S |

IPP HURRAY!

VN .
www.hurrav.pt /

Technical Report

Scheduling Arbitrary-Deadline Sporadic
Task Systems on Multiprocessors

Bjorn Andersson, Konstantinos Bletsas and
Sanjoy Baruah

HURRAY-TR-080501

Version: O
Date: 09-09-2008

Technical Report HURRAY-TR-080501 Scheduling Arbitrary-Deadline Sporadic Task Systems on Multiprocessors

Scheduling Arbitrary-Deadline Sporadic Task Systems on Multiprocessors

Bjorn Andersson, Konstantinos Bletsas and Sanjoy Baruah

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. Anténio Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail: bandersson@dei.isep.ipp.pt, ksbs@isep.ipp.pt, baruah@cs.unc.edu
http://www.hurray.isep.ipp.pt

Abstract

A new algorithm is proposed for scheduling preemptiblearbitrary-deadline sporadic task systems upon multiprocessor
platforms, with interprocessor migration permitted. This algorithmis based on a task-splitting approach --- while most
tasks areentirely assigned to specific processors, a few tasks (fewer thanthe number of processors) may be split across
two processors. This algorithm can be used for two distinct purposes: for actuallyscheduling specific sporadic task
systems, and for feasibilityanalysis. Simulation-based evaluation indicates that this algorithm offers asignificant
improvement on the ability to schedulearbitrary-deadline sporadic task systems as compared to thecontemporary state-
of-art.With regard to feasibility analysis, the new algorithm is proved tooffer superior performance guarantees in
comparison to prior feasibility tests.

© IPP Hurray! Research Group 1
www.hurray.isep.ipp.pt

Scheduling Arbitrary-Deadline Sporadic Tasks on Multiprocessors

Bjorn Anderssoh Konstantinos Bletsas Sanjoy Baruah

Abstract

A new algorithm is proposed for scheduling preemptible taaby-deadline sporadic task systems upon multiprocessor
platforms, with interprocessor migration permitted. Thigorithm is based on a task-splitting approach — while most
tasks are entirely assigned to specific processors, a fekg {d@swer than the number of processors) may be split acvass t
processors. This algorithm can be used for two distinct pags: for actually scheduling specific sporadic task system
and for feasibility analysis. Simulation-based evaluaiindicates that this algorithm offers a significant improwent on the
ability to schedule arbitrary-deadline sporadic task gyss as compared to the contemporary state-of-art. Withrdetga
feasibility analysis, the new algorithm is proved to offepsrior performance guarantees in comparison to prior fiedisy
tests.

1 Introduction

Consider the problem of preemptively schedulingporadically arriving tasks om identical processors. A task is
uniquely indexed in the range &.and a processor likewise in the rangeri..A task 7; generates a (potentially infinite)
sequence of jobs. The arrival times of these jobs cannot hieadled by the scheduling algorithm and aeriori unknown.

We assume that the time between two successive jobs by the teair; is at leastl;. Every job byr; requires at most
C; time units of execution over the nekx; time units after its arrival. We assume that D; andC; are real numbers and
0 < C; < D,. A processor executes at most one job at a time and a job isemotifed to execute on multiple processors
simultaneously.

A task set can, depending on its deadlines, be categorideaasgimplicit deadlinesconstrained deadlinesr arbitrary
deadlines A task set is said to be of implicit deadlinesvif : D; = T;. A task set is said to be of constrained deadlines
if Vi : D; < T;. Otherwise, a task set is said to be of arbitrary deadlines.civisider the arbitrary-deadline model in this
paper. In this model, a job may arrive although the deadlireepweviously released job of the same task has not yet ekpire
Because of this, there may be instants where two jobs of tine sask are ready for execution. We require that two jobs of
the same task are not permitted to execute simultaneoudly.this requirement, it follows that if a task hasC; > T; then
it is impossible to schedule that task to meet deadlinestit®reason, we assunig < T;.

Algorithms for scheduling sporadic task systems on mutipssors have traditionally been categorizegpasitioned
or global. Global scheduling stores tasks which have arrived but nihfed execution in one queue, shared by all proces-
sors. At any moment, the: highest-priority tasks among those are selected for ei@ctuan them processors. In contrast,
partitioned scheduling algorithms partition the task sethsthat all tasks in a partition are assigned to the samespsot.
Tasks may not migrate from one processor to another. Thégradessor scheduling problem is thus transformed to pialti
uniprocessor scheduling problems. This simplifies schiedand schedulability analysis as the wealth of resultsipno-
cessor scheduling can be reused. Partitioned schedufingthims suffer from an inherent performance limitatiorthat a
task may fail to be assigned to any processor although thédatilable processing capacity across all processoasgs |
Global scheduling has the potential to rectify this perfante limitation. In fact, there exist a family of algorithicelled
pfair [8, 1] which are able to schedule tasks to meet deadlineswkien up to 100% of the processing capacity is requested.

*IPP-HURRAY! Research Group, Polytechnic Institute of BESEP-IPP), Rua Dr. Antonio Bernardino de Almeida 4310@®72 Porto, Portugal —
bandersson@dei.isep.ipp.pt, ksbs@isep.ipp.pt
TDepartment of Computer Science, University of North CamliChapel Hill, NC 27599, USA — baruah@cs.unc.edu

Unfortunately, these algorithms have two drawbacks; thieyaly designed for implicit deadlines. Also, all task paeders
must be multiples of a time quantum and in every quantum a aslis selected for execution. Preemption counts can thus
be high [11].

Recent advances in the real-time scheduling theory havevenmade a new class [2, 12, 10, 5, 3] of algorithms available
with the purpose of offering the best of both global schedphind partitioning. Tasks are assigned to processors irya wa
similar to partitioning but if the task cannot be assigned firocessor then the task is “split” into two pieces and these
“pieces” are scheduled by a uniprocessor scheduling afgoion each processor. The splitting approach uses disgratoh
each processor which ensure that a split task never exemutes processors simultaneously.

The task splitting approach has been successfully, andyyidged in scheduling implicit-deadline systems. Andarso
et al. [2] designed an algorithm which can miss deadlinestlaffers the guarantee that even at high processor uiitimat
the finishing time is not too much later than its deadline dmsl @amount is low and bounded. Kato et al. [12] designed an
algorithm aiming to meet deadlines and it performed wellimudations. The task splitting approach has also been used
[10, 5, 3] to design algorithms for both periodic and sporddsks such that if at most a certain fraction (greater tig#)5
of the total processing capacity is requested then all dezslhre met. Despite these successes of the task splipfimgach
for scheduling implicit-deadline tasks, task splittingsheot been used for scheduling arbitrary-deadline spotadics. In
fact, we are not aware of any previous work (with task splittor some other approach) that aims for offering pre-roveti
guarantees in scheduling arbitrary-deadline tasks on ipmdessor with performance better than what partitigsichemes
can offer.

Our algorithm. In this paper, we present a new algorithm for schedulingti@nyi-deadline sporadic tasks on a multi-
processor that is based on task splitting. We call this #&lgorEDF-SSDTMIN/S), the name denotingarliestDeadline-
First scheduling of non-split tasks witBplit tasks scheduled iBlots of durationDTMIN/é. The symbol DTMIN denotes
min(D1,D»,....D,,T1,T5,...,1,), andd is an integer parameter() that is selected by the designer. Thus for a given task
system the value assigneddaletermines the scheduling slot size used. The smallerldtisige, the more frequently split
tasks migrate between the processors that they utilize. Awill see, by choosing different values fdthe designer is able

to trade offschedulability- the likelihood of a system being guaranteed schedulabde & fower number of preemptions.
More specifically, we will derive (Theorem 2) an upper boumdtbe number of preemptions per job in a schedule as a
function of 9 and the task parameters: the smaller the valug tife fewer the number of preemptions. We also quantify (in
Section 2.3) the amount by which the execution requiremafjtshs are “inflated” by our scheduling algorithm in order to
guarantee that all deadlines are met: we will see that tigetdhe value of, the smaller the amount of such inflation. Thus
a larger value ob makes it more likely that a particular task system will beetigtined to be schedulable, but the generated
schedule is likely to have a larger number of preemptions.

Using our algorithm. By choosing an appropriate value &§fwe can use our scheduling algorithm in two different ways.
First it can be used by a designergohedule a specific task seFor such a use, the run-time dispatching overhead is
important. Our algorithm uses no global data-structuresisiappropriate for that purpose. It is also important tontzn

a low number of preemptions and hence the valué should not be too large. For example choosinguch that 1<

0 < 4 seems reasonable. Baker [6] has conducted simulatiorrimep@s of randomly generated task sets of previously
known algorithms for arbitrary-deadline sporadic mulhgessor scheduling and evaluated them for the context vgnere
run-time guarantees are needed. Baker observed that ggispeaking, partitioned algorithms tend to perform betiten
global scheduling algorithms perhaps because partitisebdduling algorithms are based on uniprocessor schelitylab
tests whereas currently known global schedulability testd to be very pessimistic. The partitioning-based atgopriEDF-
FFD [6] was found to be the champion among all algorithmsistlidWe compare our new algorithm EDF-88{MIN/J)
with EDF-FFD in simulation experiments, with the same setsiBaker and we find that for every> 1, EDF-SSDTMIN/6)
offers a significant performance improvement.

A second use of our schedulability algorithm id@asibility analysis— determining whether a given task system can be
scheduled by a hypothetical optimal algorithm to always tadledeadlines. Currently no exact (necessary and sufficien
algorithms are known for performing feasibility analysisashitrary deadline sporadic task systems. In fact, altexntr
feasibility tests are based on actually using a specificdidimgy algorithm and performing schedulability analysisit. As
stated above, Baker [6] has observed that partitioningdbakorithms tend to perform better than global ones; bgredihg
a previously-proposed partitioning-based schedulingritlym [7] to allow for task-splitting, our algorithm, with — oo,
yields a sufficient feasibility test that is superior to poaisly-proposed sufficient tests.

capacity reserved forz; on processor P; The job of 7, arrives here. The deadline of the job of 7, is here.

2[1]

. | | | | A 1 N N N A B

! ! ! ! : ! time Lo ! ! ! Lo ! time
[N v Y e N o O o N 0 T o N o Y O o A

0 N 2 3 15 58 time 0 ! s 28 35 45 1 58 time

1 |
capacity reserved for 7, on processor P, <
- We require that the job finishes here,
x2]
(a) The reserves on processors for the split task (b) We require that a job from a split task finishes its executt a mo-

ment before its deadline.

Figure 1. How to perform run-time dispatching of tasks that a re assigned to two processors.

Organization. The remainder of this paper is organized as follows. Se@ipnesents the theoretical basis of our new
algorithm. Section 3 presents the new algorithm itself, dadves some of its properties while Section 4 discusseassis

in feasibility testing. Section 5 presents the performasfdbe new algorithm obtained by running simulation expeins.
Section 6 gives conclusions.

2 Conceptual foundations

Before describing the new algorithm, it is beneficial to gejuainted with the ideas behind its design and also certain
concepts and results that will be used. Section 2.1 explainstask splitting is performed. Section 2.2 presents aadcsyer
for use with task splitting. Section 2.3 performs dimensigrof the reserves used for execution of split tasks. Se&id
derives the amount of execution of split tasks. Section B2Sgnts a new schedulability analysis for real-time sclirgion
a single processor.

2.1 Task Splitting

As mentioned in Section 1, partitioned scheduling offessadvantage that results from the vast body of uniprocessor
scheduling theory can be reused to schedule tasks on a mukgsor. The disadvantage of partitioned schedulingsis al
well-known: as tasks get assigned to processors, the rérgaamailable capacity gets fragmented among the procgssor
it may then so happen that no individual fragment is largaughdo accommodate an additional task (although the sum of
these fragments would be sufficient for the additional tas&3k splittingcircumvents this problem by permitting that a task
be split across multiple processors. And in fact this idesalie®en used by several researchers [2, 12, 10, 5, 3] for siatgdu
sporadic or periodic tasks with implicit deadlines. In thisrk, we apply task-splitting to scheduling sporadic taskt
arbitrary deadlines, by allowing an individual task to bétdpetween two processors. Our approach is similar to pievi
work for implicit-deadline systems [3] but differs mainly {n the task assignment/splitting scheme used and (iipat,t
instead of a utilization-based schedulability test, a dedraased test is used, applicable to arbitrary-deadlisiesys.

Recall that our task model mandates that each task may betagon at most one processor at each instantin time. Task
splitting must therefore address two important challer{geseate a dispatching algorithm for ensuring that twapgeof a
task do not execute simultaneously and (ii) design a schédity test for the dispatching algorithm. (Observe thet&use
of (i), there is no need for the source code or the binary spording to a task to be restructured.)

2.2 Dispatching

Figure 1(a) provides further details on run-time dispatghMWe subdivide the time into time slots of durati€smDTMIN/§.
The time slots on any two different processors are syncheahin time. On processgr the beginning of a time slot is re-
served for executing a split task shared with processgrl; let x[p] denote the duration of this reserve. Analogously, the
final part of a time slot on processptis reserved for executing a split task shared with processbr let z[p] denote the
duration of this reserve.

A job of 7 arrives hgre. The deadline of the job of z; is here. Another job of z arrives h_ege.

1||||||||
mom = S = N - [- i

‘ 65 78 time
“ t b/t

This reserve will be unused.

Figure 2. An example showing that at certain instants, a rese rve may be unused.

The dispatching is simple. If procesgois in a reserve at timeand if the split task assigned that reserve has unfinished
execution then the split task is executed in that reserverocegsop at timet. Otherwise, the non-split task, assigned to
processop, with the earliest deadline is selected for execution.

2.3 Dimensioning of the Reserves

A task that is split over processops— 1 andp executes during the reservelg-1] andx[p]. Ford < oo, we will see
that the total amount of these reserves must exceed theaghis execution requirement in order to guarantee thasplie
task meets its deadline. We now derive “safe” values foreheserves, which will ensure that all jobs of the split teestes
guaranteed to meet their deadlines. In deriving these galhe objective is to minimize the inflation — the amount byaluh
the reserves exceed the execution requirement.

In order to meet deadlines we need to ensure that for each jobf taskr; it holds that whenevef; ;, arrives, it completes
C; time units at mosD; time units after its arrival. For split tasks, we have chageimpose an even stronger requirement;
we require that within

min(D;, T;)

] s ®
time units after its arrival, the jold; ;, should complete”; time units. Figure 1(b) illustrates this. Equation 1 implibat
deadlines of split tasks are met and it also implies thatiatsgk finishes before it arrives again. Observe that thatohr
in Equation 1 is an integer multiple of. We know that for any time interval of duratigh(which does not necessarily start
at a slot boundary), it holds that the amount of executiorlavie (in reserves) for a split task is x[p]+z[p-1]. Therefore
we obtain that during a time interval of duration given by Btjon 1, the amount of execution available for the split task
assigned to processpland processags-1 is exactly

R a4 - 1) @

In order to meet deadlines we should selejgf] and z[p-1] such that the expression in Equation 2 is at l&gst We are
interested also in using “small reserves” and for this rease choose:[p] and z[p-1] such that it is equal t¢’;. Hence we
selectx[p] and z[p-1] such that

z[pl +z[p—1] = me(cjz:r”)

Clearly, the choice by Equation 3, gives us that wheneveibaofoa split taskr; is released, it finishes within at most
|min(D;, T;)/S] - S time units, as desired (see Equation 1 above). A propertgiwie will find useful in the next section
that follows from Equation 3 is that if a job released by atdpkkr; executes fo; time units then it executes exactly

min(D;, T;
| apy @
time units on processgrand

0T |y ©

time units on processgrl.
2.4 Execution by Split Tasks

In order to perform schedulability analysis (in Section Be&dow), we must obtain an upper bound on the amount of
execution that the split tasks perform on a procepsturing any time interval of duratioh. We now derive such an upper
bound. This upper bound is given in Equation 8; the readerwisly to skip its derivation (i.e., the remainder of Sectioh)2
at a first reading and return to it later.

Itis easy to see that if jobs of a split task during this timteiaal execute for less than their maximum execution tineg th
we can obtain another scenario with no less execution dftsgks on processgrduring L, by letting jobs execute by their
maximum amourit Hence, we will assume that all jobs from split tasks exetutéheir maximum execution time. Let us

defineslotexeas:
t

slotexec(t,r) = {%J -7+ min(t — {EJ -S,r) (6)

Slotexeqives us an upper bound on the amount of execution performeddplit task in a time interval of duration
assuming that it executes in all of its reserves and assuthatgach reserve assigned to that task has the duratithis
bound can be used to find an upper bound on the amount of tirheplitstasks execute on procesgor

But consider the example in Figure 2. It shows a taslsplit between processors 2 and 1. The task’fas= 5 - S
andD, = 4.2 - S. For the scenario in Figure 2, it follows that during4 - 5,5.3 - S), the reserve on processor 2 for task
79 IS unused. For this reason, we need to calculate an uppedhmuthe amount of execution of split tasks by taking the
parameters of the split tasks into account. We will do so now.

Let 7,; , denote the task that is split between procegsamd processas-1. Analogously, let, , denote the task that is
split between processprand processqr+1.

With this definitions, one can show (see [4, Appendix A]) tit&t amount of execution of task; , on processop during
a time interval of duratiod. is at most:

L+S—azlpl| ., z[p]
{ Thip J Chir ST+ 2lp— 1]
slotexec(min(L + S — z[p] — {%;MJ “Thip,

{%J), lp))

(7)

Intuitively, Equation 7 can be understood as follows. Whedifig the amount of execution of; , during L, it is actually
necessary to consider arrivals®f, , duringL + S — z[p] because the task,; , may arriveS — x[p| time units before the
beginning of the interval of duratioh. The time interval of duratio. + S — z[p] can be subdivided int%%MJ time
intervals each one of duratidh,; , and one time interval of duration
L+S—zp — {%ﬁf[”w Thip-

Applying the reasoning of Equation 7 1p, ,, and adding them together gives us that the amount of execoft&plit tasks
on processop during a time interval of duratioh is at most:

IFor split taskr; with D; < T; it is easy to see this because increasing the execution fimgob of such a task does not affect the scheduling of any
other jobs of split task;. For the case of a task with D; > T it may not be so easy to see because one may think that two f@abssk may be active
simultaneously and then increasing the execution time efdhmer job may change the starting time of execution of dted job. This cannot happen
though because of our choice expressed in Equation 3.

L+S—zlpl| ., z[p]
{ Thip J(%W alp] + z[p — 1]
slotexec(min(L + S — x[p] — {%;MJ “Thip,

mln(D i,ps T i,p)
| g Thin) |5, ap) +
L+ S — z[p] z[p]
) e s
slotexec(min(L + S — z[p] — {%;ZMJ “Tlo,ps

{%J -8), 2p))

8
2.5 Schedulability Analysis

The processor demand [9] is a well-known concept for felisiltesting on a single processor. Intuitively, the proas
demand represents the amount of execution that must neitedsagiven to a task in order to meet its deadline. The
processor demand of a task in a time interval of duratiorL is the maximum amount of execution of jobs released by
7; such that these jobs (i) arrive no earlier than the beginointge time interval and (ii) have deadlines no later than the
finishing of the time interval. Ledbf(r;,L) denote the processor demand of taglover a time interval of duratiof. It is
known [9] that:

T}

(%ﬂqJﬂ_nmﬂQ{L J+U~@)

The processor demand of a task set is defined analogousiybE@t,L) denote the processor demand of the task st
a time interval of duratiod.. It is known that:

L— D,
T}

dbf(r,L) = Z max(0, {

T;ET

J +1)-Cj (10)

One can show [9] that for EDF [13] scheduling on a single pssoe it holds that all deadlines for tasksrirare met
if and only if VL > 0: dbf(7;,L) < L. In fact, we only need to check this condition for the valued.avhere there is a
non-negative integet and a taskr; such thatlL=k - T; + D; and L does not exceed 2lcm(71,15,...,T,). This condition
can be used as a schedulability test for partitioned schegpwhere EDF is used on each processor. Recall howevelhihat t
task splitting approach we use requires that split taskexaeuted in special time intervals in the time slots and denmew
schedulability analysis must be developed. We know thagfirocessor demand of the non-split tasks during a timevaite
L (expressed by Equation 10) plus the amount of executioneo§ftit tasks (expressed by Equation 8) does not exéeed
then all deadlines are met. Let us define:

F(L) =" max(0, {L ;ijJ +1)-C; +
, L+S—zpl| . z[p]
win(t { Thi J Chir T+ -1

slotexec(min(L + S — x[p] — {MJ “Thip,
hi,p

{min(phgp,Thi,p)J - 8), 2lp)) +
{L +7€zo,_p Z[P]J Cor 3 +21[]P]+ z[p]
slotexec(min(L + S — z[p] — {%;ZMJ “To,ps

{MJ -9),2p))

(11)
Clearly this gives us that
if
VL,L=Fk-T;+ D;,L <2-lem(Ty, T, ..., T,) :
fL) <L
then all deadlines are met (12)

2.6 Faster Schedulability Analysis

Consider the schedulability analysis in Equation 12. Itlearseen that a large number of valued.ahust be explored.
Our task splitting approach requires that several suchdsghbility tests are performed and consequently we aredsted
in creating a faster schedulability analysis. Let us defipg as follows:

Llim =
(Z-rjerp CJ) +2-5+ Thi,p + jﬂlo,p

C; Chi, z[p] Cio, z[p]
VA e 7)) T 3ot + Ty 31120

(13)

Let us consider the case that the denominator of the righd-biale Equation 13 is positive. LBMAX denotenax (D1, Da, ..., Dy,).
Then it holds (see Appendix B in Technical Report HURRAY-UB0501 available at http://www.hurray.isep.ipp.pt) that
f(L) < Lforall L>Ly;,,. This idea was known for pure EDF scheduling on a uniproeg8$but now we have transferred
the result to a uniprocessor with reserves. Formally, thigated as follows:

if
the denominator of the right — hand side of
Equation 13 is positive
and
VL, L=Fk -T; + D,
L <min(2-lem(Ty,Ts, ..., Ty), max(DMAX, Ljipn,)) :
f(L) <L
then all deadlines are met (24)

2.7 Design Consideration of Task Assignment

Previous work on task splitting [3] for implicit-deadlingsks was based on next-fit bin-packing. Unfortunately, siseh
for scheduling arbitrary-deadline tasks can lead to podopmance, as shown in Example 1.

Example 1. Consider three tasks and two processors. The tasks are ctesized asT;=L2%,D,=L,Ci=L - (2/3+e),
To=L%Dy=L, Co=L - (2/3+¢), Ts=L?D3=1, C3=2/3+¢. Let L denote a positive number much larger than one. And
let e denote a positive number much smaller than one. Noterthahd », are identical and they have large;. The taskrs
has smallD; however.

A next-fit bin-packing algorithm with task splitting woulid consideringr; and it would be assigned to processor 1.
The next task to be considered wouldhand it would be attempted to be assigned to processor 1 bgctedulability test
will fails so the task will be split between processor 1 andceissor 2. The capacity of processor 1 assigneg will be
1/3- and the capacity assigned tg will be 1/3+2¢. The next task to be considered wouldhand it would be considered
for processor 2. Unfortunately, it cannot be assigned thérbe reason is that during a time window of duration 1, the
reserves forr, will be busy by execution et and this does not give enough timertpto execute and hence it would miss
a deadline. Intuitively, this can be understood as priofityersion, wherer; is ready for execution and it has the shortest
deadline but still, executes and, has a much longer deadline.

It can be seen, from Example 1, that it is advantageous tgrasssks such that tasks with large deadlines are non-split
and tasks with short deadlines are split. A bin-packingtlym based on first-fit (boosted with a task splitting appiom
the end) might achieve that. But unfortunately, anothefgperance penalty would arise, as shown in Example 2.

Example 2. Considerm+1 tasks andn processors. The tasks are characterized'asl, D;=1,C;=2/3+¢. Lete denote a
positive number much smaller than one.

A first-fit bin-packing algorithm with task splitting woultbst by assigning one task to each processor. Then it would
consider taskr,,.1 and find that it cannot be assigned to any processor. Theredplitting is attempted; the task is split
into two pieces but even in this way, it cannot be assigneditoprocessors. It is necessary to split the task into three or
more pieces in order to meet deadlines. Such splitting makesme dispatching non-trivial; we note in particularahthe
approach sketched on Figure 1 cannot be used.

We have seen, from Example 1 and Example 2, that (i) a procsiseald be “filled” before new processors are considered
and (ii) tasks that are split should preferably have a siallThis can be achieved as follows.

Initialize a variablep to one; it denotes the processor under consideration. Fwheter processar is in consideration,
all tasks which are not yet assigned are scanned in ordercoéasing deadline. If a task can be assigned (according to a
schedulability test) to processpthen it is assigned there; if not, we consider if the next taskbe assigned to procesgor
subject to assignments already made (and so on).

After the scanning of all tasks has finished, it holds thatlidha tasks that have still not been assigned to any processo
none can be assigned to procegsm@ubject to assignments already made. At this point, so asliwe whatever capacity is
still remaining on processagt, we thus have to “split” one of those tasks and assign a pikitémthe processor. We select
for this purpose, among all tasks not yet assigned assigimethsk with the smalled?;. It is split and assigned to processors
p andp + 1, such that as much execution as possible is assigned togsarpe

After that, the variable is incremented by one and the procedure is repeated. Ndtattidas way, we obtain the two
properties (i) and (ii) above and we can therefore expectl gaosformance.

28.
29.
30.
31.
32.
. end while

33
34

. for each processor mlo

X[p]:=0
z[p] :=0
7lp] := 0

. end for

. for each processor p with index g2 m do
. sharedask[p] := NULL

. end for

.p=1

. unassigned :#

. while unassigned () do

for each task-; € unassigned, considered in descending
order of D; do
T[p] = 7lpl U {7 }
if the test Equation 14 succeeds for procegsor
and z[p]+z[p]<S then
unassigned := unassigned 7; }
elser[p] .= 7[p] \ { = } end if
end for
if unassignedt @ then
if p < m-1then
i := index of the task in unassigned with le&st
sumreserve := right-hand side of Equation 3
if sumreserve> Sthen
p=p+1
else
p=p+1
assign values to[p] and z[p-1] such thatz[p-1] is
maximized and the test Equation 14 succeedgfbr
and x[p-1]+z[p-1]< S and Equation 3 is true for
sharedask[p-1] :=7;
unassigned := unassigned 7; }
end if
elsedeclare FAILUREend if
end if

declare SUCCESS

Figure 3. An algorithm for assigning tasks to processors (an

d performing splitting if needed).

3 The New Scheduling Algorithm

Let us now specify detailed pseudo-code for the new schaglalgorithm. The scheduling algorithm is comprised of two
algorithms (i) one algorithm for assigning (and splittifignéeded) tasks to processor and (ii) an algorithm for ddpag
the tasks.

Figure 3 shows the algorithm for assigning tasks to proegsssthe main idea is to assign as many tasks as possible to
the current processgr. The lines 13-18 do that. The tasks are considered for asgighin the order largedd;-first and
the decision on whether a task can be assigned to processanade based on whether Equation 14 can guarantee this
assignment. Once no additional task can be assigned togsmge the unassigned task with the led3t is selected and it
is split between processprand processas+1. The lines 26-29 do that. The splitting is done such thaash as possible
of the currently considered task is assigned to procesaad as little as possible is assigned to processir Clearly, this
leaves as much room as possible on processbifor other tasks. Equation 14 is used for this splitting.

A variablesunr eser ve is calculated (on line 22). It represents the sum of the vesefrthe split task; on processop
and the reserve of the split taskon processap+1. In order to ensure that the split tagkdoes not execute on two processors
simultaneously, we compasaint eser ve to S, the slot size. IEunr eser ve is greater then splitting is not possible and
the algorithm continues without splitting that task. sifint eser ve does not exceed then splitting is performed. As
already mentioned, this splitting is performed on line<286-

Line 27 states that a maximization problem should be solMddte that the right-hand side of Equation 11 is non-
decreasing with increasingp-1] and hence it can be solved easily.

Figure 4 shows the algorithm for dispatching. It computeisng t, which is the beginning of the time slot and a time
t; which is the end of the time slot. Based on that, it comptitesa andtimeb which denote the end and the beginning
respectively of the two reservations.

We will now present the correctness of the algorithm in Fégiand Figure 5. We will also prove a bound on the number
of preemptions. In addition, we present equations for tise @zhered) — oo.

Theorem 1. If tasks are assigned according to the algorithm in Figurerglat declares SUCCESS and the algorithm in
Figure 4 dispatches tasks at run-time then all deadlinesaet.

Proof. It follows from the schedulability analysis in Section 2rideSection 2.6. O
Let us now state a bound on the number of preemptions.

Theorem 2. Assume that tasks are assigned according to the algorithFigare 3 and it declares SUCCESS and the
algorithm in Figure 4 dispatches tasks at run-time. hpteempt(¢,p) denote an upper bound on the number of preemptions
generated on processgrin a time interval of duratiort. Let,; ,, denote the task that is split between procesgetsandp.
Analogously, let;, , denote the task that is split between procesgsitsandp. LetS denote the size of the time slots. Let
jobs(t, p) denote the maximum number of jobs that are released duriingainterval of duratiort from either (i) non-split
tasks assigned to processoor (i) the task split between processpil andp or (iii) the task split between processp#1
andp. We then have that:

npreempt(t, p) = jobs(t,p) +2+
min([£, activeslots(t, p)) - 3 (15)

where

activeslots(t, p) = [T,t‘ W.{min(Dhgpmiﬂ n

i it o

2A solution is as follows. LeL.B denote a lower bound of]p-1] and letUB denote an upper bound aifip-1]. We know that one choice B = 0
andUB = sumreserve so we start with that. Lati ddl e denote LB+UB)/2. We try z[p-1]:=middle and z[p]:=sumreserve-middle and apply the
schedulability test. If it succeeds then we E& := middle otherwiseUB := middle. We repeat this procedure untiB andUB are close enough (10
iterations tend to be sufficiently good) and then compiife1]:=L.LB andz[p]:=sumreserve-LB.

N -

47.

48.
49.
50.
50.

51

. when booting
if another processor g has already performed
"when booting™ then
tstart[p] := tstart[q]
else
tstart[p] := any value
end if
lo_active[p] := false
hi_active[p] := false
. end when booting

. whena job released from a task split between processor
processop-1 andp arrivesdo
hiactive[p] := true
settimer_again(p)
dispatch(p)
. end when

. whena job released from a task split between processor
processop+1 andp arrivesdo
lo.active[p] :=true
settimer_again(p)
dispatch(p)
. end when

. whena job released from a task split between processor
processop-1 andp finishesdo

hiactive[p] := false

settimer_again(p)

dispatch(p)
. end when

. whena job released from a task split between processor
processop+1 andp finishesdo

lo.active[p] := false

settimer_again(p)

dispatch(p)
. end when

. procedure settimer_again(p : integerjs

if lo_active[p]=trueor hi_active[p]=truethen
t := readtime
t0 := tstart 4 (t-tstart[p])/S| - S
t1 ;= tstart H (t-tstart[p])/S| - S+ S
timea :=t0 + x
timeb :=tl1-y

end if

. end procedure

. procedure dispatch(p : integers

selected := NULL

t := readtime

if hi_active[p]andt0 < t < timeathen
selected := task that is split between processor p-1
and processor p

end if

if lo_active[p]andtimeb <t < t1 then
selected := task that is split between processor p
and processor p+1

end if

if selected=NULLand there is a non-split task assigned
to processor p that is reathen
selected := the non-split task assigned to

processor p with the earliest deadline
end if
. end procedure

Figure 4. An algorithm for dispatching tasks.

Proof. Note that a preemption can only occur when either (i) a jolvesror (ii) a reserve begins or ends. The number of
preemptions due to job arrivals is clearly at mpsis(¢, p). If we consider a time interval +S) then it holds that there
can be at most three preemptions caused by the beginninglorgeof reserves. We can therefore subdivide a time interval
of durationL into time intervals of duratiot¥, each with at most three time preemptions caused by the hiegior ending

of reserves. And then add two preemptions because of thatiagiand ending of the time interval of duratién This
reasoning gives us the theorem. O

Consider now the problem of feasibility test of a task sett thto decide if it is possible to schedule the task set. &cins
a use, we recommend the usedof> oo with our algorithm. Let us introduce the following auxiljavariables:

el = 22 a7)
and
2f[p) = % (18)

Applying § — oo, Equation 17, Equation 18 and Equation 6 on Equation 3, Emuatl, Equation 13 and Equation 14
yields that:

Cj

zflp]+2flp—1] = min(Di 7)) (19)
and
L—-—D
g(L) = TEZTP max(0, { T jJ 1)-C;+
: L zf[p]
min(L, “Chip -
({Tm,pJ "2l + 2 flp— 1]
. L .
win— | | iy min (D T) 15+
hi,p
{ L J Chn- zf1p]
Tiop] " aflp+ 1]+ 2f[p]
. L .
win2 | 2| oy min iy Tioy)) 211) 0)
o,p
and
LGlim -
(Zq—jerp OJ) + Thi,p + T’lo,p
G Chip x Clo.p z
1= (Cremr)+ 100 z[p1+§]zn—11 T Ty m[p+1[fiz[p1)

(21)

and

1. for each processor mlo
2. xflp]:=0
3. zfl[p] =0
4. T[p]:=0
6. end for
7. for each processor p with index g2 m do
8. sharedask[p] := NULL
9. end for
10. p:=1
11. unassigned ¥
12. while unassigned# ¢ do
13. for each task; € unassigned, considered in descending
order of D; do
14, 7lpl:=7lplu{ ™}
15. if the test Equation 22 succeeds for procegsor
and z f[p]+=z f[p] <1 then

16. unassigned := unassigned 7; }
17. elser[p]:=7[p] \ { : } endif
20. end for

21. if unassigned 0 then

22. if p<m-1then

23. i := index of the task in unassigned with le&st

24. p=p+tl

25. assign values tof[p] and z f[p-1] such that f[p-1] is
maximized and the test Equation 22 succeeds for
processop-1 andz f[p-1]+z f[p-1] < 1 and
Equation 19 is true fop

26. sharedask[p-1] :=7;

27. unassigned := unassigned 7; }
28. elsedeclare FAILUREend if

29. endif

30. end while

31. declare SUCCESS

Figure 5. A feasibility test

if
the denominator of the right — hand side of
Equation 21 is positive
and
VL, L=k -T;+ D;,
L < min(2 - lem(Ty, T, . .., Ty), max(DMAX, LGy;p)) :
g(L) < L
then all deadlines are met
(22)

Based on these equations we have a feasibility test as eegrby Figure 5.
4 Feasibility testing

A sporadic task system is said tofeasibleupon a specified platform if every possible sequence of jodiisdan be legally
generated by the task system can be scheduled upon theplatfoneet all deadlines. Exact (necessary and sufficiesit) te
are known for determining feasibility for sporadic taskteyss upon preemptive uniprocessors [9]. For global scliveglul
upon preemptive multiprocessors, however, no exact (dicpdarly good sufficient) feasibility tests are known; aisting
such feasibility tests is currently one of the most impartgmen problems in multiprocessor real-time schedulinghe
In particular, it would be useful to have feasibility testgt both perform well in practice (as determined by extensiv

simulations) andare able to provide concrete quantitative performanceaguees. The kind of quantitative performance
guarantee we will look to provide is the processor speedcipifa

Definition 1 (Processor speedup factor) feasibility test is said to have a processor speedup facibany task system
deemed to not be feasible upon a particular platform by teeiteguaranteed to actually not be feasible upon a platfarm i
which each processor i/ s times as fast.

A sufficient feasibility test that may perform arbitrarilp@rly has a processor speedup factor of infinity, while arcexa
feasibility test has a processor speedup factor of 1. Tlmesptocessor speedup factor of a sufficient feasibility ey
be considered to be a quantitative measure of the amount lmhwhe test is removed from being exact — the smaller the
processor speedup factor, the closer to being an exactés$temce the better the test.

As stated in Section 1, current sufficient feasibility tefsts sporadic task systems adopt the approach of performing
schedulability analysis of a specific scheduling algoriflsince any schedulable task system is trivially feasitBaker [6]
has experimentally evaluated the schedulability testa farge number of scheduling algorithms, and observed Hrétipning-
based schedulability tests tend to perform better thanaglobes. Our approach in this section is to take a partitmpnin
algorithm that is able to make quantitative performancaau@es — the one proposed in [7] — and obtain a sufficient
global feasibility test, which we call FEAS-SS, by exterglihto incorporate task splitting. We will show that FEAS-BS
strictly superior to the test in [7] (in the sense that it ifealo demonstrate feasibility for all task systems deteedito be
schedulable by the test of [7] while there are task systeresmiéned to be feasible by FEAS-SS that the test of [7] will no
determine to be schedulable) — hence, FEAS-SS tends torpelfetter in practice than the schedulability test of [7]. At
the same time, since FEAS-SS dominates the schedulaleiityof [7] it is able to make the same quantitative perforreanc
guarantee as the test in [7].

The quantitative performance guarantee made by the scifsliyitest in [7] is as follows:

Theorem 3 (From [7]). If an arbitrary sporadic task system is feasible onidentical processors each of a particular
computing capacity, then the scheduling algorithm in [7¢sessfully partitions this system upon a platform compirisien
processors that are eagtt — 2) times as fast.

The scheduling algorithm in [7] has a run-time computati@manplexity of O(n?) wheren is the number of tasks;
Theorem 3 therefore yields a polynomial-time (a(m?)) sufficient feasibility test.

The partitioning algorithm of [7] considers tasks in norcidmsing order of relative deadline parameter, attempting
accommodate each task onto any processor upon which it &tstrding to a polynomial-time testable condition (see [7]
for details). The algorithm succeeds if all tasks are aggign processors, and returns failure if it fails to assignestask.

FEAS-SS extends the partitioning algorithm of [7] by noureing failure if some task is not assigned to a processor;
instead, it attempts to split this task among two processsiag the test of Equation 12 to identify processors upoichvio
split. Since we are interestedfiasibility analysisthe number of preemptions in the resulting schedule is fsitjaificance
to us, and we assign the parametdhe value infinity. (It may be verified that this reduces therbxead — the size of the
reserves over the minimum needed to accommodate the gi# tato zero.) If FEAS-SS is able to successfully split this
task, it proceeds with the next task, attempting to spl& tihong two processors as well (ensuring that no procestor ge
assigned more than two split tasks), and so on until eitHghalremaining tasks are split in this manner or the test of
Equation 12 reveals that some task cannot be split and @&skigrprocessors.

Evaluation. Baker has shown [6] that feasibility tests based on schéditjetests for partitioned scheduling tend to per-
form the best in practice; since FEAS-SS dominates thetjoauitig algorithm of [7], we expect it to perform at least asliwv
as the algorithm of [7]. Furthermore, since FEAS-SS deemsiliée all task systems that are successfully scheduleleoy t
partitioning algorithm of [7], the following result trivily follows from Theorem 3:

Theorem 4. The feasibility test FEAS-SS has a processor speedup factér %) uponm-processor platforms.

We have thus shown that FEAS-SS both performs well in practiad is able to offer a non-trivial quantitative perfor-
mance guarantee.

5 Evaluating the run-time algorithm

We saw above that the task-splitting approach yields a sufeasibility test, FEAS-SS. We now experimentally eaéu
the performance of EDF-SS(DTMIBY when used for scheduling systems. We claim that for thelprolof scheduling

[comparison of the number of task sets that can be guaranteed to meet deadlines] [comparison of the number of task sets that can be guaranteed to meet deadlines]

25000 T T T T 18000 T
16000 >
X,x*xi***;;ﬁ;;*;:;x*:%xxxx*xx*xx
20000 14000 ety FHTHRI K Ak S,
3 DDBDBDDDDBDEIDDDEIDDE‘DDDE‘ %xx XX\
% X
3 % \
P P 12000 =
o 15000 [l
g £ 10000
o o
é é 8000
5 10000 5
6000
L 4000
5000 EDF-SS(0) —+— 5 EDF-SS(0) —+— 5
EDF-SS(DTMIN/4) ---%--- 2000 F EDF-SS(DTMIN/4) ---%---
EDF-SS(DTMIN) ---%--- EDF-SS(DTMIN) ---%--- 9
EDF-FFD -8 ; EDF-FFD & 8
0 L L L L 0 L L L L
0.5 0.6 0.7 0.8 0.9 1 0.5 0.6 0.7 0.8 0.9 1
utilization utilization
(a) bimodal; m=2 (b) bimodal; m=8
[comparison of the number of task sets that can be guaranteed to meet deadlines] [comparison of the number of task sets that can be guaranteed to meet deadlines]
25000 T T T T 25000 T T T T
O XR N HEKX.
20000 20000
3 IFHFRTEAA X H st s
” ” xﬁ*x*;***‘*%**%***%% X;XX\X*&
% 15000 % 15000 Xf poPeBtEeeEay s X
k) k)
9] 9]
E} E}
E 10000 E 10000
(= (=
5000 EDF-SS(0) —+— o 5000 EDF-SS(0) —+— *
EDF-SS(DTMIN/4) ---x--- EDF-SS(DTMIN/4) ---x--- 8 :
EDF-SS(DTMIN) ---%--- EDF-SS(DTMIN) ---%--- L P
EDF-FFD -8 95 EDF-FFD & o
0 | L L L " 0 | L L L Bg
0.5 0.6 0.7 0.8 0.9 1 0.5 0.6 0.7 0.8 0.9 1
utilization utilization
(c) uniform; m=2 (d) uniform; m=8
[comparison of the number of task sets that can be guaranteed to meet deadlines] [comparison of the number of task sets that can be guaranteed to meet deadlines]
25000 T T T T 20000 T T T T
EDF-SS(0) —+—
EDF-SS(DTMIN/4) ---x-1-
18000 EDF-SS(DTMI R
20000 16000 E
14000
9 9
E 15000 E 12000
> © 10000
[[
€ €
E 10000 E 8000
(= (=
6000
5%
5000 EDF-S5(0) o 4000 iﬁiiQ&**X*XXXXXXXX*XXXX‘XX%xxxxxx .
. RV HE0, >< RS
EI:I)EEESS(ISD(BMI'II\,}mg - =) * 2000 F DDBDDDDBDDDBBD HKKK A KK Ko X*X*XXxxxX
A\ Ba KK
0 EDiF-FFD v ! ! ! i 0 ! ! HTHDDDDDDE‘E@Hmnn***
0.5 0.6 0.7 0.8 0.9 1 0.5 0.6 0.7 0.8 0.9 1
utilization utilization
(e) exponential; m=2 (f) exponential; m=8

Figure 6. Results from simulation experiments. Two-proces sor and eight-processor systems are
simulated, with task systems drawn from the bimodal, unifor m, and exponential distributions (see
the appendix for further detail.) Only the results for high- utilization systems (E Ti > 0.5) are
depicted. It is evident from these graphs that EDF-SS(DTMIN /6) outperforms EDF-FFD for all the
considered values of 4.

arbitrary-deadline sporadic tasks on a multiprocessdr piie-run-time guarantees, the new algorithm, EDF-SS(DN/W)

offers a significant improvement versus the best previoksywn algorithm, EDF-FFD [6]. We substantiate this claim
through a set of simulation experiments based on randonmgrgéed task sets. The task sets were generated by a task
generator, provided to us by Bakemwhich follows the spirit of the task generator in [6] butdtslightly different; details of

the task-generation process are provided in the appendix.

Due to space limitations, only a few highlights of the sintiola results are provided here; extensive description ef th
experimental results are available in [4, Appendix C].

Figure 6 shows, for arbitrary-deadline tasks, the numbgasis that could be given pre-run-time guarantees for our ne
algorithms and for EDF-FFD. It can be seen that all EDF-S8Iggrithms outperform the best bin-packing algorithmsisTh
figure focuses on task systems with utilization exceedirfgh.5B80r task sets with utilization less than 50%, most tas& set
that were generated could be scheduled by all the algoritiiRists for task systems with other utilization ranges may b
foundin [4, Appendix C]).

6 Conclusions

We have explored the use of ttesk splittingapproach for scheduling arbitrary-deadline sporadic $gskems upon mul-
tiprocessor platforms. We have presented an algorithmcloeduling arbitrary-deadline sporadic tasks on a multipssor.
The algorithm is configurable with a parameterand can be used in two ways. For actual use in schedulingtansys
choosing a small is recommended since this results in fewer preemptions.a@arithm can also be used for feasibility
testing and for this purpose the choite» oo is recommended.

We have evaluated both potential uses of our algorithm. Wisend for actually scheduling task systems, our new al-
gorithm was shown, via extensive simulation experimemtgutperform previously known scheduling algorithms. Ehes
simulations were conducted using the same task-genelatbhas previously been used by other researchers, thereby p
viding additional confidence in the validity of our results.

When used for feasibility analysis, we have shown that opr@gch yields a sufficient feasibility test, FEAS-SS, with a
processor speedup factar4; this is the same as the processor speedup factor of one bégi@reviously-known sufficient
feasibility tests. We have also shown that FEAS-SS strabtigninates this prior test — all systems deemed feasible &y th
prior test are also deemed feasible by FEAS-SS, whereas dinersystems determined to be feasible by FEAS-SS that the
prior one fails to determine is feasible.

References

[1] J. Anderson and A. Srinivasan. Mixed Pfair/ERfair sallegy of asynchronous periodic taskdournal of Computer and System
Sciences68(1):157—-204, 2004.

[2] J. H. Anderson, V. Bud, and U. C. Devi. An EDF-based scliadwalgorithm for multiprocessor soft real-time systerrsProceed-
ings of the 17th Euromicro Conference on real-time syst@ages 199-208, 2005.

[3] B. Andersson and K. Bletsas. Sporadic multiprocessbeduling with few preemptions. IRroceedings of the 20th Euromicro
Conference on real-time systera®08.

[4] B. Andersson, K. Bletsas, and S. Baruah. Schedulingtraryideadline sporadic tasks on multiprocessors. Tech-
nical report, IPP-HURRAY Research Group. Institute Pdaljiéc Porto, HURRAY-TR-080501, available online at
http://www.hurray.isep.ipp.pt/privfiles/HURRAYR_080501.pdf, September 2008.

[5] B. Andersson and E. Tovar. Multiprocessor schedulinthdéw preemptions. IfProc. of the 12th IEEE International Conference
on Embedded and Real-Time Computing Systems and Applisgiages 322—-334, 2006.

[6] T. P. Baker. Comparison of empirical success rates oballoss. partitioned fixed-priority EDF scheduling for haredal
time. Technical Report TR-050601, Department of Computeierge, Florida State University, Tallahassee, availaile
http://www.cs.fsu.edu/research/reports/tr-05060f] .jxaly 2005.

[7] S.Baruah and N. Fisher. The partitioned dynamic-ptystheduling of sporadic task systerReal-Time Systems: The International
Journal of Time-Critical Computing36(3):199-226, 2007.

[8] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvelopbrtionate progress: A notion of fairness in resourcecatiion.
Algorithmica 15(6):600-625, June 1996.

[9] S. K. Baruah, A. K. Mok, and L. E. Rosier. Preemptively sdhbling hard-real-time sporadic tasks on one processétrdeeedings
of the 11th IEEE Real-Time Systems Sympospages 182-190, 1990.

SWe would like to acknowledge Professor Baker's assistandee-made his task-generator, implemented in Ada, availahls.t

[10] H. Cho, B. Ravindran, and E. D. Jensen. An optimal remétscheduling algorithm for multiprocessors.Rroc. of the 27th IEEE
Real-Time Systems Symposipages 101-110, 2006.

[11] U. Devi and J. Anderson. Tardiness bounds for global Ebfeduling on a multiprocessor. Rroc. of the 26th IEEE Real-Time
Systems Symposiupages 330-341, 2005.

[12] S. Kato and N. Yamasaki. Real-time scheduling with taghtting on multiprocessors. IRroceedings of the 13th International
Conference on Embedded and Real-Time Computing Systemigpplications pages 441-450, 2007.

[13] C.L.LiuandJ.W.Layland. Scheduling algorithms forltprogramming in a hard real-time environmeddurnal of the Association
for the Computing Machinern20:46—61, 1973.

A job of © armives here. Another job of 77 amrives here.

A J

ol s 28 38 a5 58 63 g time

oA A
F O v S v
Totars Tend
Figure 7. An example showing that it is challenging to find an u pper bound on the amount of execu-

tion in reserves.

Appendix A: Execution by Split tasks

We are interested in finding an upper bound on the amount aidioa that the split tasks perform on procegsduring
a time interval of duratiorl.. It is easy to see that if the jobs during this time interva@xe for less than its maximum
execution time then we can obtain another scenario with sed&ecution of split tasks on procesgaturing L, by letting
jobs execute by their maximum amount. (For split taswith D; < T; itis easy to see this because increasing the execution
time of a job does not affect the scheduling of any other jabsptit task ;. For the case of a task with D; > T; it
may not be so easy to see because one may think that two jobsisi anay be active simultaneously and then increasing
the execution time of the former job may change the starting bf execution of the latter job. This cannot happen though
because of our choice expressed in Equation 3). For thismea® will now assume that all jobs from split tasks execyte b
their maximum execution time. Let us define

slotexec(t,r) = Léj T4

min(t — L% |-8,7) (23)

Slotexe@ives us an upper bound on the amount of execution performeaddsk in a time interval of duratignassuming
that it executes in all of its reserves and assuming that ezsghve assigned to that task has the duratiorhis bound can
be used to find an upper bound on the amount of time that spkstexecute on procesgarMany reserves are not used or
not fully used though and for this reason, we need a bounddhkas the parameters of the split tasks into account. We will
derive such a bound now.

Let 7,; , denote the task that is split between procegsamnd processagy-1. Let us consider a time intervak[,, ¢ ,tena)
of durationL. Our goal is to find an upper bound on the amount of execution,Py during [tsiart,tend)-

It is not obvious how to find the amount of execution. One magktlthat a split task arriving at time,;,,, would
maximize the amount of execution of the split task durihg.[.;,t..4) because this is the case in many normal uniprocessor

scheduling problems, such as normal static-priority salieg on a single processor. Consider Figure 7 however.dtvsh
a taskr, and a processaP. To simplify the discussion, it shows only one reserve ofghecessor. The arrival times are
shown as lines with arrows pointing upwards and the deasliime shown as lines with arrows pointing downwards. It can
be seen that two jobs of can execute within the time interval shown in Figure 7. Hosréf/we would consider the case
where the task, arrives at timée ;;,.-« then only one of its job would execute in the time interval]+.t.»q). Hence, care
must be taken when finding an upper bound on the amount of 8gadime. In particular, we can observe that if a task
arrives S-r time units before the considered time intertats then it that task does not execute during those firstirSer
units and before of this "early arrival™ it is possible ftie task to arrive again and hence it can execute more inrtfee ti
interval considered.

We will find an upper bound on the amount of executionry,, during [tscart,tend)-

Let us consider two cases.

1. L<Th,
Using Equation 23 we obtain that the amount of executiongperéd byr,; , during this time interval is at most:

slotexec(L, z[p]) (24)

another upper bound is:

min(Dhiyp, Thi,p)

slotexec(| 5

-5, z[p]) (25)

For the casé;; , < Thip it is Obvious that Equation 25 holds. For the cd¥g , > T5;, may not be so obvious to
see it. Its correctness follows though from the fact that eségm reserves according to Equation 3 and hence a job of
Thi,p CaNNot finish more thafy,, , time units after its arrival even Dy; , > Th; p.

Note thatslotexec (defined in Equation 23) is non-decreasing with increasir®p clearly we have an upper bound:

slotexec(min(L, LWJ - S), z[p])

(26)

2. L> Thi,p
We will now do a transformation of the jobs releasedry,; the transformation has the following steps.

(a) LetJ denote the job with the earliest arrival time among the tdsktwere released by,; , such that the arrival
time is no earlier thah,;q,;.

(b) If no suchJ (as defined in (a)) exist and no job of; , was released duringar:-Thi p.tstart) then letr; ,
release a job at the timg,,,.. The job released will be referred to 4sit satisfies the definition of in 1.

(c) If no suchJ (as defined in (a)) exists and a job Qmf , was released durindd.,+-Thi p.tstart) then letr,; ,
release a job at the the tin¥%,; , time units after the arrival of Q. The job released will beereéd to as/; it
satisfies the definition of in 1.

(d) LetS denote the set of jobs such that for each@pm S it holds that (i) is released by, , and (ii) the arrival
time of @ is greater than the arrival time di For each jol) in .S do

i. Let P denote the job with the maximum arrival time among the jolad Hatisfies (i)P is in S and (i) the
arrival time of P is less than the arrival time @f

ii. Setthe arrival time of Q to be equal to the arrival time gflBST},; .
(e) Of all jobs fromry,; ,, that arrive no earlier thaty,..¢, let K denote the job with the latest arrival.
(f) Let AK denote the arrival time of jok .

(9) If AK+T},; p<tenq then add new job arrivals of task; , at time AK+T},; ,, AK+2Th; , AK+3 - Thip, - - .

This transformation (with step (a)-(g)) causes the amotiakecution of split tasks intf:q,t,tenq) t0 inCrease or stay
unchanged. Letbodystart(mh; p.[tstart.tend)) denote the earliest time igf,r+,tenqa) Such thatr,; , arrives at that
time. Let us consider two cases:

(a) There is no instant irtf;q,¢,tbodystart(rh; p.[tstart,tend))) Such thaty,; , executes on processprat that mo-
ment.

Then let us decrease the arrival time of all jobs fram, by tbodystart(rh, p,[tstart tend)) - tstart. We end up
with tbOdyStart(Thi,py[tstartatend)) = tstart-

Note that the time interval of duratioh can be subdivided into two time intervaldV; and AV;. One time
interval, AV}, starts at timé;,,» and ends

L

LThi,p

- Thip (27)

time units later. Using Equation 27 and Equation 4 we obtaét the amount of execution performed by ,,
during this time interval AV, is at most:

L o z[p]
ozlpl 4+ 2[p — 1]

(28)

The other time intervalA V5, ends at., 4 and starts when the former time intervAl);, ends. The duration of
this time interval A%, is:

L

L —
LT‘hi,p

J+ Thip (29)

Using Equation 23 we obtain that the amount of executiorgperéd byr;; ,, during this time interval is at most:

L
Thi,p

slotexec(L — | | Thip, z[p]) (30)

another upper bound is:

min (Dnips Tii.p)

22l |5, alp) (31)

slotexec(|

Note thatslotexec (defined in Equation 23) is non-decreasing with increasin§o clearly we have an upper
bound:

slotexec(min(L — | L | Thip,
Thi,p 7
min .D}”‘7 7Thi,
i i)y gy app)

(32)

This gives us that an upper bound on the amount of executiog gfin a time interval of duratiod. is:

Chi +
Fg) O S 2l = 1]
L
slotexec(min(L — | | Thip,
Thi,p

min(Dhip, Thip)

(PR Thip) |5 afp))
(33)

(b) There is an instant int {4, ,tbodystart(rhi,p,[tstare ,tena))) sSuch thatr,; , executes on processpmat that mo-
ment.

Let us explore two subcases.

i, tbOdySta’rt(Thi,pa[tstartvtend)) - Thi,p < tstart'S
Then we can increase all arrival times of jobs released frgmp by S. This increases the amount of
execution of split tasks on processor or it is unchanged.eRefhis argument as long as Case 2bi is true.
Eventually, we end up in Case 2bii.
i. tbOdySta’rt(Thi,pa[tstartvtend)) - Thi,p > tstart'S
Let us consider two further subcases:
A. There is no momentintbodystart(mh; p.[tstart.tend)) - Thip:tstart) SUCh thaty,; , executes on proces-
sorp at that moment.
Since there is no execution by, ,, in [tbodystart(mh; p.[tstartitend)) = Thipitstart), WE CAN COMpUte
the amount of execution inlhodystart(7ai p,[tstart,tend)) = Thi,pitena) instead of duringsiare, tend)-
The difference in duration between these intervals is attrfeg[p]. So we can get the amount of
execution by considering a time interval of duratibhS-x[p] and applying the expression in Case 2a.
B. Thereisamomentirtbodystart(7h; p.[tstartstend)) - Thi ptstart) SUCh thaty, , executes on processor
p at that moment.
Let EX denote the latest moment of execution thddystart(Thi p,[tstarttend)) = Thipitstart). We
can increase all arrival times of jobs released fram, by EX -(tbodystart(Thi p.[tstart tend)) - Thip)-
This transformation increases executionmgy, on processop in [tstqrt.tend) OF it is unchanged. This
takes us to Case 2biiA.

It can be seen that Case 2biiA gives the maximum executiep;gfon processop.

Let 7, , denote the task that is split between procegsamd processqr+1. Doing similar reasoning fat, , and adding
them gives us that the amount of execution of split tasks ongesop during a time interval of duratioh is at most:

L+ S —z[p o z[p]
L Thip]+ Cris z[p] + z[p — 1]
slotexec(min(L + S — x[p] — LMJ “Thips
hi,p
Lmln(Dhg’p,Thi,p)J . 8), 2[p]) +
L+S—z[p] z[p]
S T T
slotexec(min(L + S — z[p| — LMJ “Tlo,ps
lo,p
R)

(34)

Appendix B: Proof of Faster Schedulability Test

We will now prove that the speedup technique is safe. Thétdaes not cause a deadline miss. Recall the definition of
f.ltis:

f(L) = Z max(0, LL T | 4+1)-C; +
L+Sj—x[p]

min(L, | T
ip

A x[p]
A SRy
MJ.TMW

Thi,p
min(Dp; p, Thi,
(0 Digs Thi) |) 41y
L+5 - z[p] 2[p)
———— | Clop ———————
I Tiop |- Ciop z[p+ 1] + z[p]
L+ S - z[p|
—_— | To 9
Tlo,p J lo,p
min(Dio p, Tio,p)

[PESep lond | g)))

slotexec(min(L + S — z[p] — |

slotexec(min(L + S — z[p] — |

(35)

Let DMAX denotemax(D1,Ds,...,D,,). Let us assume thdt > DMAX and erefp % < 1. We can then reason as
follows:
We obtain that an upper bound gris:

Z(L_Dj+1)-cj+

T.
T;ETP J

. Chip . z[p]
Thip z[p] +2[p—1]

S+L

+ Thi,p +

Clo 2[p]
S+ L. =—2F. +Tio 36
Tiop alp+1]+zp] P (36)

We can rewrite the upper bound. We obtain that an upper bonrfds

Cj C ip a:[p]
L (X P g o

C(lo,p . Z[p])
Tiop lp +1] + 2[p]

D,
(Z (Cj_cj'?-_]))+2'S+Thi,p+{z—‘lo,p

T;ETP J

(37)

We can do a simple relaxation. We obtain that an upper boundisn

Ci\ | Chip z[p]
L P g w1

C(lo,p . Z[p])
Tiop zlp + 1] + 2[p]

(Z Oj)+2'S+Thi,p+no,p

T;ETP
(38)
We can now see how these upper bounds are useful.
Lemma 1. Assume that
C;. Cu z[p]
1— L)+ L. >0 (39)
((TjeTp T}) Thip x[p]+z[p— 1])
Let L;;,,, be defined as:
Llim -
(Z-rjerp CJ) +2-5+ Thi,p + jﬂlo,p
C; Chi, z[p] Cio, 2[p]
1= (Crem T) Ty srete=t T T 3P 14200
(40)
We claim that for allL such thatl;;,,, < L andDMAX < L, it holds that:
f(L)<L (41)
Proof. From Inequality 39 we obtain th@TjeTp %ﬂ < 1. From the fact that;;,,, < L we obtain:
(ZTjeTP CJ) + 2 ' S =+ Thi,p + no,p
C; Chi, z[p] Cio, z[p]
1- ((ZUGTP T_JJ) + T:;: " zpltzlp—1] + Tzlo,pp ’ :E[p+1]+2[p])
<L (42)
Rewriting yields:
(> C)+2-S+Thip+Tiop
T;ETP
<L-
C; Chi z[p]
(1= F)+7= +
2T Ty ST
C(lo,p . Z[p]))
Tiop x[p+ 1] + 2[p]
(43)

Further rewriting yields:

(Oj)+2'S+Thi_’p+T107p+

T;ETP
C; Chi
Lo (Y Sy S
¥ ;" Thip zlpl+2lp—1]
Clo.p i z[p]
Tiop z[p+1] + z[p]
<L
Using Equation 38 gives us that:
f(L)<L
which states the lemma.
Recall that
if
\V/L,L: kTZ—i—D“L S 2~lcm(T1,T2,...,Tn) :
f(L)<L

then all deadlines are met

Combining this with Lemma 1 gives us that:

if
the denominator of the right — hand side of
Equation 13 is positive
and
VL, L=Fk- -T; + D,
L <min(2-lem(Ty1,Ts, ..., T,), max(DMAX, L)) :
fL) <L

then all deadlines are met

(44)

(45)

(46)

(47)

Appendix C: Performance Evaluation

We essentially follow the setup used by Baker [6], and gems&ygprovided to us (with minor differences) by him. The
values ofT; are given as a uniformly distributed variable with minimurarid maximum 1000. Experiments are performed
for m=2 processors an=8 processors.

Execution times may be drawn from either a bimodal, unifarymexponential distribution.

e Execution times given according to the bimodal distributéoe as follows. Each task is categorized as “heavy™ or
“light™ with 33% probability for the former and 67% probadhy for the latter. A heavy task has a utilization as given
by a uniformly distributed random variable in [0.5,1). AHigtask has a utilization as given by a uniformly distributed
random variable in [0,0.5). The execution time of a tagks chosen ag; multiplied by the utilization of the task.

e Execution times chosen according to a uniform distributioa as follows. A task has a utilization as given by a
uniformly distributed random variable in [0,1). The exdonttime of a taskC; is given asT; multiplied by the
utilization of the task.

e Execution times given according to an exponential distidisuare as follows. A task has a utilization as given by a
exponential distributed random variable with mean 0.3. &kecution time of a task’; is given asl; multiplied by
the utilization of the task. The mean value of this distribatin the code given by Baker was set to zero, so we set it
arbitrarily to 0.3.

Experiments are performed for implicit deadlines (in Baksetup this is called “periodic”), for constrained deadb, for
arbitrary deadlines (in Baker’s setup this is called “urstasined”) and for arbitrary deadlines where the deadlires task
is significantly larger than it} (in Baker’s setup this is called “superperiod”)

e Deadlines given according to implicit deadlines are singaiyasD,=T; for each task.

e Deadlines given according to constrained deadlines arassitilows. The deadline of a taskis C; + (a uniformly
distributed variable in [0,1)) multiplied byI{-C;+1).

e Deadlines given according to unconstrained deadliness@sdollows. The deadline of a taskis C; + (a uniformly
distributed variable in [0,1)) multiplied by (47;-C;+1).

e Deadlines given according to arbitrary deadlines, supageare set as follows. When computing the deadline of
a task, generate a uniformly distributed random variabté rmanltiply that by four and take the floor of that. Then
multiply it by 7;. ThisisD;.

The intent of Baker’s task set generator is to generate &tskisat are not obviously infeasible. For this reason, sask
with (1/m) - >~ , C;/T; > 1 are immediately rejected by the task set generator and &skwhere at least one task has
C; > D, or C; > T; are rejected as well.

The intent of Baker’s task set generator is also that taskgetuld not be easily scheduled by algorithms for implicit-
deadline tasks. For this reason, task sets wifhn) - >, W < 1 are rejected as well.

We run several experiments. For each experiment, we useerBalisk set generator to generate 1000000 task sets and
these task sets were written to a file. Our own tool read atl$ats and applied algorithms on each task set. The alg@ithm
considered were the following. EDF-SS(0), EDF-SS(DTMINEBDF-SS(DTMIN) and EDF-FFD. In the case of implicit
deadline systems, we also included the Ehd2-SIP algorithm.

For each task set we calculated the utilizatiand put it into a “bucket”. There are 100 buckets; one for gerhentage of
utilization. For example, all task sets with utilizationtlain [0.77,0.78) are put in one bucket. For each bucket weutated
the number of task sets that can be scheduled with eachthlgocbnsidered. These histograms are reported in subsequen
subsections. Note that, some buckets have a large numbaslo$éts generated and other buckets have a smaller number
of task sets generated. Our simulation results should fibver@ot be used to asses how “success ratio” varies astertai
parameters vary. Our simulation results can however betodgt out which algorithm performs best.

4The utilization of a task set is defined #2121 %

Experimental Results

The results from the bimodal distribution are shown in Fig8+¢Figure 11. It can be seen that the new algorithm EDF-

SS(x) performs significantly better than EDF-FFD.
The results from the uniform distribution are shown in FggP-Figure 15. The results from the exponential distrdyuti

are shown in Figure 16-Figure 19. The conclusion is the sdineenew algorithm EDF-SS(x) performs significantly better
than EDF-FFD.

[comparison of the number of task sets that can be guaranteed to meet deadlines]

25000
EDF-SS(0) —+—
EDF-SS(DTMIN/4) -
EDF-SS(DTMIN) ------ 9
EDF-FFD & X
20000 - EDF-FFDU —-m— ¢ X
Ehd2-SIP ---o--- |
oy
9 Hot 1
9 15000 [W
kel
I}
2
E 10000
2 g
§
5000 &
i
i
0
0
utilization
(a) m=2
[comparison of the number of task sets that can be guaranteed to meet deadlines]
25000
20000
9
g 15000
5
3
2
€ 10000
2
L EDF-SS(0) ——
5000 EDF-SS(DTMIN/4) - gy
EDF-SS(DTMIN) -----
EDF-FFD &
Ehd2-SIP --m-~
0 h L L L
0.5 0.6 0.7 0.8 0.9 1
utilization
(c) m=2
[comparison of the number of task sets that can be guaranteed to meet deadlines]
25000
EDF-SS(0) —+—
(DTMIN/4) -
S(DTMIN) -
EDF-FFD &
20000 - Ehd2-SIP --®-
~ *-
S Tk
0 N
G 15000 gr e *o
£ o ~— S
s = LN
3 S
o =l |
E 10000 T
€ o LN
o m
5000 -
0
0.9 1
utilization
(e) m=2

Figure 8. Results from simulation experiments with bimodal

ure (c)-(f) shows zoom-ed on figures.

number of tasks

number of tasks

number of tasks

[comparison of the number of task sets that can be guaranteed to meet deadlines]
20000
EDF-SS(0) —+—
| EDF-SS(DTMIN/4) ---x---
18000 EDF-SS(DTMIN) -3
EDF-FFD &
16000 - EDF-FFDU —-m—
Ehd2-SIP -0~
14000
12000
10000
8000
6000
4000
2000
0
0 1
utilization
(b) m=8
[comparison of the number of task sets that can be guaranteed to meet deadlines]
20000
18000
"
16000 x5 XTAHHHN NI Xx X 35 363
{;&?ii;ﬁ;** KKk Ko x*; x:;;:; *\\’:;’(* Xk *X*X—xx
14000 y TR) Xk X
ﬁfﬁnmﬂmam s DBDDDDDBE‘DBDDDD L
12000 o8 e, "% A
10000 - L
! !
8000 |- LS .
|
6000 L
(] ¥
L EDF-SS(0) —— :
4000 | £pr SSDTMINIA) —x-—- 58
EDF-SS(DTMIN) --%--- R
2000 - EDF-FFD -8 W B
Ehd2-SIP --m-- -
0 h L L "u ;
0.5 0.6 0.7 0.8 0.9 1
utilization
(d) m=8
[comparison of the number of task sets that can be guaranteed to meet deadlines]
18000
EDF-SS(0) —+—
16000
14000
K-
12000 R
10000 Kl
8000 |- R
6000
4000 | a
2000 “
S a
0 i N o =)
0.9 1
utilization

(f) m=8

distribution and implicit deadlines. Fig-

number of tasks

number of tasks

number of tasks

[comparison of the number of task sets that can be guaranteed to meet deadlines]
16000

EDF-SS(0) —+—
EDF-SS(DTMIN/4) -
14000 - EDF-SS(DTMIN) - -
EDF-FFD &
EDF-FFDU --#-—
12000 -
10000
8000
6000
4000
2000
0
0 1
utilization
(a) m=2

[comparison of the number of task sets that can be guaranteed to meet deadlines]
16000

14000
12000
10000
8000
6000
4000
EDF-SS(0) —+—
2000 | EDF-SS(DTMIN/4) -

EDF-SS(DTMIN) -3
EDF-FFD &

0.5 0.6 0.7 0.8 0.9 1
utilization

(c) m=2

[comparison of the number of task sets that can be guaranteed to meet deadlines]
6000

EDF-SS(0) —+—
EDF-SS(DTMIN/4) -
EDF-SS(DTMIN) ---%---
5000 EDF-FFD &
4000
3000
2000
1000
0
0.9 1
utilization
(e) m=2

number of tasks

number of tasks

number of tasks

Figure 9. Results from simulation experiments with bimodal
Figure (c)-(f) shows zoom-ed on figures.

[comparison of the number of task sets that can be guaranteed to meet deadlines]
18000

EDF-SS(0) ——
EDF-SS(DTMIN/4) ---%---
16000 | "EDF-SS(DTMIN) ---
EDF-FFD &
14000 | EDF-FFDU ——=—
12000 |-
10000 |-
8000 |-
6000 |-
4000 |-
2000 |
0
0 1
utilization
(b) m=8

[comparison of the number of task sets that can be guaranteed to meet deadlines]
18000

16000 «
AT
SR ¥ X
14000 |7 SR X,
gg,?é BDDE‘DDDDGDDE\D Fx
of a
12000 158 o,
10000
8000
6000
4000 |
EDF-SS(0) —+—
2000 | EDF-SS(DTMIN/4) --
EDF-SS(DTMIN) -5
EDF-FFD &
0 f !
05 0.6 0.7 0.8 0.9 1
utilization
(d) m=8

[comparison of the number of task sets that can be guaranteed to meet deadlines]
1200

EDF-SS(0) —+—

EDF-SS(DTMIN/4) ~—-x-—

EDF-SS(DTMIN) %
EDF-FFD -8

1000

800

600

400

200

utilization

(f) m=8

distribution and constrained deadlines.

[comparison of the number of task sets that can be guaranteed to meet deadlines]

25000

20000

15000

10000

number of tasks

5000

[comparison of the number of task sets that can be guaranteed to meet deadlines]

25000

20000

15000

10000

number of tasks

5000

[comparison of the number of task sets that can be guaranteed to meet deadlines]

25000

20000

15000

10000

number of tasks

5000

EDF-SS(0) —+—
EDF-SS(DTMIN/4) -
EDF-SS(DTMIN) ------
EDF-FFD &
[EDF-FFDU --m-—
0
utilization
(a) m=2

EDF-SS(0) —+— Y
EDF-SS(DTMIN/4) -
EDF-SS(DTMIN) ------
EDF-FFD 8- ‘ ‘ g
0.5 0.6 0.7 0.8 0.9
utilization
(c) m=2

EDF-SS(0) —+—

EDF-SS(DTMIN/4)

EDF-SS(DTMIN) %
EDF-FFD -8

0.9
utilization

(e) m=2

number of tasks

number of tasks

number of tasks

[comparison of the number of task sets that can be guaranteed to meet deadlines]

18000

16000

14000

12000

10000

8000

6000

4000

2000

0

18000

16000

14000

12000

10000

8000

6000

4000

2000

0

18000

16000

14000

12000

10000

8000

6000

4000

2000

0

EDF-SS(DTMIN/4) --
EDF-SS(DTMIN) -3

EDF-SS(0) —+—

EDF-FFD &
EDF-FFDU —-m—

0 1
utilization
(b) m=8
[comparison of the number of task sets that can be guaranteed to meet deadlines]
r SORHAHXHIK g3 Xog
XK RRAA RHRAKK XK X
;e ;(Q*xx KK %****x******* % .
EDDDDDDDDDE‘DDDDDDDDDEDDDD *x* X\x
2 Hog 13 |
EDF-SS(0) —+— i
EDF-SS(DTMIN/4) --
EDF-SS(DTMIN) ----- B
EDF-FFD & B
1 L L L o
0.5 0.6 0.7 0.8 0.9 1
utilization
(d) m=8
[comparison of the number of task sets that can be guaranteed to meet deadlines]
1 EDF-SS(0) —+—
EDF-SS(DTMIN/4) —-%---
r EDF-SS(DTMIN) ---%---
EDF-FFD &
L Tk
L.
B.
r =]
ja]
8 o
0.9 1
utilization

Figure 10. Results from simulation experiments with bimoda
Figure (c)-(f) shows zoom-ed on figures.

(f) m=8

| distribution and arbitrary deadlines.

[comparison of the number of task sets that can be guaranteed to meet deadlines] [comparison of the number of task sets that can be guaranteed to meet deadlines]
25000 18000

EDF-SS(0) —+— EDF-SS(0) —+—
EDF-SS(DTMIN/4) - 16000 |- EDF-SS(DTMIN/4) ---x---
EDF-SS(DTMIN) ------ EDF-SS(DTMIN) ------
20000 EDF-FFD - EDF-FFD -8 -
EDF-FFDU --m-- 14000 EDF-FFDU --#-— ;
P P 12000
v 15000 [@
2 £ 10000 |
5 5
é é 8000 [
3 10000 3
6000
5000 4000
2000
0 0
0 1 0 1
utilization utilization
(a) m=2 (b) m=8
[comparison of the number of task sets that can be guaranteed to meet deadlines] [comparison of the number of task sets that can be guaranteed to meet deadlines]
25000 18000
16000 o
XN GHRHKH
20000 st
141
000 EDDDDDDDDDE\DDDDDDDDDDBDDED
P P 12000
o 15000)
£ £ 10000
o o
é é 8000
3 10000 3
6000
4000
5000 EDF-SS(0) —+— o) EDF-SS(0) —+—
EDF-SS(DTMIN/4) - 2000 | EDF-SS(DTMIN/4) --
EDF-SS(DTMIN) ------ Y EDF-SS(DTMIN) ------
EDF-FFD & g EDF-FFD &
0 0 L L L 0 0 L L
0.5 0.6 0.7 0.8 0.9 1 0.5 0.6 0.7 0.8
utilization utilization
(c) m=2 (d) m=8
[comparison of the number of task sets that can be guaranteed to meet deadlines] [comparison of the number of task sets that can be guaranteed to meet deadlines]
25000 18000 B ————
EDF-SS(0) —+— EDF-SS(0) —+—
~SIS(DTMIN/4) --- S
- “C-EDESS(DTMIN) — % 16000 - -
i N \| EDF-FFD —&— [s e
20000 TR 14000
[
9 g 12000 R
v 15000 G- a T
et B £ 10000
2 = 2 *
3 - 2 8000 |
E 10000 5
c 2} c
6000
4000
5000 |- a &
2000 | ®
1=t
a
0 0 = -
0.9 1 0.9 1
utilization utilization
(e) m=2 (f) m=8
Figure 11. Results from simulation experiments with bimoda | distribution and arbitrary deadlines

(superperiod). Figure (c)-(f) shows zoom-ed on figures.

[comparison of the number of task sets that can be guaranteed to meet deadlines] [comparison of the number of task sets that can be guaranteed to meet deadlines]

30000 25000
EDF-SS(0) —+— EDF-SS(0) —+—
EDF-SS(DTMIN/4) - EDF-SS(DTMIN/4) ---x---
EDF-SS(DTMIN) ------ EDF-SS(DTMIN) ------
25000 - EDF-FFD & EDF-FFD &
EDF-FFDU —-m— 20000 - EDF-FFDU —-m—
Ehd2-SIP ---o--- Ehd2-SIP -0~
P 20000 P
g g 15000
? 15000 ?
I} I}
2 2
% % 10000
10000
5000 : 5000 -
g
i
0 0
0 1 0 1
utilization utilization
(a) m=2 (b) m=8
[comparison of the number of task sets that can be guaranteed to meet deadlines] [comparison of the number of task sets that can be guaranteed to meet deadlines]
30000 25000
25000
20000 -
” XXXX*XX*X*X*Q XX Xy
20000 |- EDDDDD 2 s PERILL S | X*X‘xxxxxx
0 gl 0 . X
z i 15000 §§%DDDDDBD““DDDDD *
- et ;@é’mu
2 15000 5 wEae
9] 1] ¥0"
2 2
g g 10000 by ¥
10000 e
EDF-SS(0) —— p 5000 - EDF-SS(0) —+— |
5000 | EDF-SS(DTMIN/4) - 4 EDF-SS(DTMIN/4) ---%-—- e
EDF-SS(DTMIN) ---%--- ‘ EDF-SS(DTMIN) --%--- "
EDF-FFD & EDF-FFD & L]
Ehd2-SIP —-m- Ehd2-SIP —-m- o
0 h L L L 0 h L L L "
0.5 0.6 0.7 0.8 0.9 1 0.5 0.6 0.7 0.8 0.9 1
utilization utilization
(c) m=2 (d) m=8
[comparison of the number of task sets that can be guaranteed to meet deadlines] [comparison of the number of task sets that can be guaranteed to meet deadlines]
30000 25000
EDF-SS(0) —+— EDF-SS(0) o
25000 et
Ehd2-SIP --&-- 20000
P 20000 P
g g 15000
é 15000 é
@ @
2 2
S g 10000
10000
5000
5000
0 0
. 1 . 1
utilization utilization
(e) m=2 (f) m=8

Figure 12. Results from simulation experiments with unifor m distribution and implicit deadlines.
Figure (c)-(f) shows zoom-ed on figures.

[comparison of the number of task sets that can be guaranteed to meet deadlines] [comparison of the number of task sets that can be guaranteed to meet deadlines]

16000 25000
EDF-SS(0) —+— EDF-SS(0) —+—
EDF-SS(DTMIN/4) - EDF-SS(DTMIN/4) --
14000 - EDF-SS(DTMIN) ------ EDF-SS(DTMIN) ------
EDF-FFD & 20000 EDF-FFD &
EDF-FFDU --m-- " EDF-FFDU --m--
12000 - :
£ 10000 - b 2
@ A 9 15000 [
= Y =
© 8000 ke o
I} I}
£ : £
5 6000 | oy 5 10000
%
4000 |)
Gy 5000
2000 e
0 0
0 1 0 1
utilization utilization
(a) m=2 (b) m=8
[comparison of the number of task sets that can be guaranteed to meet deadlines] [comparison of the number of task sets that can be guaranteed to meet deadlines]
16000 25000
14000
20000
12000
HHHRFEX
7 @ X g X
¢ 10000 % 15000 e
- e
@ @
-g -g 10000
3 6000 3
4000 3‘\
a
EDF-SS(0) —+— R 5000 EDF-SS(0) —+—
2000 | EDF-SS(DTMIN/4) - ERW EDF-SS(DTMIN/4) -- '
EDF-SS(DTMIN) - - [l EDF-SS(DTMIN) ---3--- o] xxx
EDF-FFD & B, EDF-FFD & Bag
0 l L L L & 0 l L L 2f=h .
0.5 0.6 0.7 0.8 0.9 1 0.5 0.6 0.7 0.8 0.9 1
utilization utilization
(c) m=2 (d) m=8
[comparison of the number of task sets that can be guaranteed to meet deadlines] [comparison of the number of task sets that can be guaranteed to meet deadlines]
8000 2500
EDF-SS(0) —+— EDF-SS(0) —+—
EDF-SS(DTMIN/4) - EDF-SS(DTMIN/4) —--%---
7000 EDF-SS(DTMIN) - EDF-SS(DTMIN) - %---
EDF-FFD & EDF-FFD -
2000
6000
£ 5000]
g g 1500
é 4000 "é
@ @
-g -g 1000
3 3000 3 X
2000
500
1000
0 0
0.9 1 . 1
utilization utilization
(e) m=2 (f) m=8

Figure 13. Results from simulation experiments with unifor m distribution and constrained deadlines.
Figure (c)-(f) shows zoom-ed on figures.

[comparison of the number of task sets that can be guaranteed to meet deadlines] [comparison of the number of task sets that can be guaranteed to meet deadlines]

25000 25000
EDF-SS(0) —+— EDF-SS(0) —+—
EDF-SS(DTMIN/4) - EDF-SS(DTMIN/4) ---x---
EDF-SS(DTMIN) ------ EDF-SS(DTMIN) ------
EDF-FFD & EDF-FFD &
20000 - EDF-FFDU —-m— 20000 - EDF-FFDU —-m—
9 9
g 15000 g 15000
kel 5
I} I}
2 2
E 10000 . E 10000
2 " 2
o
i
-
5000 i 5000
o]
|
]
0 0
0 1 0 1
utilization utilization
(a) m=2 (b) m=8
[comparison of the number of task sets that can be guaranteed to meet deadlines] [comparison of the number of task sets that can be guaranteed to meet deadlines]
25000 25000
FHAEHHHKK,
§§§§*;@X%***>@
*x
20000 20000
ey HFHIEIRHA 5 X5k 356
0 0 ’ * e
9 2 k.
] 15000] 15000 *,
& & o)
5 k-]
3 3
2 2
E 10000 4 E 10000
2 2
5000 EDF-SS(0) —+— 5000 EDF-SS(0) —+—
EDF-SS(DTMIN/4) - EDF-SS(DTMIN/4) --
EDF-SS(DTMIN) ------ EDF-SS(DTMIN) ------ %
EDF-FFD & B EDF-FFD & o
0 l L L L 0 l L L L O,
0.5 0.6 0.7 0.8 0.9 1 0.5 0.6 0.7 0.8 0.9 1
utilization utilization
(c) m=2 (d) m=8
[comparison of the number of task sets that can be guaranteed to meet deadlines] [comparison of the number of task sets that can be guaranteed to meet deadlines]
25000 25000
EDF-SS(0) —+— EDF-SS(0) —+—
- = - EDF-SS(DTMIN/4) —-%---
RN - EDF-SS(DTMIN) ------
20000 | 20000 EDF-FFD -
9 9
g 15000 - g 15000
5 5
3 3
2 2
E 10000 € 10000
2 2
5000 5000
0 0
0.9 1 . 1
utilization utilization
(e) m=2 (f) m=8

Figure 14. Results from simulation experiments with unifor m distribution and arbitrary deadlines.
Figure (c)-(f) shows zoom-ed on figures.

number of tasks

number of tasks

number of tasks

[comparison of the number of task sets that can be guaranteed to meet deadlines]
30000

EDF-SS(0) —+—
EDF-SS(DTMIN/4) -
EDF-SS(DTMIN) ------
25000 [EDF-FFD &
EDF-FFDU --#-—
20000
15000
10000
5000
0
0 1
utilization
(a) m=2

[comparison of the number of task sets that can be guaranteed to meet deadlines]
30000

25000

20000

15000

10000 &

5000 EDF-SS(0) ——
EDF-SS(DTMIN/4) - el
EDF-SS(DTMIN) ------
EDF-FFD -8 ag
0 1 L L L
0.5 0.6 0.7 0.8 0.9 1
utilization
(c) m=2

[comparison of the number of task sets that can be guaranteed to meet deadlines]
30000

EDF-SS(0) —+—
EDF-SS(DTMIN/4)

S(DTMIN) -
EDF-FFD -8

25000

20000

15000

10000

5000

0.9 1
utilization

(e) m=2

number of tasks

number of tasks

number of tasks

Figure 15. Results from simulation experiments with unifor
(superperiod). Figure (c)-(f) shows zoom-ed on figures.

[comparison of the number of task sets that can be guaranteed to meet deadlines]
25000

EDF-SS(0) —+—
EDF-SS(DTMIN/4) —--x---
EDF-SS(DTMIN) ------
EDF-FFD -8
20000 - EDF-FFDU —-m—
15000 |-
10000 |
5000 |-
0
0 1
utilization
(b) m=8

[comparison of the number of task sets that can be guaranteed to meet deadlines]
25000

20000

s ISR

X% X e
SRR K e H ok,
£3 *%* el

15000
10000

5000 EDF-SS(0) —+—
EDF-SS(DTMIN/4) --
EDF-SS(DTMIN) ------ o :
EDF-FFD & By *\

f L L L
0.5 0.6 0.7 0.8 0.9 1

utilization

(d) m=8

[comparison of the number of task sets that can be guaranteed to meet deadlines]
25000

EDF-SS(0) —+—
EDF-SS(DTMIN/4) —--x---
EDF-SS(DTMIN) -~
20000 | EDF-FFD &
15000
10000
5000
0
0.9 1

utilization

(f) m=8

m distribution and arbitrary deadlines

number of tasks

number of tasks

number of tasks

[comparison of the number of task sets that can be guaranteed to meet deadlines]
25000

EDF-SS(0) ——
EDF-SS(DTMIN/4) -
EDF-SS(DTMIN) --*---
EDF-FFD -8
20000 - EDF-FFDU —-m— %Q?
Ehd2-SIP --0-- y
o
15000 K,
10000
5000 -
0
0 1
utilization
(a) m=2

[comparison of the number of task sets that can be guaranteed to meet deadlines]
25000

20000

HHHIH

HK oaaEnfEeB0naanay,
X Epaet! z= N,

15000

o

EIDDD
10000
L EDF-SS(0) ——
5000 ' £pr_sS(DTMINGA) —-
EDF-SS(DTMIN) -----
EDF-FFD &
Ehd2-SIP --m-~
0 h L L
0.5 0.6 0.7 0.8 0.9 1
utilization
(c) m=2

[comparison of the number of task sets that can be guaranteed to meet deadlines]
25000

EDF-SS(0) ——

20000

15000

10000

5000

0.9 1
utilization

(e) m=2

number of tasks

number of tasks

number of tasks

Figure 16. Results from simulation experiments with expone
Figure (c)-(f) shows zoom-ed on figures.

[comparison of the number of task sets that can be guaranteed to meet deadlines]
20000

EDF-SS(0) —+—
| EDF-SS(DTMIN/4) --x---
18000 I TEDESS(DTMIN - x---
EDF-FFD -8
16000 - EDF-FFDU —-m—
Ehd2-SIP --o--
14000 |
12000 |
10000 |
8000 |-
6000 [
4000 |
2000 |
0
0 1
utilization
(b) m=8

[comparison of the number of task sets that can be guaranteed to meet deadlines]
20000

EDF-SS(0) —+—
EDF-SS(DTMIN/4) X5
18000 EDF-SS(DTM -
16000
14000
12000
10000
8000
6000 N
s .
4000 %gﬁ%;@888&%’ii’yéié;xx-x*x%ﬂx . N
o - X
2000 L =lalaly - xxx***”‘*;* XX%*X*X;E;:%XX:%X»XX\
o onhn
0 L L L -
0.5 0.6 0.7 0.8 0.9 1
utilization
(d) m=8

[comparison of the number of task sets that can be guaranteed to meet deadlines]
20000

EDF-SS(0) —+—
(DTMIN/4) <

18000

16000

14000

12000

10000

8000

6000

4000

2000

0

utilization

(f) m=8

ntial distribution and implicit deadlines.

[comparison of the number of task sets that can be guaranteed to meet deadlines] [comparison of the number of task sets that can be guaranteed to meet deadlines]

16000 18000
EDF-SS(0) —+— EDF-SS(0) —+—
EDF-SS(DTMIN/4) - 16000 |- EDF-SS(DTMIN/4) ---x---
14000 - EDF-SS(DTMIN) ------ EDF-SS(DTMIN) ------
EDF-FFD & EDF-FFD &
EDF-FFDU --m-- + EDF-FFDU --m--
12000 k- 14000
12000
0 0
§ ‘o000 - 2
Z £ 10000 |
© 8000 | 5
3 & 8000
g 6000 g
= S 6000 -
4000 2000 |
2000 2000 |
0 0
0 1 0 1
utilization utilization
(a) m=2 (b) m=8
[comparison of the number of task sets that can be guaranteed to meet deadlines] [comparison of the number of task sets that can be guaranteed to meet deadlines]
16000 18000 T T
EDF-SS(0) ——
EDF-SS(DTMIN/4) —--%---
14000 16000 EDF-SS(DTMIN) -----
EDF-FFD &
12000 14000
12000
0 0
rx% 10000 rx%
et £ 10000
2 8000 5
3 2 8000
; 6000 ;
= S 6000
¥
4000 4000 X ek
KKK K Poxsg,
EDF-SS(0) —— _— Hooaen Fih ot
2000 | EDF-SS(DTMIN/4) - o ¥ 2000 F O PoeeEngy, BT
EDF-SS(DTMIN) ------ By Booggg o, ***-***;Xxxx
o EDf—FFD =3))) DDDH;‘ o)] Bopgg x***x§
0.5 0.6 0.7 0.8 0.9 1 0.5 0.6 0.7 0.8 0.9 1
utilization utilization
(c) m=2 (d) m=8
[comparison of the number of task sets that can be guaranteed to meet deadlines] [comparison of the number of task sets that can be guaranteed to meet deadlines]
8000 4000
EDF-SS(0) —+— EDF-SS(0) —+—
EDF-SS(DTMIN/4) - EDF-SS(DTMIN/4) —--%---
7000 EDF-SS(DTMIN) ---%--- 3500 EDF-SS(DTMIN) ---%---
EDF-FFD & EDF-FFD -
6000 3000
£ 5000 £ 2500 |
& &
S 4000 S 2000 |
@ @
2 2
£ £
3 3000 S 1500
2000 1000
1000 500
0
0.9 1 1
utilization utilization
(e) m=2 (f) m=8

Figure 17. Results from simulation experiments with expone ntial distribution and constrained dead-
lines. Figure (c)-(f) shows zoom-ed on figures.

[comparison of the number of task sets that can be guaranteed to meet deadlines]

25000
EDF-SS(0) —+—
EDF-SS(DTMIN/4) -
EDF-SS(DTMIN) -
EDF-FFD &
20000 - EDF-FFDU —-m—
9
g 15000
kel
I}
2
E 10000
2
5000
0
0
utilization
(a) m=2
[comparison of the number of task sets that can be guaranteed to meet deadlines]
25000
20000
9
] 15000 o -
& * TR .
5 ﬁﬁégg’énmmnnmmnnDDDBDDBDDDEDD 3%3@,&5&1
@
2 By f
€ 10000 | 2 |
2 =} |
|
L i
5000 EDF-SS(0) —+— i
EDF-SS(DTMIN/4) - M
EDF-SS(DTMIN) ------ 8
EDF-FFD -8 a
0 0 L L L
0.5 0.6 0.7 0.8 0.9
utilization
(c) m=2
[comparison of the number of task sets that can be guaranteed to meet deadlines]
25000
EDF-SS(0) —+—
EDF-SS(DTMIN/4) ---
EDF-SS(DTMIN) ---%---
20000 EDF-FFD &
9
g 15000
5
3
2
E 10000
2
5000

0.9

Figure 18. Results from simulation experiments with expone

utilization

(e) m=2

Figure (c)-(f) shows zoom-ed on figures.

number of tasks

number of tasks

number of tasks

[comparison of the number of task sets that can be guaranteed to meet deadlines]

20000
EDF-SS(0) —+—
| EDF-SS(DTMIN/4) ---x---
18000 EDF-SS(DTMIN) -3
EDF-FFD &
16000 - EDF-FFDU —-m—
14000
12000
10000
8000
6000
4000
2000
0
0 1
utilization
(b) m=8
[comparison of the number of task sets that can be guaranteed to meet deadlines]
20000 T T
EDF-SS(0) ——
| EDF-SS(DTMIN/4) --
18000 EDF-SS(DTMIN)A+=
16000 - £ b
14000
12000
10000
8000
6000
4000 FEEBEBE 00000
o o KRG é;ix*x**x XX 353 %50
2000 oe Ho K =
KKK
0 L L L aslelal! kol
0.5 0.6 0.7 0.8 0.9 1
utilization
(d) m=8

[comparison of the number of task sets that can be guaranteed to meet deadlines]

20000

18000

16000

14000

12000

10000

8000

6000

4000

2000 }

0

EDF-SS(0) —+—

EDF-SS(DTMIN/4) ~—-x-—

EDF-SS(DTMIN) %
EDF-FFD -8

utilization

(f) m=8

ntial distribution and arbitrary deadlines.

number of tasks

number of tasks

number of tasks

[comparison of the number of task sets that can be guaranteed to meet deadlines]
25000

EDF-SS(0) ——
EDF-SS(DTMIN/4) -
EDF-SS(DTMIN) --*---
EDF-FFD -8
20000 - EDF-FFDU —-m—
15000
10000
5000 -
0
0 1
utilization
(a) m=2

[comparison of the number of task sets that can be guaranteed to meet deadlines]
25000

20000
) (X
15000 F X *;é&%*;?i:&
’E;éégDDDE\BDDDDDDDDDDDDDDBDE‘DDD M
- }
10000 ‘
5000 |- EDF-SS(0) —+— a
EDF-SS(DTMIN/4) - -
EDF-SS(DTMIN) -3
EDF-FFD & [c]
o) . . .
05 0.6 0.7 0.8 0.9 1
utilization
(c) m=2

[comparison of the number of task sets that can be guaranteed to meet deadlines]
25000

EDF-SS(0) ——

20000

15000

10000

5000

0.9 1
utilization

(e) m=2

number of tasks

number of tasks

number of tasks

Figure 19. Results from simulation experiments with expone
(superperiod). Figure (c)-(f) shows zoom-ed on figures.

[comparison of the number of task sets that can be guaranteed to meet deadlines]
20000

EDF-SS(0) —+—
o0 - EQESEETN 2
16000 | EBRFFOU 8-
14000
12000
10000
8000
6000
4000
2000
0
0 1
utilization
(b) m=8

[comparison of the number of task sets that can be guaranteed to meet deadlines]
20000

EDF-SS(0) ——
| EDF-SS(DTMIN/4) —
18000 1 = B p S (DTMINg
EDPFD

16000
14000
12000
10000
8000
6000

Rt S
e ***;*x*xx**
o . . ; Sooen X
0.5 0.6 0.7 0.8 0.9 1
utilization

(d) m=8

2000

[comparison of the number of task sets that can be guaranteed to meet deadlines]
20000

EDF-SS(0) ——
NI

18000

16000

14000

12000

10000

8000

6000

4000

2000

0

utilization

(f) m=8

ntial distribution and arbitrary deadlines

