

Schedulability Analysis for 3-Phase Tasks with
Partitioned Fixed-Priority Scheduling

Journal Paper

*CISTER Research Centre

CISTER-TR-220801

2022

Jatin Arora*

Cláudio Maia

Syed Aftab Rashid*

Geoffrey Nelissen

Eduardo Tovar*

Journal Paper CISTER-TR-220801 Schedulability Analysis for 3-Phase Tasks with Partitioned ...

© 2022 CISTER Research Center
www.cister-labs.pt

1

Schedulability Analysis for 3-Phase Tasks with Partitioned Fixed-Priority
Scheduling

Jatin Arora*, Cláudio Maia, Syed Aftab Rashid*, Geoffrey Nelissen, Eduardo Tovar*

*CISTER Research Centre

Polytechnic Institute of Porto (ISEP P.Porto)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail: jatin@isep.ipp.pt, clrrm@isep.ipp.pt, syara@isep.ipp.pt, gnn@isep.ipp.pt, emt@isep.ipp.pt

https://www.cister-labs.pt

Abstract

Multicore platforms are being increasingly adopted in Cyber-Physical Systems (CPS) due to their advantages over
single-core processors, such as raw computing power and energy efficiency. Typically, multicore platforms use a
shared memory bus that connects the cores to the off-chip main memory. This sharing of memory bus may cause
tasks running on different cores to compete for access to the main memory whenever data/instructions are need
to be read/written from/to the main memory. Such competition is problematic, as it may cause variations in the
execution time of tasks in a non-deterministic way. To reduce the complexity of analysing this problem, the 3-
phase task model was proposed that divides tasks' executions into distinct memory and execution phases. The
distinctive memory phases are then scheduled to eliminate/minimize main memory contention between
concurrently executing tasks. However, 3-phase tasks running on different cores may still compete to access the
shared memory bus/main memory in order to execute memory phases. This paper presents a partitioned
scheduling-based approach that allows one to derive memory bus contention-aware worst-case response time of
tasks that follow the 3-phase task model. In particular, the bus-contention analysis is derived by considering two
memory access models, i.e., (i) dedicated memory access model, where a core having allowed to access the main
memory via memory bus is permitted to execute more than one memory phase, and (ii) fair memory access model,
that restrict each core to execute only one memory phase in its allocated bus access. Both these models
represent different system and application requirements, and the resulting bus contention of tasks may vary
depending on the considered model. To evaluate the effectiveness of the proposed bus contention analysis, we
compare its performance against an existing analysis in the state-of-the-art by performing (i) case-study
experiments, using benchmarks from the Mälardalen Benchmark suite, and (ii) empirical evaluation using
synthetic task sets. Results show that our proposed analysis can improve task set schedulability of 3-phase tasks
by up to 88 percentage points.

Schedulability Analysis for 3-Phase Tasks with Partitioned Fixed-Priority

Scheduling

Jatin Aroraa,∗, Cláudio Maiaa, Syed Aftab Rashida,c, Geoffrey Nelissenb, Eduardo Tovara

aCISTER Research Centre, ISEP, IPP, Porto, Portugal
bEindhoven University of Technology, Eindhoven, the Netherlands

cVORTEX CoLab, Porto, Portugal

Abstract

Multicore platforms are being increasingly adopted in Cyber-Physical Systems (CPS) due to their advan-
tages over single-core processors, such as raw computing power and energy efficiency. Typically, multicore
platforms use a shared memory bus that connects the cores to the off-chip main memory. This sharing of
memory bus may cause tasks running on different cores to compete for access to the main memory whenever
data/instructions are need to be read/written from/to the main memory. Such competition is problematic,
as it may cause variations in the execution time of tasks in a non-deterministic way. To reduce the complexity
of analysing this problem, the 3-phase task model was proposed that divides tasks’ executions into distinct
memory and execution phases. The distinctive memory phases are then scheduled to eliminate/minimize
main memory contention between concurrently executing tasks. However, 3-phase tasks running on differ-
ent cores may still compete to access the shared memory bus/main memory in order to execute memory
phases. This paper presents a partitioned scheduling-based approach that allows one to derive memory bus
contention-aware worst-case response time of tasks that follow the 3-phase task model. In particular, the
bus-contention analysis is derived by considering two memory access models, i.e., (i) dedicated memory ac-
cess model, where a core having allowed to access the main memory via memory bus is permitted to execute
more than one memory phase, and (ii) fair memory access model, that restrict each core to execute only
one memory phase in its allocated bus access. Both these models represent different system and application
requirements, and the resulting bus contention of tasks may vary depending on the considered model. To
evaluate the effectiveness of the proposed bus contention analysis, we compare its performance against an
existing analysis in the state-of-the-art by performing (i) case-study experiments, using benchmarks from
the Mälardalen Benchmark suite, and (ii) empirical evaluation using synthetic task sets. Results show that
our proposed analysis can improve task set schedulability of 3-phase tasks by up to 88 percentage points.

Keywords: Real-Time Systems, Multicore Processors, Partitioned Scheduling, Bus Contention,
Schedulability Analysis

This work is an extended version of the paper entitled “Bus-Contention Aware Schedulability Analysis
for the 3-Phase Task Model with Partitioned Scheduling [1]”. The main extensions include the formulation
of the Fair Memory Access Model (FMAM) (Section 2), maximum bus blocking analysis for the FMAM
(Section 6), and the extensive empirical evaluation using a case study and synthetic tasksets (Section 8).

1. Introduction5

Multicore processors offer several advantages such as higher computational power and lower energy
consumption over traditional single-core computing platforms. However, the use of multicore processors

∗Corresponding author
Email addresses: jatin@isep.ipp.pt (Jatin Arora), crrm@isep.ipp.pt (Cláudio Maia), syara@isep.ipp.pt (Syed Aftab

Rashid), g.r.r.j.p.nelissen@tue.nl (Geoffrey Nelissen), emt@isep.ipp.pt (Eduardo Tovar)

Preprint submitted to Journal of LATEX Templates September 19, 2022

(a) The PRedictable Execution Model (PREM) (b) The 3-Phase Task Model

Figure 1: Phased Execution Models

in hard real-time systems, i.e., systems with stringent timing requirements, is still under the scrutiny of
the real-time systems community due to their unpredictable behavior. This unpredictable behavior is a
direct result of current designs which include shared resources, such as buses, caches, main memory, and10

I/O devices. When accessing any of these shared resources, a task executing on a given core may suffer
inter-core interference from co-running tasks, i.e., tasks running on the other cores, potentially affecting the
execution time of the tasks in a non-deterministic manner.

Analysing the inter-core interference suffered by a given task is extremely challenging as it depends
on specific properties (i.e., number of memory requests, time required to serve each memory request, task15

priority, etc.) of tasks executing on other cores at the same time instant. To simplify this problem, the
concept of phased execution models, e.g., PRedictable Execution Model (PREM) [2] was introduced. In
PREM, the tasks’ executions are divided into separate memory and execution phases. As shown in Figure 1a,
whenever a PREM task is released, it first executes a memory phase followed by the execution phase. The
memory phase is responsible for loading tasks’ data and instructions into the core’s local memory (e.g., cache20

or scratchpad) from the main memory. During the execution phase, the core executes the task’s code by
processing data/instructions already available in its local memory without the need of accessing the memory
bus or the main memory. Effectively, in the PREM model, the shared bus/main memory is accessed by
tasks only during their memory phases which reduces the complexity of analysing the maximum inter-core
interference suffered by a task due to co-running tasks.25

The 3-phase (or AER) task model [3, 4] is a generalization of the PREM model. As shown in Fig-
ure 1b, the 3-phase task model divides the task into three phases, namely Acquisition, Execution, and
Restitution. During the acquisition phase (also called A-phase), task’s data/instructions are loaded from the
main memory into the core’s local memory. During the execution phase (also called E-phase), pre-loaded
data/instructions are executed by the core, and finally, in the restitution phase (i.e., R-phase), the processed30

data is written back to the main memory. Similarly to the PREM model, in the 3-phase task model, accesses
to the main memory via a memory bus are only performed during the memory phases, i.e., A and R-phases.

Phased execution models such as PREM and the 3-phase task model are usually used with a co-scheduling

Figure 2: Example schedule using the 3-Phase task model to mitigate the problem of inter-core interference

2

Figure 3: The problem of bus blocking in the 3-phase task model

algorithm to serialize the accesses to the bus/memory, thereby, eliminating/reducing contention. In this
direction, works like [5, 6] have been proposed that generate an offline schedule of 3-phase tasks such35

that no two tasks can access the memory at the same time, thereby, eliminating inter-core bus/memory
interference (e.g., see Figure 2). However, such solutions may not be applicable when an offline schedule
cannot be forced due to the event-triggered/time-triggered nature of tasks. Consequently, when commonly
used priority-based scheduling schemes are considered, 3-phase/PREM tasks may still compete to access
the shared bus to execute their memory phases. For example, in Figure 3, task τi suffers bus contention40

from task τk when trying to execute its A-phase as the bus was busy serving a memory phase of task τk.
The additional execution delay suffered by τi in Figure 3 is referred to as bus blocking1.

Bus blocking suffered by tasks executing on a multicore platform can have a significant impact on their
schedulability. Hence, several works have been proposed in the state-of-the-art that focus on bounding bus
blocking for the conventional task model [7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. Similarly, works like [17] focused45

on bounding bus blocking for the 3-phase task model under global fixed priority scheduling. Therefore,
in this work we focus on analysing bus blocking and deriving the worst-case response time (WCRT) for
the 3-phase task model considering fixed-priority partitioned scheduling. Specifically, we show how bus
blocking suffered by 3-phase tasks can be bounded under two different memory access models, namely, the
Dedicated Memory Access Model (DMAM) and the Fair Memory Access Model (FMAM). In the DMAM,50

a core permitted to access the memory bus is allowed to execute more than one ready memory phase. This
can improve the throughput of the system by executing multiple memory phases, e.g., R-phase followed by
an A-phase, of tasks within a single memory access allocated to the processing core. On the other hand,
the FMAM facilitates the fair distribution of the memory resources, i.e., memory bus/main memory, among
all the cores that results in improving predictability. This is achieved by allowing a core to execute at most55

one memory phase, i.e., A- or R-phase, when it is granted an access to the bus. We will first show how the
maximum bus blocking can be upper bounded under both these memory access models and then show how
it can be integrated into the worst-case response time analysis of tasks.

Contributions: This paper has the following contributions:

1. We propose a fine-grained analysis to compute the maximum bus blocking for 3-phase tasks scheduled60

using partitioned fixed-priority scheduling. We show that the bus blocking suffered by the task can be
different when considering different memory access models. As a consequence, we formulate the bus
blocking analysis considering both DMAM and FMAM models.

2. We derive a schedulability test for the fixed-priority 3-phase task model by integrating the impact of
maximum bus blocking into the WCRT analysis of each task.65

3. We compare our presented analyses against the state-of-the-art by means of case study experiments,
i.e., performed using Mälardalen Benchmarks suite [18], as well as through empirical evaluation, i.e.,

1State-of-the-art approaches used terms such as shared resource contention, bus contention, memory bus contention, bus
interference, memory contention which is similar to the term bus blocking in our work.

3

using synthetic task sets. Results show that our presented analysis tightly bounds the bus blocking
and improves task set schedulability by up to 88 percentage points.

Paper Organization: The rest of the paper is organized as follows: Section 2 describes the system and70

execution models. Section 3 presents the background concepts. Section 4 discusses the problem formulation.
The bus blocking analysis for the DMAM is presented in Section 5, followed by the bus blocking analysis
for the FMAM in Section 6. The bus-contention aware schedulability analysis is presented in Section 7.
The experimental results are presented in Section 8. Section 9 presents the related work and Section 10
concludes the paper.75

2. System Model

We consider a multicore platform with m identical cores (π1, π2, . . . , πm) where each core has a local
memory (i.e., scratchpad or local cache), large enough to store the data/instructions of the largest task in
the taskset. Tasks are partitioned to cores at design-time and cannot migrate to any other core at run-time.
Similarly to existing works [7, 10, 12, 13, 14, 17, 16], we assume a single-channel shared memory bus that80

connects all the cores to the main memory and the memory bus can only handle one memory phase2 at a
time, i.e., only one task can access the main memory at a time. A memory phase cannot be preempted once
it accesses the memory bus to perform memory transactions. Furthermore, we assume that the memory bus
arbitration policy is First-Come First-Served (FCFS) which is a work-conserving policy.

2.1. Task Model85

We consider a task set Γ comprising n sporadic tasks from which the subset Γ′ is assigned to each
core according to the given task-to-core mapping strategy. Each task τi is characterized by its minimum
inter-arrival time Ti and its constrained deadline Di, where Di ≤ Ti. Each task τi is executed according
to the 3-phase task model. In this model, the execution of a task τi is divided into three phases, namely:
Acquisition (A), Execution (E) and Restitution (R). The Worst-Case Execution Time (WCET) of A, E and90

R-phases of τi is denoted by CA
i , CE

i , and CR
i , respectively. Thus, the WCET of task τi in isolation is given

by the sum of the WCET of each of the phases, i.e., Ci = CA
i + CE

i + CR
i . The task utilization of task τi

is given by Ui =
Ci

Ti
and the core utilization of a given core πl is given by

∑

τi∈Γ′

l
Ui. The bus utilization of

task τi is given by
CA

i +CR
i

Ti
and the total bus utilization of the taskset Γ is given by

∑

τi∈Γ
CA

i +CR
i

Ti
. Each task

releases potentially infinite number of jobs where each job instance is denoted by k. The response time of95

the kth job of task τi is defined as the time difference between its release and its completion. The response
time of the kth job of task τi executing on a given core πl is denoted by Ri,k,l and the Worst-Case Response
Time (WCRT) of task τi, denoted by Rmax

i,l which is given by maximizing Ri,k,l over all jobs of τi within a
time interval of a given length.

For notational convenience, we define the following set of tasks: hepi,l denotes the set of tasks with100

higher or equal priority than τi (including τi) executing on core πl; hpi,l (resp. lpi,l) denotes the set of tasks
with priority higher (resp. lower) than τi on core πl.

For clarity, throughout the document, we refer to the core on which task τi (i.e., the task under analysis)
executes as the local core, denoted by πl. Similarly, any core other than the local core is referred to as a
remote core and denoted by πr.105

2.2. Execution Model

In the 3-phase task model, the A-phase executes first to fetch tasks’ data/instructions from the main
memory and store them in the core’s local memory. Then, the E-phase executes the task’s code from the
core’s local memory. Finally, the R-phase writes the modified data, resulting from the E-phase execution, to
the main memory. Thus, the A-phase and R-phase are memory phases in which the memory bus is accessed110

2A memory phase, e.g., A or R, may comprise multiple memory requests.

4

Symbol Description

τi ith task
Ti Minimum inter-arrival time between any two consecutive jobs of

τi
Di Relative deadline of τi
Ci WCET of τi in isolation
CA

i WCET of the A-phase of τi in isolation
CE

i WCET of the E-phase of τi in isolation
CR

i WCET of the R-phase of τi in isolation
Ui Utilization of task τi
πl Local core (i.e., the core on which τi is running)
πr Remote core (i.e., any core other than the local core)
hepi,l Set of tasks with priority higher than or equal than that of τi

running on core πl

hpi,l Set of tasks with priority higher than that of τi running on core
πl

lpi,l Set of tasks with priority lower than that of τi running on core πl

Γ′
l Set of tasks assigned to the local core πl

Γ′
r Set of tasks assigned to a remote core πr

Nπl
(∆) The maximum number of times that tasks executing on core πl

can suffer bus blocking during any time interval of length ∆
Nπr

(∆) The maximum number of times that tasks running on a core πr

can cause bus blocking during any time interval of length ∆
Busi,r(∆) Maximum bus blocking suffered by τi due to tasks running on a

remote core πr during any time interval of length ∆
Busmax

i,l (∆) Total bus blocking suffered by τi due to tasks running on all re-
mote cores during any time interval of length ∆

Wi,l Level-i busy window for task τi executing on core πl

Ri,k,l Response time of kth job of τi executing on core πl

Rmax
i,l WCRT of τi

Table 1: Table of Symbols

to read/write data from/to main memory. Each task executes non-preemptively, i.e., once a task starts
executing its A-phase, it cannot be preempted by any other task until the completion of its R-phase. It
is assumed that at most one phase can execute on a given core at a time. The WCET of the E-phase is
assumed to be greater than 0. This assumption is inline with the state-of-the-art [2].

Each core maintains its own ready queue with tasks that are ready to execute, sorted by task priority.115

Whenever a task in the queue becomes ready to execute, the core requests access to the memory bus and
if the memory bus is available, the core executes the A-phase of that task. However, if the memory bus is
busy serving a memory phase from another core, then the core busy-waits until the bus becomes available,
at which point it executes the A-phase of the task with the highest priority in its ready queue. Once the
A-phase of a task completes, the E-phase of the same task starts executing immediately on the core. Once120

the E-phase completes, the task requests access to the bus to execute its R-phase. At this point, the core
may have to busy-wait for the bus again if the bus is busy serving memory requests from other co-running
tasks. Once the bus becomes available, the task can execute its R-phase and finalize its execution. Note that
under the considered execution model, due to its non-preemptive nature, a lower priority task τj running
on the same core can only cause blocking to a higher priority task τi, if τj starts executing before τi.125

2.3. Memory Access Models

We consider two memory access models detailed as follows:

5

Dedicated Memory Access Model (DMAM):When a 3-phase task is scheduled using non-preemptive
scheduling, after the completion of its A-phase, it will immediately start its E-phase followed by the R-phase.
However, once the R-phase of a task completes, we may have an A-phase of a subsequent task ready to ex-130

ecute. At this point, the bus/memory scheduler has to decide whether it will execute the A-phase of the
subsequent task on the same core or it will allocate the memory access to a different core. In the DMAM,
the bus scheduler ensures that if a core has a ready A-phase after the completion of an R-phase, the A-phase
must be served before allocating the bus to any other core. The main idea of the DMAM is to allow each
core to execute all its pending memory phases within an access to the memory bus. However, due to the135

3-phase task model, a core can execute at most one R- and one A-phase in an bus access, as the core has
to release the bus during the E-phase execution. Once the memory phase(s) of the given core is served, the
bus access can be granted to other cores. This type of memory access model can be useful in systems in
which cores can made to execute a set of pending memory phases when access to the bus is granted.

Fair Memory Access Model (FMAM): In the FMAM, each core can execute at most one memory140

phase (i.e., either A- or R-phase) when access to the bus is granted and another core is waiting to access the
memory bus to execute a memory phase. After the completion of the memory requests of a memory phase,
the bus can be granted to other cores. Due to the work-conserving nature of the FCFS bus arbitration
policy, a core can execute another memory phase after the completion of a memory phase if other cores are
not waiting to access the memory bus.145

3. Background

In this section, we introduce the WCRT analysis of Fixed-Priority Non-Preemptive (FPNP) scheduling
for single-core systems. This analysis is later used to build the proposed memory bus-aware WCRT analysis
for multicore systems.

For single-core platforms that use FPNP scheduling, the WCRT of a task τi is observed in the150

longest level-i busy window [19], which is defined as follows.

Definition 3.1. [Level-i busy window (from [20])] A level-i busy window is a time interval (a, b) in which
the pending workload of tasks with priorities higher or equal to that of task τi is positive for all t ∈ (a, b)
and 0 at the boundaries a and b.

For any task τi executing under FPNP scheduling on a single core processor, the longest level-i busy155

window is computed by bounding the following terms:

1. Maximum blocking that can be suffered by task τi from the tasks in lpi taskset, and

2. Maximum interference that can be suffered by task τi from all the tasks in hepi taskset during the
level-i busy window.

Maximum Blocking Computation: In FPNP scheduling, only one job of a lower priority task in lpi
can block the execution of task τi [21, 19]. Consequently, τi suffers maximum blocking if that job has the
maximum execution time over all tasks in lpi. We denote this term by Cmax

lpi
and its computation is given

by:
Cmax

lpi
= max

τj∈lpi

{Cj} (1)

Maximum Interference Computation: Task τi can suffer interference from all higher or equal priority160

tasks in hepi (including own jobs of τi) that execute during the level-i busy window. Consequently, the
maximum interference τi may suffer due to tasks in hepi depends on the maximum number of jobs released
by all tasks in hepi in the level-i busy window. Several different methods have been proposed in the literature
to bound the maximum number of jobs of any task τh that may interfere with the execution of task τi. The
use of event arrival curves is one such technique proposed in [11].165

When using event arrival curves, the upper event arrival function η+(∆) is used to denote the maximum
number of events that can occur in an event stream in any time interval of length ∆. Using the same concept,
each job released by a task τh ∈ hepi can be considered as an event. This implies that the maximum number

6

of jobs released by task τh in any time interval of length ∆ is given by η+h (∆). Consequently, the maximum
interference that can be caused by a task τh ∈ hepi in any time interval of length ∆ is upper bound by
η+h (∆) × Ch. Therefore, the maximum interference task τi can suffer during any time interval of length ∆
due to the execution of tasks in hepi is given by the following equation.

∑

τh∈hepi

(η+h (∆)× Ch) (2)

Using the upper bounds on the maximum blocking and maximum interference that a given task τi can
suffer, the length of the longest level-i busy window Wi is given by the first fixed-point solution of the
following equation:

Wi = Cmax
lpi

+
∑

τh∈hepi

(η+h (Wi)× Ch) (3)

where η+h (Wi) gives the maximum number of jobs released by any task τh ∈ hepi in any time window of
length Wi, and Ch is WCET of task τh in isolation.170

Having computed the length of the longest level-i busy window Wi using Equation 3, the maximum
number of jobs of task τi that can execute within Wi is given by:

Ki = η+i (Wi) (4)

Under FPNP scheduling, the WCRT of task τi is computed by computing the response time of each job of
τi that executes within Wi. To compute the response time of any job of task τi that executes within Wi,
we must first compute the latest start time of that job because once that job starts executing, it cannot be
preempted by any other job.

Let τi,k be the kth job of task τi executing during Wi, then the latest start time si,k of τi,k is given by:

si,k = Cmax
lpi

+ (k − 1)× Ci +
∑

τh∈hepi\τi

η+h (si,k)× Ch (5)

where Cmax
lpi

is given by Equation 1,
∑

τh∈hepi\τi
η+h (si,k)× Ch captures the maximum interference suffered175

by τi,k from hepi task set (excluding τi) in a time window of length si,k and (k − 1) × Ci accounts for the
execution time of previous jobs of task τi.

As si,k appears on both sides of Equation 5, it can be solved iteratively by initializing si,k = Cmax
lpi

+
∑

τh∈hepi\τi
Ch. The latest start time of kth job of τi is then given by the smallest value of si,k for which

Equation 5 converges. Once the latest start time of τi,k is computed, the response time Ri,k can then be
simply computed by adding to it the WCET Ci of task τi, i.e.,

Ri,k = si,k + Ci (6)

Finally, the WCRT of task τi is computed by maximizing Equation 6 over all the jobs of τi that can execute
in the level-i busy window, i.e., from 1 to Ki,

Rmax
i = max

k∈[1,Ki]
{Ri,k} (7)

4. Problem Formulation

Unlike single core systems, in multicore platforms multiple cores can execute tasks at the same time. As
all the cores share the memory bus to read/write the code/data from/to the main memory, tasks can suffer180

bus blocking if the requesting task has to wait for the bus while bus is busy serving memory requests of
tasks executing on other cores.

7

Consequently, for any task τi executing on core πl of a multicore platform, the length of its level-i busy
window does not only depend on the tasks executing on the same core as τi but also on the bus blocking that
τi can suffer during its execution from tasks executing on other cores. Formally, let Wi,l be the length of
level-i busy window of task τi when it executes on core πl, where Wi,l is given by the first positive fixed-point
solution of the following equation:

Wi,l = Cmax
lpi,l

+Busmax
i,l (Wi,l) +

∑

τh∈hepi,l

(η+h (Wi,l)× Ch) (8)

In Equation 8, Cmax
lpi,l

represents the maximum blocking caused by one job of a lower priority task in lpi,l on

τi, which can be computed using Equation 1. Similarly, the term
∑

τh∈hepi,l
(η+h (Wi,l) × Ch) captures the

maximum interference that can be caused by all tasks in hepi,l (including own jobs of τi) during any time185

interval of length Wi,l and can be computed using Equation 2.
The term Busmax

i,l (Wi,l) in Equation 8 represents an upper bound on the total bus blocking that task τi
can suffer from all co-running tasks executing on all the other cores during Wi,l. As we briefly discussed in
Section 1, the bus blocking of tasks depends on the underlying memory access model. Therefore, in Section 5
we will first detail how to upper bound the maximum bus blocking of tasks when considering the DMAM.190

In Section 6, we will do the same for the FMAM.

5. Bus Blocking Analysis for the Dedicated Memory Access Model (DMAM)

As defined in Section 2, the Dedicated Memory Access Model (DMAM) allows each core to execute
at most one R- and one A-phase back-to-back without granting the bus access to any other waiting core.
Consequently, an A-phase cannot suffer bus blocking when it executes immediately after the completion of195

an R-phase running on the same core. An example scenario is shown in Figure 4c in which task τk running
on the remote core πr does not suffer any bus blocking before its A-phase as it executes immediately after
the R-phase of τu on core πr. We will explain the computation of maximum bus blocking for DMAM in this
section.

Before explaining the proposed bus blocking analysis, we first present important properties on the DMAM200

that will be useful for deriving the maximum bus blocking in the next subsection.

5.1. Properties of the Dedicated Memory Access Model (DMAM)

Property 5.1. For each bus blocking suffered by a job on the local core, a remote core can cause at most
one bus blocking, either from one memory phase (A or R-phase) of a job or from one R and one A-phase of
two different jobs running on that remote core.205

Proof. When a job of task τi running on the local core requests access to the bus, the following scenarios
are possible.
Scenario 1: A job of task τu running on the remote core is already executing its A-phase. Consequently,
a job of task τi on the local core can only access the bus after the completion of the A-phase of the job of
task τu currently executing on the remote core. Therefore, in this scenario, the bus blocking that can be210

caused by the remote core to one job running of task τi on the local core is equivalent to the WCET of the
A-phase of task τu executing on the remote core. This scenario is depicted in Figure 4a.
Scenario 2: A job of task τu running on the remote core is executing its R-phase and the ready queue of
the remote core is empty. In this scenario, the bus blocking caused by the remote core to a job executing on
the local core is equivalent to the WCET of the R-phase of task τu executing on a remote core as depicted215

in Figure 4b.
Scenario 3: A job of task τu on the remote core is executing its R-phase and the remote core’s ready queue
is non-empty. Once the R-phase of the currently executing job is completed, the A-phase of the next job
in the remote core’s ready-queue will execute immediately. Thus, the bus will only be released after the
execution of one R and one A-phase of two different jobs of the remote core. In this case, the bus blocking220

8

(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

Figure 4: Bus blocking caused by a remote core for each bus blocking suffered at the local core

caused by the remote core is equivalent to the sum of the WCET of one R-phase and one A-phase of two
different jobs running on that remote core. See Figure 4c for an example scenario.

Therefore, for each bus blocking suffered by a job on the local core, a remote core can cause at most
one bus blocking by either a memory phase (A or R-phase) of one job or a combination of one R and one
A-phase of two different jobs running on that remote core. The property follows.225

Property 5.2. When a single job of a task on the remote core participates in one bus blocking, it can only
participate by its A-phase or its R-phase.

Proof. Directly follows from Property 5.1.

5.2. Bounding the Number of Bus Blockings for the Dedicated Memory Access Model (DMAM)

As discussed earlier, in multicore systems, all the jobs that execute on the local core πl during the level-i230

busy window Wi,l can suffer bus blocking from co-running tasks executing on remote cores. This can directly
impact the length of the level-i busy window and the WCRT of the task under analysis τi.

Without loss of generality, we start by computing the maximum bus blocking that can be suffered by the
local core πl from a remote core πr in any time interval of length Wi,l (i.e., the longest level-i busy window
on core πl). We later generalize our analysis to account for the bus blocking that can be suffered by the235

local core πl from all remote cores in Section 5.4.
To bound the maximum bus blocking suffered by tasks executing on the local core πl due to co-running

tasks executing on a remote core πr, we define the following notations:

• Nπl
(Wi,l): the maximum number of times that tasks executing on the local core πl can suffer bus

blocking in a time window of length Wi,l. This value is computed in Lemma 1.240

• Nπr
(Wi,l): the maximum number of times that tasks running on a remote core πr can cause bus

blocking during Wi,l. This value is computed in Lemma 2.

Lemma 1. The maximum number of times that tasks executing on the local core πl can suffer bus blocking
in any time window of length Wi,l is upper bounded by:

Nπl
(Wi,l) =

∑

τh∈hepi,l

η+h (Wi,l) + 1 (9)

Proof. By the definition of the level-i busy window, there is always a pending A-phase whenever an R-phase
completes its execution; otherwise the level-i busy window would terminate with the execution of the R-
phase. Also, knowing that under the DMAM, each core can simultaneously execute the R- and A-phases245

of two subsequent jobs, each job that executes during the level-i busy window (except for the first job) can
suffer bus blocking only once, i.e., before its R-phase. The A-phases of all such jobs will not suffer any
bus blocking because they will execute immediately after the R-phases of a previous job. Therefore, the
maximum number of bus blockings that can be suffered by all jobs (except the first job) of all tasks that
execute on core πl during Wi,l is upper bounded by

∑

τh∈hepi,l
η+h (Wi,l).250

9

Figure 5: Maximum number of bus blockings when τj ∈ lpi,l executes at the start of Wi,l

Figure 6: Maximum number of bus blockings when τh ∈ hpi,l executes at the start of Wi,l

The additional 1 in Equation 9 represents two possible execution scenarios:
Scenario 1: If task τi is not the lowest priority task, one job of a lower priority task τj ∈ lpi,l can cause
blocking to tasks in hepi,l, in the scenario when τj ∈ lpi,l has started its execution before the start of the
level-i busy window, i.e., starting by the execution of its A-phase. Consequently, the additional 1 in the
Equation 9 accounts for the bus blocking that can be suffered by τj ∈ lpi,l before executing its R-phase255

which can impact the length of the level-i busy window, e.g., see Figure 5.
Scenario 2: If τi does not suffer any blocking from a lower priority task (e.g., if τi is the lowest priority
task) then the first job executed in the longest level-i busy window can also suffer bus blocking before its
A-phase. In this scenario, the additional 1 accounts for the bus blocking suffered by the first job of task
τh ∈ hepi,l before starting its A-phase on core πl, e.g., see Figure 6.260

Hence, the maximum number of bus blockings that can be suffered by all tasks executing on the local
core πl during Wi,l is upper bounded by

∑

τh∈hepi,l
η+h (Wi,l) + 1. The Lemma follows.

Lemma 2. The maximum number of times that tasks running on a remote core πr can cause bus blocking
in any time window of length Wi,l is upper bounded by Nπr

(Wi,l), where Nπr
(Wi,l) is given by:

Nπr
(Wi,l) =

∑

τu∈Γ′

r

η+u (Wi,l) (10)

Proof. According to the system model, each job consists of two memory phases (i.e., one A- and one R-
phase) that can cause bus blocking. As we cannot predict the schedule of a remote core, the bus blocking
can be caused by all the jobs released on a remote core πr in any time window of length Wi,l, where each265

bus blocking caused by a remote core πr can be composed of one R and one A-phase. From the upper
event arrival function, we know that the maximum number of jobs that can be released by a task τu on
core πr in any time window of length Wi,l is upper-bounded by η+u (Wi,l). Consequently, the maximum
number of bus blockings that can be caused by a task τu on core πr during any time interval of length Wi,l

is also upper-bounded by η+u (Wi,l). Since any task released on core πr during Wi,l can participate in the bus270

blocking, the maximum number of bus blockings that can be caused by a remote core πr can be bounded
by considering all the jobs of all the tasks released on core πr in any time window of length Wi,l. Thus,
Nπr

(Wi,l) is upper bounded by
∑

τu∈Γ′

r
η+u (Wi,l). The Lemma follows.

5.3. Maximum Bus Blocking Computation for the Dedicated Memory Access Model (DMAM)

Having bounded the values of Nπl
(Wi,l) and Nπr

(Wi,l), it is possible to compute the maximum bus275

blocking that can be suffered by tasks running on core πl during Wi,l from co-running tasks executing on a

10

Figure 7: Maximum bus blocking for Nπl
(Wi,l) > Nπr (Wi,l)

remote core πr. Before explaining how the maximum bus blocking can be computed, we first define some
notations that will be used during computation.

Let MA
r (resp. MR

r) be an ordered set that contains the WCET of the A-phases (resp. R-phases) of all
jobs released on core πr in a time window of length Wi,l, sorted in non-increasing order as follows:280

MA
r = {CA

r,1, C
A
r,2, . . . , C

A

r,N̂πr

| CA
r,x ≥ CA

r,x+1}

MR
r = {CR

r,1, C
R
r,2, . . . , C

R

r,N̂πr

| CR
r,y ≥ CR

r,y+1}

where N̂πr
is equal to the value of Nπr

(Wi,l) computed using Equation 10. Note that CA
r,x and CR

r,y may
belong to the same/different jobs released on core πr during Wi,l.

We compute the maximum bus blocking for the DMAM using the following three cases.285

(i) Case 1: Nπl
(Wi,l) > Nπr

(Wi,l), the maximum number of bus blockings that can be suffered by tasks
executing on core πl is greater than the maximum number of bus blockings that can be caused by tasks
running on core πr in any time window of length Wi,l.
(ii) Case 2: Nπl

(Wi,l) = Nπr
(Wi,l), the maximum number of bus blockings that can be suffered by tasks

executing on core πl is equal to the maximum number of bus blockings that can be caused by tasks running290

on core πr in any time window of length Wi,l.
(iii) Case 3: Nπl

(Wi,l) < Nπr
(Wi,l), the maximum number of bus blockings that can be suffered by tasks

executing on core πl is less than the maximum number of bus blockings that can be caused by tasks running
on core πr in any time window of length Wi,l.

5.3.1. Maximum Bus Blocking Computation for Case 1295

For Nπl
(Wi,l) > Nπr

(Wi,l), all memory phases of all jobs released on core πr during Wi,l can contribute
to the bus blocking (e.g., see Figure 7). This leads to the following lemma.

Lemma 3. If Nπl
(Wi,l) > Nπr

(Wi,l), then the maximum bus blocking suffered by tasks executing on the local
core πl due to tasks running on a remote core πr in any time interval Wi,l is upper bounded by Busi,r(Wi,l),
given by:

Busi,r(Wi,l) =

N̂πr
∑

x=1

CA
r,x +

N̂πr
∑

y=1

CR
r,y (11)

where CA
r,x (resp. CR

r,y) is the WCET of an A-phase (resp. R-phase) in the set MA
r (resp. MR

r).

Proof. As proven in Property 5.1, under the DMAM, each bus blocking caused by a remote core πr can be
composed of either an A- or an R-phase of a job, or one R- and one A-phase of two different jobs released300

on core πr during Wi,l. Since the precise bus access times of tasks running on core πr are unknown, if
Nπl

(Wi,l) > Nπr
(Wi,l), then in the worst-case all the memory phases of all jobs that execute on πr duringWi,l

can cause bus blocking to all tasks executing on πl during Wi,l (e.g., see Figure 7). Therefore, if Nπl
(Wi,l) >

11

(a) Possible scenario 1 (b) Possible scenario 2

Figure 8: Possible scenarios when Nπl
(Wi,l) = Nπr (Wi,l)

Nπr
(Wi,l), the maximum contribution of the memory phases of N̂πr

jobs, i.e.,
∑N̂πr

x=1 C
A
r,x+

∑N̂πr

y=1 C
R
r,y, upper

bounds the maximum bus blocking. The Lemma follows.305

5.3.2. Maximum Bus Blocking Computation for Case 2

If Nπl
(Wi,l) = Nπr

(Wi,l), then all the memory phases except one from all the jobs released on core πr

in the time window Wi,l can contribute to the bus blocking. To explain, assume that the number of bus
blockings that can be suffered (resp. caused) by tasks executing on core πl (resp. core πr) during Wi,l is
three. In this case, there can be two possible scenarios, either the R-phase of the last job that executes on310

core πr during Wi,l (e.g., see Figure 8a) or the A-phase of the first job that executes on core πr during Wi,l

(e.g., see Figure 8b) cannot participate in the bus blocking. This leads to the following Lemma.

Lemma 4. If Nπl
(Wi,l) = Nπr

(Wi,l), then the maximum bus blocking suffered by tasks executing on the local
core πl due to tasks running on a remote core πr in any time interval Wi,l is upper bounded by Busi,r(Wi,l),
given by:

Busi,r(Wi,l) =

N̂πr
∑

x=1

CA
r,x +

N̂πr
∑

y=1

CR
r,y −min(min

∀x∈MA
r

{CA
r,x}, min

∀y∈MR
r

{CR
r,y}) (12)

Proof. We prove the lemma using the following two observations:
Observation 1. If the A-phase of the first job on core πr participates to the bus blocking of any job of

core πl released during Wi,l, then the first bus blocking is composed of only an A-phase (see Property 5.2)315

while the rest of the bus blockings can be composed of one R- and one A-phase of two different jobs running
on πr within Wi,l (see Property 5.1). Consequently, the R-phase of the last job executing on core πr within
Wi,l cannot participate to Busi,r(Wi,l). Since we do not know which job on core πr will be the last to
execute during Wi,l, we assume that the job with the smallest R-phase is the last job that executes on core
πr during Wi,l, given by min

∀y∈MR
r

{CR
r,y}, (e.g., see Figure 8a).320

Observation 2. If the A-phase of the first job on core πr does not block the memory phase of any
job of core πl released during Wi,l (the first bus blocking is composed of an R-phase of the first job and an
A-phase of any other job executed on πr within Wi,l (see Property 5.1)), then all memory phases except the
A-phase of the first job executed on πr within Wi,l can contribute to Busi,r(Wi,l). Since we do not know
which job on core πr will execute first within Wi,l, we assume that the job with the smallest A-phase is the325

first job that executes on core πr and the length of that A-phase is given by min
∀x∈MA

r

{CA
r,x}. See Figure 8b

for an example scenario.
Building on the above observations, the maximum bus blocking Busi,r(Wi,l) is given by the sum of all

the memory phases (expressed as
∑N̂πr

x=1 C
A
r,x +

∑N̂πr

y=1 C
R
r,y) except the smallest memory phase, i.e., either

A- or R-phase (expressed as min(min
∀x∈MA

r

{CA
r,x}, min

∀y∈MR
r

{CR
r,y})) of tasks released on core πr during Wi,l. The330

Lemma follows.

12

5.3.3. Maximum Bus Blocking Computation for Case 3

If Nπl
(Wi,l) < Nπr

(Wi,l), then at most Nπl
(Wi,l) bus blockings can be caused by tasks running on core

πr to tasks executing on core πl during Wi,l. To extract the Nπl
(Wi,l) A and R-phases with the largest

execution times among all jobs that execute on πr during Wi,l, we first divide the set MA
r (resp. MR

r) into
two subsets namely MAH

r and MAL
r (resp. MRH

r and MRL
r). The subset MAH

r (resp. MRH
r) contains

Nπl
(Wi,l) A-phases (resp. R-phases) with the largest execution times while the rest of the A-phases (resp.

R-phases) are in the subset MAL
r (resp. MRL

r). Formally, these subsets are defined as follows:

MAH
r ={CA

r,1, C
A
r,2, . . . , C

A

r,N̂πl

| CA
r,x ≥ CA

r,x+1}

MAL
r ={CA

r,N̂πl
+1

, CA

r,N̂πl
+2

, . . . , CA

r,N̂πr

| CA
r,y ≥ CA

r,y+1}

MRH
r ={CR

r,1, C
R
r,2, . . . , C

R

r,N̂πl

| CR
r,x ≥ CR

r,x+1}

MRL
r ={CR

r,N̂πl
+1

, CR

r,N̂πl
+2

, . . . , CR

r,N̂πr

| CR
r,y ≥ CR

r,y+1}

where N̂πl
= Nπl

(Wi,l) and can be computed using Equation 9.
We then identify two possible sub-cases:
Sub-case 3.1: All the elements of the MAH

r and MRH
r subsets can participate in the N̂πl

number of335

bus blockings such that each bus blocking is composed of one R and one A-phase of tasks released on a
remote core πr during any time window of length Wi,l. The maximum bus blocking in this sub-case can be
simply derived by considering the sum of all the A- and R-phases in MAH

r and MRH
r subsets. We discuss

this sub-case in Lemma 5.
Sub-case 3.2: At least one element of the MAH

r or MRH
r subset cannot participate in the N̂πl

number340

of bus blockings. This can only happen if all elements of MAH
r and MRH

r are associated to the same set
of jobs. In other words, the A- and R-phases pertain to the exact same job. In this sub-case, one memory
phase in MAH

r or MRH
r does not participate to the bus blockings. This sub-case is discussed in Lemma 6.

Lemma 5. If all the elements of the MAH
r and MRH

r subsets can participate in the N̂πl
number of bus

blockings, then the maximum bus blocking suffered by tasks executing on the local core πl due to tasks
running on a remote core πr in any time interval Wi,l is upper bounded by Busi,r(Wi,l), given by

Busi,r(Wi,l) =

N̂πl
∑

x=1

CA
r,x +

N̂πl
∑

y=1

CR
r,y (13)

where CA
r,x (resp. CR

r,y) is the execution time of an A-phase (resp. R-phase) such that CA
r,x ∈ MAH

r (resp.

CR
r,y ∈ MRH

r).345

Proof. If all elements of MAH
r and MRH

r subsets can participate in N̂πl
number of bus blockings caused by

πr such that each bus blocking is composed of one R- and one A-phase of two jobs, then all the memory
phases of MAH

r and MRH
r can participate in the bus blocking. Since MAH

r and MRH
r are the subsets that

contain memory phases with the largest execution times, the maximum bus blocking that can be caused by
tasks running on core πr to tasks running on core πl in any time window of length Wi,l is upper bounded by350

summing all the memory phases in the MAH
r and MRH

r subsets. The sum of the WCET of all the A-phases

(resp. R-phases) in subset MAH
r (resp. MRH

r) is given by
∑N̂πl

x=1 C
A
r,x (resp.

∑N̂πl

y=1 C
R
r,y). Consequently,

Equation 13 bounds the maximum bus blocking for this sub-case. The Lemma follows.

Lemma 6. If at least one element of the MAH
r or MRH

r subset cannot participate in the N̂πl
number of

bus blockings, then the maximum bus blocking suffered by tasks executing on the local core πl due to tasks
running on a remote core πr in any time interval Wi,l is upper bounded by Busi,r(Wi,l), given by

Busi,r(Wi,l) =

N̂πl
∑

x=1

CA
r,x +

N̂πl
∑

y=1

CR
r,y −min

(

(min
∀x∈MAH

r

{CA
r,x} − max

∀y∈MAL
r

{CA
r,y}), (min

∀x∈MRH
r

{CR
r,x} − max

∀y∈MRL
r

{CR
r,y})

)

(14)

13

where min
∀x∈MAH

r

{CA
r,x} (resp. min

∀x∈MRH
r

{CR
r,x}) returns the smallest element of MAH

r (resp. MRH
r); and

max
∀y∈MAL

r

{CA
r,y} (resp. max

∀y∈MRL
r

{CR
r,y}) returns the largest element of MAL

r (resp. MRL
r).355

Proof. We know that core πr can cause at most N̂πl
bus blockings in which each bus blocking can be from

one R- and one A-phase of two different jobs. To derive the maximum bus blocking, it is necessary to
consider all the elements of MAH

r and MRH
r subsets as they contain the memory phases with the largest

execution times. However, if all the elements of MAH
r and MRH

r are associated to the exact same set of jobs
of core πr, then it is not possible to obtain N̂πl

bus blockings such that each bus blocking is composed of360

one R- and one A-phase of two different jobs of core πr. In such a scenario, at-least one memory phase from
either MAH

r or MRH
r cannot participate to the bus blocking. This happens because either an A-phase (i.e.,

an element from MAH
r) or an R-phase executing on πr (i.e., an element from MRH

r) cannot participate to
the bus blockings. As Nπl

(Wi,l) < Nπr
(Wi,l), one memory phase from MAL

r or MRL
r subset can participate

such that N̂πl
bus blockings can be obtained in which each bus blocking is composed of one R- and one365

A-phase of two different jobs of core πr.
Considering the above, the bus blocking is maximized when the non-participating memory phase in

MAH
r or MRH

r is smallest and the participating memory phase in MAL
r or MRL

r is largest. This is achieved

by first considering the term
∑N̂πl

x=1 C
A
r,x +

∑N̂πl

y=1 C
R
r,y which sums all the elements of MAH

r and MRH
r

subset. Then, the next step is to remove an element from MAH
r or MRH

r and add an element from MAL
r370

or MRL
r such that the bus blocking is maximized. This is achieved by first computing the difference

between the smallest element of MAH
r (resp. MRH

r) and largest element of MAL
r (resp. MRL

r), expressed
as (min

∀x∈MAH
r

{CA
r,x} − max

∀y∈MAL
r

{CA
r,y}), (min

∀x∈MRH
r

{CR
r,x} − max

∀y∈MRL
r

{CR
r,y}). Finally, we take minimum of the

difference between the smallest element of MAH
r (resp. MRH

r) and largest element of MAL
r (resp. MRL

r)
and subtract it from the sum of the WCET of all the elements of MAH

r and MRH
r . The Lemma follows.375

5.4. Bus Blocking Analysis for all Remote Cores

Under the FCFS bus arbitration policy, a task τi executing on the local core πl will suffer the worst-
case bus blocking when tasks released on all other remote cores, i.e., ∀πr ∈ m \ πl, execute their memory
phases before τi. Considering that when we only have one remote core πr bus blocking can be derived using
Lemma 1 to Lemma 6. Similarly, to consider the worst-case under the FCFS bus arbitration, we need to380

repeat the same procedure for each remote core with respect to the core under analysis.
The total bus blocking that can be suffered by tasks that execute on the local core πl during Wi,l due to

tasks running on all remote cores is denoted by Busmax
i,l (Wi,l) and is computed using Algorithm 1.

Algorithm 1 Computing the total bus blocking that can be suffered by tasks that execute on the local core
πl due to tasks running on all remote cores during Wi,l

1: Busmax
i,l (Wi,l) := 0

2: for πr ∈ [1,m] such that πr ̸= πl do
3: Busi,r(Wi,l) := 0
4: Compute Nπl

(Wi,l) using Lemma 1.
5: Compute Nπr

(Wi,l) using Lemma 2.
6: Compute Busi,r(Wi,l) using Lemma 3 up to Lemma 6.
7: Busmax

i,l (Wi,l)+ = Busi,r(Wi,l)
8: end for
9: Total bus blocking suffered by core πl during Wi,l due to all remote cores is given by Busmax

i,l (Wi,l)

Algorithm 1 iterates over all remote cores by first computing the value of Nπl
(Wi,l), and Nπr

(Wi,l), (line
4 and 5) for each remote core πr. It then computes the maximum bus blocking Busi,r(Wi,l) that can be385

caused by tasks running on core πr during Wi,l using Lemma 3 to Lemma 6 (line 6). Finally, line 7 computes

14

(a) Bus blocking under DMAM (b) Bus blocking under FMAM

Figure 9: Maximum bus blocking for DMAM and FMAM

the total bus blocking Busmax
i,l (Wi,l) that can be suffered by tasks that execute on the local core πl during

any time interval of length Wi,l due to tasks running on all remote cores by summing the bus blocking
caused by each remote core πr ∈ [1,m] such that πr ̸= πl.

6. Bus Blocking Analysis for the Fair Memory Access Model (FMAM)390

In the DMAM, each core is allowed to execute up to two memory phases, i.e., the R-phase of a job
and the A-phase of a subsequent next job, whenever it accesses the bus. However, to realize the DMAM
in an actual system, a hardware/software mechanism will be required to manage the control of the bus,
ensuring that each core will be able to execute an R-phase and an A-phase of any two jobs. Considering
that the implementation of such hardware/software mechanism is non-trivial, a possible alternative is to use395

the Fair Memory Access Model (FMAM) that distributes the bus bandwidth among the cores in a fairer
manner. The following example demonstrates an example scenario where the FMAM can tightly bound the
bus blocking of tasks in comparison to the DMAM.

Example 1: Let τi be the task under analysis which is executing on core πl along with a higher priority
task τh. Both τi and τh execute one job each during the level-i busy window Wi,l. During the same time400

interval of length Wi,l, tasks executing in parallel on core πr releases several jobs, e.g., greater than 3.
Figure 9a and 9b shows the task execution schedule under the DMAM and the FMAM, respectively.

Under the Dedicated Memory Access Model (DMAM), for each bus blocking suffered by the tasks
executing on the local core, there can be a combination of one R- and one A-phase of tasks released on the
remote core πr that can cause bus blocking. Knowing that two jobs are released on core πl during the level-i405

busy window Wi,l and τi is the lowest priority task on that core, the maximum number of bus blockings that
can be suffered during Wi,l are three (see Lemma 1). Consequently, considering that each bus blocking from
the remote core πr may be composed of two memory phases, i.e., an R-phase followed by an A-phase, as
shown in Figure 9a. The worst-case bus blocking that will be suffered during Wi,l will be equal to the sum of
the WCET of six memory phases of tasks released on core πr.410

By definition of the Fair Memory Access Model (FMAM), each core can execute only one memory
phase during an access to the bus. So, in the worst-case, each memory phase that executes on the local core
can suffer bus blocking from a memory phase executing on the remote core. Considering the scenario shown
in Figure 9b, four memory phases are executed on core πl during Wi,l. Therefore, the maximum bus blocking
that can be suffered by all tasks executing on core πl during Wi,l is also upper bounded by the sum of the415

WCET of four memory phases that execute on core πr during Wi,l.
The simple example presented above shows that the FMAM can provide tighter estimates on the bus

blocking suffered by the 3-phase tasks under an FCFS bus arbitration scheme. However, before we formally
present the bus blocking analysis for the FMAM in Section 6.2 and 6.3, we will first introduce some properties
pertaining to the model.420

6.1. Useful Properties for the Fair Memory Access Model (FMAM)

Property 6.1. During the level-i busy window, the local core always executes an A-phase after the execution
of an R-phase except for the A-phase of the first job and the R-phase of the last job that executes on the

15

(a) Scenario 1 of Property 6.2 (b) Scenario 2 of Property 6.2

Figure 10: Bus blocking suffered by a pair of one R and one A-phase on the local core

local core during the level-i busy window.

Proof. By the definition of the level-i busy window, the workload due to tasks in hepi,l taskset remains425

positive at all time instances within the level-i busy window except at the boundaries. So, within the level-i
busy window whenever a job of tasks in hepi,l completes its R-phase, there is always a job that is ready
to execute its A-phase; otherwise, the level-i busy window terminates with the execution of the R-phase.
Therefore, within the level-i busy window, it is only the A-phase of the first job that does not execute after
any R-phase on the local core because the level-i busy window begins with that A-phase. Similarly, the430

level-i busy window completes when the R-phase of the last job executes on the local core; thus, another
A-phase does not execute. The property follows.

Property 6.2. For each pair of R and A memory phases that are to be executed sequentially on the local
core πl during the level-i busy window, the bus blocking that can be caused by tasks executing on the remote
core πr will always be composed of one A-phase and one R-phase.435

Proof. As proven in Property 6.1, during the level-i busy window, the local core always executes an A-phase
after the execution of R-phase except the A-phase of the first job and the R-phase of the last job that
executes during the level-i busy window. Now, if the bus blocking is suffered by both the memory phases
in a pair (i.e., an R-phase followed by an A-phase), then the bus blocking that can be caused by tasks
executing on the remote core πr to that pair of R- and A-phases will also be composed of one A-phase and440

one R-phase. To explain further, consider the following scenarios.
Scenario 1: If an R-phase and a subsequent A-phase executing on the local core both suffer blocking

from the remote core, then, if the blocking of the first R-phase is caused by an A-phase of the remote core,
the bus blocking suffered by the next A-phase of the local core will intuitively be caused by R-phase of the
remote core due to the 3-phase task model (e.g., see Figure 10a).445

Scenario 2: If an R-phase and a subsequent A-phase executing on the local core both suffer blocking
from the remote core, then, if the blocking of the first R-phase is caused by an R-phase of the remote core,
the blocking suffers by the next A-phase of the local core will intuitively be caused by A-phase of the remote
core due to the 3-phase task model (e.g., see Figure 10b).

Hence, for each pair of R and A memory phases that are to be executed sequentially on the local core πl450

during the level-i busy window, the bus blocking that can be caused by tasks executing on the remote core
πr will always be composed of one A-phase and one R-phase. The property follows.

6.2. Bounding the Number of Bus Blockings for the Fair Memory Access Model (FMAM)

Similarly to the DMAM, we first compute the values of Nπl
(Wi,l) and Nπr

(Wi,l) for the FMAM. The
computation of Nπl

(Wi,l) and Nπr
(Wi,l) for the FMAM are given by the following lemmas.455

16

Figure 11: Maximum number of bus blockings suffered by the local core during Wi,l when lpi,l = ∅

Figure 12: Maximum number of bus blockings suffered by the local core during Wi,l when lpi,l ̸= ∅

Lemma 7. The maximum number of times that tasks executing on the local core πl can suffer bus blocking
in any time interval of length Wi,l is upper bounded by Nπl

(Wi,l), where Nπl
(Wi,l) is given by:

Nπl
(Wi,l) =

{

(
∑

τh∈hepi,l
η+h (Wi,l)× 2) + 1, if lpi,l ̸= ∅

∑

τh∈hepi,l
η+h (Wi,l)× 2, otherwise

(15)

Proof. We prove this lemma using two possible scenarios by considering the priority of τi ∈ πl:
Scenario 1. Task τi is the lowest priority task of the local core: In the FMAM, each core can

execute at most one memory phase during an access to the bus. This also implies that each memory phase
that executes on the local core πl can suffer bus blocking. Knowing that each task in hepi,l that executes on
the local core during Wi,l can release at most η+h (Wi,l) jobs and each job has 2 memory phases (i.e., A-phase460

and R-phase), the maximum number of bus blockings that can be suffered by all the tasks in hepi,l during
Wi,l is upper bounded by

∑

τh∈hepi,l
η+h (Wi,l)× 2 (e.g., see Figure 11).

Scenario 2. Task τi is not the lowest priority task of the local core: If task τi is not the lowest-
priority task, one job of a lower-priority task, e.g., τj ∈ lpi,l, can cause blocking to tasks in hepi,l, when τj
starts executing before the start of the level-i busy window. Nevertheless, there is the need to account for465

the bus blocking that can be suffered by τj while executing its R-phase as it can impact the length of the
level-i busy window3. Therefore, the maximum number of bus blockings that can be suffered by tasks that
execute on core πl during any time interval of length Wi,l is upper-bounded by (

∑

τh∈hepi,l
η+h (Wi,l)× 2)+1

when lpi,l ̸= ∅ (e.g., see Figure 12). The Lemma follows.

Lemma 8. The maximum number of times that tasks running on a remote core πr can cause bus blocking
in any time interval of length Wi,l is upper bounded by Nπr

(Wi,l), where Nπr
(Wi,l) is given by:

Nπr
(Wi,l) =

∑

τu∈Γ′

r

η+u (Wi,l)× 2 (16)

Proof. Due to the nature of the FMAM, each time the bus blocking is suffered by the local core, a remote470

core can cause bus blocking using one memory phase. Furthermore, the maximum number of jobs released
by a task τu on a remote core πr during Wi,l is upper bounded by η+u (Wi,l). This implies that the maximum
number of bus blockings that can be caused by a task τu released on a remote core πr during Wi,l is upper

3We do not need to account for the bus blocking that can be suffered by τj ∈ lpi,l while executing its A-phase as the
τj ∈ lpi,l has started its A-phase execution before the start of the level-i busy window.

17

bounded by η+u (Wi,l) × 2, i.e., using its A- and R-phases. Consequently, the maximum number of bus
blockings that can be caused by all tasks released on a remote core πr during Wi,l is upper-bounded by475

∑

τu∈Γ′

r
η+u (Wi,l)× 2 where Γ′

r is the set of all tasks that are assigned to core πr. The Lemma follows.

6.3. Maximum Bus Blocking Computation for the Fair Memory Access Model (FMAM)

Having bounded the values of Nπl
(Wi,l) and Nπr

(Wi,l), we can now derive the maximum bus blocking
Busi,r(Wi,l) that can be suffered by the local core πl from a remote core πr in any time interval of length
Wi,l using the following cases.480

• Case 1: Nπl
(Wi,l) ≥ Nπr

(Wi,l), i.e., the maximum number of bus blockings that can be suffered by
tasks executing on core πl is greater than or equal to the maximum number of bus blockings that can
be caused by tasks running on core πr in any time window of length Wi,l. The maximum bus blocking
computation for this case is given in Lemma 9.

• Case 2: Nπl
(Wi,l) < Nπr

(Wi,l), i.e., the maximum number of bus blockings that can be suffered by485

tasks executing on core πl is less than the maximum number of bus blockings that can be caused by
tasks running on core πr in any time window of length Wi,l. The maximum bus blocking computation
for this case is given in Lemma 10.

Lemma 9. If Nπl
(Wi,l) ≥ Nπr

(Wi,l), then the maximum bus blocking suffered by tasks executing on the local
core πl due to tasks running on a remote core πr in any time interval Wi,l is upper bounded by Busi,r(Wi,l),
given by:

Busi,r(Wi,l) =
∑

τu∈Γ′

r

η+u (Wi,l)× (CA
u + CR

u) (17)

Proof. By Lemma 7, we know that the local core can suffer at most Nπl
(Wi,l) bus blockings that are caused

by tasks running on a remote core πr during Wi,l. As the exact schedule of the tasks executing on a remote490

core cannot be predicted, for Nπl
(Wi,l) ≥ Nπr

(Wi,l), all the bus blockings caused by core πr in any time
interval of length Wi,l can impact the tasks that execute on the local core πl. Consequently, the maximum
bus blocking that can be caused by a task τu released on a remote core πr during Wi,l, is upper-bounded by
the maximum number of jobs released during Wi,l times the sum of the WCET of its memory phases, i.e.,
η+u (Wi,l)× (CA

u +CR
u). Extending this result for all tasks, the maximum bus blocking Busi,r(Wi,l) that can495

be suffered by the local core πl due to the execution of all tasks released on a remote core πr during Wi,l is
upper bounded by

∑

τu∈Γ′

r
η+u (Wi,l)× (CA

u + CR
u). The Lemma follows.

For case 2, as the maximum number of bus blockings that can be suffered by the local core is less than
the maximum number of bus blockings that can be caused by a remote core during Wi,l, we need to extract
a set of memory phases released by all tasks on a remote core during Wi,l that provide a safe and tighter500

bound on the bus blocking. To do this, we first introduce the following notations:
Let P̂ denote the maximum number of jobs released by all the tasks in hepi,l during any time interval of

length Wi,l, i.e., P̂ =
∑

τh∈hepi,l
η+h (Wi,l). Let Q̂ denote the maximum number of jobs released by all tasks

on a remote core πr during any time interval of length Wi,l i.e., Q̂ =
∑

τu∈Γ′

r
η+u (Wi,l). These terms will be

later used to extract a given number of memory phases among all the memory phases released on a remote505

core during Wi,l.

Now, we define MAH
r and MRH

r as ordered sets that contain the P̂ largest A-phases and R-phases,
respectively, released on core πr in a time window of length Wi,l. We assume that MAH

r and MRH
r are

sorted in a non-increasing order. Additionally, we define MAL
r and MRL

r as ordered sets that contain
remaining A- and R-phases, respectively, released on core πr in a time window of length Wi,l, sorted in a

18

non-increasing order:

MAH
r ={CA

r,1, C
A
r,2, . . . , C

A

r,P̂
| CA

r,x ≥ CA
r,x+1}

MAL
r ={CA

r,P̂+1
, CA

r,P̂+2
, . . . , CA

r,Q̂
| CA

r,y ≥ CA
r,y+1}

MRH
r ={CR

r,1, C
R
r,2, . . . , C

R

r,P̂
| CR

r,x ≥ CR
r,x+1}

MRL
r ={CR

r,P̂+1
, CR

r,P̂+2
, . . . , CR

r,Q̂
| CR

r,y ≥ CR
r,y+1}

where CA
r,x (resp. CR

r,x) is the WCET of an A-phase (resp. R-phase) of a task released on a remote core πr

in a time window of length Wi,l.

Furthermore, we introduce the terms V⃗r, X⃗r, Y⃗r, and Z⃗r in order to simplify case 2 as follows:

V⃗r =max(CA

r,P̂+1
, CR

r,P̂+1
)

X⃗r =CA

r,P̂
+ CR

r,P̂

Y⃗r =CA

r,P̂
+ CA

r,P̂+1

Z⃗r =CR

r,P̂
+ CR

r,P̂+1

As MAH
r , MRH

r , MAL
r and MRL

r are ordered sets, the term V⃗r returns the largest memory phase among

all the memory phases in MAL
r and MRL

r sets. The term X⃗r sums the smallest A-phase of MAH
r and the510

smallest R-phase of the MRH
r set. Similarly, the term Y⃗r sums the smallest A-phase in MAH

r and the largest

A-phase in MAL
r . Finally, the term Z⃗r sums the smallest R-phase in MRH

r and the largest R-phase in MRL
r .

Now we can compute the maximum bus blocking for case 2 using the following lemma.

Lemma 10. If Nπl
(Wi,l) < Nπr

(Wi,l), then the maximum bus blocking suffered by tasks executing on the
local core πl due to tasks running on a remote core πr, in any time interval of length Wi,l, is upper bounded
by Busi,r(Wi,l), which is given by:

Busi,r(Wi,l) =

{

∑P̂

x=1 C
A
r,x +

∑P̂

y=1 C
R
r,y + V⃗r , if lpi,l ̸= ∅

∑P̂−1
x=1 CA

r,x +
∑P̂−1

y=1 CR
r,y +max

(

X⃗r, Y⃗r, Z⃗r

)

, otherwise.
(18)

where CA
r,x (resp. CR

r,y) is the WCET of A-phase (resp. R-phase) that belongs to MAH
r (resp. MRH

r) set.

Proof. We prove this lemma using two possible scenarios on the basis of the priority of τi:515

Scenario 1. Task τi is not the lowest priority task on the local core: It is proven in Lemma 7
that if task τi is not the lowest priority task of the local core πl, all tasks that execute on core πl during
Wi,l can suffer at most (

∑

τh∈hepi,l
η+h (Wi,l) × 2) + 1 bus blockings. As Nπl

(Wi,l) < Nπr
(Wi,l), we need to

extract (
∑

τh∈hepi,l
η+h (Wi,l)× 2) + 1 bus blockings that can lead to the maximum bus blocking that can be

caused by a remote core πr during Wi,l.520

As proven in Property 6.1, during the level-i busy window, the local always executes an A-phase after an
R-phase, except the A-phase of the first job and the R-phase of the last job that executes during the level-i
busy window. Consequently, by applying Property 6.2 to all the memory phases that execute on core πl

during Wi,l, except the first A-phase and last R-phase that executes on core πl during Wi,l, the maximum

bus blocking can be bounded by taking the sum of the execution time of P̂ largest A- and R-phases released525

on a remote core πr during Wi,l, i.e., using the sets MAH
r and MRH

r .
Furthermore, when lpi,l ̸= ∅, the level-i busy window starts when τi is released, but a lower priority task

τj has started executing its A-phase. Consequently, we do not need to account for the bus blocking suffered
by the A-phase of τj , i.e., the first A-phase that executes on the local core πl during Wi,l. Finally, the
maximum bus blocking that can be suffered by the last R-phase that executes on the core πl during Wi,l is530

computed using V⃗r, where V⃗r returns the largest memory phase (i.e., A or R-phase) among MAL
r and MRL

r

sets. Hence, Equation 18 upper-bounds the bus blocking when lpi,l ̸= ∅.

19

Scenario 2. Task τi is the lowest priority task on the local core: It is proven in Lemma 7 that
if task τi is the lowest priority task executed on core πl then it can suffer at most (

∑

τh∈hepi,l
η+h (Wi,l)× 2)

bus blockings. As Nπl
(Wi,l) < Nπr

(Wi,l), we need to extract the (
∑

τh∈hepi,l
η+h (Wi,l) × 2) number of bus535

blockings that can lead to the maximum bus blocking that can be caused by a remote core πr during Wi,l.
As τi is the lowest priority task, the bus blocking can also be suffered by the first job before its A-phase.

Consequently, Property 6.2 can be applied to all the memory phases that execute on core πl during Wi,l

except the first A-phase and last R-phase that execute on core πl during Wi,l. Therefore, the maximum bus
blocking that can be suffered by all memory phases except the first A-phase and last R-phase that execute540

on core πl during Wi,l can be bounded by taking the sum of the execution time of P̂ − 1 largest A- and

R-phases (from sets MAH
r and MRH

r) released on a remote core πr during Wi,l, i.e.,
∑P̂−1

x=1 CA
r,x+

∑P̂−1
y=1 CR

r,y.
The next step is to compute the maximum bus blocking that can be suffered by the first A-phase and

last R-phase that execute on core πl during Wi,l. To maximize the bus blocking that can be suffered by
the first A-phase and last R-phase that execute on core πl during Wi,l, we consider the two largest memory545

phases (i.e., two A-phases, two R-phases or a combination of one A and R-phases) that were not considered

in the P̂ − 1 largest A- and R-phases. This is achieved by taking the maximum among the values of X⃗r,
Y⃗r, and Z⃗r where X⃗r returns the sum of the largest one A- and R-phase, Y⃗r (resp. Z⃗r) returns the sum of
the WCET of two largest A-phases (resp. R-phases) released on a remote core πr during Wi,l that were not

previously considered in P̂ − 1 A- and R-phases. The Lemma follows.550

Having bounded the maximum bus blocking Busi,r(Wi,l) that can be suffered by tasks executing on the
local core πl due to the tasks running on a remote core πr during any time interval of length Wi,l, the next
step is to compute the total bus blocking Busmax

i,l (Wi,l) that can be suffered by the local core due to all
remote cores. The total bus blocking Busmax

i,l (Wi,l) that can be suffered by the local core due to all remote
cores during Wi,l can be computed using algorithm 1 by first computing Nπl

(Wi,l) (line 4) using Lemma 7,555

Nπr
(Wi,l) (line 5) using Lemma 8, and the maximum bus blocking Busi,r(Wi,l) caused by a remote core πr

(line 6) during Wi,l using Lemma 9 to Lemma 10.
Finally, having bounded the total bus blocking Busmax

i,l (Wi,l) that can be suffered by the local core πl

due to all remote cores in the level-i busy window, i.e., Wi,l, under both the DMAM and the FMAM, the
length of the longest level-i busy window can be computed using Equation 8.560

7. Schedulability Analysis

As proven in [19], to compute the WCRT of task τi, we need to determine the response time of each job
of τi that executes during the level-i busy window Wi,l. Therefore, we first compute the maximum number
of jobs of task τi that can execute within Wi,l using the following Equation.

Ki = η+i (Wi,l) (19)

To compute the response time of the kth job of τi that execute on the local core πl during Wi,l, i.e.,
denoted as τi,k,l, we first compute the latest start time of the R-phase of τi,k,l. This is due to the fact that
each job that executes on core πl during the response time of τi,k,l (including τi,k,l) can suffer bus blocking
until the start of the R-phase of τi,k,l. The latest start time of the R-phase of τi,k,l on core πl is computed565

using the following lemma.

Lemma 11. The latest start time of the R-phase of τi,k,l is denoted by sRi,k,l and is given by the first positive
solution to the following fixed-point iteration:

sRi,k,l = Cmax
lpi,l

+
∑

τh∈hepi,l\τi

η+h (s
R
i,k,l − (CA

i + CE
i))× Ch +Busmax

i,l (sRi,k,l) + (k − 1)× Ci + (CA
i + CE

i)

(20)

20

Proof. The proof is divided into two steps. In the first step, we upper bound the contributions of tasks
executing on the same core to the start time of R-phase of τi,k,l. In step two, we upper bound the impact
of tasks running on all remote cores to the start time of R-phase of τi,k,l.

Step 1. Task τi can suffer blocking from at most one job from lower priority tasks in lpi,l. This blocking570

is upper bounded by Cmax
lpi,l

i.e., computed using Equation 1. Knowing that k − 1 jobs of task τi may have
been executed before τi,k,l, their contribution to the latest start time of the R-phase of τi,k,l is given by
(k − 1) × Ci. Finally, all jobs released by the higher or equal priority tasks in hepi,l except τi can cause
interference on τi,k,l until the start of its A-phase due to the fixed-priority non-preemptive scheduling. Hence,
the total interference that can be caused by a task τh ∈ hepi,l until the start of the A-phase of τi,k,l is upper575

bounded by η+h (s
R
i,k,l−(CA

i +CE
i))×Ch, where Ch is the WCET of task τh in isolation. Effectively, the total

contribution from all tasks in hepi,l except τi to the start time of the A-phase of τi,k,l is upper bounded by
∑

τh∈hepi,l\τi
η+h (s

R
i,k,l − (CA

i + CE
i))× Ch. Furthermore, to compute the start time of the R-phase of τi,k,l,

we add the WCET of the A- and E-phases of τi, given by CA
i + CE

i .
Step 2. It is possible that each job that executes on core πl can suffer bus blocking due to tasks running580

on remote cores. Thus, the maximum bus blocking suffered by the local core until the start of the R-phase
of τi,k,l due to tasks of all the remote cores is upper bounded by Busmax

i,l (sRi,k,l), using Algorithm 1 by first
computing the maximum bus blocking for the DMAM (computed using Lemma 1 to Lemma 6) and the
FMAM (computed using Lemma 7 to Lemma 10).

As sRi,k,l appears on both sides of Equation 20, it can be solved iteratively by initializing sRi,k,l = CA
i +

CE
i +Cmax

lpi,l
+
∑

τh∈hepi,l\τi
Ch. The start time sRi,k,l is given by the smallest positive value of sRi,k,l for which

Equation 20 converges. The response time Ri,k,l of τi,k,l can be computed by simply adding sRi,k,l to the

WCET of the R-phase of task τi, i.e., C
R
i , as following:

Ri,k,l = sRi,k,l + CR
i (21)

Finally, the WCRT of a given task τi can be computed by maximizing equation 21 over all jobs of τi that
execute during the level-i busy window. Hence,

Rmax
i,l = max

k∈[1,Ki]
{Ri,k,l} (22)

where Ki is computed using Equation 19.585

As the WCRT is computed using fixed-point iteration, the time complexity of the WCRT analysis is
pseudo-polynomial in the sense that it enumerates all the jobs released by higher priority tasks and then
computes the maximum bus blocking for the DMAM and FMAM.

Note that task τi is deemed schedulable if its WCRT (computed using Equation 22) is less than or equal
to its relative deadline Di, i.e., R

max
i,l ≤ Di. A task set is deemed schedulable only if all tasks in that task590

set are schedulable and the total bus utilization of the system is less than or equal to the capacity of the
bus, i.e., 1, since the memory bus is saturated otherwise.

8. Experimental Evaluation

In this section, we evaluate the effectiveness of the proposed approaches. To the best of our knowledge,
no work exists that focus on bounding the bus blocking for the 3-phase task model under the FCFS bus595

arbitration scheme. A similar work [22] exists that focus on memory centric scheduling of PREM tasks
under partitioned fixed-task priority scheduling. The work in [22] considers a fixed processor priority bus
arbitration policy and allows global memory preemption, i.e., the memory phases running on higher-priority
processors can preempt the memory phases running on lower priority processors. This is different from the
proposed work as we assume that memory phases execute non-preemptively. To compare the performance of600

our proposed Dedicated Memory Access Model (DMAM) and Fair Memory Access Model (FMAM) with the
work in [22], we consider two variations of the analysis presented in [22], i.e., with/without allowing global
memory preemption. The analysis that allows global memory preemption is the exact analysis presented

21

in [22]. The analysis without global memory preemption is a slightly modified version of [22] to allow the
execution of non-preemptive memory phases.605

To evaluate the performance of all the analyzed approaches, we perform two sets of experiments. A case
study experiment performed using task parameters obtained from the Mälardalen benchmark suite [18] is
presented in Section 8.1. Experiments performed using synthetic tasksets are detailed in Section 8.2.

8.1. Case Study

For the case study experiments, we use task parameters taken from Table 2 of [15]. Table 2 in [15] is610

generated from the Mälardalen benchmark suite using the gem5 instruction set simulator by modeling a
quad-core multicore platform considering ARMv7 cores and a shared memory bus that connects the cores
to the main memory.

Although Table 2 of [15] contains several task parameters for the analyzed benchmarks, we only consider
the Processing Demand (PD) and Memory Demand (MD) of tasks in our experiments. Also, since we615

consider non-preemptive task scheduling which can suffer from the long task problem, i.e., task sets that
contain some tasks with short deadlines and others with long WCETs are trivially unschedulable due to
blocking from lower priority tasks. This problem has been identified in the state-of-the-art, e.g., see Section
6 of [23]. Therefore, to circumvent this problem, we only selected benchmarks from Table 2 of [15] such that
the total WCET (i.e., PD +MD) of each task remains in the range of 2000 to 12000. Tasks’ parameters620

considered for the case study experiments are given in Table 2. Instead of using the terms PD and MD (as
in [15]), we use the WCET of the phases and total WCET of tasks in Table 2. As shown in Table 2, the
value of CE

i is considered equal to the task’s processor demand, and the value of CA
i + CR

i is considered
equal to the task’s memory demand, and the total WCET of task is given by Ci = CA

i + CE
i + CR

i .

Name CE
i CA

i + CR
i Ci

cnt 7765 573 8338
compressdata 3166 494 3660
compress 8793 993 9786
cover 3661 696 4357
duff 3121 553 3674
expint 8058 716 8774
fdct 5923 1088 7011
fir 6938 1207 8145
insertsort 2218 415 2633
jfdctint 7771 1086 8857
ludcmp 8278 768 9046
nsichneu 8648 1582 10230
petrinet 2272 438 2710
qurt 8663 735 9398
recursion 5564 907 6471
select 7211 986 8197

Table 2: Benchmark parameters used in the experiments.

By default, we consider a multicore platform with 4 cores and a task set size of 32 tasks with 8 tasks per625

core. For task-to-core mapping, we randomly map tasks to core while ensuring that each core has the same
number of tasks and the core utilization for each core is same. To assign the benchmark parameters to tasks
mapped on the cores, we randomly select a benchmark from Table 2 and assign its CA

i , CE
i , CR

i , and Ci,
values to a task. We then randomly generate tasks’ utilizations Ui using UUnifast discard [24] algorithm.
Having assigned the values of Ci and Ui, we generate the task period by using the equation Ti = Ci/Ui. The630

task priorities are then assigned using rate monotonic [25] and tasks deadlines are equal to their periods.
In the case study, we performed two experiments by varying: 1) the core utilization (i.e., utilization

of each core); 2) the number of cores in the system, and compared the performance of all the analyzed

22

Figure 13: Varying Core Utilization

approaches in terms of task set schedulability. In the results for the case study (and also for the experiments
in Section 8.2), the analysis for the dedicated memory access model is marked as “DMAM” whereas the635

analysis for the fair memory access model is marked as “FMAM”. Similarly, the memory centric scheduling
approach of [22] is marked as “MC” and the memory centric scheduling approach of [22] without global
memory preemption is marked as “MC-NP”. In each experiment, 1000 task sets were generated per point.

1. Core Utilization: In this experiment, we vary the core utilization of each core in the range of 0.025
to 1 in steps of 0.025. As shown in Figure 13, the schedulability using all the approaches decreases with640

the increase in core utilization. This is intuitive as increasing core utilization increases tasks utilizations,
which directly impacts the task period/deadline. We observe that none of the approaches were able to
schedule tasksets with core utilization higher than 0.60. This is mainly due to higher number of tasks in
the task set under the default configuration, i.e., for 4 cores we have 32 tasks in the taskset. Effectively,
this results in increasing bus blocking between tasks leading to reduced schedulability. However, we can645

see in Figure 13, that the FMAM and DMAM analyses outperform the MC and MC-NP analyses. For
instance, at the core utilization value of 0.425, FMAM analysis was able to schedule 32.8% more tasksets as
compared to MC analysis and 44.7% more taksets as compared to MC-NP analysis. This is mainly due to
two reasons. The first reason is that unlike [22], the proposed analysis provides a fine-grained bus blocking
analysis using different cases, that account for different scheduling scenarios that can be observed on the650

core under analysis as well as remote cores. This results in tighten the bound on bus blocking suffered by
the tasks. The second reason is that the proposed work shares the bus among all cores in a more fair manner
(e.g. FMAM), whereas the analysis of [22] assigns the bus to the higher priority cores. In such a case, there
can be a scenario in which even the highest priority task running on the lowest priority core may suffer bus
blocking from all the tasks released on the higher priority cores. On the contrary, the proposed analysis655

bounds the bus blocking on the basis of number of jobs/memory phases that can suffer/cause bus blocking
during the response time of the task under analysis.

We also observe that the FMAM performs the best among all the analyses, whereas MC-NP performs the
worst. This is because FMAM distributes the bus among all the cores in a fair manner and due to the fine-
grained bus blocking analysis for FMAM. The MC-NP performs worse than MC as tasks can additionally660

suffer the bus blocking from lower priority cores due to the non-preemptive execution of memory phases
under MC-NP.

2. Number of Cores: In this experiment, we re-do the previous experiment by varying the number
of cores along with the core utilization. The number of cores (m) was varied from 2 to 16 along with core
utilization that was varied from 0.025 to 1 in steps of 0.025. The percentage of task sets that were deemed665

schedulable by all approaches for different values of m is shown in Figure 14. We can see that by increasing
the number of cores, the number of tasksets that were deemed schedulable by all the approaches decreases.
This is mainly due to the fact that increasing the number of cores also increases the number of remote cores
and the number of tasks in the taskset, which results in increasing the bus blocking that can be suffered by

23

(a) Varying Core Utilization for m = 2 (b) Varying Core Utilization for m = 8 (c) Varying Core Utilization for m = 16

Figure 14: Varying the Number of Cores and Core Utilization

the task under analysis from the remote cores.670

We observe that the performance gain of FMAM and DMAM analysis against MC and MC-NP increased
with an increase in the number of cores, i.e., m = 8, 16. For instance, at the core utilization value of 0.125,
the FMAM analysis was able to schedule 79.3% more tasksets as compared to the MC analysis and 88.3%
more taksets compared to the MC-NP analysis for m = 16 as shown in Figure 14c.

On the other hand, we observe that the performance gain of the FMAM and DMAM analysis against675

MC and MC-NP is reduced by decreasing the number of cores to m = 2. In fact, the MC analysis performed
almost the same as FMAM and DMAM for some core utilization values. We explain these variations in the
gain as follows:

An increase in the number of cores results in an increase in the number of remote cores. However, the
bus blocking suffered by the tasks using the proposed analysis depends on several cases/sub-cases. This680

implies that even when the number of cores is increased, the bus blocking suffered by task under analysis
may not increase significantly as there may be a few tasks from remote cores that participate in the bus
blocking.

On the other hand, an increase in the number of cores results in increasing the number of higher pri-
ority cores, which can cause bus blocking to the lowest priority core. Consequently, the MC and MC-NP685

analyses can be significantly impacted as even the highest priority task (i.e., task that has the smallest
period/deadline) running on the lowest priority core can suffer bus blocking from all the tasks released on
all the higher priority cores.

Interestingly, we also observe that for higher values of m, the difference between FMAM and DMAM
was significant. For instance, FMAM was able to schedule up to 67.7% tasksets whereas DMAM was able690

to schedule only 38.9% at 0.15 core utilization for m = 16 as shown in Figure 14c.

8.2. Experiments using Synthetic Tasks

In this section, we will explain the experiments that were performed using synthetic task sets to compare
the performance of DMAM, FMAM, MC and MC-NP approaches. The default configuration was a multicore
platform with 4 cores and a task set size of 32 tasks with 8 tasks per core. Task utilizations were generated695

using Uunifast-discard algorithm [24]. Task periods were generated using log-uniform distribution in the
range of [100,1000]. In each experiment, 1000 task sets were generated per point.

The WCET Ci of each task τi was obtained by the product Ui × Ti. The memory demand MD for each
task was assigned randomly in the range of [10%, 50%]×Ci, i.e., MD = rand(10%, 50%) × Ci. The values
of CA

i , CE
i and CR

i are then chosen such that CA
i = CR

i = MD/2 4 and CE
i = Ci − (CA

i + CR
i). Task700

deadlines were implicit with priorities assigned using Rate-Monotonic [25].
We performed several experiments by varying: 1) the core utilization; 2) the number of cores; 3) the task

memory demands; and 4) the task periods.
1. Core Utilization: In this experiment, we varied each core utilization between 0.025 and 1 in steps

of 0.025 and plotted the number of task sets that were deemed schedulable by all the analyzed approaches,705

4Note that for the analysis in [22] we consider a single memory phase of length MD.

24

Figure 15: Varying Core Utilization

(a) Varying Core Utilization for m = 2 (b) Varying Core Utilization for m = 8 (c) Varying Core Utilization for m = 16

Figure 16: Varying the Number of Cores and Core Utilization

i.e., DMAM, FMAM, MC, and MC-NP. The percentage of task sets that were deemed schedulable using all
the approaches for each core utilization value are shown in Figure 15. As shown in 15, the schedulability
of all the approaches decreases with an increase in the core utilization. This is intuitive as increasing the
core utilization can increase the values of Ci, C

A
i , CE

i and CR
i that can eventually increase the interfer-

ence/blocking from the same core and bus blocking from other cores. We note that the overall task set710

schedulability for all the approaches is quite low as no tasksets were schedulable at 0.50 core utilization.
This is intuitive as the MD value of tasks can be up to 50% of their WCET, which can directly contribute
to the bus blocking that can be suffered/caused by tasks. We observe that the FMAM analysis performed
slightly better than DMAM, as expected. As shown in 15, the MC analysis performs better than MC-NP.
This is intuitive because tasks can additionally suffer the bus blocking from lower priority cores due to the715

non-preemptive execution of memory phases under MC-NP.
We can also see in Figure 15 that the proposed analysis for DMAM and FMAM outperforms the memory

centric scheduling analysis of [22]. In particular, at the core utilization value of 0.35, FMAM can schedule
up to 55.3% more tasksets as compared to MC-NP and up to 18.6% more tasksets as compared to MC.
Similarly, at the core utilization value of 0.35, DMAM can schedule up to 50% more tasksets as compared to720

MC-NP and up to 13.3% more tasksets as compared to MC. As discussed earlier, the improved performance
of DMAM and FMAM over MC and MC-NP is mainly due to a more fine-grained bus blocking analysis
used by DMAM and FMAM.

Interestingly, we observe that no taskset is schedulable after the core utilization value of 0.475 using any
of the approaches as shown in Figure 15. On the contrary, almost all the approaches were able to schedule725

tasksets up to 60% core utilization under the case study, i.e., see Figure 13. This is because the value of MD
is quite small in benchmark parameters given in Table 2 whereas the value of MD can go up to 50% × Ci

while randomly generating the tasks.
2. Number of Cores: In this experiment, we vary the number of cores along with the core utilization,

keeping default values for all other parameters. The number of cores (m) was varied from 2 to 16, and for730

25

each value of (m), the core utilizations varied from 0.025 to 1 in steps of 0.025. The percentage of task
sets that were deemed schedulable for different values of m by all the approaches are shown in Figure 16.
We can see in Figure 16 that by increasing the number of cores, the number of task sets that were deemed
schedulable by all the approaches decreases. This is mainly due to the fact that by increasing the number
of cores, the number of tasks in the taskset also increases, which results in increasing the bus blocking that735

can be suffered by the task under analysis from the remote cores/higher priority cores. For example, for two
cores all task sets were deemed schedulable by all the approaches at the core utilization of 0.35 but no task
set was schedulable at the same core utilization when the value of m is increased to 8 or 16.

Figure 16b and 16c show that the FMAM, and DMAM analysis can outperform MC and MC-NP analysis
when the value of m is increased to 8 and 16. For instance, at the core utilization value of 0.20, the FMAM740

analysis can schedule up to 41.1% more tasksets as compared to MC and 71% more tasksets as compared to
MC-NP for m = 8 (see Figure 16b). Similarly, at the core utilization value of 0.20, the DMAM analysis can
schedule up to 31.2% more tasksets as compared to MC and 61.1% more tasksets as compared to MC-NP for
m = 8 (see Figure 16b). This performance gains were further increased for m = 16 as shown in Figure 16c.
However, all the approaches perform almost similarly for m = 2. In fact, MC analysis was able to perform745

better than FMAM and DMAM analysis for some of the core utilization values for m = 2 as shown in
Figure 16a. We explain these performance gains as follows.

As discussed earlier, MC analysis gets significantly impacted by increasing/decreasing the number of
cores as the analysis is based on processor priority whereas the FMAM/DMAM analysis is based on FCFS
bus arbitration in which the bus blocking depends on several cases and subcases. In particular, for m = 2,750

under the MC analysis tasks running on only one core (i.e., all except the highest priority core) can suffer
bus blocking whereas under the DMAM and FMAM analyses, the tasks running on both the cores can
suffer bus blocking, i.e., 2x more than MC analysis, due to the FCFS bus arbitration. On the contrary,
for the m = 16, under the MC analysis tasks running on 15 cores can suffer bus blocking whereas under
the DMAM and FMAM analyses, the tasks running on 16 cores can suffer bus blocking, i.e., 1.066x more755

than MC analysis, due to the FCFS bus arbitration. Therefore, the FMAM and DMAM analyses performed
significantly better than MC analysis at higher values of m, i.e., m = 8, 16, but performed slightly worse
than MC at some core utilization values for the lower value of m, i.e., m = 2.

3. Task Memory Demands: In this experiment, we varied the Memory Demand (MD) of tasks w.r.t
their WCET and analyzed its impact on the task set schedulability. Effectively, we used the value of MD to760

determine CA
i , CE

i , and CR
i such that CA

i + CR
i = MD and CE

i = Ci − (CA
i + CR

i). The value of MD was
varied from 0.05 to 0.95 (i.e., 5% to 95%) in steps of 0.05 and the number of task sets that were deemed
schedulable by all the approaches are plotted in Figure 17. We choose different sets of core utilizations
(denoted by UC), i.e., 20%, 30%, and 40% to show the impact of MD on task set schedulability.

We can see in Figure 17 that for the values of core utilization of 20%, 30%, and 40%, the percentage of765

tasksets that were deemed scheduled using all the approaches decreases with the increase in MD. This is
intuitive, as for higher values of MD, the values of CA

i , and CR
i also increase which may result in increasing

bus blocking. Furthermore, we observe that for lower values of core utilization the number of task sets that
were deemed schedulable by all approaches was much higher even for larger values of MD. For example, at
a core utilization of 20% (i.e., UC=20%), tasks with very high memory demand, i.e., up to 80% of their770

WCET, were still schedulable as shown in Figure 17a. However, the taskset schedulability decreases rapidly
for higher values of core utilization as shown in Figure 17b, and 17c. Finally, we can also observe that the
FMAM and DMAM analysis outperforms the MC and MC-NP analysis. For instance, the FMAM analysis
was able to schedule up to 45.4% more tasksets as compared to MC and up to 69.8% more tasksets as
compared to MC-NP for MD value of 70% at 20% core utilization, as shown in Figure 17a.775

4. Task Periods: In this experiment, we varied the period range of tasks’ and analyzed its impact
on schedulability. As we generate the WCET Ci of tasks using the task periods Ti, i.e., Ci = Ui × Ti,
which is then used to generate CA

i , CE
i and CR

i , therefore, the value of task periods can significantly impact
schedulability.

In this experiment, the core utilization was varied for three different period ranges, i.e., [100,1000],780

[100,2000], [100,5000] and the percentage of task sets that were deemed schedulable using all the approaches
is shown in Figure 18. We observe that an increase in the period range has a negative impact on task set

26

(a) Varying MD for 20% Core Utilization (b) Varying MD for 30% Core Utilization (c) Varying MD for 40% Core Utilization

Figure 17: Varying the Tasks’ Memory Demand (MD)

(a) Tasks’ Period in range of 100 to 1000 (b) Tasks’ Period in range of 100 to 2000 (c) Tasks’ Period in range of 100 to 5000

Figure 18: Varying the Tasks’ Period Range and Core Utilization

schedulability. We explain these variations as follows:
Increasing the task period increases the WCET of tasks due to the relation between Ci and Ti, i.e.,

Ci = Ui × Ti. This in turn increases the blocking from one job of a lower priority task, i.e., a larger period785

leads to a larger WCET which causes a larger blocking from lower priority tasks. This implies that increasing
the task period range increases the blocking caused by a lower priority task. This increase in lower priority
blocking also increases the length of the level-i busy window which may result in converging the level-i busy
window at a later stage due to additional jobs released by higher priority tasks. This causes a degradation in
task set schedulability when the period ranges are increased. However, we can still see that even for higher790

values of task periods the proposed FMAM and DMAM analyses dominate the MC and MC-NP analyses.

9. Related Work

The problem of timing unpredictability due to the shared memory bus in multicore systems is not
new [26] and many existing works already attempted to solve this problem [27]. Some approaches [7, 8, 9]
are based on Time Division Multiple Access (TDMA) in which time slots are divided among cores and795

a core can only access the memory bus in its defined time slot. Dasari et al. [12] proposed a response
time analysis considering the maximum bus interference for an unspecified work-conserving arbiter under
partitioned scheduling. A general framework for memory bus contention analysis that covers a wide range of
bus arbitration policies is proposed in [14]. Rashid et al. [16] proposed the cache persistence-aware memory
bus contention analysis for multicore systems. Even though these approaches are proposed to bound the800

bus contention for partitioned fixed-priority scheduling, they are proposed for generic task models and are
not tailored for phased execution models.

On the other hand, approaches like [28, 29, 30, 31, 17, 32, 15, 33, 34, 35, 22] focus on phased execution
models. Maia et al. [17] focus on the bus contention analysis for the fixed priority 3-phase task model
under global scheduling. Arora et al. [32] proposed the bus contention analysis for the 3-phase task model805

considering partitioned scheduling and round-robin bus arbitration. Since the bus contention analysis of [32]
was formulated for round-robin bus arbitration, it is based on the bus slot size and number of bus requests
performed during those slots. Davis et al. [15] proposed an extensible framework for multicore timing

27

analysis. The authors compute the WCRT of tasks scheduled using partitioned fixed-priority preemptive
scheduling by incorporating the inter-core interference caused by co-running tasks due to shared bus, shared810

main memory, and shared caches access. Works like [30] are based on memory centric scheduling in which
the access to the main memory is divided among all the cores in the system using TDMA. The memory
phases can then access the main memory during their allocated time slot. Recent work on memory-centric
scheduling [22] focused on a fixed-priority memory centric scheduler for COTS multiprocessors as the authors
suggest that TDMA may result in underutilization of the resource.815

None of the above-mentioned works can be directly compared against the proposed approach in this paper
due to different set of assumptions followed. For instance, [29, 17] focus on global scheduling whereas [15]
presents a response time analysis by considering the inter-core interference due to various shared resources of
multicore systems. [33, 34] focus on a specific hardware architecture that has a dedicated I/O bus, dual-port
memories with DMA support, and scratchpad memories.820

As discussed in Section8, the closest work that can be compared against our approach is [22] as it
proposed for fixed-priority non-preemptive PREM task model under partitioned scheduling and focus on
only one source of inter-core interference, i.e., main memory, and it assumes that the main memory can
handle only one request at a time. However, as the experimental evaluation has shown, our proposed
approaches outperform the analysis in [22] by providing a much fine-grained bus blocking analysis.825

10. Conclusion

In this work, we present a fine-grained analysis to compute the maximum bus blocking suffered by 3-
phase tasks scheduled using partitioned fixed-priority non-preemptive scheduling. We show that the bus
blocking suffered by the tasks executing on a multicore platform depends on the underlying memory access
model. As a consequence, we present the bus blocking analysis for two memory access models referred to830

as the dedicated memory access model and the fair memory access model. For each model, the maximum
bus blocking is derived using different cases and sub-cases to emulate different scheduling scenarios that can
happen when concurrent tasks execute on a multicore platform and try to access the bus. This allows us to
achieve tighter bounds on the maximum bus blocking that can be suffered by the tasks as well as improves
taskset schedulability. We also show how the maximum bus blocking of tasks can be integrated into the835

WCRT analysis of tasks. Experimental evaluation shows that the proposed analysis can improve the number
of task sets that are deemed schedulable by up to 88 percentage points, in comparison to a state-of-the-art
approach. As future work, we would like to extend our analysis to support different bus arbitration policies
and evaluate their performance against the proposed approach. We would also like to investigate the impact
of various task-to-core mapping strategies on the proposed analysis in a future work.840

Acknowledgement

This work was partially supported by European Union’s Horizon 2020 -The EU Framework Programme
for Research and Innovation 2014-2020, under grant agreement No. 732505. Project “TEC4Growth - Perva-
sive Intelligence, Enhancers and Proofs of Concept with Industrial Impact/NORTE-01-0145-FEDER000020”
financed by the North Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL845

2020 Partnership Agreement; also by National Funds through FCT/MCTES (Portuguese Foundation for
Science and Technology), within the CISTER Research Unit (UIDP/UIDB/04234/2020); by FCT and the
Portuguese National Innovation Agency (ANI), under the CMU Portugal partnership, through the European
Regional Development Fund (ERDF) of the Operational Competitiveness Programme and Internationaliza-
tion (COMPETE 2020), under the PT2020 Partnership Agreement, within project FLOYD (POCI-01-0247-850

FEDER-045912), also by FCT under PhD grant 2020.09532.BD.

References

[1] J. Arora, C. Maia, S. Aftab Rashid, G. Nelissen, E. Tovar, Bus-contention aware schedulability analysis for the 3-phase task
model with partitioned scheduling, in: 29th International Conference on Real-Time Networks and Systems, RTNS’2021,

28

Association for Computing Machinery, New York, NY, USA, 2021, p. 123–133. doi:10.1145/3453417.3453433.855

URL https://doi.org/10.1145/3453417.3453433

[2] R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Caccamo, R. Kegley, A Predictable Execution Model for COTS-
Based Embedded Systems, in: 2011 17th IEEE Real-Time and Embedded Technology and Applications Symposium,
IEEE, Chicago, IL, USA, 2011, pp. 269–279. doi:10.1109/RTAS.2011.33.
URL http://ieeexplore.ieee.org/document/5767117/860

[3] G. Durrieu, M. Faugère, S. Girbal, D. Gracia Pérez, C. Pagetti, W. Puffitsch, Predictable Flight Management System
Implementation on a Multicore Processor, in: Embedded Real Time Software (ERTS’14), TOULOUSE, France, 2014.
URL https://hal.archives-ouvertes.fr/hal-01121700

[4] C. Maia, L. Nogueira, L. M. Pinho, D. G. Perez, A closer look into the AER Model, in: 2016 IEEE 21st International
Conference on Emerging Technologies and Factory Automation (ETFA), IEEE, Berlin, Germany, 2016, pp. 1–8. doi:865

10.1109/ETFA.2016.7733567.
URL http://ieeexplore.ieee.org/document/7733567/

[5] C. Pagetti, J. Forget, H. Falk, D. Oehlert, A. Luppold, Automated generation of time-predictable executables on multicore,
in: Proceedings of the 26th International Conference on Real-Time Networks and Systems, RTNS ’18, Association for
Computing Machinery, New York, NY, USA, 2018, p. 104–113. doi:10.1145/3273905.3273907.870

URL https://doi.org/10.1145/3273905.3273907

[6] M. Becker, D. Dasari, B. Nicolic, B. Akesson, V. Nélis, T. Nolte, Contention-free execution of automotive applications on
a clustered many-core platform, in: ECRTS 2016, 2016, pp. 14–24. doi:10.1109/ECRTS.2016.14.

[7] J. Rosen, A. Andrei, P. Eles, Z. Peng, Bus access optimization for predictable implementation of real-time applications
on multiprocessor systems-on-chip, in: 28th IEEE International Real-Time Systems Symposium (RTSS 2007), 2007, pp.875

49–60.
[8] S. Chattopadhyay, A. Roychoudhury, T. Mitra, Modeling shared cache and bus in multi-cores for timing analysis, in: Pro-

ceedings of the 13th International Workshop on Software & Compilers for Embedded Systems, SCOPES ’10, Association
for Computing Machinery, New York, NY, USA, 2010. doi:10.1145/1811212.1811220.
URL https://doi.org/10.1145/1811212.1811220880

[9] T. Kelter, H. Falk, P. Marwedel, S. Chattopadhyay, A. Roychoudhury, Bus-aware multicore wcet analysis through tdma
offset bounds, in: 2011 23rd Euromicro Conference on Real-Time Systems, 2011, pp. 3–12.

[10] A. Schranzhofer, J.-J. Chen, L. Thiele, Timing analysis for tdma arbitration in resource sharing systems, in: 2010 16th
IEEE Real-Time and Embedded Technology and Applications Symposium, 2010, pp. 215–224. doi:10.1109/RTAS.2010.24.

[11] S. Schliecker, R. Ernst, Real-time performance analysis of multiprocessor systems with shared memory, ACM Transactions885

on Embedded Computing Systems 10 (2) (2010) 1–27. doi:10.1145/1880050.1880058.
URL http://portal.acm.org/citation.cfm?doid=1880050.1880058

[12] D. Dasari, B. Andersson, V. Nelis, S. M. Petters, A. Easwaran, J. Lee, Response time analysis of cots-based multicores
considering the contention on the shared memory bus, in: 2011IEEE 10th International Conference on Trust, Security
and Privacy in Computing and Communications, 2011, pp. 1068–1075.890

[13] D. Dasari, V. Nelis, An analysis of the impact of bus contention on the wcet in multicores, in: 2012 IEEE 14th International
Conference on High Performance Computing and Communication 2012 IEEE 9th International Conference on Embedded
Software and Systems, 2012, pp. 1450–1457. doi:10.1109/HPCC.2012.212.

[14] D. Dasari, V. Nelis, B. Akesson, A framework for memory contention analysis in multi-core platforms, Real-Time Systems
52 (06 2015). doi:10.1007/s11241-015-9229-9.895

[15] R. I. Davis, S. Altmeyer, L. S. Indrusiak, C. M. and·Vincent Nelis, J. Reineke, An extensible framework for multicore
response time analysis, Real-Time Systems (July 2017).

[16] S. A. Rashid, G. Nelissen, E. Tovar, Cache persistence-aware memory bus contention analysis for multicore systems, in:
DATE, 2020, pp. 442–447. doi:10.23919/DATE48585.2020.9116265.

[17] C. Maia, G. Nelissen, L. Nogueira, L. M. Pinho, D. G. Perez, Schedulability analysis for global fixed-priority scheduling of900

the 3-phase task model, in: 2017 IEEE 23rd International Conference on Embedded and Real-Time Computing Systems
and Applications (RTCSA), IEEE, Hsinchu, Taiwan, 2017, pp. 1–10. doi:10.1109/RTCSA.2017.8046313.
URL http://ieeexplore.ieee.org/document/8046313/

[18] J. Gustafsson, A. Betts, A. Ermedahl, B. Lisper, The Mälardalen WCET Benchmarks: Past, Present And Future, in:
B. Lisper (Ed.), 10th International Workshop on Worst-Case Execution Time Analysis (WCET 2010), Vol. 15 of Ope-905

nAccess Series in Informatics (OASIcs), Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2010, pp.
136–146, the printed version of the WCET’10 proceedings are published by OCG (www.ocg.at) - ISBN 978-3-85403-268-7.
doi:10.4230/OASIcs.WCET.2010.136.
URL http://drops.dagstuhl.de/opus/volltexte/2010/2833

[19] R. J. Bril, J. J. Lukkien, W. F. J. Verhaegh, Worst-case response time analysis of real-time tasks under fixed-priority910

scheduling with deferred preemption revisited, in: 19th Euromicro Conference on Real-Time Systems (ECRTS’07), 2007,
pp. 269–279.

[20] J. Lehoczky, Fixed priority scheduling of periodic task sets with arbitrary deadlines, [1990] Proceedings 11th Real-Time
Systems Symposium (1990) 201–209.

[21] K. W. Tindell, A. Burns, A. J. Wellings, An extendible approach for analyzing fixed priority hard real-time tasks, Real-915

Time Syst. 6 (2) (1994) 133–151. doi:10.1007/BF01088593.
URL https://doi.org/10.1007/BF01088593

[22] G. Schwäricke, T. Kloda, G. Gracioli, M. Bertogna, M. Caccamo, Fixed-Priority Memory-Centric Scheduler for COTS-
Based Multiprocessors, in: M. Völp (Ed.), 32nd Euromicro Conference on Real-Time Systems (ECRTS 2020), Vol. 165 of

29

Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl,920

Germany, 2020, pp. 1:1–1:24. doi:10.4230/LIPIcs.ECRTS.2020.1.
URL https://drops.dagstuhl.de/opus/volltexte/2020/12364

[23] R. I. Davis, S. Altmeyer, J. Reineke, Analysis of write-back caches under fixed-priority preemptive and non-preemptive
scheduling, in: Proceedings of the 24th International Conference on Real-Time Networks and Systems, RTNS ’16, Asso-
ciation for Computing Machinery, New York, NY, USA, 2016, p. 309–318. doi:10.1145/2997465.2997476.925

URL https://doi.org/10.1145/2997465.2997476

[24] P. Emberson, R. Stafford, R. Davis, Techniques for the synthesis of multiprocessor tasksets, WATERS’10 (01 2010).
[25] C. L. Liu, J. W. Layland, Scheduling algorithms for multiprogramming in a hard-real-time environment, J. ACM 20 (1)

(1973) 46–61. doi:10.1145/321738.321743.
URL https://doi.org/10.1145/321738.321743930

[26] D. Dasari, B. Akesson, V. Nelis, M. A. Awan, S. M. Petters, Identifying the sources of unpredictability in COTS-based
multicore systems, in: 2013 8th IEEE International Symposium on Industrial Embedded Systems (SIES), IEEE, Porto,
2013, pp. 39–48. doi:10.1109/SIES.2013.6601469.
URL http://ieeexplore.ieee.org/document/6601469/

[27] C. Maiza, H. Rihani, J. M. Rivas, J. Goossens, S. Altmeyer, R. I. Davis, A Survey of Timing Verification Techniques for935

Multi-Core Real-Time Systems, ACM Computing Surveys 52 (3) (2019) 1–38. doi:10.1145/3323212.
URL http://dl.acm.org/citation.cfm?doid=3341324.3323212

[28] A. Alhammad, R. Pellizzoni, Time-predictable execution of multithreaded applications on multicore systems, in: 2014
Design, Automation Test in Europe Conference Exhibition (DATE), 2014, pp. 1–6. doi:10.7873/DATE.2014.042.

[29] A. Alhammad, R. Pellizzoni, Schedulability analysis of global memory-predictable scheduling, in: Proceedings of the940

14th International Conference on Embedded Software - EMSOFT ’14, ACM Press, New Delhi, India, 2014, pp. 1–10.
doi:10.1145/2656045.2656070.
URL http://dl.acm.org/citation.cfm?doid=2656045.2656070

[30] G. Yao, R. Pellizzoni, S. Bak, E. Betti, M. Caccamo, Memory-centric scheduling for multicore hard real-time systems,
Real-Time Systems 48 (6) (2012) 681–715. doi:10.1007/s11241-012-9158-9.945

URL http://link.springer.com/10.1007/s11241-012-9158-9

[31] J. M. Rivas, J. Goossens, X. Poczekajlo, A. Paolillo, Implementation of Memory Centric Scheduling for COTS Multi-Core
Real-Time Systems, in: S. Quinton (Ed.), 31st Euromicro Conference on Real-Time Systems (ECRTS 2019), Vol. 133 of
Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl,
Germany, 2019, pp. 7:1–7:23. doi:10.4230/LIPIcs.ECRTS.2019.7.950

URL http://drops.dagstuhl.de/opus/volltexte/2019/10744

[32] J. Arora, C. Maia, S. A. Rashid, G. Nelissen, E. Tovar, Bus-contention aware wcrt analysis for the 3-phase task model
considering a work-conserving bus arbitration scheme, Journal of Systems Architecture 122 (2022) 102345. doi:https:

//doi.org/10.1016/j.sysarc.2021.102345.
URL https://www.sciencedirect.com/science/article/pii/S138376212100237X955

[33] R. Tabish, R. Mancuso, S. Wasly, A. Alhammad, S. S. Phatak, R. Pellizzoni, M. Caccamo, A real-time scratchpad-centric
os for multi-core embedded systems, in: 2016 IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS), 2016, pp. 1–11. doi:10.1109/RTAS.2016.7461321.

[34] R. Tabish, R. Mancuso, S. Wasly, R. Pellizzoni, M. Caccamo, A real-time scratchpad-centric os with predictable
inter/intra-core communication for multi-core embedded systems, Real-Time Systems 55 (10 2019). doi:10.1007/960

s11241-019-09340-0.
[35] D. Casini, A. Biondi, G. Nelissen, G. Buttazzo, A holistic memory contention analysis for parallel real-time tasks under

partitioned scheduling, in: 2020 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), 2020,
pp. 239–252. doi:10.1109/RTAS48715.2020.000-3.

965

Jatin Arora is a real-time embedded systems researcher at CISTER (Research Cen-
tre in Real-Time and Embedded Computing Systems), a research centre co-hosted
by the Faculty of Engineering of the University of Porto (FEUP) and the School of
Engineering (ISEP) of the Polytechnic Institute of Porto, Portugal. He is also a PhD
candidate in Electrical and Computer Engineering at the Faculty of Engineering of970

the University of Porto (FEUP). Jatin has been awarded the PhD Research Grant
from Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and
Technology) in September 2020. Before joining CISTER, he received his Master’s de-
gree (M.Tech) in Embedded Systems with distinction from JNTU, Hyderabad, India.
His research interests include real-time embedded systems, scheduling theory, timing975

predictability in multicore architectures, and memory resource contention.

30

Cláudio Maia has a Bachelor’s Degree (B.Sc.) and Master’s degree (M.Sc.) in
Computer Engineering from the School of Engineering of the Polytechnic Institute of
Porto. In 2018, he received his Ph.D. degree in Electrical and Computer Engineering980

from the University of Porto under the supervision of professors Lúıs Miguel Nogueira
and Lúıs Miguel Pinho, with a thesis titled “Scheduling Parallel Real-Time Tasks
in Multiprocessor Platforms”. He is a researcher whose research interests include
the design and implementation of operating systems and hypervisors, multiprocessor
architectures and real-time scheduling theory.985

Syed Aftab Rashid is an embedded system research scientist at VORTEX-CoLab
and also serves as an integrated Ph.D. researcher at CISTER Research Unit, an inter-990

nationally renowned research centre focusing on real-time and embedded computing
systems. His dissertation was on the timing analysis of multicore platforms for hard
real-time systems with a focus on contention due to sharing of cache memories and in-
terconnects. Before joining CISTER, he received his M.Sc. in Electrical Engineering
from the National University of Computer and Emerging Sciences (NUCES)-FAST,995

Islamabad, Pakistan in 2014. He has worked on several international projects re-
lated to embedded system design and implementation. He has also co-authored several publications in
reputed conferences (e.g., RTSS, RTAS, ECRTS, DATE) and journals. His research interests include real-
time embedded systems, timing and scheduling analysis, resource contention, and multicore architectures’
predictability.1000

Geoffrey Nelissen is an Assistant Professor in the IRIS group of the Mathematics
and Computer Science department of the Eindhoven University of Technology (TU/e),
the Netherlands. Prior to joining TU/e, Geoffrey was a researcher at the Polytechnic
Institute of Porto where he was a member of the CISTER research unit. He received1005

his Ph.D. from the Université Libre de Bruxelles (ULB), Belgium in 2013. His research
interests span all theoretical and practical aspects of real-time embedded systems
design, including the analysis and configuration of real-time parallel applications on
multicore and distributed platforms.

1010

Eduardo Tovar received the Licentiate, M.Sc., and Ph.D. degrees in electrical and
computer engineering from the University of Porto, Porto, Portugal, in 1990, 1995,
and 1999, respectively. He is currently a Professor with the Department of Computer1015

Engineering, School of Engineering (ISEP), Polytechnic Institute of Porto (P.Porto),
where he is also engaged in research on real-time distributed systems, wireless sensor
networks, multiprocessor systems, cyber-physical systems, and industrial commu-
nication systems. He heads the CISTER Laboratory, an internationally renowned
research center focusing on RTD in real-time and embedded computing systems. He1020

is currently the Vice-Chair of ACM SIGBED and is a member of the Executive Com-
mittee of the IEEE Technical Committee on Real-Time Systems (TC-RTS). He is

currently deeply involved in the core team setting-up a Collaborative (industry-academic) Laboratory on
Cyber-Physical Systems and Cyber-Security Systems.

31

	Introduction
	System Model
	Task Model
	Execution Model
	Memory Access Models

	Background
	Problem Formulation
	Bus Blocking Analysis for the Dedicated Memory Access Model (DMAM)
	Properties of the Dedicated Memory Access Model (DMAM)
	Bounding the Number of Bus Blockings for the Dedicated Memory Access Model (DMAM)
	Maximum Bus Blocking Computation for the Dedicated Memory Access Model (DMAM)
	Maximum Bus Blocking Computation for Case 1
	Maximum Bus Blocking Computation for Case 2
	Maximum Bus Blocking Computation for Case 3

	Bus Blocking Analysis for all Remote Cores

	Bus Blocking Analysis for the Fair Memory Access Model (FMAM)
	Useful Properties for the Fair Memory Access Model (FMAM)
	Bounding the Number of Bus Blockings for the Fair Memory Access Model (FMAM)
	Maximum Bus Blocking Computation for the Fair Memory Access Model (FMAM)

	Schedulability Analysis
	Experimental Evaluation
	Case Study
	Experiments using Synthetic Tasks

	Related Work
	Conclusion

