referred to as candidate migrating tasks.

At the end of the assignment phase, if all tasks are assigned to cores, then there are no candidate

migrating tasks and therefore no migrating task in the system. In this case there is no need for

parallelisation and work-stealing as a fully partitioned assignment of the tasks to the cores has

been found. Using work-stealing in this situation would just help in load-balancing the execution

workload at the cost of allowing for unnecessary migrations. Due to this observation work-stealing

is forbidden for non-migrating parallel tasks. In the other case, if a task cannot be assigned to any

core without jeopardizing its schedulability, then this task is deemed as a candidate migrating task

and is treated as a multiframe task. The system is deemed schedulable if and only if an execution

pattern is found for each candidate migrating task such that all the timing requirements of the

system are met.

6The threshold for classifying tasks varies in the literature, nevertheless a density of 0.5 is usually regarded as a

good threshold for classifying tasks.

54 Applying Work-stealing to Real-time Systems

The goal of this assignment is to increase the possibility of benefiting from parallelism during

the third phase of the approach as a way to reduce the response-time of the tasks. For instance,

assuming that some parallel tasks do not fit into the cores in this first phase, then such tasks can

be re-checked in the second phase by treating them as multiframe tasks. If an execution pattern

is found for each of the multiframe tasks (meaning that the system is schedulable using such

execution pattern), then these tasks may benefit from work-stealing during the online phase of the

approach.

4.8.2 Offline Scheduling Phase

After the task assignment phase, let τπ j denote the set of tasks assigned to core π j (with 1≤ j≤m).

It follows that τπ j = τ
π j

NM ∪ τ
π j

M where τ
π j

NM denotes the subset of non-migrating tasks and τ
π j

M

denotes the subset of migrating tasks assigned to π j.

Concerning the migrating tasks, these are modelled as multiframe tasks and consequently, their

jobs are distributed among the cores by following an execution pattern that does not jeopardize the

schedulability of each individual core. To compute this pattern, the number of frames of each

migrating task is computed as follows.

Definition 6 (Number of frames (taken from [Dorin et al., 2010])). The number of frames ki to

consider for each migrating task τi is computed as:

ki
def
=

H

Ti

, where H
def
= lcmτ j∈τ{Tj} (4.1)

In Equation 4.1, lcmτ j∈τ{Tj} denotes the least common multiple of the periods of all the tasks

in τ , also known as the task set’s hyperperiod.7 Goossens et al. [Goossens et al., 2012] proved that

this number of frames per migrating task is conservative and safe.

Definition 7 (Execution pattern (taken from [Dorin et al., 2010])). The job-to-core assignment

sequence ς of each migrating task τi is defined through ki sub-sequences as ς
def
= (ς1,ς2, . . . ,ςki

)

where the sub-sequence ςs (with 1 ≤ s ≤ ki) is given in turn by the m-tuple ςs = (ς1
s , . . . ,ς

m
s). By

following a uniform job-to-core assignment, the sth job of task τi is assigned to core π j if and only

if:

ς j
s =

⌈s+1

ki

·M[i, j]
⌉
−
⌈ s

ki

·M[i, j]
⌉
= 1 (4.2)

To the best of our knowledge the uniform assignment given by Equation 4.2 is the best result

found in the literature for finding execution patterns for migrating tasks. An alternative approach

is the generation of patterns via enumeration. Equation 4.2 is part of a set of algorithms that were

proposed in [Dorin et al., 2010] for the finding of patterns for multiframe tasks. The intuitive idea

of these algorithms is to find the largest number of jobs that can be assigned to each core such

that a migrating task is deemed schedulable. Besides schedulability, another advantage of such

a job-to-core assignment lies in its ability to considerably reduce the number of task migrations

7The hyperperiod is the minimum interval of time after which the schedule for the task set repeats itself.

4.8 Semi-partitioned Scheduling and Work-Stealing 55

when compared to a pure global approach. While in a pure global approach jobs may migrate

between cores without any restriction, with these algorithms each core knows exactly which jobs

it must execute after assignment, therefore bounding the number of migrations.

For the sake of completeness, let us describe the algorithm (from [Dorin et al., 2010]) that

computes the execution pattern for each migrating task. The algorithm works as follows:

1. In order to track the current job-to-core assignment, a matrix of integers M[1 . . .n,1 . . .m] is

used where M[i, j] = x means that x jobs of task τi out of ki will execute on core π j (1≤ i≤ n

and 1≤ j ≤ m).

2. The matrix M[i,1] is first initialized to ki, i.e., all jobs of τi are assigned to the first core. Ob-

viously, this assignment is not schedulable, otherwise the migrating task would be assigned

to this core in the task assignment phase.

3. The number ki is decremented by one unit (i.e., M[i,1] := ki− 1) and an execution pattern

for this number of ki jobs is computed by applying Equation 4.2. For each specific execution

pattern, the schedulability of the system is checked and as long as the task is not schedulable,

the value of M[i,1] is decremented. At some point, say when M[i,1] := ki−α[i,1] (with

1 < α[i,1] < ki) and the system becomes schedulable, M[i,1] jobs of task τi are assigned to

this core. An execution pattern which does not jeopardize the schedulability of the core is

found and the algorithm moves on to the next core.

4. The number of jobs just allocated (i.e., M[i,1]) is subtracted from ki and the result is con-

sidered as the new value of ki in Equation 4.2 for the new core, i.e., ki := ki−M[i,1]. Step

3 is executed again in order to find a pattern in the new core considering the new value of

ki. This iterative process is performed for all the cores until all the jobs are assigned to a

core. Otherwise, the algorithm keeps reducing the value of ki in step 3 until a number of

jobs (eventually zero) can be accommodated in the current core.

At the end of these steps, if all the jobs of τi are not allocated, then τi is not schedulable, even

as a migrating task, and thus the system is deemed not schedulable. Otherwise, τi is schedulable

and deemed as a migrating task.

The result in [Dorin et al., 2010] was integrated into our approach.

4.8.3 Online Scheduling Phase

This phase takes advantage of the computing capability of the multicore platform and the execution

pattern of migrating parallel tasks in order to reduce their average response-time at runtime, and

consequently that of other tasks assigned to the intervening cores. This reduction is achieved by

allowing work-stealing to balance workload during the execution of parallel segments and among

cores that share the execution of a migrating task. The cores that share the execution of a migrating

task are referred to as selected cores.

56 Applying Work-stealing to Real-time Systems

Figure 4.4: Illustrative example of the proposed approach. On the left side of the figure it is

possible to observe a schedule under fully partitioned EDF (with deadline miss) and on the right

side a schedule with the proposed approach.

Selected cores load the task’s code from main memory into the core’s local memory (e.g.,

scratchpad memory) at the beginning of system execution. Then, whenever a new job from a task

that is shared between selected cores is released, the core does not have to load its code from main

memory as it is already loaded in the core’s local memory. Shared task copies are used in order to

reduce the number of migrations that may occur whenever tasks are scheduled in more than one

core.

Below we recall the four necessary rules (R1 to R4) for an efficient usage of the work-stealing

algorithm when dealing with migrating tasks:

R1: At least one selected core must be idle when there are p-jobs awaiting for execution in a

another’s selected core deque;

R2: Idle selected cores are allowed to steal p-jobs from the deque of another selected core;

R3: When stealing workload, the idle core must always steal the highest priority p-job from

the list of deques (as proposed in Section 4.5) in order to avoid priority inversion (this

situation occurs when the number of migrating tasks is greater than 1 and tasks have different

priorities);

R4: After selecting a p-job to steal, say from core A to core B, an admission test must be per-

formed on core B to guarantee that its schedulability is not jeopardized by accepting addi-

tional workload.

4.8.4 Example

This section illustrates the proposed approach. We consider the task set τ = {τ1,τ2,τ3,τ4} with

the following parameters (τi = (Ci,Di,Ti)): τ1 = (3,5,6),τ2 = (3,5,8),τ3 = (2,3,4),τ4 = (1,8,8).

We assume that all the tasks have a sequential behaviour except τ1 for which the execution consists

4.9 Tasks with Density Greater Than 1 57

of three segments: (i) a sequential segment of one time unit, then (ii) a parallel segment of two p-

jobs of 0.5 time units each, and finally, (iii) a sequential segment of one time unit. We assume that

tasks in τ are released synchronously and scheduled on the homogeneous platform π = {π1,π2}.

Finally, we assume that an EDF scheduler is running on each core.

During the assignment phase, let us assume that tasks τ3 and τ4 are assigned to π1; and τ2 is

assigned to π2 as they cannot benefit from any parallelism. Then task τ1 can neither be assigned

to π1 nor to π2 without jeopardizing the schedulability of the corresponding core. Figure 4.4 (left

side) illustrates the schedules in which τ1 is tentatively assigned to π1 (there is a deadline miss at

time t = 11), and to π2 (there is a deadline miss at time t = 5).

Now let us apply our proposed methodology to this task set. There is a single parallel task in

the system:

1. Task assignment phase: during this phase, τ3 and τ4 are assigned to π1; and τ2 is assigned

to π2. For the same reasons as in the previous case task τ1 can neither be assigned to π1 nor

to π2, so it is considered as a candidate migrating task.

2. Offline scheduling phase: during this phase, an execution pattern which does not jeopardize

the schedulability of the cores for the migrating task τ1 is found. Task τ1 is then treated

as a multiframe task on each core with ki = 24/6 = 4 frames and execution patterns τ1
1 =

((3,0,0,0),5,6) and τ2
1 = ((0,3,3,3),5,6). The interpretation for each execution pattern is

the following: the first job of τ1 executes in core π1 and the remaining 3 jobs execute in core

π2.

3. Online scheduling phase: during this phase, task τ1 takes advantage of the work-stealing

mechanism in order to reduce its average response-time. Indeed, at time instant t = 3, core

π1 is executing the parallel segment of task τ1 and core π2 is idle with sufficient resources,

so it can steal one p-job from the deque of π1. The same situation occurs again at time

t = 7.5. Figure 4.4 (right side) illustrates the resulting schedule, the system is schedulable.

4.9 Tasks with Density Greater Than 1

This dissertation only covers tasks with density no greater than one (λi ≤ 1). Nevertheless, it is

possible to overcome this limitation by recurring to decomposition-based techniques. This section

provides an example of task decomposition using the technique proposed in [Lakshmanan et al.,

2010].

Decomposition-based techniques ([Lakshmanan et al., 2010; Qamhieh et al., 2014; Saifullah

et al., 2011]) traditionally convert tasks with density greater than one into a set of constrained-

deadline sequential sub-tasks, each of which has a density no greater than one. These approaches

try to avoid parallel structures by serializing parallel tasks as much as possible so that they can

take advantage of schedulability techniques developed for sequential tasks.

58 Applying Work-stealing to Real-time Systems

In [Lakshmanan et al., 2010], the authors propose the so-called task stretch transform, an

algorithm that uses the available task’s slack8 to proportionally stretch (i.e., serialize) parallel sub-

tasks or parts of them in what is called a master string.

The master string is assigned to a core and has an execution time length equal to Di = Ti. The

remaining parallel sub-tasks that cannot be included in the master string are assigned intermediate

releases and deadlines so that they become constrained-deadline tasks.

Figure 4.5: Task decomposition with one task

Figure 4.5 illustrates an example of task decomposition. In the example, the task consists of

two sequential sub-tasks and three parallel sub-tasks, Ci = 11, Di = 10, and therefore λi = 1.1.

In order to stretch the task, we compute its slack, assuming an infinite number of cores and no

interference from other tasks. In the example, the slack equals Di−Pi = 10−5 = 5 time units.

The next step of the algorithm is to proportionally assign the slack to parallel sub-tasks so that

they execute sequentially in the master string. Sub-tasks that cannot be completely assigned to the

master string either have to be fully parallelised or partly executed in two cores. In the example,

two of the sub-tasks execute sequentially in core π1 in the master string (represented in the figure

with the dashed red line) and the remaining sub-task executes partly in core π2 for one time unit

and partly in core π1 for two time units.

Partial execution of parallel sub-tasks requires the computation of intermediate release offsets

and deadlines in order to guarantee execution consistency. For instance, in the example, the sub-

task that executes partially in π2 must complete before it migrates to π1. Thus, its intermediate

deadline is 6 time units after release.

Task stretch transform and similar decomposition-based approaches show that parallel tasks

can be scheduled as constrained deadline sub-tasks. This knowledge can be used in the research

work proposed in this chapter to support tasks with density greater than one. Thus, by treating a

parallel task as a set of constrained-deadline sub-tasks, each of the constrained-deadline sub-tasks

can be used as input to an allocation heuristic and consequently, after assigning all the tasks in the

set, the schedulability of the task set can be verified.

Figure 4.6 illustrates an example where the above task, let us name it τ0, is integrated into a

task set of four tasks: τ1, τ2, τ3 and τ4, all with implicit deadlines. Task τ4 is parallel and the

remaining tasks are sequential.

8Slack is the maximum amount of time that the remaining computation time of a job can be delayed at a time instant

t (with ai, j ≤ t ≤ di, j, where ai, j is the release instant of job j and di, j its deadline) in order to complete within its

deadline.

4.10 Schedulability Analysis 59

Figure 4.6: Result of applying the proposed approach to a task set that contains a task with density

greater than 1

Applying the decomposition-based approach presented above to task τ0, the result obtained

is that task τ0 has a “stretched” task and a parallel sub-task. The stretched task is exclusively

assigned to a core and the parallel sub-task can execute in any core. In this example we opted for

allocating the parallel sub-task in core π2

Then, applying the approach proposed in this chapter, starting by light sequential tasks, fol-

lowed by heavy sequential tasks, the resulting assignment for sequential tasks is the following: τ2

and τ1 in core π2 and τ3 is assigned into π3. Next, the heuristic tries to allocate parallel tasks.

As there is only a single parallel task, there is no need for separating tasks into different

classes, and the heuristic selects task τ4 for allocation. However, τ4 does not fit in any of the

cores and is deemed as a migrating task. Nevertheless, a pattern exists such that the task set

is deemed schedulable. Hence, τ4 is assigned to π2 with the pattern (0,1,0,1) and π3 with the

pattern (1,0,1,0). The task set is schedulable.

4.10 Schedulability Analysis

This section derives the schedulability analysis of a set of constrained-deadline fork-join tasks

executing on a homogeneous multicore platform. A modification of the semi-partitioned model is

adopted (see Section 4.8) where each core runs an EDF scheduler while allowing work-stealing

among the “selected cores”, i.e., cores that share a copy of a migrating task. A schedulability

analysis is performed in each phase of the proposed approach and works as follows:

1. Task assignment phase: As each processor runs its own instance of EDF, during this phase

the schedulability of the system is performed by applying the traditional demand bound

function (DBF)-based analysis [Baruah et al., 1990] to non-migrating tasks (as shown in

Section 4.7).

2. Offline scheduling phase: In this phase, a modified DBF-based schedulability test needs to

be used so that the additional workload added to each core, due to the assignment of mi-

grating tasks to cores, is considered in the analysis. In particular, the schedulability analysis

needs to consider the execution pattern of each migrating task. Thus, due to the applica-

tion of the execution pattern assignment algorithms proposed by Dorin et al. [Dorin et al.,

60 Applying Work-stealing to Real-time Systems

Figure 4.7: Analysis proposed by Dorin et al. in [Dorin et al., 2010].

2010], in our approach we also opted to use their proposed schedulability analysis in this

phase.

The analysis proposed in [Dorin et al., 2010] works as follows. First, one needs to compute

the number of intervals of length (ki ·Ti) occurring in any interval of length t ≥ 0, given by

ϕ
def
= ⌊ t

ki·Ti
⌋.

Second, the interval [0, t) can be divided into two parts: [0, t) = [0,ϕ · ki ·Ti)∪ [ϕ · ki ·Ti, t),

as depicted in Figure 4.7. In the figure, ki ·Ti = KT . Consequently, the number of frames

that contribute to the additional workload on core π j consists of two terms: (i) The number

of non-zero frames in the interval [0,ϕ · ki ·Ti], denoted as ϕ · ℓ j
i (where ℓ j

i is the number of

frames out of ki that were successfully assigned to π j); and (ii) an upper-bound that considers

the execution pattern of the migrating task on the core. That is, one that considers the

number of non-zero frames in the interval [ϕ ·ki ·Ti, t), denoted as nbi(t)= ⌊
(t mod(ki·Ti))−Di

Ti
⌋+

1. The workload for the first term is given by ϕ · ℓ j
i ·Ci, while for the second term, the

corresponding workload is given by w
j
i = max

ki−1
c=0 (∑

c+nbi(t)−1
η=c Ci,η modki

).

It follows that an upper-bound on the total workload associated to task τi on core π j is

computed as DBF j(τi, t)
def
= ϕi ·ℓ

j
i ·Ci+w

j
i . Consequently, DBF(τ

π j

M , t)
def
= ∑

τi∈τ
π j
M

DBF j(τi, t).

Finally, the schedulability at the end of this phase is guaranteed if:

load(π j)
def
= sup

t≥0

{
DBF(τ

π j

NM, t)+DBF(τ
π j

M , t)

t

}
≤ 1, ∀π j ∈ π (4.3)

In Equation 4.3, DBF(τ
π j

NM, t) represents the demand for the non-migrating tasks assigned

to core π j in the task assignment phase.

3. Online scheduling phase: In this phase the schedulability analysis obtained in phase 2

is extended to consider the potential extra workload related to work-stealing. Figure 4.8

illustrates an example of the schedule of a job of a task, say τi, on a core, say π j, after the

offline scheduling phase. In this figure, we can see a fork-join task with its fork points (φ1

and φ2), synchronization points (µ1 and µ2), and its slack time. In this phase we exploit

4.10 Schedulability Analysis 61

Figure 4.8: Result after the offline analysis. This figure depicts a fork-join task with its fork points

(φ1 and φ2), synchronization points (µ1 and µ2), and its slack time.

the stealing windows (ω1 and ω2 in the example) and the available slack of each job to

accommodate the stolen workload.

A work-stealing operation is feasible from one core, say core A, to another core, say core B,

if core B can execute the stolen workload (i.e., a p-job stolen from the deque of core A)

before the end of each stealing window (µ1 and µ2 in the example). Such time instants are

denoted as the intermediate deadlines for the stolen p-job.

To compute the intermediate deadline for each stealing window, one can take advantage of

the slack available for each job. Thus, the intermediate deadline of the kth stealing window

can be computed as:

dk
ω

def
= φk +mi,k ·Ci,k + slack(φk) (4.4)

In this equation, φk denotes the time instant at which the kth parallel segment spawns the p-

jobs, mi,k denotes the number of p-jobs spawned in segment σi,k, Ci,k denotes the worst-case

execution time among the tasks in segment σi,k, and slack(φk) represents the slack of the

job at time φk.

Figure 4.9 illustrates the computation of the intermediate deadlines for the stealing windows

using this equation. In this figure, core π2 can steal p-jobs from core π1 in stealing windows

ω1 and ω2. The intermediate deadline for the p-jobs that may be stolen in ω1 is computed

and the result is d1
ω , as depicted in the topmost part of the figure. As the p-job execution

takes less time to execute than the intermediate deadline, the stealing operation is successful.

Similarly, the intermediate deadline for the p-jobs in ω2 is computed and the result is d2
ω ,

as depicted in the bottommost part of the figure. For the same reasons as the ω1 case, the

stealing operation is also successful in ω2.

Before a core, let us denote it as core B, can steal a p-job from another core, let us denote it

as core A, an admission control test has to be performed on core B. Two possible scenarios

can occur when stealing a p-job released in the kth parallel segment of a task:

• no release occurs in core B between φk and dk
ω : In this case core B can safely steal a

p-job from core A provided that the execution of the stolen p-job meets its intermediate

deadline (Case 1 in Figure 4.10);

62 Applying Work-stealing to Real-time Systems

Figure 4.9: Example of work-stealing and intermediate deadline computation. This figure illus-

trates the computation of the intermediate deadlines in the stealing windows ω1 and ω2.

• at least a release occurs in core B between φk and dk
ω . In this case, we can distinguish

two sub-cases. (2.1) some releases have their deadline before dk
ω : in this sub-case, we

should update the idle time interval in the stealing window by subtracting the interfer-

ence related to the corresponding new job releases from the size of the stealing window

(Case 2.1 in Figure 4.10. In the figure task τi and τ j have releases and deadlines within

ωk); (2.2) some releases have their deadline after dk
ω : in this case, no guarantees can be

provided on the schedulability of the system as the stolen job may modify the schedul-

ing decisions initially taken on core B, due to having an earlier deadline than the other

tasks released in the core. Therefore no stealing occurs (Case 2.2 in Figure 4.10. In

the figure task τk has a release in ωk but deadline outside of the window).

Figure 4.10: Possible cases for the admission control test

4.11 Simulation Results 63

4.11 Simulation Results

This section presents the results of simulating our approach on a set of synthetic and randomly

generated task sets. The simulation environment is described next.

We consider a platform consisting of two or four homogeneous cores. Tasks are generated

until the total utilization of the task set does not exceed the total platform capacity (i.e., Uτ ≤ m).

While each generated task can be sequential or parallel, the number of each type of tasks generated

is not controlled beforehand.

Considering each generated task τi ∈ τ , the number of segments si is selected from the se-

quence si ∈ [1,3,5,7]. When si = 1 the task is sequential, otherwise it is parallel. In case of a

parallel task, the total number of p-jobs is randomly selected in the interval npjob ∈ [si,10]. Then,

p-jobs are randomly assigned to the segments by taking into account the fork-join task structure,

i.e., sequential segments are assigned one p-job and parallel segments are assigned more than one

p-job.

The worst-case execution time of the kth p-job in each segment j (i.e., Ci, j,k) varies in the range

[1,max_Ci_pjob] where max_Ci_pjob = 2. 9

The worst-case execution time of each task is given by Ci = ∑
si

j=1Ci, j, where Ci, j = ∑
mi, j
k=1Ci, j,k.

10

The remaining parameters, period Ti and utilization Ui, can be derived as follows. The period

Ti is uniformly generated in the interval [Ci,npjob ∗max_Ci_pjob∗2]. This interval allows one

to have a task utilization (recall that Ui =
Ci

Ti
) that falls in the interval [0.50,1] if all nodes are

assigned max_Ci_pjob, or [0.25,1] if all nodes are assigned the minimum value for Ci, j,k.11 In our

experiments Di = Ti.

This task generation procedure is used to generate 1000 task sets with migrating tasks for two

and four cores. To generate execution patterns for the migrating tasks we use Equation 4.2 first.

If no pattern is found using the equation we follow an enumeration approach in order to find a

feasible pattern, if such pattern exists.

4.11.1 Selected Heuristics

In order to evaluate the performance of FFDO, we have conducted benchmarks against other well-

known bin-packing heuristics, namely the standard first-fit decreasing (FFD), best-fit decreasing

(BFD), and worst-fit decreasing (WFD). All of these heuristics, with the exception of FFDO, group

the tasks into sequential and parallel tasks, and subsequently sort each group in decreasing order

9As we are measuring the improvement in terms of the average response-time of each task by generating real

schedules, it is our interest in keeping Ci, j,k small in order to make the measurements faster. Moreover, this design

decision replicates fine-grained parallelism and we believe that it does not compromise the goal and results of the

experiments.
10By considering the worst-case execution time for each p-job in the experiments, we are evaluating the benefits of

using work-stealing in the worst possible scenario.
11As we evaluate the behaviour of each task set in the interval [0,H], where H denotes the least common multiple of

the periods of all the tasks in the set, and as Ti in our generation depends on Ci, the higher the Ci, the higher the Ti and

consequently, the higher the hyperperiod of the task set. By limiting the time assigned to each p-job in Ci, j,k we are also

limiting the amount of time we need to generate the schedule.

64 Applying Work-stealing to Real-time Systems

Figure 4.11: Percentage of unallocated tasks

of task utilization. Therefore, aside from the allocation property of each heuristic, again with the

exception of FFDO, no special care is taken in further creating the sets of heavy and light tasks.

FFD assigns the next unassigned task into the first core from the set of cores with sufficient

idle time to accommodate it; BFD assigns the next unassigned task into the core which leaves the

least idle time available after the task is assigned to it; and WFD assigns the next unassigned task

into the core which leaves the most idle time available after the task is assigned to it.

The metric selected to compare all the above-mentioned heuristics was the percentage of un-

allocated tasks. In particular, for a large number of task sets the percentage of unallocated tasks

for each heuristic was measured in order to observe which heuristic(s) has(ve) a potential higher

number of candidate migrating tasks. 12 To this end, one million task sets were generated for this

experiment.

Figure 4.11 depicts the results. It is clear that FFDO and WFD are the heuristics that present a

higher number of unallocated tasks, while BFD and FFD allocate nearly the same amount of tasks

and, at the same time, present a lower value of unallocated tasks when compared to FFDO and

WFD. Due to this result, we selected both FFDO and WFD for a direct comparison in terms of the

number of schedulable task sets.

4.11.2 FFDO versus WFD

Two experiments were carried out in order to compare FFDO against WFD, with two distinct goals

in mind. The goal of the first experiment was to observe which heuristic schedules more task sets

12Recall that the higher the number of candidate migrating tasks, the higher the chance of taking advantage of the

proposed approach in the second phase, when some of the candidate tasks can be re-allocated as migrating tasks.

4.11 Simulation Results 65

when the same input of randomly generated task sets is taken into account. As for the second

experiment, its goal was to measure the gain obtained for each schedulable task set, in terms of

the average response-time, when work-stealing is used.

4.11.2.1 First Experiment

For the first experiment a procedure was developed to randomly generate a number of task sets in

order to obtain 100 FFDO-schedulable task sets. Then, considering all the generated task sets, the

number of WFD-schedulable task sets was measured in order to establish a comparison between

both heuristics. The results are depicted in Figure 4.12.

Figure 4.12: Comparison between FFDO and WFD. This figure presents how the data is catego-

rized for WFD when a fixed number of task sets is used as input. For the same number of input

task sets used to obtain 100 schedulable task sets for FFDO, we have obtained 257 for WFD.

The WFD-schedulable task sets can be divided into 4 groups (going from right to left on the

figure): (1) the group that contains the sets that are schedulable by both heuristics, which account

for 26.85%; (2) the group that contains the sets that are not schedulable by FFDO due to ki
13. This

group contains 24.51% of the sets; (3) the group that contains all the sets that are not schedulable

by FFDO with a ki value in the range of valid values, i.e., with at least one migrating task. These

represent 43.19% of the sets; and finally, (4) the group of task sets that are deemed not schedulable

by FFDO after the allocation phase (i.e., the 1st phase of the heuristic), which account for 5.45%

of the sets.

Overall, in a two-core setting, the total number of task sets that are schedulable by using WFD

is 257, which represents an increase of 157% over FFDO for the same input. From the diagram,

the majority of the task sets that are schedulable by using WFD fit in a potential feasible region

13Task sets that have a number of frames over 10 are rejected as the complexity of computing the migrating patterns

increases for large ki, which leads to higher computation times.

66 Applying Work-stealing to Real-time Systems

for FFDO heuristic (43.19%) — here, all task sets have migrating tasks and ki values that fit in the

range of valid values but no feasible pattern is found. These results still hold for four cores but to

a less extent as only 17.9% more task sets were schedulable by using WFD over FFDO.

We conjecture that WFD behaves better than FFDO for smaller number of cores because of

the task-to-core assignment. Depending on the granularity of the utilization of the task sets, more

empty space may be available globally in the cores when performing the task allocation for a small

number of cores. These idle slots make it possible for the pattern-finding procedure to find enough

room to fit a job of a task when computing the execution pattern for a migrating task. However, as

the number of cores increases, WFD naturally balances the workload through the cores, whereas

FFDO assigns the workload in the initial cores leaving more room in later cores. For this reason,

we envision that WFD will have the tendency to behave either equally to or even worse than FFDO

with the increase in the number of cores.

4.11.2.2 Second Experiment

In the second experiment, the gain obtained in terms of the average response-time for each schedu-

lable task set was measured for the selected heuristics, namely FFDO and WFD. Specifically, for

each task set, the complete schedule is generated considering the two following approaches:

• an approach that schedules migrating tasks without applying the work-stealing mechanism

among the selected cores, denoted as Approach-NS;

• an approach that applies the work-stealing mechanism among the selected cores, denoted as

Approach-S.

After generating both schedules for each task set, we computed the average response-time of

the jobs of each task throughout the hyperperiod by adding the response time of each individual

job and dividing the obtained result by the total number of jobs in one hyperperiod. This process

is applied to both approaches.

The improvement, i.e., the gain of Approach-S over Approach-NS is computed by applying

the following formula for each task τi:

AVτi
=

AV NS
τi
−AV S

τi

AV NS
τi

·100 (4.5)

, where AV NS
τi

denotes the average response-time for task τi in Approach-NS and AV S
τi

denotes its

average response-time in Approach-S. The average gain for each task in the task set is computed

as follows:

AVτ =
1

|τ|
· ∑

τi∈τ

AVτi
(4.6)

Figure 4.13 illustrates the average gain for two and four cores.

The improvement in terms of average response-time per task (in %) is grouped by utilization

— see Figure 4.13 — when using Approach-S over Approach-NS. For all figures, the distribution

4.11 Simulation Results 67

Figure 4.13: Simulation results for FFDO and WFD. This figure presents the improvement in

terms of the average response-time when using an approach with work-stealing and an approach

without work-stealing. On the top, one can see the results for two cores and on the bottom one can

see the results for four cores. On the left side, the results show the improvement for FFDO and on

the right the improvement for WFD.

68 Applying Work-stealing to Real-time Systems

of data is depicted in the form of box plot. In the plot, for each utilization value, it is possible to

see the minimum and maximum values of gain per task, the median and the mean (in the form

of a diamond shape), the first and third quartiles and finally the outliers in the shape of a cross.

The line in red depicts a linear regression on the data (the mean value was used to compute the

regression) in order to depict the pattern of prediction of the gain per task.

Considering two cores: for task sets with high utilization (over 1.55), there is a clear illustra-

tion of the gain obtained by using work-stealing. In the best case, the gain reaches nearly 15% for

FFDO and nearly 12% of the average response-time per task for WFD. As the utilization of the

task sets increases the gain per task decreases. This is expected due to the reduction of idle time

available for stealing. The trend shows that above 1.95 of utilization, the work-stealing mecha-

nism becomes of little interest. This is explained by the fact that the total workload on each core

is very high, thus leaving very small room for improvement. It is important to note that task sets

with utilizations below 1.55 using FFDO and 1.45 using WFD are not included in the plot as they

do not contain any migrating task.

Considering four cores: the trend is similar to the one depicted for two cores. This trend is

also shown by the linear regression line where it is possible to predict the average gain per task

as a function of the utilization of the task set. The regression shows that for lower utilizations in

two cores the expected improvement starts at 2.3% for FFDO and 3.3% for WFD. For four cores

it starts at 1.4% for both heuristics. We can also observe that the expected improvement decreases

with the increase in the tasks’ utilization. This behaviour suggests that work-stealing is useful for

task sets with migrating tasks with an utilization that span from the lowest possible utilization for

task sets with migrating tasks up to the platform capacity. Closer to this upper limit, the benefits of

using work-stealing are limited. From the observed behaviour in two and four cores, we conjecture

that the proposed approach will behave similarly when the number of cores increases.

Results in Figure 4.13 also show that, when the set of schedulable task sets is considered,

the improvement obtained by using work-stealing is similar in both heuristics. We believe that

this behaviour is obtained due to the characteristics of the generated jobs, in particular, the fine-

grained parallelism of the generated p-jobs. However, achieving a decrease in the response-time

of the tasks is dependent on several factors, as for instance: the degree of parallelism in a parallel

segment; or the WCET of p-jobs in a parallel segment; or the fact that there must be an idle core

available and a migrating parallel task executing at the same time instant that a core that shares it

is idle. We expect that if larger WCET are used for the p-jobs, the improvement in the response-

time will be larger but, at the same time, the number of task sets benefiting from work-stealing

decreases because of the job’s deadlines and difficulty in keeping the deadlines in the thief core

when stealing occurs.

4.11.3 Overheads of the Approach

Based on the results presented in the previous section, one can observe that it is possible to de-

crease the average response-time of tasks and use the newly created free time slots to execute

less critical tasks (e.g., aperiodic or best-effort tasks). While such a decrease presents overhead

4.12 Summary 69

costs, such as the number and cost of migrations, or even the impact of online admission control,

these costs were not explicitly measured as they are difficult to model in a simulation environment.

Nevertheless, an overview of the existing costs and their possible impact on system performance

is provided next.

We assume that cores that share a migrating task have a local copy of it in order to prevent

fetching the tasks’ code from main memory. Thus, instead of fetching data and code, by using

task copies, a core fetches data from another core’s memory in order to help in the execution of

the migrating task. While this is not a task migration per se, it has some commonalities as data

needs to be moved from one core to another.

As in this work the overhead of fetching data from another core only occurs when stealing

occurs, and stealing is performed by an idle core, part of the cost is supported by the idle core

(which is negligible due to the idleness of the core). Considering the number of data transfers, it

can be bounded as in the worst-case the number of data fetches depends on the number of p-jobs

in each segment and the number of cores that share the task.

Another aspect that needs to be considered is that keeping task copies is platform dependent

and in some platforms it might not be possible to save local copies due to memory constraints.

Moreover, depending on where in memory the copy is stored (for instance, scratchpad, cache,

etc.), the transfer may be subject to or cause interference in the execution of other tasks in the

system (for instance due to the existence of shared resources)14. Interference was not considered

in the work presented in this chapter.

Considering the online admission control, our test requires the current time instant and the

available slack at that specific time instant. Both of these variables can be easily computed in any

given platform either by using the platform timing functions and a cumulative function that com-

putes the slack for the current job. Therefore, we consider that this does not pose any significant

overhead in the proposed approach.

4.12 Summary

All the works mentioned in Section 4.4 show that using a global centralized approach for schedul-

ing parallel tasks is not beneficial due to the amount of synchronization that must be performed

in order to maintain a consistent state in the system. Consequently, a fully decentralized schedul-

ing approach or a combination of both (centralized and decentralized) should be used in order to

make the system scalable. Moreover, all of them agree that work-stealing should be modified in

real-time systems.

This chapter addressed the application of work-stealing into real-time systems. As it was

shown in Section 4.3, the non-deterministic behaviour of work-stealing, that includes random

steals and the possibility of priority inversion, makes it difficult to be applied in the real-time sys-

tems domain without jeopardizing the schedulability of the system. Thus, in order to circumvent

14This problem is discussed in Chapter 2 and Chapter 5 of this dissertation.

70 Applying Work-stealing to Real-time Systems

this non-deterministic behaviour, a new data structure and a set of rules are proposed (in Sec-

tion 4.5). In addition, this real-time variant is integrated in a semi-partitioned approach along with

the multiframe task model.

The proposed approach has two distinct stages - an offline and an online stage. The offline

stage has the objective of allocating all the tasks into the cores using a partitioned approach in

combination with a global approach that uses the multiframe task model. The added benefit of

using the multiframe task model lies in the reduction of the number of task migrations when

compared to a full global approach. The online phase uses work stealing as a way to improve

system responsiveness by applying load balancing to parallel tasks.

Results show that with this technique it is possible to reduce the average response-time of

tasks and create additional room in the schedule for less-critical tasks (e.g., aperiodic and best-

effort tasks). In particular, the proposed approach allows one to achieve an average gain on the

response-times of the parallel tasks between 0 and nearly 15% per task.

For future work, we would like to continue pursuing the exploration of this idea of work-

stealing in real-time settings as it appears to be very promising. In particular, considering a pure

global setting, which is where work-stealing may perform as a natural load-balancing scheduling

approach. Other possibilities involve using parallel task models with nested parallelism.

In the subsequent chapter, we continue to explore the parallelism provided by current multicore

systems, however in a more specific setting. Thus, the notion of interference is considered and a

new task model is introduced - the 3-phase task model.

Chapter 5

Schedulability of the 3-Phase Task

Model

5.1 Introduction

The 3-phase task model is a good candidate model to circumvent the uncontrolled sources of in-

terference existing in current Commercial Off-the-shelf (COTS) platforms by isolating concurrent

memory accesses. In this model a task is divided in three successive phases: in the first phase,

the task loads its instructions and data into a core’s local memory, then, in the second phase, it

executes non-preemptively using those pre-loaded instructions and data, and finally, in the third

phase, the modified data are pushed back to main memory. Following this execution model, tasks

never access the bus during their execution phase. Instead, all the bus accesses are performed

during the first and third phases.

This model provides two interesting properties from a predictability viewpoint. First, as at

most one task can perform memory accesses at a time, memory contention related issues (such as

uncontrolled interference) are avoided. Second, by decoupling memory phases from the execution

phase it is possible to exploit platform parallelism. The model allows for execution phases of

different tasks to execute in parallel with any other phases of co-running tasks. Thus, system pre-

dictability is improved by having memory phases and execution phases of different tasks executing

in parallel while avoiding, at the same time, memory contention issues when tasks access main

memory. Both of these properties make the model suitable for real-time and embedded multicore

systems.

This chapter is divided in two parts. The first part (in Section 5.4) presents an empirical study

that compares the performance of different priority assignment policies considering the 3-phase

task model against an implementation of global Earliest Deadline First (EDF) scheduling policy

that considers inter-task interference.

The second part (in Section 5.5) presents a schedulability test for the 3-phase task model. The

proposed schedulability test improves current state of the art’s test by looking at the schedulability

71

72 Schedulability of the 3-Phase Task Model

problem of the 3-phase task model from a different perspective. That is, instead of analysing the

system following the standard’s core’s perspective, a bus perspective is used instead.

5.2 System Model

We consider a system composed of m identical cores where each core accesses the system’s main

memory using a shared bus. From a core’s perspective the shared bus is a shared resource. Con-

sequently, the bus is a source of interference whenever concurrent accesses are made by different

cores to fetch data from main memory into the core’s local memory.

We assume that Input/Output (I/O) data transfers from or to the main memory are performed

using a Direct Memory Access (DMA) controller. We also assume that the local memory of each

core is large enough to save any task’s code and data. If this is not the case, the task should be

divided in smaller entities, each entirely fitting in the core’s local memories. At any time, at most

one task can be saved in each local memory.

Task Model: We consider a system composed of n independent real-time tasks τ = {τ1,τ2,

. . . ,τn}. Each task comprises three distinct phases, namely, the acquisition (A), execution (E) and

restitution (R) phases. Phases have a precedence constraint in the sense that a job must first execute

its A-phase, then its E-phase and finally, its R-phase. Each phase executes non-preemptively.

We let Ai, Ei and Ri denote the maximum execution time of the A, E and R-phase of task

τi, respectively. The worst-case execution time (WCET) in isolation of τi (without suffering any

interference) is given by the sum of the execution times of each phase, i.e., Ci = Ai +Ei +Ri.

Each task is characterized further by a period Ti and a constrained-deadline Di ≤ Ti. That is, the

A-phases of every two successive jobs of τi are released at least Ti time units apart, and the R-phase

of a job of τi must complete at most Di time units after the release of the A-phase of that same job.

Therefore, for a task to be schedulable, its WCET should be no greater than its relative deadline,

i.e., Ci ≤ Di.

As defined in Chapter 2, the utilization of task τi is given by Ui
def
= Ci

Ti
while the total utilization

of the task set τ is given by Uτ
def
= ∑

n
i=1Ui. Moreover, the memory utilization by a task τi is given

by Mi
def
= Ai+Ri

Ti
. To ensure the feasibility of the system, the core’s utilization should not exceed

100% and consequently, the total system utilization should be no greater than the number of cores

in the system, i.e., Uτ ≤ m. Similarly, the system bus utilization should not exceed 100%, i.e.,

∑
n
i=1 Mi ≤ 1.

Shared Resource Model: The shared resource covered in this chapter is the system bus.

Specifically, whenever a task executes a memory phase (either A or R), one of the cores locks the

bus and initiates a DMA request to fetch/store data from/into main memory. The core releases the

bus at the end of the memory phase. Therefore, memory phases are non-preemptive and at most

one task executes a memory phase at any time instant.

5.3 Runtime Execution Model 73

5.3 Runtime Execution Model

A and R-phases are memory phases during which each application transfers data between main

memory and the core’s local memory (e.g., scratchpad, L1 cache). When an A-phase starts, the

code and data needed for the task’s execution are fetched from main memory into the core’s local

memory. After completing execution, the R-phase pushes back to the main memory the data

modified by the task that were saved in the core’s local memory. To avoid interference, memory

phases require exclusive access to the system bus. A task will therefore lock the access to the bus

whenever it executes a memory phase.

According to this execution model, a task does not require any access to the bus during its

E-phase and hence does not suffer unpredictable interference due to tasks executed on other cores.

In addition, any E-phase can execute in parallel with any other phases of other tasks executing in

the system without interfering with their execution.

5.4 3-Phase vs. G-EDF in COTS Systems

The priority assignment problem is one in which the relative priority ordering of a set of tasks

needs to be determined. In fixed task priority systems, heuristic approaches for task priority as-

signment can be used to try to obtain a feasible solution for the scheduling problem in a reason-

able amount of time without having to test all possible n! priority orderings. Recall that multicore

scheduling is proven to be a NP-hard problem [Garey and Johnson, 1990]. That is, without testing

all the possible combinations of task orderings, there is no means of knowing which ordering leads

to a schedule where all tasks are schedulable and the length of the schedule is minimized.

A possibility for testing the schedulability of a system of periodic tasks following a given

priority ordering is to generate the actual schedule over the hyperperiod interval of the task set

(as defined in the previous chapter, the hyperperiod is the minimum interval of time after which

the schedule for the task set repeats itself) and validate if some deadline miss occurs at any time

instant within this interval [Cucu and Goossens, 2006], [Cucu and Goossens, 2007]. Using this

method, we empirically explore the 3-phase task model by comparing different priority assignment

policies (all of them for the 3-phase task model) against a version of global EDF that takes inter-

task interference into account. Specifically, the goals of this empirical study are: (1) simulate the

behaviour of all approaches in a COTS multicore system under global scheduling; (2) observe if

any of the proposed priority assignment policies performs better than any other; (3) compare the

interference-prone global EDF version against the other proposed policies.

5.4.1 Priority Assignment Policies

The proposed assignment policies are the following:

74 Schedulability of the 3-Phase Task Model

• Priority: The priority of each task in the task set is given by the task period T in non-

decreasing order. That is, tasks with smaller periods have higher priority, similarly to the

behaviour of the Rate Monotonic algorithm [Liu and Layland, 1973].

• Minimum Acquisition: The priority of each task is given by the length of its A-phase. The

scheduler selects for execution the job of the task that has the smallest Acquisition value

among the ready jobs (i.e., jobs that are waiting to access a processor and/or the bus).

• Maximum Acquisition: The priority of each task is given by the length of its A-phase. The

scheduler selects for execution the job of the task with the largest Acquisition value among

the ready jobs.

• Minimum Restitution: The priority of each task is given by the length of its R-phase. The

scheduler selects for execution the job of the task with the smallest Restitution value among

the ready jobs.

• Maximum Restitution: The priority of each task is given by the length of its R-phase. The

scheduler selects for execution the job of the task with the largest Restitution value among

the ready jobs.

In order to understand how the above-mentioned policies compare to an approach that is

interference-prone, we propose to compare them against a modified global EDF version that con-

siders inter-task interference due to shared resources. Thus, the standard global EDF version is

adapted to accommodate inter-task interference so that we can infer how a global scheduling ap-

proach that considers interference behaves when executing in a COTS system.

Standard global EDF algorithm gives priority to the m jobs that have the earliest absolute

deadline among all the jobs in the ready queue (a ready queue is a queue of ready jobs). In

addition, due to its global behaviour, inter-processor migration is allowed and therefore, any job

is allowed to execute in any core of the system, subject to the restriction that it may execute on at

most one processor at any given time instant.

The modified global EDF version proposed in this dissertation includes two important modifi-

cations that model task execution in current multicore COTS platforms. In these platforms, tasks

execute without temporal and spatial isolation and therefore, suffer interference whenever concur-

rent accesses are made to shared resources. The two proposed modifications are the following.

First, each 3-phase task in the set is converted into a traditional task. A traditional task is a

task in which all the 3-phases are merged into a single phase and consequently, memory opera-

tions are not decoupled from task execution. In the merging process, the WCET of the 3-phase

task is reduced by a certain amount1. The motivation for a reduction in the WCET relies on the

assumption that 3-phase tasks are obtained from traditional tasks. During this transformation pro-

cess, traditional tasks need to be modified in order to accommodate the code necessary for the

1In our experiments, the reduction factor is an input parameter that the user can modify to increase or decrease the

traditional task’s execution time.

5.4 3-Phase vs. G-EDF in COTS Systems 75

decoupling of memory operations from execution (decoupling the phases allows us to achieve an

interference-free deployment). Intuitively, by transforming a traditional task into a 3-phase task

there is an increase in the WCET of each 3-phase task due to the extra code needed for phase

decoupling. Therefore, for fairness in comparison of both task models (the 3-phase task model

and traditional task model) we apply a reduction to the WCET when converting a 3-phase task

into a traditional task.

Second, task execution is artificially slowed down by a factor whenever traditional tasks ex-

ecute in parallel with each other, under the assumption that when a task executes according to

modified global EDF it executes without temporal and spatial isolation.

5.4.2 Simulator’s Scheduling Behaviour

In order to reason about the behaviour of 3-phase tasks, we developed a simulation tool that gen-

erates offline schedules for each of the priority assignment policies presented above and the modi-

fied version of global EDF. The goal is to compare the modified version of global EDF against the

assignment policies. The tool considers the system and runtime models described in sections Sec-

tion 5.2 and Section 5.3.

The runtime behaviour of the simulator is described next. The scheduler considers the fol-

lowing rules in the assignment: (1) memory phases can only be assigned to a core if no other

core is executing a memory phase (either A or R phases); (2) E-phases never wait to execute once

they become ready, therefore they start executing as soon as the preceding A-phase completes its

execution.

For any given priority assignment policy (except modified global EDF), the next memory

phase to execute is selected from a priority ordered queue containing ready memory phases. From

this queue, the scheduler selects the highest priority phase and assigns it to an idle core, if allowed.

If the selected phase cannot be assigned to a core, two outcomes are possible. First, if a memory

phase is being executed already, the scheduler needs to wait until the next memory phase can

be assigned. Second, if all cores are busy executing phases from other jobs than the one being

assigned, the scheduler assigns the next higher priority R-phase from one of the currently executing

jobs, once the R-phase becomes ready.

Once a job is assigned to a core it remains executing exclusively on that core until all the job’s

phases complete their execution. That is, no other job can be assigned to a core that already started

executing another job. The intuition for this behaviour is that memory phases isolate memory

accesses so that tasks can execute without suffering interference. Having tasks moving around

from core to core would improve system utilization but at the same time would break the principle

of isolation, causing interference and additional overheads due to the task migration occurring

between cores. The same reasoning applies if preemptions were allowed after a task started its

execution.

Our modified global EDF version considers traditional tasks (as described above) and therefore

no distinct phases exist within a task. At any given time instant, the m higher priority tasks are

the ones executing in the system. As it typically occurs in global EDF, preemptions are allowed

76 Schedulability of the 3-Phase Task Model

due to the arrival of a higher priority jobs in the system. In our simulator we do not consider any

overhead related to such preemptions. Higher priority tasks may interfere with lower priority tasks

but a lower priority task may never block a higher priority task.

5.4.3 Experimental Settings

The task generation in the simulator works as follows. A base task set containing n tasks is

generated and its schedulability tested. Then, if the task set with n tasks is schedulable, a new task

is added to the base task set so that a new task set is obtained with n+1 tasks. The schedulability

of this new task set is tested and the procedure continues by adding a new task to the set. This

iterative procedure stops when the new task set is deemed unschedulable by all the scheduling

policies under test.

The parameters used in the generation of 3-phase tasks are described next. Each phase has an

initial execution time value randomly generated in the interval [1,3]. This value is multiplied by a

factor selected from the interval [1,3] in order to test different configurations of phase lengths.

The WCET for each 3-phase task is given by the sum of the individual phases’ execution times,

as presented in Section 5.2. The period of each task is obtained by randomly generating a factor

value in the range [2,4] which is multiplied by the WCET of the task. For each task, the deadline

equals the task period.

For global EDF tasks (also denoted as traditional tasks), the simulator converts each generated

3-phase task into a traditional task in which the respective 3-phase task’s WCET is reduced by a

certain amount defined as an input parameter. In our simulations we have chosen to reduce the

WCET of a 3-phase task by 25%. As explained in Section 5.4, this reduction intends to mimic the

increase in task execution time when a traditional task is converted to a 3-phase task due to the

addition of code needed to enforce phase decoupling.

Another important aspect that we consider in the simulator, when dealing with global EDF

tasks, is the interference that may occur in a COTS platform due to shared resources. In [Nowotsch

and Paulitsch, 2012] the authors observed a maximum slowdown of 5.1x in application execution

when multiple devices access network and memory concurrently in a platform of m = 4 cores.

In the same line of research, the authors in [Girbal et al., 2015] state that the slowdown that a

task suffers when moving from a single-core configuration to a multicore configuration is of 2.7x

in a cached-based version of a multicore platform for m = 6. Therefore, in order to emulate

this behaviour when scheduling tasks under global EDF, each traditional task is slowed down at

runtime. In particular, the slowdown value applied depends on the number of tasks that execute

in parallel in the same time unit. As a side note, as the 3-phase task model is an interference free

model, no slowdown needs to be applied to it.

Using the values reported in [Girbal et al., 2015] as a reference (i.e., 2.7x), we can compute an

input list of slowdown values (by direct proportion) for m cores by applying the following expres-

sion, Sm = m·2.7
6

for m≥ 2. Thus, for m = 4, the list of slow down values becomes [1,1,1.35,1.8].

Each value in the list represents the factor of increase in WCET that a traditional task will incur,

due to interference, when it executes in parallel with other tasks in the system, in a given time

5.4 3-Phase vs. G-EDF in COTS Systems 77

unit. For instance, when a task executes in parallel with two other tasks, the increase in its WCET

will be 1.35x per time unit. Thus, instead of taking 1 time unit to execute, the considered task

takes 1.35 time units due to interference. A special remark must be made concerning the first two

values in the list: the first value represents the time in isolation (without any interference); while

the second value should be 0.9 after computing the slowdown value, but that leads to a speedup in

execution instead of a slowdown. Our decision was to round this value to the closest integer2. The

slowdown value is one of the parameters that we vary in our simulations so that we can evaluate

its impact on task schedulability.

As output, the simulator generates a schedule for each of the scheduling policies described

in Section 5.4.1; the average response-time and maximum response-time for all the generated

task sets; and a plot containing the number of schedulable task sets per utilization value, for each

scheduling policy.

5.4.4 Experimental Results

In this section we discuss the results obtained for the scheduling of randomly generated task sets

using the different scheduling policies described in Section 5.4.1.

The chosen metric used for scheduling policy comparison is the percentage of schedulable task

sets that each policy can schedule per utilization value (i.e., the schedulability ratio). Therefore,

in the experiments we evaluated the percentage of schedulable task sets (y-axis) per utilization

value (x-axis) for 2000 iterations of randomly generated task sets using different settings. In all

the experiments the base task set contained n = 2 tasks.

Concerning the slowdown values used in the experiments, we have chosen slowdown values

of 1.5x and 2x the values in the slowdown list presented above. Accordingly, the slowdown list

values become [1,1.5,2.03,2.7] and [1,2,2.7,3.6], for 1.5x and 2x respectively.

The following settings were used for m = 2 and m = 4: (1) a setting where the E-phase is

smaller than both A and R-phases; (2) a setting where the A-phase is larger than R-phase, while

the E-phase is larger than both A and R-phases; (3) a setting where the R-phase is larger than

A-phase while the E-phase is larger than both A and R-phases. For m = 8 the only tested setting

was one where the R-phase is larger than A-phase while the E-phase is larger than both A and

R-phases. Combining these settings with the generation parameters used in the generation of each

phase’s execution time, allows us to obtain in average a ratio of memory to task’s execution time

(p = Mi

Ci
) of approximately 43% for those cases where the E-phase is larger than memory phases,

and approximately 80% for those cases where the E-phase is smaller than memory phases.

Several experiments were carried out using the above settings in order to find answers for the

following questions:

• What is the behaviour of each of the scheduling policies when different configurations of

phase lengths of a 3-phase task are used?

2Our simulator works with discrete time units. This means that even though the slowdown values are floating point,

after computing the results the values will be rounded to the closest integer value. We believe that this is a design

decision that mimics the real systems and that does not affect the analysis of resulting data.

78 Schedulability of the 3-Phase Task Model

• How does the modified global EDF approach compares with the proposed scheduling poli-

cies?

• How is modified global EDF affected by interference when the number of cores increases

and different slowdown values are applied?

• What is the behaviour of the proposed policies when the number of cores is increased?

Several observations can be made by looking into the following figures: Figure 5.1, Figure 5.2,

Figure 5.3, Figure 5.4, Figure 5.5, Figure 5.6. In the figures, one can see six lines, one for each

priority assignment policy (namely, priority (PRIO), minimum Acquisition (MIN.A), maximum

Acquisition (MAX.A), minimum Restitution (MIN.R), maximum Restitution (MAX.R) and one

for modified global EDF (G-EDF), as detailed in Section 5.4.1).

First Observation: When A and R phases are similar in length the scheduling policies that

use the length of A or R phases as a priority criterion (i.e., MIN.A, MIN.R, MAX.A and MAX.R)

schedule a similar amount of task sets. This can be seen in Figure 5.1a, Figure 5.1b, Figure 5.3a

and Figure 5.3b for two and four cores respectively. Intuitively, as the memory phases have the

same length, the outcome is expected to be the same for the policies that use either the minimum

phase (MIN.A and MIN.R) or the maximum phase (MAX.A and MAX.R) as selection criterion.

Second Observation: When E-phases are smaller than memory phases as in Figure 5.1a,

Figure 5.1b, Figure 5.3a and Figure 5.3b all the proposed heuristics behave poorly because tasks

will not benefit from any parallelism provided by the execution of E-phases. In fact, most of the

phases will execute in a sequential way in the majority of the time. It can be seen from the figures

that even if the number of cores increase (from m = 2 to m = 4) the percentage of schedulable task

sets remains nearly the same.

Third Observation: In all experiments, with exception when both A and R have the same

length, the scheduling policies that select tasks based on the minimum length of memory phases

(A or R-phases) schedule more task sets than the ones that use the maximum length of memory

phases. The reason for this behaviour is likely related to the fact that giving priority to tasks

with larger A or R phases reduces the opportunity for parallelism when different tasks execute in

parallel. Consequently, no memory phases execute in parallel with E-phases and a higher amount

of interference/blocking occurs. This leads to larger response-times in average and consequently,

to a higher percentage of unschedulable task sets.

Fourth Observation: As the values of slowdown increase, the number of task sets that are

schedulable by G-EDF drastically decreases along with the utilization of the schedulable task sets.

Recall that increasing the slowdown means that each traditional task takes longer to execute due

to the amount of interference that it suffers when executing in parallel with other tasks.

For m = 2 cores, when the slowdown increases from 1.5x to 2x, G-EDF cannot schedule any

task set with an utilization greater than 1.5 (as depicted in Figure 5.1a and Figure 5.1b). The same

result can be observed for 4 cores, where the percentage of schedulable task sets decreases from

2.1 in the 1.5x slowdown setting to 1.5 in the 2x slowdown setting (as depicted in Figure 5.3a and

Figure 5.3b).

5.4 3-Phase vs. G-EDF in COTS Systems 79

When the slowdown is kept constant at 2x and the number of cores is increased from 2 to 4

(see Figure 5.5a and Figure 5.5b) the schedulability ratio for G-EDF remains almost the same.

The above results show that as the number of cores increase, the number of tasks executing

in parallel and competing for shared resources also increases. This directly translates into an

interference increase which leads to larger execution times than what is estimated in isolation.

Depending on the deadline of each task, the effect of interference on task execution may lead to

task set unschedulability.

Fifth Observation: For a smaller number of cores (m = 2), G-EDF behaves better than any

of the proposed priority assignment policies even when considering a slowdown of 1.5x (see for

instance Figure 5.2a). Nevertheless, when the number of cores increase, G-EDF behaves worse

(as it can be observed in Figure 5.4a). As explained in the previous observation this is caused due

to the increase in interference when tasks execute in parallel.

Sixth Observation: Among the proposed policies, the one that uses the period as the priority

assignment rule (PRIO in the figures) performs better when compared to the other priority as-

signment policies (except G-EDF) in terms of schedulable task sets. This can be observed in all

figures.

Seventh Observation: By carefully looking at Figure 5.4b and Figure 5.6 one can observe

that doubling the number of cores from 4 to 8 leads to approximately the same schedulability ratio

for all the policies. For the 3-phase model this is a good indicator of the influence of the memory

phases on the schedulability of the system. Having large memory phases limits any advantage that

can be obtained by executing E-phases in parallel and this is reflected in this experiment where

the memory ratio is kept at around 45%. 3

This observation is also confirmed by the results obtained by Becker et al. in [Becker et al.,

2016]. In their paper, written in parallel to this research work, the authors propose the construction

of offline time-triggered schedules, considering the 3-phase task model, using either a linear pro-

gramming formulation or a heuristic that works very similarly to the runtime behaviour presented

in Section 5.4.2. In their experiments, which consider a cluster composed of 14 cores, the authors

show that their heuristic reaches a saturation point at 7 cores with an average last schedulable uti-

lization of approximately 2. Any increase in utilization over this value leads to unschedulability,

regardless of the number of cores used above 7.

As a concluding remark for this section, all the above results show that the 3-phase task model

can be useful in today’s COTS multicore architectures in order to avoid task contention due to

shared resources. On the positive side, a policy that assigns tasks priorities based on the tasks’

periods performs better than an interference-prone version of global EDF. Nevertheless, avoiding

interference brings its cost in terms of schedulability and scalability.

3Later in this chapter, we explore how the schedulability ratio behaves as a function of the memory utilization per

task.
4x · random(1,3) means that a factor x is multiplied by random value generated in the range [1,3]

80 Schedulability of the 3-Phase Task Model

(a) m = 2 cores, slowdown values of 1.5x.

Task parameters: A = 2 · random(1,3),E = 1 ·
random(1,3),R = 2 · random(1,3)4

(b) m = 2 cores, slowdown = 2x. Task parameters:

A = 2 · random(1,3),E = 1 · random(1,3),R = 2 ·
random(1,3)

Figure 5.1: Simulation results for m = 2, E-phase smaller than A and R-phases

(a) m= 2 cores, slowdown = 1.5x. Task parameters:

A = 2 · random(1,3),E = 4 · random(1,3),R = 1 ·
random(1,3)

(b) m= 2 cores, slowdown = 1.5x. Task parameters:

A = 1 · random(1,3),E = 4 · random(1,3),R = 2 ·
random(1,3)

Figure 5.2: Simulation results for m = 2, E-phase larger than both A and R-phases

5.4 3-Phase vs. G-EDF in COTS Systems 81

(a) m= 4 cores, slowdown = 1.5x. Task parameters:

A = 2 · random(1,3),E = 1 · random(1,3),R = 2 ·
random(1,3)

(b) m = 4 cores, slowdown = 2x. Task parameters:

A = 2 · random(1,3),E = 1 · random(1,3),R = 2 ·
random(1,3)

Figure 5.3: Simulation results for m = 4, E-phase smaller than A and R-phases

(a) m= 4 cores, slowdown = 1.5x. Task parameters:

A = 2 · random(1,3),E = 4 · random(1,3),R = 1 ·
random(1,3)

(b) m= 4 cores, slowdown = 1.5x. Task parameters:

A = 1 · random(1,3),E = 4 · random(1,3),R = 2 ·
random(1,3)

Figure 5.4: Simulation results for m = 4, E-phase larger than both A and R-phases

82 Schedulability of the 3-Phase Task Model

(a) m = 2 cores, slowdown = 2x. Task parameters:

A = 2 · random(1,3),E = 4 · random(1,3),R = 1 ·
random(1,3)

(b) m = 4 cores, slowdown = 2x. Task parameters:

A = 2 · random(1,3),E = 4 · random(1,3),R = 1 ·
random(1,3)

Figure 5.5: Comparison between m = 2 and m = 4, E-phase larger than both A and R-phases

5.5 Global Fixed-Priority Scheduling of the 3-Phase Task Model

In this section we present a new schedulability test for the global fixed-priority scheduling of the

3-phase task model. This work differs from current state of the art, i.e., [Alhammad and Pellizzoni,

2014]), by analysing the schedulability of the system from a bus perspective instead of a core’s

perspective and fill in some gaps left open by their analysis (for instance, their work neglects some

of the interference generated by R-phases).

While in Section 5.4 we experimented with several priority assignment heuristics, in this sec-

tion we assume that each task τi in τ has a fixed priority. Moreover, we denote the set of tasks

with higher or equal priority than τi (including τi) by hep(i), and we use l p(i) to denote the set of

tasks with lower priority than τi.

5.5.1 Scheduling Policy

The scheduling policy used to derive the schedulability test for the 3-phase task model is the

following.

Jobs released by tasks are executed on cores in a non-preemptive global fixed-priority manner.

Once assigned to a core, a job starts the execution of its A-phase, followed by its E-phase and

finally its R-phase in a non-preemptive manner. Thus, at any given time instant there are at most

m uncompleted jobs that have started their execution.

Even though execution is non-preemptive, a job might have to wait between its E and R-phase

to gain access to the bus (remember that the bus is locked by cores to ensure exclusive access to the

main memory during an A or R-phase). If a job J must start its R-phase and the bus is already busy

serving another memory phase of a job executing on another core, J spin-locks (non-preemptively)

waiting for the bus to be freed.

5.5 Global Fixed-Priority Scheduling of the 3-Phase Task Model 83

Figure 5.6: Simulation results for m = 8 cores, slowdown = 1.5x. Task parameters: A = 1 ·
random(1,3),E = 4 · random(1,3),R = 2 · random(1,3)

We assume that A-phases have always higher priority than R-phases to access the bus. We

further assume that R-phases execute in a FIFO order. Serving R-phases in a FIFO order ensures

progress. A low priority task cannot be blocked (spin-locking) indefinitely by higher priority tasks

running on other cores. However, this means that more than one lower priority task can block

higher priority ones during their restitution phase.

The scheduler is event-driven. It is invoked whenever one of the following events happens: (1)

a job release; (2) the completion of a A, E or R-phase.

The scheduler uses two different queues to keep track of ready phases. The phases pushed in

the first queue (henceforth called PriorityQueue) are sorted in a non-increasing priority order. The

phases pushed in the second queue (referred to as FIFOQueue) are ordered following a first-in

first-out (FIFO) ordering policy. Following the idea described above, ready A-phases are always

pushed into the PriorityQueue, while ready R-phases are pushed in the FIFOQueue. Hence, at a

job release, the A-phase of the released job is enqueued into the PriorityQueue. Similarly, when

the E-phase of a job completes, the R-phase of that job is inserted into the FIFOQueue.

Algorithm 1 provides a pseudo-code of the scheduling algorithm executed at each scheduler

invocation. It first checks if the bus is available. If it is not, then it simply exits and waits for the

active memory phase to complete its execution. If the bus is free then the scheduler checks if at

least one of the two queues contains ready memory phases. Since, following our assumption, A-

phases have higher priority than R-phases, the scheduler checks first if there is an A-phase waiting

in the PriorityQueue.

If an A-phase is ready, the scheduler then checks if there is an idle core πk. If it is the case, the

job to which the A-phase belongs to is assigned to πk, the bus is locked and the DMA is configured

to start the A-phase on the bus. Otherwise, if no core is available then the A-phase must wait

until another job completes its execution and releases a core. If no A-phase can be started, either

because the priority queue is empty or no core is free, the FIFOQueue needs to be checked for

ready R-phases so that any job that still has a pending R-phase can be completed and the core be

freed to execute other jobs.

84 Schedulability of the 3-Phase Task Model

Algorithm 1 Scheduling algorithm pseudo-code

1: if Bus is Free then

2: if PriorityQueue not Empty then

3: if Free Core Available then

4: Pull the the task τi with the highest priority A-phase from the PriorityQueue;

5: Assign τi to one of the free cores;

6: Lock the bus and start the A-phase of τi;

7: return;

8: end if

9: end if

10: if FIFOQueue not Empty then

11: Take the first R-phase from the FIFOQueue;

12: Lock the bus and start the R-phase;

13: end if

14: end if

When an A-phase completes its execution on a core πk, the bus is unlocked and the E-phase of

the respective job immediately starts its execution on core πk. Hence, there is no idle time between

the completion of an A-phase and the execution of its corresponding E-phase. Further, there is no

migration from one core to any other core between phases of a same job. Finally, at the completion

of a job E-phase, the R-phase of this job is enqueued into the FIFOQueue. Upon completion, an

R-phase releases both the bus and the core on which it executed.

5.5.2 Background

Alhammad and Pellizzoni [Alhammad and Pellizzoni, 2014] provide a schedulability test for the

3-phase task model based on the technique proposed in [Baker, 2003] and [Guan et al., 2008] for

global non-preemptive scheduling on multiprocessor systems.

The schedulability test consists in analysing a time interval [t0, dk− (Ak +Ek)] of a job of τk

which is assumed to miss its deadline at time dk. That job is called the problem job. The time

instant t0 is the latest time instant earlier than the release rk of τk’s problem job at which at least

one processor is idle. The interval [t0, dk− (Ak +Ek)] is called problem window and is depicted

in Figure 5.7.

Intuitively, if the scheduler is work-conserving, for the problem job to miss its deadline, the

amount of interference occurring in the problem window must be greater than the computing

Figure 5.7: Problem Window

5.5 Global Fixed-Priority Scheduling of the 3-Phase Task Model 85

supply5. Following this observation, computing an upper-bound on the interference suffered by

each task and comparing it against a lower bound on the supply available in the problem window

allows us to determine whether the system is schedulable or not. In particular, if the maximum

interference each task can suffer is less than the minimum supply in their problem window then

the system is schedulable.

In [Alhammad and Pellizzoni, 2014], the authors apply the above analysis technique to the

3-phase task model and show that the problem window must be an interval during which either (i)

the bus is busy executing memory phases, or (ii) all processors are busy executing E-phases.

Similarly to [Baker, 2003], and to the model used in Chapter 3, the worst-case workload of

each higher-priority task within the problem window (and hence the interference generated by

each higher priority task on the problem job) is divided into three parts:

1. Carry-in workload: The carry-in workload is composed of jobs (henceforth called carry-in

jobs) released before t0 and with their deadline after t0. These jobs are represented in gray

in Figure 5.7.

2. Body jobs: Body jobs have their release and deadline entirely contained within the problem

window. These jobs are represented in yellow in Figure 5.7.

3. Carry-out workload: The carry-out workload is composed of jobs (henceforth called carry-

out jobs) released within the problem window but with their deadline outside of the problem

window. These jobs are represented in green in Figure 5.7.

The contribution of each of these jobs to the interference suffered by the problem job is anal-

ysed in detail in the next sections.

5.5.2.1 Carry-in Workload

Concerning the carry-in jobs, it was proven in [Alhammad and Pellizzoni, 2014] that at most m

tasks can have a carry-in job among which at most (m−1) are from higher or equal priority tasks.

Furthermore, since we assume a constrained-deadline task model, each task can have at most one

carry-in job. It was further proven that the worst-case interference happens when (m− 1) cores

are busy executing E-phases from carry-in jobs while a lower priority task blocks the execution of

τk at t0. This result is formally stated in Theorem 4 below.

Theorem 4. (from [Alhammad and Pellizzoni, 2014]) In the worst-case, the carry-in workload at

time t0 is limited by m− 1 computation phases (E-phases) from tasks in hep(k)∪ l p(k) and one

full job from a task in l p(k).

5.5.2.2 Alhammad’s Schedulability Analysis

To compute the interfering workload of the body and carry-out jobs on the problem job, the ap-

proach in [Alhammad and Pellizzoni, 2014] focuses on what happens on the cores. Specifically,

5The supply in a time interval is the total amount of computation that could be performed within the interval.

86 Schedulability of the 3-Phase Task Model

within a problem window of length Lk, the interfering workload must consider the contribution of⌊
Lk

Ti

⌋
body jobs and at most one carry-out job of each higher priority task τi ∈ hp(k).

Due to the restriction that no two memory phases can execute simultaneously on the bus, the

schedule contains scheduling holes (see the grey blocks in Figure 5.9). A scheduling hole is an

interval of time in which a core is idle as a result of a memory phase being executed by another

core.

Therefore, to bound the interference suffered by a job in its problem window, one must also

upper bound the cumulative length of the holes on the cores. Alhammad and Pellizzoni do it by

lower bounding the time during which the execution of E-phases on cores overlap with memory

phases executed on the bus. The total length of the holes is then given by (m×∑
α
i=1 µi−overlap)

where ∑
α
i=1 µi is the sum of all memory phases executed in the problem window.

In order to compute a lower-bound on the amount of overlap (equivalently, an upper bound

on the length of holes), the authors in [Alhammad and Pellizzoni, 2014] propose the following

approach. First, the largest A-phases are combined with the largest R-phases into single memory

phases, i.e., Mi = Ai +Ri, with Ai ≥ Ai+1 and Ri ≥ Ri+1. Each element Mi is added to a sequence

µ sorted in a non-increasing order. The E-phases are sorted in a sequence λ in a non-decreasing

order.

Let α be the size of µ and λ , ρ ≤ α
m

partitions are created as depicted in Figure 5.8. The ρ

largest memory phases in the sequence µ and the ρ smallest computation phases in λ are assigned

to the first core. The second ρ largest memory phases in the sequence µ and the ρ smallest

computation phases in λ are assigned to the second core. This procedure is repeated on each

core. Thus, by following this assignment, the largest memory phases overlap with the smallest

computation phases leading to a lower-bound on the amount of overlap between the phases. The

length of the holes in each partition k is then upper-bounded by the length of the grey blocks in

Figure 5.8.

Equation 5.1 summarizes the approach in [Alhammad and Pellizzoni, 2014]. The workload

interfering with τk within the problem window Lk is given by the sum of the α memory phases

plus the sum of all E-phases executing in the interval minus a lower bound on the overlap of the E-

phases which can be computed following the procedure described above. For more details please

check section 4.3 in their paper.

W NC
k = m ·

α

∑
i=1

Mi +
α

∑
i=1

λ i−overlap (5.1)

5.5.2.3 Limitations

While the approach proposed in [Alhammad and Pellizzoni, 2014] is interesting from an analysis

viewpoint, we note two main limitations:

5.5 Global Fixed-Priority Scheduling of the 3-Phase Task Model 87

Figure 5.8: Computing the overlap lower-bound for ρ = 2,m = 3 in [Alhammad and Pellizzoni,

2014]

• First, it considers that a task is schedulable if it completes its E-phase by its deadline, as

depicted in Figure 5.7. Therefore, it omits the time required for the task to execute its R-

phase. Since the R-phase is in charge of writing the results of the task computation back to

main memory, this can be problematic if tasks have precedence constraints or any form of

data dependencies.

• Second, it can be very pessimistic. Specifically, by only looking at the overlap that occurs

in each partition, the analysis misses the overlap that exists across partitions. Comparing

Figure 5.8 and Figure 5.9, one can see an example of this pessimism. By allowing the

memory phases of the second partition to start as soon as possible (as in Figure 5.9) one can

decrease the amount of interference by more than E5 time units in comparison to Figure 5.8

(which is the execution scenario assumed in [Alhammad and Pellizzoni, 2014]).

5.5.3 A Different Perspective

We look at the problem of the 3-phase task model’s inter-task interference from a different perspec-

tive. While Alhammad and Pellizzoni [Alhammad and Pellizzoni, 2014] analyse the schedulability

of each task by modelling the scheduling behaviour on the cores, we consider what occurs on the

bus. Analysing the bus instead of the cores reduces the schedulability problem to a single core

problem (there is only one bus which executes at most one memory phase at a time) instead of a

multicore problem.

Yet, similarly to the fact that scheduling holes can appear on the cores when a memory phase

is being processed on the bus, bus holes can be observed on the bus whenever all the cores are

busy executing E-phases (see Figure 5.10). Bus holes happen because, when all the cores are busy

executing E-phases, none of the local memories can accept new content nor can the computation

Figure 5.9: Pessimism of the analysis in [Alhammad and Pellizzoni, 2014]

88 Schedulability of the 3-Phase Task Model

Figure 5.10: Our schedulability analysis approach

result be written back to main memory. Hence, the bus remains idle. Formally, a bus hole is

defined as follows.

Definition 8 (Bus Hole). A bus hole is an interval of time, within the problem window, where all

m cores are busy executing E-phases.

Our analysis builds upon the observation that within the problem window, the contribution of

the jobs to the response time of the task under analysis is divided into two parts (see Figure 5.10):

(1) the interference of the memory phases (A and R) that execute within the window, and (2) the

cumulative length of time during which all cores execute E-phases (if any such interval exists).

We denote this latter length by Lholes
i .

Upper bounding the length Lholes
i and adding its value to the total time required to process

memory phases of body, carry-in and carry-out jobs executed in the problem window results in an

upper bound on the interference that the task under analysis may suffer in the worst-case. Thus,

the worst-case interference that a task τi can suffer in an interval of length t is bounded by

Ii(t) = Lholes
i (t)+ Ibus

i (t) (5.2)

where Lholes
i (t) is the maximum cumulative time m different E-phases are simultaneously execut-

ing on the m cores in an interval of length t, and Ibus
i (t) is an upper bound on the interference τi

can suffer on the bus due to the execution of memory phases of other jobs during an interval of

length t.

To compute the exact length of Lholes
i (t) one has to know how the jobs of each task are sched-

uled on the cores within the problem window. Checking all potential jobs’ schedules to find the

schedule generating the longest cumulative length Lholes
i (t) is intractable. Therefore, we propose

a pseudo-polynomial technique to compute an upper bound on Lholes
i (t).

To summarize, our proposed technique differs from the technique in [Alhammad and Pelliz-

zoni, 2014] in the sense that we upper-bound the interference on the bus instead of upper-bounding

the interference on the cores. To achieve this, we must compute an upper-bound on the length of

the so-called bus holes. By definition of bus holes, if one can maximize the length of the intervals

where all cores are simultaneously busy executing E-phases, then an upper-bound to the length

Lholes
i (t) is found.

5.5 Global Fixed-Priority Scheduling of the 3-Phase Task Model 89

5.5.4 Schedulability Analysis

As already explained in Section 5.5.2, a task τi is schedulable if Ii(t)≤ t where t is a lower-bound

on the length of the problem window of τi and Ii(t) is the maximum interference suffered by τi in

that window.

An upper-bound on Ii(t) can be computed using Equation 5.2, where the term Lholes
i (t) ac-

counts for the interference suffered by τi due to the execution of E-phases while Ibus
i (t) considers

the interference caused by memory phases executed in an interval of length t. Before computing

Lholes
i (t) and Ibus

i (t), one should know the length t of the problem window on which Lholes
i (t) and

Ibus
i (t) must be computed. In [Alhammad and Pellizzoni, 2014], the authors use t = Di−Ei−Mi

(where Mi = Ai +Rmax, with Rmax being the largest R-phase executed in the problem window) as

that length. However, as already pointed out in Section 5.5.2.2, one of the main limitations of

the analysis presented in [Alhammad and Pellizzoni, 2014] is that it does not consider the time

required by the R-phase of τi to write its data back in main memory. Therefore, in this section,

we first prove an upper-bound on the time needed for τi to complete its R-phase. Then, we use

that information to derive a bound on the length t that must be considered in the schedulability

test of any task τi. Finally, in Sections 5.5.4.2 and 5.5.4.3, we prove upper-bounds on Ibus
i (t) and

Lholes
i (t), respectively.

5.5.4.1 R-phase Worst-Case Response Time and Problem Window Length

Let
−→
A i and

−→
R i be the set of A and R-phases of the tasks in τ \ τi sorted in a non-increasing order

(where τi is the task under analysis). We denote by
−→
A

(k)
i (resp.,

−→
R

(k)
i), the kth element in

−→
A i (resp.,

−→
R i). Therefore,

−→
A

(k)
i is the kth largest A-phase among those executed by tasks in τ \ τi .

Lemma 6. The interference suffered by the R-phase of τi is upper-bounded by:

IR
i =

m−1

∑
k=1

(−→
A

(k)
i +

−→
R

(k)
i

)
(5.3)

Proof. R-phases are inserted in a FIFO queue. Therefore, the worst-case for the task under analysis

τi occurs when (m− 1) other jobs inserted their R-phases in the queue before τi’s. Hence, τi has

to wait until all those other R-phases complete before τi’s R-phase can start. Further, because

tasks have constrained deadlines, each task has at most one active job and hence one active R-

phase at any time (assuming the system is schedulable). Therefore, the (at most) (m− 1) R-

phases interfering with τi’s R-phase are from different tasks. The contribution of R-phases to the

interference of τi is thus upper-bounded by the sum of the (m−1) largest R-phases in the system,

i.e., by ∑
m−1
k=1

−→
R

(k)
i .

Furthermore, for each completed R-phase, a core is freed and Algorithm 1 is called. Since

A-phases have higher priority than R-phases, the transmission of τi’s R-phase can be delayed by

the transmission of a ready A-phase. Note however that a maximum of (m−1) cores can be freed

before the transmission of τi’s R-phase, and therefore, by Line 3 of Algorithm 1, at most (m−1)

A-phases can interfere with τi’s R-phase. Similarly to the discussion for R-phases, because each

90 Schedulability of the 3-Phase Task Model

task can have at most one A-phase ready at any time, the (m− 1) A-phases interfering with τi’s

R-phase must be from different tasks. The contribution of A-phases to the response-time of τi’s

R-phase is thus upper-bounded by the sum of the (m− 1) largest A-phases in the system, i.e., by

∑
m−1
k=1

−→
A

(k)
i .

Adding both contributions, we get that the interference suffered by τi’s R-phase is upper-

bounded by ∑
m−1
k=1

(−→
A

(k)
i +

−→
R

(k)
i

)
.

Corollary 1. The response time of the R-phase of τi is upper bounded by Ri + IR
i .

Proof. Directly follows from Lemma 6.

Now that we have an upper bound on the response time of τi’s R-phase, we derive a bound on

the length t of the problem window.

Lemma 7. If the problem job of τi misses its deadline, then Ii(t)≥ t where t = Di−Ai−Ei−Ri−

IR
i + ε and ε is an arbitrary small number.

Proof. Let us assume that the problem job of τi is released at time ri and has its deadline at time

ri +Di. We prove the claim by contradiction. Let us assume that Ii(t)< t. Since Ii(t) sums all the

instants where the bus is busy executing memory phases or all cores are busy executing E-phases

(see Equation 5.2), then, by our contradictory assumption, there must exist an instant tidle such

that ri ≤ tidle < ri + t at which both the bus is idle and at least one core is idle.

By Algorithm 1, the A-phase of τi’s problem job can start executing on the bus at tidle. Since A

and E-phases execute non-preemptively, they complete their execution by tidle +Ai +Ei. Further-

more, since the response time of τi’s R-phase is upper-bounded by Ri + IR
i (Corollary 1), the R-

phase of τi’s problem job completes by tidle+Ai+Ei+Ri+ IR
i . Replacing tidle by its upper-bound,

we get tidle +Ai +Ei +Ri + IR
i < ri +Di−Ai−Ei−Ri− IR

i + ε +Ai +Ei +Ri + IR
i = ri +Di + ε .

Since ε is an arbitrarily small number, the R-phase of τi’s problem job therefore completes at

or before ri +Di. It is a contradiction with the assumption that the problem job of τi misses its

deadline, hence the claim.

Theorem 5. If for all τi ∈ τ , Ii(t) < t where t = Di−Ai−Ei−Ri− IR
i + ε and ε is an arbitrary

small number, then the system is schedulable.

Proof. It is the contra-positive of Lemma 7. If Ii(t)< t for any task τi, then every job of τi meets

its deadline. It follows that if the condition is true for all tasks then all jobs meet their deadlines

and the system is schedulable.

5.5.4.2 Upper-bound on Ibus
i (t)

In this section, we derive an upper-bound on Ibus
i (t).

Let J(t) be the largest set of jobs that can execute (completely or partially) in an interval of

length t and prevent τi’s A-phase to start executing. We divide the set J(t) in two different subsets

composed of (i) carry-in jobs, and (ii) body and carry-out jobs, respectively.

5.5 Global Fixed-Priority Scheduling of the 3-Phase Task Model 91

With respect to (i), Theorem 4 tells us that the carry-in workload is upper-bounded by (m−1)

computation phases (E-phases) from tasks in hep(k)∪ l p(k) and one full job from a task in l p(k).

Since every E-phase is followed by an R-phase, and because every full job has both an A and an

R-phase, the contribution of the carry-in workload to Ibus
i (t) is upper-bounded by

Amax
low +

m

∑
k=1

−→
R (k)

where Amax
low is the largest A-phase among the tasks with lower priority than τi and

−→
R (k) is the kth

largest R-phase among all tasks in τ .

Regarding the number of body and carry-out jobs in J(t), two cases must be considered:

• τk ∈ hp(i). The maximum number of jobs of τk that can be released and have their deadline

within an interval of length t is upper bounded by
⌊

t
Tk

⌋
. The contribution of body jobs of

τk to Ibus
i (t) is thus upper-bounded by

⌊
t

Tk

⌋
(Ak +Rk). Further, the contribution of τk to the

carry-out workload is limited to one job of size at most min{(Ak +Rk),(t mod Tk)} (i.e.,

since we have a constrained-deadline model, each task can have at most one carry-out job,

that is released no earlier than (t mod Tk) time units before the end of the problem window,

and the carry-out job cannot execute for more than (t mod Tk) in (t mod Tk) time units).

• τk ∈ lep(i). If τk’s priority is lower than or equal to the priority of τi, then, thanks to Line 4

of Algorithm 1, no job released by τk after or at the same time than a job of τi can interfere

with τi. Therefore, no body or carry-out job of τk participates to Ibus
i (t).

Finally, adding the contribution of all jobs in J(t) together, we get that

Ibus
i (t)≤ Amax

low +
m

∑
k=1

−→
R (k)+

∑
τk∈hp(i)

(⌊
t

Tk

⌋
(Ak +Rk)+min{Ak +Rk, t mod Tk}

)
(5.4)

5.5.4.3 Upper-bound on Lholes
i (t)

The length Lholes
i (t) provides an upper bound on the total time during which all cores are busy

executing E-phases in a window of length t. Hence, Lholes
i (t) depends on the jobs’ schedule in that

window. Finding the worst-case schedule that provides the largest length Lholes
i (t) is intractable in

the general case. Therefore, we provide an over-approximation of that length by building an arti-

ficial schedule of memory and execution phases that is at least as bad as the worst-case schedule.

Intuitively, the length Lholes
i (t) is maximized by considering an artificial schedule as follows.

Let us assume that k successive E-phases execute on the first core, and ℓ memory phases execute

on all other cores, in parallel with those E-phases. Since there is only one memory bus, at most

one memory phase can be processed at a time. It results that the ℓ memory phases are executed

sequentially. The length of the time interval Lholes
i (t) during which all cores are busy executing

92 Schedulability of the 3-Phase Task Model

Figure 5.11: Computing an upper-bound on bus holes

E-phases is therefore upper-bounded by the sum of the length of the k E-phases running on the

first core, minus the lengths of the ℓ memory phases executed on all the other cores. This length is

further maximized if the k E-phases executing on core 1 are the k longest, and the memory phases

executed on the other cores are the ℓ shortest. This intuition can be observed in the upper part

of Figure 5.11. In the figure, one can observe the longest k E-phases in green running on core

1, (m−1) A- and R-phases running in parallel with each execution phase (in pink), and an upper

bound L̂holes
i (t) on Lholes

i (t) represented as the difference between the length of the execution and

memory phases. Formally, we have in the general case that

Lholes
i (t)≤ L̂holes

i (t) =
k

∑
j=1

−→
E (j)−

p

∑
j=1

←−
A (j)−

q

∑
j=1

←−
R (j) (5.5)

where
−→
E ,
←−
A and

←−
R are, respectively, the set of all E, A and R-phases interfering with τi’s execu-

tion.
−→
E (j) denotes the jth element of the set sorted in a non-increasing order, while

←−
A (j) is the jth

element of the set sorted in a non-decreasing order (note the direction of the arrow on top of the

set). Therefore, Equation 5.5 accounts for the k longest E-phases interfering with τi and the p and

q shortest A and R-phases, respectively (with ℓ= p+q in the explanation above).

Even though Equation 5.5 provides an upper bound on Lholes
i (t), it is extremely pessimistic due

to the fact that it neglects how different E-phases execute in parallel on different cores. Only the

E-phases (conservatively assumed to be the k longest ones) running on the first core are considered

when computing the bound.

A tighter bound on Lholes
i (t) can be obtained by considering the E-phases scheduled on all

cores. Assume that each core (and not the first one only) executes the same number k of E-phases,

then each E-phase is preceded by an A-phase, and each A-phase is preceded by the R-phase of the

previous jobs that executed on the same core (see the middle part of Figure 5.11). Therefore, k A-

phases and at least (k−1) R-phases execute on each core. 6 Now, let us build an artificial schedule

6Without loss of generality, if |
−→
E | < (k×m), then the set

−→
E is appended with zero-length E-phases such that

5.5 Global Fixed-Priority Scheduling of the 3-Phase Task Model 93

Figure 5.12: Bus holes

as shown on the middle part of Figure 5.11 where the k longest E-phases execute on the first core,

the k second longest E-phases execute on the second core, and so on and so forth. Similarly, the k

shortest A-phases and the (k−1) shortest R-phases execute on the mth core, the k second shortest

A-phases and the (k− 1) second shortest R-phases execute on the (m− 1)th core, etc. Then, the

amount of time the E-phases on the first core do not overlap with memory phases and hence can

participate to Lholes
i (t) is given by Equation 5.5 with p = (m− 1)× k and q = (m− 1)× (k− 1)

(i.e., the number of A and R-phases, respectively, executing on the other cores). That is, it is given

by
k

∑
j=1

−→
E (j)−

(m−1)×k

∑
j=1

←−
A (j)−

(m−1)×(k−1)

∑
j=1

←−
R (j)

Similarly, the amount of time the E-phases on the second core do not overlap with memory phases

and hence can participate to Lholes
i (t) is given by

2×k

∑
j=k+1

−→
E (j)−

(m−2)×k

∑
j=1

←−
A (j)−

(m−2)×(k−1)

∑
j=1

←−
R (j)

where (m− 2)× k and (m− 2)× (k− 1) are the number of A and R-phases executing on cores

3 to m (see middle part of Figure 5.11). Doing the same for each core and summing all those

contributions, we get that the total time during which E-phases do not overlap with memory phases

is upper bounded by

m×k

∑
j=1

−→
E (j)−

(m−2)

∑
p=0

(m−1− p)×

(k

∑
j=1

←−
A (j+p×k)+

k−1

∑
j=1

←−
R (j+p×(k−1))

)
(5.6)

The maximum amount of time the m cores are all simultaneously busy executing E-phases is

thus upper-bounded by the above equation divided by m (see lower part of Figure 5.11). This gives

us an upper-bound on Lholes
i (t) as formalised in Theorem 6.

|
−→
E | = k×m. Similarly, zero-length A-phases and zero-length R-phases are appended to sets

←−
A and

←−
R , respectively,

until their cardinality equals k×m.

94 Schedulability of the 3-Phase Task Model

Theorem 6. An upper bound on Lholes
i (t) is given by

Lholes
i (t)≤

1

m
×max

k≥1

{
m×k

∑
j=1

−→
E (j)−

(m−2)

∑
p=0

(m−1− p)×

(k

∑
j=1

←−
A (j+p×k)+

k−1

∑
j=1

←−
R (j+p×(k−1))

)}
(5.7)

Proof. As explained above, Equation 5.6 provides an upper-bound on Lholes
i (t) assuming that: (i)

only the longest E-phases and the shortest A and R-phases are running, (ii) core p executes E, A

and R-phases that are no smaller than those executed on core (p+1) for all p ∈ [1,m−1], and (iii)

at least k A-phases, k E-phases and (k−1) R-phases are executed on each core. An upper-bound

on Lholes
i (t) is thus found when Equation 5.6 is maximized over k, which gives us Equation 5.7.

However, we still have to prove that the three assumptions hold.

Assumption (i) is quite obvious. If shorter E-phases are executed then the amount of time

all cores simultaneously execute E-phases cannot increase. Similarly, if longer memory phases

execute, then their overlap with E-phases can only increase, hence reducing the cumulative time

all cores execute E-phases simultaneously.

Regarding Assumption (ii), in the schedule seen on the middle part of Figure 5.11, one can

see that if memory phases were swapped between cores (e.g., swapping A5 and A2), then the time

during which memory phases would overlap with E-phases would increase and hence the length

of bus holes would decrease. The shortest memory phases must therefore execute on the cores

with the largest indexes. Similarly, if E-phases are swapped between cores (e.g., E2 and E6 in

Figure 5.11), then the amount of time all cores execute E-phases in parallel can only decrease.

Lholes
i (t) is thus maximized when the largest E-phases execute on the cores of the lowest indexes.

Finally, we prove Assumption (iii). That is, if core 1 executes k A-phases and k E-phases, and

if core p executes E, A and R-phases that are no smaller than those executed on core (p+1) for all

p ∈ [1,m−1], then at least k A-phases, k E-phases and k−1 R-phases are executed on each core.

The claim obviously holds for core 1 since each E-phase is followed by an R-phase. Hence, at

least k−1 R-phases execute along with the k A- and E-phases on core 1. The proof for the other

cores is by induction. That is, we prove that if core p executes at least k A-phases, k E-phases and

k−1 R-phases, then core p+1 executes at least k A-phases, k E-phases and k−1 R-phases.

Let phases E
p
1 , R

p
1 , A

p
2 and E

p
2 be executed in a sequence on core p and similarly phases R

p+1
1 ,

A
p+1
2 and E

p+1
2 be successively executed on core p + 1 (see Figure 5.12). Since all the E, A

and R-phases executing on core p+ 1 are shorter than those executing on core p, we have that

R
p+1
1 +A

p+1
2 +E

p+1
2 ≤ E

p
1 +R

p
1 +A

p
2 . Therefore, as illustrated on Figure 5.12, the E-phase E

p+1
2

executed on core p+ 1 must complete before the second E-phase E
p
2 starts executing on core p.

Thus, there are at least as many E-phases executing on core p+ 1 than on core p. Since each

E-phase is preceded by an A-phase and followed by an R-phase the number of A and R-phases on

core p+1 also matches the number of phases on core p. This proves our claim.

5.5 Global Fixed-Priority Scheduling of the 3-Phase Task Model 95

(a) % of schedulable task sets per utilization for m=
4 cores

(b) % of schedulable task sets as a function of the

number of cores.

Figure 5.13: Schedulability ratio for m = 4 and as a function of the number of cores

5.5.5 Experimental Results

We compare the approach presented in Section 5.5 against the approach presented in [Alhammad,

2016; Alhammad and Pellizzoni, 2014] using randomly synthetically generated task sets. The

generation parameters are detailed next.

The number of tasks per task set is set to n = 5×m and the total utilization of each task set

Uτ ranges from [0.025×m,0.7×m] in steps of 0.025×m. UUnifast-Discard [Davis and Burns,

2011b] is used to generate n utilization values such that Ui ≤ 1 and ∑
n
i=1Ui =Uτ .

To generate the period of each task Ti, a log-uniform distribution is used with values ranging

within [100,1000].

The tasks’ execution times are calculated as Ci =Ui×Ti. The generated tasks are assumed to

have implicit deadlines and tasks’ priorities are given by their periods following the Rate Mono-

tonic approach, i.e., the lower the period the higher the priority.

Since each task is composed of memory phases (Mi = Ai +Ri) and execution phases (Ei), in

the experiments the value for the memory phases was set to a percentage p of the execution time

Ci of each task. The other (1− p)×Ci time units being assigned as the execution time of τi’s

E-phase, i.e., Ei = (1− p)×Ci. The total memory phase value is equally divided between A and

R-phases so that Ai = Ri =
p×Ci

2
. By default, p is set to 0.1.

In all experiments, 1000 random tasks sets were generated for each plotted utilization point.

The percentage of task sets deemed schedulable by each analysis (the schedulability ratio) is used

to compare the performances between approaches. In Figure 5.13, the green line (’OUR’) presents

the results for the approach presented in Section 5.5 and the red line (’ALHM’) presents the results

for [Alhammad, 2016; Alhammad and Pellizzoni, 2014].

The first set of experiments measured the percentage of task sets that are schedulable as a

function of the task set total utilization. Figure 5.13a shows the results for m = 4 cores considering

the generation parameters described above. In the figure, one can observe that ’OUR’ approach

96 Schedulability of the 3-Phase Task Model

(a) % of schedulable task sets per utilization for

m=2

(b) % of schedulable task sets as a function of the

memory ratio p

Figure 5.14: Schedulability ratio for m = 2 and as a function of the memory ratio

performs better than ’ALHM’, resulting in an increase of around 10% (up to 15%) of the number

of task sets deemed schedulable when the total utilization value varies between 0.7 and 1.5.

In the second set of experiments, depicted in Figure 5.13b, the schedulability ratio is measured

as a function of the number of cores, up to m = 8. In this experiment, the number of tasks per task

set was set to n = 10 and the task set utilization was fixed at Uτ = 1.0. As a side note, if the

number of tasks per task set varies as a function of the number of cores, a higher percentage of

task sets would be schedulable in systems with a large number of cores. This behaviour occurs due

to the decrease in the utilization per task, and consequently a decrease in the utilization of memory

phases. Therefore, keeping a fixed number of tasks allows one to better observe the influence of

the increase in the number of cores.

As it can be seen in Figure 5.13b, both approaches cannot schedule any task set in a system

with a single core (which is expected when the total utilization is 100% and fixed priority schedul-

ing is used). But as the number of cores start to increase, the number of schedulable task sets also

increases. For the 3-phase model that means that more tasks can execute their E-phases in parallel

thus decreasing their response-time when compared to a system with a lower number of cores.

Note that the difference between ’ALHM’ and ’OUR’ remains more or less constant and around

10%.

In the third set of experiments, shown in Figure 5.14b, the schedulability ratio is measured as

a function of the ratio p = Mi

Ci
. This experiment allows us to observe the influence of the bus on the

schedulability of the system. In this experiment, the number of cores was set to m = 4, the task

number n = 10 and the total utilization Uτ = 1.0. The value of the memory ratio p varies in the

interval [0.1,1] in increments of 0.1. As expected, increasing the memory utilization, decreases

the percentage of schedulable task sets since the bus becomes the more and more loaded, hence

increasing the access time to the memory. Another interesting aspect that can be observed is

that after 40% of memory utilization both approaches perform almost exactly the same. These

results are explained by the restrictions imposed by the bus on the execution of memory phases

5.6 Summary 97

in order to avoid interference. In particular, after around 50% of memory utilization per task,

bus interference dominates both approaches avoiding any of them to take advantage of parallel

execution of E-phases.

Finally, one should note that ’OUR’ method does not dominate the analysis in [Alhammad,

2016; Alhammad and Pellizzoni, 2014]. There exist task sets that are deemed unschedulable by our

method but which are deemed schedulable by ’ALHM’, as depicted in Figure 5.14a. This is usually

the case when the interference on the cores is much more constraining than the interference on the

bus. It is somewhat understandable since ’ALHM’ tackles the problem from a core perspective

while we tackle it from a bus perspective. Since their modelling of the interference on the cores is

more accurate than ours, they may perform better in such situations. However, we believe that the

bus will usually be the limiting factor in multicore systems. Therefore, improving the modelling

of the interference on the bus should provide better results in most cases.

5.6 Summary

In this chapter we addressed the problem of global scheduling of 3-phase tasks in COTS multicore

systems.

In the first part of the chapter, we proposed an empirical validation of the model in order to

understand the effects of interference in COTS multicore systems. In particular, we compared the

performance of different interference-free priority assignment policies against a modified version

of global EDF that is interference-prone. Results show that a policy that uses the period as a

priority assignment criterion performs better than all other proposed policies. Moreover, the results

also show that due to task contention the proposed policies for the 3-phase task model perform

better than the modified version of global-EDF in those scenarios where several tasks execute in

parallel.

In the second part of the chapter, we proposed a schedulability test for the global fixed-priority

scheduling of the 3-phase task model. The proposed approach computes an upper-bound on the

length of intervals when all cores are busy executing E-phases (the bus holes) and adds this length

to the workload of a task due to memory phases. By looking at a problem window and analysing

the worst-case interfering workload on a task under analysis the schedulability test is derived. The

results show an increase on the schedulability ratio over the state of the art of around 10% in

average and up to 15% in some cases.

The main conclusion that one can draw from the research work presented in this chapter is that

the 3-phase task model can be useful in today’s COTS multicore architectures in order to avoid

task contention due to shared resources. Nevertheless, as depicted in all results and also confirmed

by Becker et al. in [Becker et al., 2016], avoiding interference brings its cost in terms of system

schedulability and scalability.

Future work includes the development of methods that compute tighter upper-bounds on the

length of the bus holes so as to improve the accuracy of the schedulability test. A variation of the

98 Schedulability of the 3-Phase Task Model

schedulability test to compute worst-case response times may also be interesting for the develop-

ment and analysis of real-time systems running on multicore platforms.

Chapter 6

Conclusion

Current multiprocessor platforms have two important characteristics that need to be considered.

The first one is the possibility of executing applications simultaneously in all cores of the platform.

The second is that general-purpose multiprocessor platforms (also known as COTS) are designed

for the average-case scenario, meaning that resources such as the memory bus and caches are

shared among the different cores in the system. From a real-time systems viewpoint, both charac-

teristics bring an important challenge that forcefully needs to be addressed by the community, as

the production trend is to deliver platforms with several cores. With this challenge in mind, in this

dissertation, we devoted our attention to two important problems that need to be addressed in order

to minimize the impact of adopting multiprocessor platforms by the real-time systems industry: (i)

the problem of scheduling parallel real-time tasks and (ii) the problem of sharing resources among

real-time tasks.

For the first problem, we explored the parallelism offered by multiprocessor platforms, by

using real-time task models that focus on intra-task parallelism, such as the fork-join or the syn-

chronous parallel task model. Two different solutions were proposed.

The first solution, presented in Chapter 3, fills the schedulability gap of synchronous parallel

tasks by presenting an improved schedulability analysis for globally scheduled fixed-priority syn-

chronous parallel task systems. Using as a base the technique proposed in [Bertogna and Cirinei,

2007] for sequential task sets, a response-time analysis test for synchronous parallel tasks is pro-

posed by deriving a worst-case scenario that leads to the largest possible interference. The test

uses novel concepts such as the sliding window technique (Section 3.5) and carry-out decomposi-

tion (Section 3.6) in order to make it sustainable and predictable. Results show that the proposed

schedulability test significantly improves over the state of the art [Chwa et al., 2013] in terms of

the number of schedulable task sets detected among randomly generated workloads.

The second solution, presented in Chapter 4, takes advantage of semi-partitioned scheduling

to accommodate fork-join tasks that cannot be scheduled in any pure partitioned environment.

Consequently, as the parallel jobs of each fork-join task can execute simultaneously on different

cores, we take advantage of the work-stealing mechanism to dynamically load balance each task’s

workload. This allows one to reduce the average response time of the tasks without jeopardiz-

99

100 Conclusion

ing the schedulability of the whole system. To the best of our knowledge, we are the first using

work-stealing in the context of a semi-partitioned scheduling scheme. To evaluate the proposed

approach, we compare different allocation heuristics and, for two of them, we evaluate the im-

provement in terms of average response time obtained by using work-stealing. Results show that

with this technique it is possible to reduce the average response time of tasks, and create additional

room in the schedule for less-critical tasks (e.g., aperiodic and best-effort tasks). In particular, the

proposed approach allows one to achieve an average gain in terms of response-time of parallel

tasks between 0 and nearly 15% per task.

The second problem addressed in this dissertation is the problem of resource sharing in mul-

tiprocessor systems. In particular, our goal was to provide a solution that avoids the undesired

effects of the memory bus contention. Thus, in Chapter 5, the 3-phase task model is used in or-

der to circumvent the uncontrolled sources of interference, occurring due to co-running tasks in

multiprocessor systems. We start by conducting an empirical validation of the model in order to

understand the effects of interference in COTS multicore systems. In particular, we compared the

performance of different interference-free priority assignment policies against a modified version

of global EDF that is interference-prone. Results show that due to task contention, the proposed

policies for the 3-phase task model perform better than the modified version of global-EDF, in

those scenarios where several tasks execute in parallel. Then, a schedulability test for the global

fixed-priority scheduling of the 3-phase task model is derived. The proposed approach computes

an upper-bound in a problem window by considering all intervals of time when all cores are busy

executing E-phases (the bus holes) and adds this length to the workload of a task due to memory

phases. When compared to the state of the art, the proposed approach shows an increase in the

schedulability of around 10% in average and up to 15% in some cases.

Considering the two problems above, the questions posed in Chapter 11 and the central propo-

sition of this dissertation, their answer is positive. In fact, we successfully provided ways of

computing response-time upper bounds for parallel tasks executing in multiprocessor systems.

This was done for the synchronous parallel task model in a global scheduling setting. In addi-

tion, we also used the fork-join task model in a semi-partitioned scheduling setting in which, by

using dynamic load balancing via the application of work-stealing during runtime, it is possible

to reduce the average response-time of real-time tasks. Moreover, we also have computed upper

bounds on the interference for the 3-phase task model, executing on a multiprocessor system with

a shared resource under a fixed-task priority global scheduling setting. Thus, we conclude that all

the models presented in this dissertation are predictable and viable in real-time systems as it was

proven by their sound schedulability analysis. However, their analyses present some pessimism

that in some cases can be improved, as we show in the next section.

1For completeness, the questions posed in Chapter 1 were: (1) Is it possible to compute response-time upper bounds

for parallel tasks when executing in multiprocessor systems?; (2) Considering a scenario with co-running tasks and a

shared resource, is it possible to compute upper-bounds on the interference imposed by co-running tasks in a multipro-

cessor system?

6.1 Future Work 101

6.1 Future Work

Some of the pessimism involved in the analyses can be improved and different future works are

foreseen to improve them. For instance, for the contribution proposed in Chapter 3 using syn-

chronous parallel tasks, the analysis could be refined by reducing the number of carry-in instances

to consider, in a similar fashion to the analysis proposed in [Guan et al., 2009] for sequential tasks.

In fact, this technique was already used in the analysis presented in Chapter 5.

For the analysis of the 3-phase task model presented in Chapter 5, we believe that it is possible

to compute tighter upper-bounds on the length of the bus holes so as to improve the accuracy

of the schedulability test. In addition, with the obtained results, we believe that it is possible to

derive a test to compute the worst-case response times of each task. This test may be useful for the

development and analysis of systems built using the 3-phase task model running on multiprocessor

platforms.

Regarding work-stealing and its use in real-time systems, a remark must also be made. We

believe that work-stealing is a viable algorithm for soft-real time scenarios where occasional dead-

line misses are allowed. Specially considering a global setting in order to take advantage of its

load-balancing properties. Thus, it is also a possibility to pursue this idea of work-stealing in

real-time settings as it appears to be very promising.

Finally, this dissertation focused on both problems in an independent manner, the problem of

scheduling parallel real-time tasks and the problem of resource sharing in multiprocessor systems.

However, for future work, we would like to consider the complex problem of considering both

problems in conjunction, and if possible, to achieve an efficient solution.

102 Conclusion

References

Andreas Abel, Florian Benz, Johannes Doerfert, Barbara Dörr, Sebastian Hahn, Florian Hau-

penthal, Michael Jacobs, Amir H. Moin, Jan Reineke, Bernhard Schommer, and Reinhard Wil-

helm. Impact of resource sharing on performance and performance prediction: A survey. In

Pedro R. D’Argenio and Hernán Melgratti, editors, CONCUR 2013 – Concurrency Theory,

pages 25–43, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg. ISBN 978-3-642-40184-8.

Umut A. Acar, Guy E. Blelloch, and Robert D. Blumofe. The data locality of work stealing. In

Proceedings of the Twelfth Annual ACM Symposium on Parallel Algorithms and Architectures,

SPAA ’00, pages 1–12, New York, NY, USA, 2000. ACM. ISBN 1-58113-185-2. doi: 10.1145/

341800.341801. URL ❤tt♣✿✴✴❞♦✐✳❛❝♠✳♦r❣✴✶✵✳✶✶✹✺✴✸✹✶✽✵✵✳✸✹✶✽✵✶.

Adapteva. Epiphany architecture reference, April 2014. URL ❤tt♣✿✴✴✇✇✇✳❛❞❛♣t❡✈❛✳❝♦♠✴❞♦❝s✴
❡♣✐♣❤❛♥②❴❛r❝❤❴r❡❢✳♣❞❢.

Ahmed Alhammad. Memory Effcient Scheduling forMulticore Real-time Systems. PhD thesis,

University of Waterloo, 2016.

Ahmed Alhammad and Rodolfo Pellizzoni. Schedulability analysis of global memory-predictable

scheduling. In Proceedings of the 14th International Conference on Embedded Software, EM-

SOFT ’14, pages 20:1–20:10, 2014.

James H. Anderson, Vasile Bud, and UmaMaheswari C. Devi. An edf-based scheduling algorithm

for multiprocessor soft real-time systems. In Proceedings of the 17th Euromicro Conference on

Real-Time Systems, ECRTS ’05, pages 199–208, Washington, DC, USA, 2005. IEEE Computer

Society. ISBN 0-7695-2400-1. doi: 10.1109/ECRTS.2005.6. URL ❤tt♣✿✴✴❞①✳❞♦✐✳♦r❣✴✶✵✳
✶✶✵✾✴❊❈❘❚❙✳✷✵✵✺✳✻.

Björn Andersson and Jan Jonsson. Some insights on fixed-priority preemptive non-partitioned

multiprocessor scheduling. In Proceedings of the 21st IEEE Real-Time Systems Symposium –

Work-in-Progress session, Orlando, Florida, page 53–56, November 2000.

Bjorn Andersson and Eduardo Tovar. Multiprocessor scheduling with few preemptions. In Pro-

ceedings of the 12th IEEE International Conference on Embedded and Real-Time Comput-

ing Systems and Applications, RTCSA ’06, pages 322–334, Washington, DC, USA, 2006.

IEEE Computer Society. ISBN 0-7695-2676-4. doi: 10.1109/RTCSA.2006.45. URL ❤tt♣✿
✴✴❞①✳❞♦✐✳♦r❣✴✶✵✳✶✶✵✾✴❘❚❈❙❆✳✷✵✵✻✳✹✺.

Björn Andersson, Sanjoy Baruah, and Jan Jonsson. Static-priority scheduling on multiprocessors.

In Proceedings of the 22nd IEEE Real-Time Systems Symposium, RTSS ’01, pages 193–202,

Dec 2001. doi: 10.1109/REAL.2001.990610.

103

http://doi.acm.org/10.1145/341800.341801
http://www.adapteva.com/docs/epiphany_arch_ref.pdf
http://www.adapteva.com/docs/epiphany_arch_ref.pdf
http://dx.doi.org/10.1109/ECRTS.2005.6
http://dx.doi.org/10.1109/ECRTS.2005.6
http://dx.doi.org/10.1109/RTCSA.2006.45
http://dx.doi.org/10.1109/RTCSA.2006.45

104 REFERENCES

Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis, Parry Husbands,

Kurt Keutzer, David A. Patterson, William Lester Plishker, John Shalf, Samuel Webb Williams,

and Katherine A. Yelick. The landscape of parallel computing research: A view from berkeley.

Technical Report UCB/EECS-2006-183, EECS Department, University of California, Berkeley,

Dec 2006. URL ❤tt♣✿✴✴✇✇✇✳❡❡❝s✳❜❡r❦❡❧❡②✳❡❞✉✴P✉❜s✴❚❡❝❤❘♣ts✴✷✵✵✻✴❊❊❈❙✲✷✵✵✻✲✶✽✸✳
❤t♠❧.

Philip Axer, Sophie Quinton, Moritz Neukirchner, Rolf Ernst, Björn Dobel, and Hermann Hartig.

Response-time analysis of parallel fork-join workloads with real-time constraints. In Proceed-

ings of the 25th Euromicro Conference on Real-Time Systems, ECRTS ’13, pages 215–224, July

2013. doi: 10.1109/ECRTS.2013.31.

H. Aydin and Qi Yang. Energy-aware partitioning for multiprocessor real-time systems. In Parallel

and Distributed Processing Symposium, 2003. Proceedings. International, pages 9 pp.–, April

2003. doi: 10.1109/IPDPS.2003.1213225.

Benjamin Bado, Laurent George, Pierre Courbin, and Joël Goossens. A semi-partitioned ap-

proach for parallel real-time scheduling. In Proceedings of the 20th International Conference

on Real-Time and Network Systems, RTNS, pages 151–160, New York, NY, USA, 2012. ACM.

ISBN 978-1-4503-1409-1. doi: 10.1145/2392987.2393006. URL ❤tt♣✿✴✴❞♦✐✳❛❝♠✳♦r❣✴✶✵✳
✶✶✹✺✴✷✸✾✷✾✽✼✳✷✸✾✸✵✵✻.

Theodore P. Baker. Multiprocessor edf and deadline monotonic schedulability analysis. In Pro-

ceedings of the 24th IEEE International Real-Time Systems Symposium, RTSS ’03, pages 120–

129, 2003.

S. Baruah. The non-cyclic recurring real-time task model. In 2010 31st IEEE Real-Time Systems

Symposium, pages 173–182, Nov 2010. doi: 10.1109/RTSS.2010.19.

Sanjoy Baruah and Alan Burns. Sustainable scheduling analysis. In Proceedings of the 27th In-

ternational Real-Time Systems Symposium, RTSS ’06, pages 159–168, Washington, DC, USA,

2006. IEEE Computer Society. ISBN 0-7695-2761-2. doi: 10.1109/RTSS.2006.47. URL

❤tt♣✿✴✴❞①✳❞♦✐✳♦r❣✴✶✵✳✶✶✵✾✴❘❚❙❙✳✷✵✵✻✳✹✼.

Sanjoy Baruah, Deji Chen, Sergey Gorinsky, and Aloysius Mok. Generalized multiframe tasks.

Real-Time Syst., 17(1):5–22, July 1999. ISSN 0922-6443.

Sanjoy K. Baruah. Dynamic- and static-priority scheduling of recurring real-time tasks. Real-

Time Systems, 24(1):93–128, Jan 2003. ISSN 1573-1383. doi: 10.1023/A:1021711220939.

URL ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✷✸✴❆✿✶✵✷✶✼✶✶✷✷✵✾✸✾.

Sanjoy K. Baruah, Louis E. Rosier, and Rodney R. Howell. Algorithms and complexity concerning

the preemptive scheduling of periodic, real-time tasks on one processor. Real-Time Systems, 2

(4):301–324, Nov 1990. ISSN 1573-1383. doi: 10.1007/BF01995675. URL ❤tt♣s✿✴✴❞♦✐✳♦r❣✴
✶✵✳✶✵✵✼✴❇❋✵✶✾✾✺✻✼✺.

A. Bastoni, B. B. Brandenburg, and J. H. Anderson. Is semi-partitioned scheduling practical?

In 2011 23rd Euromicro Conference on Real-Time Systems, pages 125–135, July 2011. doi:

10.1109/ECRTS.2011.20.

M. Becker, D. Dasari, B. Nicolic, B. Akesson, V. Nélis, and T. Nolte. Contention-free execution of

automotive applications on a clustered many-core platform. In 2016 28th Euromicro Conference

on Real-Time Systems (ECRTS), pages 14–24, July 2016. doi: 10.1109/ECRTS.2016.14.

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
http://doi.acm.org/10.1145/2392987.2393006
http://doi.acm.org/10.1145/2392987.2393006
http://dx.doi.org/10.1109/RTSS.2006.47
https://doi.org/10.1023/A:1021711220939
https://doi.org/10.1007/BF01995675
https://doi.org/10.1007/BF01995675

REFERENCES 105

S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung, J. MacKay, M. Reif, L. Bao,

J. Brown, M. Mattina, C. C. Miao, C. Ramey, D. Wentzlaff, W. Anderson, E. Berger, N. Fair-

banks, D. Khan, F. Montenegro, J. Stickney, and J. Zook. Tile64 - processor: A 64-core soc

with mesh interconnect. In 2008 IEEE International Solid-State Circuits Conference - Digest

of Technical Papers, pages 88–598, Feb 2008. doi: 10.1109/ISSCC.2008.4523070.

Marko Bertogna and Michele Cirinei. Response-time analysis for globally scheduled symmetric

multiprocessor platforms. In Proceedings of the 28th IEEE Real-Time Systems Symposium,

RTSS ’07, pages 149–160, 2007.

Marko Bertogna, Michele Cirinei, and Giuseppe Lipari. Improved schedulability analysis of edf

on multiprocessor platforms. In Proceedings of the 17th Euromicro Conference on Real-Time

Systems, ECRTS ’05, pages 209–218, Washington, DC, USA, 2005. IEEE Computer Society.

ISBN 0-7695-2400-1. doi: 10.1109/ECRTS.2005.18. URL ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✶✵✾✴❊❈❘❚❙✳
✷✵✵✺✳✶✽.

Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded computations by work

stealing. Journal of the ACM, 46:720–748, September 1999. ISSN 0004-5411. doi: http:

//doi.acm.org/10.1145/324133.324234. URL ❤tt♣✿✴✴❞♦✐✳❛❝♠✳♦r❣✴✶✵✳✶✶✹✺✴✸✷✹✶✸✸✳✸✷✹✷✸✹.

Vincenzo Bonifaci, Alberto Marchetti-Spaccamela, Sebastian Stiller, and Andreas Wiese. Feasi-

bility analysis in the sporadic dag task model. In Proceedings of the 25th Euromicro Conference

on Real-Time Systems, ECRTS ’13, pages 225–233, July 2013. doi: 10.1109/ECRTS.2013.32.

John Carpenter, Shelby Funk, Philip Holman, Anand Srinivasan, James Anderson, and Sanjoy

Baruah. A categorization of real-time multiprocessor scheduling problems and algorithms. In

Handbook on Scheduling Algorithms, Methods, and Models. Chapman Hall/CRC, Boca, 2004.

Sudipta Chattopadhyay, Abhik Roychoudhury, and Tulika Mitra. Modeling shared cache and

bus in multi-cores for timing analysis. In Proceedings of the 13th International Workshop on

Software & Compilers for Embedded Systems, SCOPES ’10, pages 6:1–6:10, New York,

NY, USA, 2010. ACM. ISBN 978-1-4503-0084-1. doi: 10.1145/1811212.1811220. URL

❤tt♣✿✴✴❞♦✐✳❛❝♠✳♦r❣✴✶✵✳✶✶✹✺✴✶✽✶✶✷✶✷✳✶✽✶✶✷✷✵.

Hoon Sung Chwa, Jinkyu Lee, Kieu-My Phan, Arvind Easwaran, and Insik Shin. Global edf

schedulability analysis for synchronous parallel tasks on multicore platforms. In Proceedings

of the 25th Euromicro Conference on Real-Time Systems, ECRTS ’13, pages 25–34, 2013.

Sébastien Collette, Liliana Cucu, and Joël Goossens. Integrating job parallelism in real-time

scheduling theory. Information Processing Letters, 106(5):180–187, May 2008. ISSN 0020-

0190. doi: 10.1016/j.ipl.2007.11.014. URL ❤tt♣✿✴✴❞①✳❞♦✐✳♦r❣✴✶✵✳✶✵✶✻✴❥✳✐♣❧✳✷✵✵✼✳✶✶✳✵✶✹.

L. Cucu and Joel Goossens. Feasibility intervals for multiprocessor fixed-priority scheduling of

arbitrary deadline periodic systems. In 2007 Design, Automation Test in Europe Conference

Exhibition, pages 1–6, April 2007. doi: 10.1109/DATE.2007.364536.

Liliana Cucu and Joel Goossens. Feasibility intervals for fixed-priority real-time scheduling on

uniform multiprocessors. In 2006 IEEE Conference on Emerging Technologies and Factory

Automation, pages 397–404, Sept 2006. doi: 10.1109/ETFA.2006.355388.

D. Dasari, B. Akesson, V. Nélis, M. A. Awan, and S. M. Petters. Identifying the sources of

unpredictability in cots-based multicore systems. In 2013 8th IEEE International Symposium

https://doi.org/10.1109/ECRTS.2005.18
https://doi.org/10.1109/ECRTS.2005.18
http://doi.acm.org/10.1145/324133.324234
http://doi.acm.org/10.1145/1811212.1811220
http://dx.doi.org/10.1016/j.ipl.2007.11.014

106 REFERENCES

on Industrial Embedded Systems (SIES), pages 39–48, June 2013. doi: 10.1109/SIES.2013.

6601469.

Robert I. Davis and Alan Burns. A survey of hard real-time scheduling for multiprocessor systems.

ACM Computing Surveys, 43(4):35:1–35:44, October 2011a. ISSN 0360-0300. doi: 10.1145/

1978802.1978814. URL ❤tt♣✿✴✴❞♦✐✳❛❝♠✳♦r❣✴✶✵✳✶✶✹✺✴✶✾✼✽✽✵✷✳✶✾✼✽✽✶✹.

Robert I. Davis and Alan Burns. Improved priority assignment for global fixed priority pre-emptive

scheduling in multiprocessor real-time systems. Real-Time Systems, 47(1):1–40, 2011b.

Benôit Dupont de Dinechin, Renaud Ayrignac, Pierre-Edouard Beaucamps, Patrice Couvert,

Benôit Ganne, Pierre Guironnet de Massas, François Jacquet, Samuel Jones, Nicolas Morey

Chaisemartin, Frédéric Riss, and Thierry Strudel. A clustered manycore processor architecture

for embedded and accelerated applications. In 2013 IEEE High Performance Extreme Comput-

ing Conference (HPEC), pages 1–6, Sept 2013. doi: 10.1109/HPEC.2013.6670342.

Javier Diaz, Camelia Munoz-Caro, and Alfonso Nino. A survey of parallel programming models

and tools in the multi and many-core era. Parallel and Distributed Systems, IEEE Transactions

on, 23(8):1369–1386, Aug 2012. ISSN 1045-9219.

François Dorin, Patrick Meumeu Yomsi, Joël Goossens, and Pascal Richard. Semi-partitioned

hard real-time scheduling with restricted migrations upon identical multiprocessor platforms.

CoRR, abs/1006.2637, 2010.

Maciej Drozdowski. Real-time scheduling of linear speedup parallel tasks. Information Processing

Letters, 57(1):35–40, January 1996. ISSN 0020-0190. doi: 10.1016/0020-0190(95)00174-3.

URL ❤tt♣✿✴✴❞①✳❞♦✐✳♦r❣✴✶✵✳✶✵✶✻✴✵✵✷✵✲✵✶✾✵✭✾✺✮✵✵✶✼✹✲✸.

Guy Durrieu, Madeleine Faugère, Sylvain Girbal, Daniel Gracia Pérez, Claire Pagetti, and Wolf-

gang Puffitsch. Predictable flight management system implementation on a multicore processor.

In Embedded Real Time Software and Systems (ERTS’14), 2014a.

Guy Durrieu, Madeleine Faugère, Sylvain Girbal, Daniel Gracia Perez, Claire Pagetti, and Wolf-

gang Puffitsch. Predictable flight management system implementation on a multicore processor.

In Embedded Real Time Software and Systems (ERTS’14), Toulouse, France, February 2014b.

Vincent W. Freeh. A comparison of implicit and explicit parallel programming. J. Parallel Distrib.

Comput., 34(1):50–65, April 1996. ISSN 0743-7315. doi: 10.1006/jpdc.1996.0045. URL

❤tt♣✿✴✴❞①✳❞♦✐✳♦r❣✴✶✵✳✶✵✵✻✴❥♣❞❝✳✶✾✾✻✳✵✵✹✺.

Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implementation of the cilk-5

multithreaded language. SIGPLAN Not., 33:212–223, May 1998. ISSN 0362-1340. doi: http:

//doi.acm.org/10.1145/277652.277725. URL ❤tt♣✿✴✴❞♦✐✳❛❝♠✳♦r❣✴✶✵✳✶✶✹✺✴✷✼✼✻✺✷✳✷✼✼✼✷✺.

Free Software Foundation FSF. Gomp project, November 2014. URL ❤tt♣s✿✴✴❣❝❝✳❣♥✉✳♦r❣✴
♣r♦❥❡❝ts✴❣♦♠♣✴.

Bill O. Gallmeister. POSIX.4: Programming for the Real World. O’Reilly & Associates, Inc.,

Sebastopol, CA, USA, 1995. ISBN 1-56592-074-0.

Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to the Theory of

NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990. ISBN 0716710455.

http://doi.acm.org/10.1145/1978802.1978814
http://dx.doi.org/10.1016/0020-0190(95)00174-3
http://dx.doi.org/10.1006/jpdc.1996.0045
http://doi.acm.org/10.1145/277652.277725
https://gcc.gnu.org/projects/gomp/
https://gcc.gnu.org/projects/gomp/

REFERENCES 107

Sylvain Girbal, Daniel Gracia Pérez, Jimmy Le Rhun, Madeleine Faugère, Claire Pagetti, and Guy

Durrieu. A complete tool-chain for an interference-free deployment of avionic applications on

multi-core systems. In 2015 IEEE/AIAA 34th Digital Avionics Systems Conference (DASC),

pages 1–13, 2015.

Joël Goossens and Vandy Berten. Gang ftp scheduling of periodic and parallel rigid real-time

tasks. CoRR, abs/1006.2617, 2010.

Joël Goossens, Pascal Richard, Markus Lindström, Irina Iulia Lupu, and Frédéric Ridouard. Job

partitioning strategies for multiprocessor scheduling of real-time periodic tasks with restricted

migrations. In Proceedings of the 20th International Conference on Real-Time and Network

Systems, RTNS ’12, pages 141–150, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-

1409-1.

Giovani Gracioli, Ahmed Alhammad, Renato Mancuso, Antônio Augusto Fröhlich, and Rodolfo

Pellizzoni. A survey on cache management mechanisms for real-time embedded systems. ACM

Comput. Surv., 48(2):32:1–32:36, November 2015. ISSN 0360-0300. doi: 10.1145/2830555.

URL ❤tt♣✿✴✴❞♦✐✳❛❝♠✳♦r❣✴✶✵✳✶✶✹✺✴✷✽✸✵✺✺✺.

N. Guan, W. Yi, Z. Gu, Q. Deng, and G. Yu. New schedulability test conditions for non-preemptive

scheduling on multiprocessor platforms. In 2008 Real-Time Systems Symposium, pages 137–

146, 2008.

Nan Guan, Martin Stigge, Wang Yi, and Ge Yu. New response time bounds for fixed priority

multiprocessor scheduling. In Proceedings of the 30th Real-Time Systems Symposium, RTSS

’09, pages 387–397, 2009.

Rhan Ha and Jane W.S. Liu. Validating timing constraints in multiprocessor and distributed real-

time systems. In Proceedings of the 14th International Conference on Distributed Computing

Systems, pages 162–171, Jun 1994. doi: 10.1109/ICDCS.1994.302407.

Ching-Chih Han and Kwei-Jay Lin. Scheduling parallelizable jobs on multiprocessors. In IEEE

Real-Time Systems Symposium, pages 59–67, 1989.

Shams Imam and Vivek Sarkar. Load balancing prioritized tasks via work-stealing. In Jesper Lars-

son Träff, Sascha Hunold, and Francesco Versaci, editors, Euro-Par 2015: Parallel Processing,

pages 222–234, Berlin, Heidelberg, 2015. Springer Berlin Heidelberg. ISBN 978-3-662-48096-

0.

M. Ivers, R. Ernst, and S. Schliecker. Integrated analysis of communicating tasks in mpsocs. In

Proceedings of the 4th International Conference on Hardware/Software Codesign and System

Synthesis (CODES+ISSS ’06), pages 288–293, Oct 2006. doi: 10.1145/1176254.1176325.

Klaus Jansen. Scheduling malleable parallel tasks: An asymptotic fully polynomial-time approx-

imation scheme. In Proceedings of the 10th Annual European Symposium on Algorithms, ESA

’02, pages 562–573, London, UK, UK, 2002. Springer-Verlag. ISBN 3-540-44180-8. URL

❤tt♣✿✴✴❞❧✳❛❝♠✳♦r❣✴❝✐t❛t✐♦♥✳❝❢♠❄✐❞❂✻✹✼✾✶✷✳✼✹✵✻✼✵.

B. Kalyanasundaram and K. Pruhs. Speed is as powerful as clairvoyance [scheduling problems].

In Proceedings of IEEE 36th Annual Foundations of Computer Science, pages 214–221, Oct

1995. doi: 10.1109/SFCS.1995.492478.

http://doi.acm.org/10.1145/2830555
http://dl.acm.org/citation.cfm?id=647912.740670

108 REFERENCES

Jaeyeon Kang and D.G. Waddington. Load balancing aware real-time task partitioning in mul-

ticore systems. In Embedded and Real-Time Computing Systems and Applications (RTCSA),

2012 IEEE 18th International Conference on, pages 404–407, Aug 2012. doi: 10.1109/RTCSA.

2012.71.

S. Kato, N. Yamasaki, and Y. Ishikawa. Semi-partitioned scheduling of sporadic task systems on

multiprocessors. In 2009 21st Euromicro Conference on Real-Time Systems, pages 249–258,

July 2009. doi: 10.1109/ECRTS.2009.22.

Shinpei Kato and Yutaka Ishikawa. Gang edf scheduling of parallel task systems. In Proceedings

of the 30th IEEE Real-Time Systems Symposium, RTSS ’09, pages 459–468, Washington, DC,

USA, 2009. IEEE Computer Society. ISBN 978-0-7695-3875-4. doi: 10.1109/RTSS.2009.42.

URL ❤tt♣✿✴✴❞①✳❞♦✐✳♦r❣✴✶✵✳✶✶✵✾✴❘❚❙❙✳✷✵✵✾✳✹✷.

T. Kelter, H. Falk, P. Marwedel, S. Chattopadhyay, and A. Roychoudhury. Bus-aware multicore

wcet analysis through tdma offset bounds. In 2011 23rd Euromicro Conference on Real-Time

Systems, pages 3–12, July 2011. doi: 10.1109/ECRTS.2011.9.

Donald E. Knuth. The Art of Computer Programming, Volume 1 (3rd Ed.): Fundamental Algo-

rithms. Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA, 1997. ISBN

0-201-89683-4.

Martin Korsgaard and Sverre Hendseth. Schedulability analysis of malleable tasks with arbitrary

parallel structure. Real-Time Computing Systems and Applications, International Workshop on,

1:3–14, 2011. ISSN 1533-2306. doi: http://doi.ieeecomputersociety.org/10.1109/RTCSA.2011.

39.

Karthik Lakshmanan, Shinpei Kato, and Ragunathan (Raj) Rajkumar. Scheduling parallel real-

time tasks on multi-core processors. In Proceedings of the 31st IEEE Real-Time Systems Sym-

posium, RTSS ’10, pages 259–268, Washington, DC, USA, 2010. IEEE Computer Society.

ISBN 978-0-7695-4298-0. doi: 10.1109/RTSS.2010.42. URL ❤tt♣✿✴✴❞①✳❞♦✐✳♦r❣✴✶✵✳✶✶✵✾✴
❘❚❙❙✳✷✵✶✵✳✹✷.

Andrew Lenharth, Donald Nguyen, and Keshav Pingali. Priority queues are not good concurrent

priority schedulers. Technical Report TR-11-39, The University of Texas at Austin, Department

of Computer Sciences, November 2011.

Patrick Leteinturier. Multi-core processors: Driving the evolution of

automotive electronics architectures, September 2007. URL ❤tt♣s✿
✴✴✇✇✇✳❡♠❜❡❞❞❡❞✳❝♦♠✴❞❡s✐❣♥✴♠❝✉s✲♣r♦❝❡ss♦rs✲❛♥❞✲s♦❝s✴✹✵✵✼✶✽✵✴
▼✉❧t✐✲❈♦r❡✲Pr♦❝❡ss♦rs✲❉r✐✈✐♥❣✲t❤❡✲❊✈♦❧✉t✐♦♥✲♦❢✲❆✉t♦♠♦t✐✈❡✲❊❧❡❝tr♦♥✐❝s✲❆r❝❤✐t❡❝t✉r❡s.

Joseph Y.-T. Leung and Jennifer Whitehead. On the complexity of fixed-priority scheduling of

periodic, real-time tasks. Performance Evaluation, 2(4):237 – 250, 1982. ISSN 0166-5316.

doi: https://doi.org/10.1016/0166-5316(82)90024-4. URL ❤tt♣✿✴✴✇✇✇✳s❝✐❡♥❝❡❞✐r❡❝t✳❝♦♠✴
s❝✐❡♥❝❡✴❛rt✐❝❧❡✴♣✐✐✴✵✶✻✻✺✸✶✻✽✷✾✵✵✷✹✹.

J. Li, S. Dinh, K. Kieselbach, K. Agrawal, C. Gill, and C. Lu. Randomized work stealing for

large scale soft real-time systems. In 2016 IEEE Real-Time Systems Symposium (RTSS), pages

203–214, Nov 2016. doi: 10.1109/RTSS.2016.028.

http://dx.doi.org/10.1109/RTSS.2009.42
http://dx.doi.org/10.1109/RTSS.2010.42
http://dx.doi.org/10.1109/RTSS.2010.42
https://www.embedded.com/design/mcus-processors-and-socs/4007180/Multi-Core-Processors-Driving-the-Evolution-of-Automotive-Electronics-Architectures
https://www.embedded.com/design/mcus-processors-and-socs/4007180/Multi-Core-Processors-Driving-the-Evolution-of-Automotive-Electronics-Architectures
https://www.embedded.com/design/mcus-processors-and-socs/4007180/Multi-Core-Processors-Driving-the-Evolution-of-Automotive-Electronics-Architectures
http://www.sciencedirect.com/science/article/pii/0166531682900244
http://www.sciencedirect.com/science/article/pii/0166531682900244

REFERENCES 109

Ben Lickly, Isaac Liu, Sungjun Kim, Hiren D. Patel, Stephen A. Edwards, and Edward A. Lee.

Predictable programming on a precision timed architecture. In Proceedings of the 2008 Inter-

national Conference on Compilers, Architectures and Synthesis for Embedded Systems, CASES

’08, pages 137–146, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-469-0. doi:

10.1145/1450095.1450117. URL ❤tt♣✿✴✴❞♦✐✳❛❝♠✳♦r❣✴✶✵✳✶✶✹✺✴✶✹✺✵✵✾✺✳✶✹✺✵✶✶✼.

C. L. Liu and James W. Layland. Scheduling algorithms for multiprogramming in a hard-real-time

environment. J. ACM, 20(1):46–61, January 1973. ISSN 0004-5411. doi: 10.1145/321738.

321743. URL ❤tt♣✿✴✴❞♦✐✳❛❝♠✳♦r❣✴✶✵✳✶✶✹✺✴✸✷✶✼✸✽✳✸✷✶✼✹✸.

Cong Liu and James H. Anderson. Supporting soft real-time dag-based systems on multiproces-

sors with no utilization loss. In Proceedings of the 31st Real-Time Systems Symposium, RTSS

’10, pages 3–13, Nov 2010.

Cláudio Maia, Luís Nogueira, and Luís Miguel Pinho. Supporting real-time parallel task models

with work-stealing, March 2012. Research Poster at The Designing for Embedded Parallel

Computing Platforms: Architectures, Design Tools, and Applications (DEPCP’2012) (DATE

Workshop).

Cláudio Maia, Luís Nogueira, Luís Miguel Pinho, and Marko Bertogna. Response-time analysis

of fork/join tasks in multiprocessor systems. In Proceedings of Work-in-Progress Session of the

25th Euromicro Conference on Real-Time Systems, ECRTS ’13, Paris, France, July 2013. Work

in Progress Session.

Cláudio Maia, Marko Bertogna, Luís Nogueira, and Luis Miguel Pinho. Response-time analysis of

synchronous parallel tasks in multiprocessor systems. In Proceedings of the 22nd International

Conference on Real-Time Networks and Systems, RTNS ’14, pages 3:3–3:12, New York, NY,

USA, 2014. ACM. ISBN 978-1-4503-2727-5. doi: 10.1145/2659787.2659815.

Cláudio Maia, Patrick Meumeu Yomsi, Luís Nogueira, and Luis Miguel Pinho. Semi-partitioned

scheduling of fork-join tasks using work-stealing. In 2015 IEEE 13th International Conference

on Embedded and Ubiquitous Computing, pages 25–34, Oct 2015. doi: 10.1109/EUC.2015.30.

Cláudio Maia, Luís Nogueira, Luis Miguel Pinho, and Daniel Gracia Pérez. A closer look into the

aer model. In 2016 IEEE 21st International Conference on Emerging Technologies and Factory

Automation (ETFA), pages 1–8, Sept 2016. doi: 10.1109/ETFA.2016.7733567.

Cláudio Maia, Geoffrey Nelissen, Luís Nogueira, Luis Miguel Pinho, and Daniel Gracia Pérez.

Schedulability analysis for global fixed-priority scheduling of the 3-phase task model. In 2017

IEEE 23rd International Conference on Embedded and Real-Time Computing Systems and Ap-

plications (RTCSA), pages 1–10, Aug 2017a. doi: 10.1109/RTCSA.2017.8046313.

Cláudio Maia, Patrick Meumeu Yomsi, Luís Nogueira, and Luis Miguel Pinho. Real-time semi-

partitioned scheduling of fork-join tasks using work-stealing. EURASIP Journal on Embedded

Systems, 2017(1):31, Sep 2017b. ISSN 1687-3963. doi: 10.1186/s13639-017-0079-5.

G. Manimaran, C. Siva Ram Murthy, and Krithi Ramamritham. A new approach for scheduling of

parallelizable tasks in real-time multiprocessor systems. Real-Time Systems, 15(1):39–60, July

1998. ISSN 0922-6443. doi: 10.1023/A:1008022923184. URL ❤tt♣✿✴✴❞①✳❞♦✐✳♦r❣✴✶✵✳✶✵✷✸✴❆✿
✶✵✵✽✵✷✷✾✷✸✶✽✹.

http://doi.acm.org/10.1145/1450095.1450117
http://doi.acm.org/10.1145/321738.321743
http://dx.doi.org/10.1023/A:1008022923184
http://dx.doi.org/10.1023/A:1008022923184

110 REFERENCES

Sebastian Mattheis, Tobias Schuele, Andreas Raabe, Thomas Henties, and Urs Gleim. Work

stealing strategies for parallel stream processing in soft real-time systems. In Proceed-

ings of the 25th international conference on Architecture of Computing Systems, ARCS’12,

pages 172–183, Berlin, Heidelberg, 2012. Springer-Verlag. ISBN 978-3-642-28292-8. doi:

10.1007/978-3-642-28293-5_15. URL ❤tt♣✿✴✴❞①✳❞♦✐✳♦r❣✴✶✵✳✶✵✵✼✴✾✼✽✲✸✲✻✹✷✲✷✽✷✾✸✲✺❴✶✺.

A.K. Mok and Deji Chen. A multiframe model for real-time tasks. Software Engineering, IEEE

Transactions on, 23(10):635–645, Oct 1997. ISSN 0098-5589.

Aurélien Monot, Nicolas Navet, Bernard Bavoux, and Françoise Simonot-Lion. Multicore

scheduling in automotive ECUs. In Embedded Real Time Software and Systems (ERTS’10),

Toulouse, France, May 2010.

N. Tchidjo Moyo, E. Nicollet, F. Lafaye, and C. Moy. On schedulability analysis of non-cyclic

generalized multiframe tasks. In 2010 22nd Euromicro Conference on Real-Time Systems, pages

271–278, July 2010. doi: 10.1109/ECRTS.2010.24.

MPI. Message passing interface. ❤tt♣✿✴✴✇✇✇✳♠♣✐✲❢♦r✉♠✳♦r❣✴, January 2014.

G. J. Narlikar. Scheduling threads for low space requirement and good locality. Theory of Comput-

ing Systems, 35(2):151–187, 2002. ISSN 1433-0490. doi: 10.1007/s00224-001-1030-6. URL

❤tt♣✿✴✴❞①✳❞♦✐✳♦r❣✴✶✵✳✶✵✵✼✴s✵✵✷✷✹✲✵✵✶✲✶✵✸✵✲✻.

Vincent Nélis, Patrick Meumeu Yomsi, and Luís Miguel Pinho. The Variability of Application

Execution Times on a Multi-Core Platform. In Martin Schoeberl, editor, 16th International

Workshop on Worst-Case Execution Time Analysis (WCET 2016), volume 55 of OpenAccess

Series in Informatics (OASIcs), pages 6:1–6:11, Dagstuhl, Germany, 2016. Schloss Dagstuhl–

Leibniz-Zentrum fuer Informatik. ISBN 978-3-95977-025-5. doi: 10.4230/OASIcs.WCET.

2016.6. URL ❤tt♣✿✴✴❞r♦♣s✳❞❛❣st✉❤❧✳❞❡✴♦♣✉s✴✈♦❧❧t❡①t❡✴✷✵✶✻✴✻✽✾✾.

Luís Nogueira and Luís Miguel Pinho. Server-based scheduling of parallel real-time tasks. In

Proceedings of the 10th International Conference on Embedded Software, EMSOFT ’12, pages

73–82, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1425-1. doi: 10.1145/2380356.

2380374. URL ❤tt♣✿✴✴❞♦✐✳❛❝♠✳♦r❣✴✶✵✳✶✶✹✺✴✷✸✽✵✸✺✻✳✷✸✽✵✸✼✹.

Luís Nogueira, José C. Fonseca, Cláudio Maia, and Luís Miguel Pinho. Dynamic global schedul-

ing of parallel real-time tasks. In Proceedings of the 15th International Conference on Com-

putational Science and Engineering, CSE ’12, pages 500–507, Washington, DC, USA, 2012.

IEEE Computer Society. ISBN 978-0-7695-4914-9. doi: 10.1109/ICCSE.2012.75. URL

❤tt♣✿✴✴❞①✳❞♦✐✳♦r❣✴✶✵✳✶✶✵✾✴■❈❈❙❊✳✷✵✶✷✳✼✺.

J. Nowotsch and M. Paulitsch. Leveraging multi-core computing architectures in avionics. In

Dependable Computing Conference (EDCC), 2012 Ninth European, pages 132–143, May 2012.

doi: 10.1109/EDCC.2012.27.

OpenMP. Openmp. ❤tt♣✿✴✴♦♣❡♥♠♣✳♦r❣✴, June 2011.

Oracle. Jsr 166: Concurrency utilities, June 2011. URL ❤tt♣✿✴✴✇✇✇✳❥❝♣✳♦r❣✴❡♥✴❥sr✴❞❡t❛✐❧❄✐❞❂
✶✻✻.

Rodolfo Pellizzoni, Andreas Schranzhofer, Jian-Jia Chen, Marco Caccamo, and Lothar Thiele.

Worst case delay analysis for memory interference in multicore systems. In Proceedings of the

Conference on Design, Automation and Test in Europe, DATE ’10, pages 741–746, 2010.

http://dx.doi.org/10.1007/978-3-642-28293-5_15
http://www.mpi-forum.org/
http://dx.doi.org/10.1007/s00224-001-1030-6
http://drops.dagstuhl.de/opus/volltexte/2016/6899
http://doi.acm.org/10.1145/2380356.2380374
http://dx.doi.org/10.1109/ICCSE.2012.75
http://openmp.org/
http://www.jcp.org/en/jsr/detail?id=166
http://www.jcp.org/en/jsr/detail?id=166

REFERENCES 111

Rodolfo Pellizzoni, Emiliano Betti, Stanley Bak, Gang Yao, John Criswell, Marco Caccamo, and

Russell Kegley. A predictable execution model for cots-based embedded systems. In Proceed-

ings of the 2011 17th IEEE Real-Time and Embedded Technology and Applications Symposium,

RTAS ’11, pages 269–279, 2011.

Cynthia A. Phillips, Cliff Stein, Eric Torng, and Joel Wein. Optimal time-critical scheduling via

resource augmentation (extended abstract). In Proceedings of the Twenty-ninth Annual ACM

Symposium on Theory of Computing, STOC ’97, pages 140–149, New York, NY, USA, 1997.

ACM. ISBN 0-89791-888-6. doi: 10.1145/258533.258570. URL ❤tt♣✿✴✴❞♦✐✳❛❝♠✳♦r❣✴✶✵✳
✶✶✹✺✴✷✺✽✺✸✸✳✷✺✽✺✼✵.

Luís Miguel Pinho, Vincent Nélis, Patrick Meumeu Yomsi, Eduardo Quiñones, Marko Bertogna,

Paolo Burgio, Andrea Marongiu, Claudio Scordino, Paolo Gai, Michele Ramponi, and Michal

Mardiak. P-socrates: A parallel software framework for time-critical many-core systems.

Microprocessors and Microsystems, 39(8):1190 – 1203, 2015. ISSN 0141-9331. doi:

https://doi.org/10.1016/j.micpro.2015.06.004. URL ❤tt♣✿✴✴✇✇✇✳s❝✐❡♥❝❡❞✐r❡❝t✳❝♦♠✴s❝✐❡♥❝❡✴
❛rt✐❝❧❡✴♣✐✐✴❙✵✶✹✶✾✸✸✶✶✺✵✵✵✽✸✻.

Manar Qamhieh, Laurent George, and Serge Midonnet. A stretching algorithm for parallel real-

time dag tasks on multiprocessor systems. In Proceedings of the 22Nd International Conference

on Real-Time Networks and Systems, RTNS ’14, pages 13:13–13:22, New York, NY, USA,

2014. ACM. ISBN 978-1-4503-2727-5. doi: 10.1145/2659787.2659818. URL ❤tt♣✿✴✴❞♦✐✳
❛❝♠✳♦r❣✴✶✵✳✶✶✹✺✴✷✻✺✾✼✽✼✳✷✻✺✾✽✶✽.

Petar Radojković, Sylvain Girbal, Arnaud Grasset, Eduardo Quiñones, Sami Yehia, and Fran-

cisco J. Cazorla. On the evaluation of the impact of shared resources in multithreaded cots

processors in time-critical environments. ACM Trans. Archit. Code Optim., 8(4):34:1–34:25,

January 2012. ISSN 1544-3566. doi: 10.1145/2086696.2086713. URL ❤tt♣✿✴✴❞♦✐✳❛❝♠✳♦r❣✴
✶✵✳✶✶✹✺✴✷✵✽✻✻✾✻✳✷✵✽✻✼✶✸.

A Saifullah, D. Ferry, J. Li, K. Agrawal, C. Lu, and C. Gill. Parallel real-time scheduling of dags.

Parallel and Distributed Systems, IEEE Transactions on, PP(99):1–1, 2014. ISSN 1045-9219.

Abusayeed Saifullah, Kunal Agrawal, Chenyang Lu, and Christopher Gill. Multi-core real-time

scheduling for generalized parallel task models. In Proceedings of the 32nd IEEE Real-Time

Systems Symposium, volume 0 of RTSS ’11, pages 217–226, Los Alamitos, CA, USA, Nov

2011. IEEE Computer Society. doi: http://doi.ieeecomputersociety.org/10.1109/RTSS.2011.27.

Simon Schliecker, Mircea Negrean, and Rolf Ernst. Bounding the shared resource load for the

performance analysis of multiprocessor systems. In Proceedings of the Conference on Design,

Automation and Test in Europe, DATE ’10, pages 759–764, 3001 Leuven, Belgium, Belgium,

2010. European Design and Automation Association. ISBN 978-3-9810801-6-2. URL ❤tt♣✿
✴✴❞❧✳❛❝♠✳♦r❣✴❝✐t❛t✐♦♥✳❝❢♠❄✐❞❂✶✽✼✵✾✷✻✳✶✽✼✶✶✵✽.

A. Schranzhofer, J. J. Chen, and L. Thiele. Timing analysis for tdma arbitration in resource

sharing systems. In 2010 16th IEEE Real-Time and Embedded Technology and Applications

Symposium, pages 215–224, 2010.

Abraham Silberschatz, Peter Baer Galvin, and Greg Gagne. Operating System Concepts. Wiley

Publishing, 8th edition, 2008. ISBN 0470128720.

http://doi.acm.org/10.1145/258533.258570
http://doi.acm.org/10.1145/258533.258570
http://www.sciencedirect.com/science/article/pii/S0141933115000836
http://www.sciencedirect.com/science/article/pii/S0141933115000836
http://doi.acm.org/10.1145/2659787.2659818
http://doi.acm.org/10.1145/2659787.2659818
http://doi.acm.org/10.1145/2086696.2086713
http://doi.acm.org/10.1145/2086696.2086713
http://dl.acm.org/citation.cfm?id=1870926.1871108
http://dl.acm.org/citation.cfm?id=1870926.1871108

112 REFERENCES

John A. Stankovic. Misconceptions about real-time computing: A serious problem for next-

generation systems. Computer, 21(10):10–19, October 1988. ISSN 0018-9162. doi:

10.1109/2.7053. URL ❤tt♣✿✴✴❞①✳❞♦✐✳♦r❣✴✶✵✳✶✶✵✾✴✷✳✼✵✺✸.

R. Tabish, R. Mancuso, S. Wasly, A. Alhammad, S. S. Phatak, R. Pellizzoni, and M. Caccamo.

A real-time scratchpad-centric os for multi-core embedded systems. In 2016 IEEE Real-Time

and Embedded Technology and Applications Symposium (RTAS), pages 1–11, April 2016. doi:

10.1109/RTAS.2016.7461321.

L. Thiele, S. Chakraborty, and M. Naedele. Real-time calculus for scheduling hard real-time sys-

tems. In 2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies

for the 21st Century. Proceedings (IEEE Cat No.00CH36353), volume 4, pages 101–104 vol.4,

2000. doi: 10.1109/ISCAS.2000.858698.

Theo Ungerer, Francisco Cazorla, Pascal Sainrat, Guillem Bernat, Zlatko Petrov, Christine

Rochange, Eduardo Quinones, Mike Gerdes, Marco Paolieri, Julian Wolf, Hugues Casse,

Sascha Uhrig, Irakli Guliashvili, Michael Houston, Floria Kluge, Stefan Metzlaff, and Jorg

Mische. Merasa: Multicore execution of hard real-time applications supporting analyzability.

IEEE Micro, 30(5):66–75, 2010. ISSN 0272-1732. doi: http://doi.ieeecomputersociety.org/10.

1109/MM.2010.78.

Qi Wang and Grabriel Parmer. Fjos: Practical, predictable, and efficient system support for

fork/join parallelism. In Proceedings of the 20th Real-Time and Embedded Technology and

Applications Symposium, RTAS ’14, Washington, DC, USA, 2014. IEEE Computer Society.

Wm. A. Wulf and Sally A. McKee. Hitting the memory wall: Implications of the obvi-

ous. SIGARCH Comput. Archit. News, 23(1):20–24, March 1995. ISSN 0163-5964. doi:

10.1145/216585.216588. URL ❤tt♣✿✴✴❞♦✐✳❛❝♠✳♦r❣✴✶✵✳✶✶✹✺✴✷✶✻✺✽✺✳✷✶✻✺✽✽.

Sergey Zhuravlev, Sergey Blagodurov, and Alexandra Fedorova. Addressing shared resource con-

tention in multicore processors via scheduling. In Proceedings of the Fifteenth Edition of AS-

PLOS on Architectural Support for Programming Languages and Operating Systems, ASP-

LOS XV, pages 129–142, New York, NY, USA, 2010. ACM. ISBN 978-1-60558-839-1. doi:

10.1145/1736020.1736036. URL ❤tt♣✿✴✴❞♦✐✳❛❝♠✳♦r❣✴✶✵✳✶✶✹✺✴✶✼✸✻✵✷✵✳✶✼✸✻✵✸✻.

http://dx.doi.org/10.1109/2.7053
http://doi.acm.org/10.1145/216585.216588
http://doi.acm.org/10.1145/1736020.1736036

	Front Page
	Resumo
	Abstract
	Acknowledgements
	List of Publications
	Table of Contents
	List of Figures
	1 Introduction
	1.1 Parallelism
	1.1.1 Example of an OpenMP Task

	1.2 Parallelism and Real-Time Systems
	1.3 Resource Sharing
	1.4 Thesis Statement
	1.5 Contributions
	1.6 Thesis Structure

	2 Background and Related Work
	2.1 Task Characterisation
	2.2 Platform Characterisation
	2.2.1 Processors
	2.2.2 Memory
	2.2.3 Memory Bus

	2.3 Multiprocessor Scheduling
	2.4 Parallel Real-Time Systems
	2.4.1 Parallel Task Models
	2.4.2 Earlier Parallel Models
	2.4.3 Recent Parallel Models

	3 Schedulability of Synchronous Parallel Tasks
	3.1 Introduction
	3.2 System Model
	3.3 Critical Interference of Parallel Tasks
	3.4 Response-Time Analysis
	3.5 Sliding Window Technique
	3.6 Decomposing the Carry-out Job
	3.7 Workload of a Task Within a Window
	3.8 Schedulability Condition
	3.9 Complexity
	3.10 Evaluation
	3.11 Summary

	4 Applying Work-stealing to Real-time Systems
	4.1 Introduction
	4.2 Randomised Work-stealing
	4.3 Limitations of Randomized Work-stealing with Respect to Real-Time Systems
	4.4 Literature on Real-Time Work-Stealing
	4.5 A New Data Structure
	4.6 Semi-partitioned Scheduling
	4.7 System Model
	4.7.1 Earliest Deadline First
	4.7.2 Multiframe Task Model

	4.8 Semi-partitioned Scheduling and Work-Stealing
	4.8.1 Task Assignment Phase
	4.8.2 Offline Scheduling Phase
	4.8.3 Online Scheduling Phase
	4.8.4 Example

	4.9 Tasks with Density Greater Than 1
	4.10 Schedulability Analysis
	4.11 Simulation Results
	4.11.1 Selected Heuristics
	4.11.2 FFDO versus WFD
	4.11.3 Overheads of the Approach

	4.12 Summary

	5 Schedulability of the 3-Phase Task Model
	5.1 Introduction
	5.2 System Model
	5.3 Runtime Execution Model
	5.4 3-Phase vs. G-EDF in COTS Systems
	5.4.1 Priority Assignment Policies
	5.4.2 Simulator's Scheduling Behaviour
	5.4.3 Experimental Settings
	5.4.4 Experimental Results

	5.5 Global Fixed-Priority Scheduling of the 3-Phase Task Model
	5.5.1 Scheduling Policy
	5.5.2 Background
	5.5.3 A Different Perspective
	5.5.4 Schedulability Analysis
	5.5.5 Experimental Results

	5.6 Summary

	6 Conclusion
	6.1 Future Work

	References

