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Abstract

Temporal isolation is an increasingly relevant con-
cern in particular for ARINC-351 and virtualisation-
based systems. Traditional approaches like the rate-
based scheduling framework RBED do not take into
account the impact of preemptions in terms of loss of
working set in the acceleration hardware (e.g. caches).
While some improvements have been suggested in the
literature, they are overly heavy in the presence of small
high-priority tasks such as interrupt service routines.
Within this paper we propose an approach enabling
adaptive assessment of this preemption delay in a tem-
poral isolation framework with special consideration of
capabilities and limitations of the approach.

1. Introduction

Timely execution is of utmost importance in hard
real-time systems. Many systems containing hard real-
time elements will also feature parts of soft real-time
or best-effort character. The nature of the latter tasks
is that they are subject to at least occasional misbe-
haviour, in contrast with hard real-time tasks. The rea-
sons for such misbehaviour may be, for example, delib-
erate or accidental underestimation of their worst-case
timing requirements so as to increase overall system ef-
ficiency. In order to guarantee that this misbehaviour
does not affect hard real-time requirements, resource
management mechanisms need to be integrated into
the system. These mechanisms create a barrier that en-
sures temporal isolation under the condition that tasks
do not communicate or share resources beyond the pro-
cessor.

Basic earliest-deadline first (EDF) scheduling does
not enforce temporal isolation at all. In the case of
independent tasks whose deadlines are equal to their
periods, a task set is schedulable in EDF if the sum of

∗This work was supported by the Portuguese Science
and Technology Foundation (FCT) (CISTER FCT-608) and
ARTEMIS-JU (RECOMP project ARTEMIS/0202/2009).

the task utilisations is at most unity [1]. The previ-
ously described mix of applications might lead to tasks
executing for more than they have been accounted for
in the analysis. In this situation overall system util-
isation may cross the limit and deadlines may start
to be missed. This shortcoming has been addressed
by, for example, constant bandwidth servers (CBS) [2]
and RBED[3] frameworks for simple task models. Both
approaches have added budget enforcement on top of
EDF.

Modern microprocessors suitable for deploying
aforementioned temporal isolation frameworks have,
usually, caches to reduce the memory to processor com-
munication bottleneck. Although this enhances sys-
tem performance, there is inherent non-determinism
(from the perspective of the programmer or system
integrator) in a multi-programming environment due
to the concurrent access to this resource. One task
preempting another will not only create direct de-
lay, by executing instead of the preempted task, but
also indirect impact by replacing useful cache con-
tents of the preempted task with content of its own.
This is generally termed cache-related preemption delay
(CRPD). Besides caches, other acceleration techniques
also cause additional delays, because of loss of an ex-
isting working-set on preemption. Examples of this are
dynamic branch prediction or TLB entries. Within this
paper we will concentrate discussion on CRPD which
we will use as synonymous for a bound on the CRPD.

Strict temporal isolation is no longer ensured in
RBED when CRPD is added to the task model if this
is not accounted for in the worst-case execution time
(WCET) [4] computation. Solutions for CRPD esti-
mation are available in literature, but these rely only
on static analysis of code [5], which makes usage in
an open system impractical [6, 7]. Microprocessor us-
age may be enhanced if on-line mechanisms are used
to tune off-line estimations, when these are available.
We envisage in this work the use of hardware found in
a number of processors, allowing certain system events
like cache misses, translation look-aside buffer misses,



branch predictions and so forth to be counted. Such
performance monitoring counters are available, for ex-
ample, in current x86, some power PC and some ARM
processors.

In this work we are assuming that tasks within a sys-
tem will have different timing requirements, but can be
grouped in distinct categories. Those are: hard real-
time, soft real-time and best effort tasks. The soft
real-time tag describes tasks that may occasionally in-
cur in deadline violations, whereas best effort tasks will
have no real-time requirements. Best effort tasks need,
nevertheless, to be considered in the framework to en-
sure fairness and progress (i.e. this tasksshould receive
some share of the processor even when the system is
heavily loaded). The cache is either assumed to be
directly mapped, in which case the problem has an
easy solution, or set-associative with a well-behaved
replacement policy, thus invalidating the occurrence of
a stream of cache misses following a preemption. In
the computation of a value for CRPD, we assume that
the system only has one cache level which is physical
address-tagged in order to get a constant time value
for a cache miss. This restriction will be relaxed in
the future to accommodate more cache levels, but, as
of this introductory presentation, this simple model is
adopted. In the devised system every task has to pass
an acceptance test prior to its first job execution.

Past work considered the preemption delay as a con-
stant value for all tasks[5]. This has serious drawbacks
when small tasks, like interrupt service routines are
considered.

The present document provides a description of a
run-time and on-line mechanism where temporal iso-
lation is provided for hard real-time tasks in an open
system environment, in which new tasks may dynami-
cally be added or removed. The architecture envisioned
is not restricted to on-line usage, may also be used in
an off-line analysis framework to tune the estimations
across operation.

In the next section we will provide an overview of
related work. In Section 3 we present the system model
and we will also give a very brief review of the RBED
framework, which will be used as a point in case during
the discussion. Considered possible preemption scenar-
ios and the general logic of the run-time mechanisms
are described in the next section. Section 5 is dedi-
cated to the generalisation of the proposed approach
to frameworks other than RBED and different cache
architectures other than direct-mapped. Conclusions
and indication of future work finalises the document.

2. Related Work

CRPD has been a subject of wide study. Several
methods have been proposed that provide an off-line

estimation based on static analysis, for this inter-task
interference value. In this context the term off-line
implies that the analysis is preformed prior to system
deployment or integration, while static implies that the
analysis is performed using analytical models rather
than measurements.

Lee et al. presented one of the earliest works on
CRPD estimation for instruction-caches [6]. The au-
thors introduced the concept of useful cache blocks
which describe cache blocks that will potentially be
reused in the later program execution. They assume
that the CRPD incurred by a task, during preemption
by another task, is constant throughout a basic block.
This is a valid assumption for instruction caches, but
does not hold for data caches. With both concepts
they devised an algorithm that estimates the number of
cache blocks of each task and compares this data with
the used cache blocks of possibly preempting tasks.

This work was later improved by the same group [7]
to eliminate infeasible preemptions, thus improving the
CRPD estimate. The CRPD estimation in these papers
is formulated as an integer linear programming prob-
lem. Building on this work, Ju et al. [8] increased the
accuracy of the CRPD estimation by using a more ex-
tensive data structure in the assessment of useful cache
blocks. They have also moved the approach into a dy-
namic priority assignment (i.e. EDF).

Computation of the CRPD in data caches has been
proposed by Ramaprasad and Mueller [9]. Since the as-
sumption used in [6], that the value of CRPD through-
out a control flow graph’s basic block would remain
constant, no longer holds for data caches a different
approach had to be devised.

Ramaprasad and Mueller integrated the computa-
tion of data-cache related preemption delay in their
previous framework for WCET computation. Code is
statically analysed in order for a cache hit/miss pat-
tern to be computed. In this way useful cache blocks
are computed. The CRPD is then computed for every
program point. This cost is related to the number of
useful cache blocks that can be evicted by higher prior-
ity tasks. Subsequently, the n highest preemption costs
are selected correspondingly, where n is the maximum
number of preemptions iteratively determined consid-
ering assigned priorities and WCET of the tasks.

Later, an improved method was proposed by
Ramaprasad and Mueller [10] that tightens the number
of preemptions in relation to the work of Lee et al. [6].
They also added further considerations on the possi-
ble preemption points. This is achieved by considering
BCET together with the WCET. The improvement re-
lies on phasing considerations in the hyperperiod of the
task-set, which becomes problematic in terms of analy-
sis time required when the task-set is not hyperperiod-



friendly.
Embedded in all the stated frameworks are schedu-

lability tests. Scheduling analysis for [6] is based on
response time analysis (RTA); [8] provides a demand
bound function based procedure, while the general ap-
proach of computing the CRPD is similar.

A different approach relevant to our work is the one
followed by Buttazzo et al. [11]. In order to reduce
CRPD, the usage of non-preemptive areas of code is
proposed. The preemption points are thus reduced to
a small number of well defined points. In this way
the maximum CRPD is decreased and overall system’s
response time is enhanced. This may in turn render
a task-set schedulable that would not be so without
considering CRPD overhead.

A different approach is taken by Altmeyer and Geb-
hard [12]. They have proposed minimizing the amount
of cache lines evicted, by changing the memory ac-
cessed by the program. An interesting different angle
in the context of a conservative static WCET analy-
sis approach is taken by Altmeyer and Burguiere [13].
As the static analysis approach followed only assumes
cache hits, when it can be proven that a certain mem-
ory reference is in the cache, the CRPD calculation
only needs to account for those references known to be
in the cache. This exploits the inherent pessimism of
static analysis tools in the presence of many cache ac-
cesses which are classified as potential but not definite
hits.

All the cited approaches so far can not be applied in
an open system architecture as they rely on computa-
tionaly heavy static analysis of all code in the system,
which is not amenable to on-line use. Our approach
differs in the sense that it provides the foundation to
deal with on-line estimated CRPD.

3. System Model

Within this work we focus on the temporal iso-
lation framework RBED with some extensions. We
will briefly introduce the concepts related to our work,
but direct the interested reader to the original work
[3, 14, 5] for further details. At the end of the section
we provide in Table 1 an overview of the used termi-
nology for reference.

An EDF scheduler forms the core of RBED. How-
ever, the scheduled entities are in first instance bud-
gets which have certain tasks attached to them, rather
than the tasks themselves. For ease of presentation no
difference is made between the budgets and their asso-
ciated tasks in the majority of the discussion. We will
highlight the difference where relevant.

The budgets are replenished according to the rules
used as assumptions in the schedulability test. The
original work [3] used an utilisation based test under

independence assumption of the scheduled tasks, while
later work [5] adds a schedulability analysis based on
a demand-bound function to the framework. Budgets
are treated as tasks for analysis purposes in both ap-
proaches. A task τi is associated with a budget Ei.
Furthermore the budget has a relative deadline after
release Di (which is used for scheduling decisions) and
a function which describes the release of budgets. In
the simplest case, which has been used in the origi-
nal work, the budgets are released periodically with an
inter-arrival time of Ti and a deadline of Di = Ti. The
later work allowed for alternative arrival patterns for
budget releases, as well as arbitrary deadlines. Again,
for ease of presentation, we will use throughout the dis-
cussion the strictly periodic model with implicit dead-
lines, however, we will also show that the proposed
solutions apply to the more advanced task model.

Temporal isolation is achieved by enforcement of the
budgets, which means that once a budget is exhausted,
a reschedule is initiated. As previously stated, replen-
ishment of exhausted budgets follows the assumptions
made in the analysis. Again working on the simplest
case, a budget release coincides with a task release; i.e.
one instance of the budget Ei is used to execute one
job Ji,n of task τi. Only budgets which have a task
which is ready associated with them may be scheduled.

One important aspect of budget-based scheduling is
the fact that in most cases the budget will not be ex-
hausted thus creating slack in the system; i.e. execution
time reserved, but not used. Lin and Brandt [14] have
introduced various slack management approaches. The
most relevant aspect of the slack management is that,
under the assumption that slack is passed to a task
which is ready, the deadline used for scheduling this
slack may be relaxed to an arbitrary point in the fu-
ture without jeopardising the guarantees provided by
the analysis.

Another important concept from the work of Brandt
et al. [3, 14] is that we distinguish two relevant is-
sues following from the slack management described.
Firstly, slack is strictly required to be passed to a
runnable task when a task becomes idle. Secondly, a
task may use future budgets when its current budget
is exhausted, subject to the task being scheduled with
the credentials (i.e. deadline) of the future budget.

RBED also introduced an admission and resource
management entity call Resource Allocator (RA). The
RA is responsible for assigning budgets to task. In
an open environment every newly arriving task has to
provide its requirements to the resource allocator. In
the simple model, this is restricted to WCET Ci and
minimum-inter arrival time Ti which is also the im-
plicit deadline Di. On arrival and departure, the RA
performs not only the allocation of budgets to tasks,



Ci WCET of a given task τi
Ti period/minimal inter-arrival time of task

τi
Di relative deadline of task τi
Ei budget allocated to task τi for one job
yi worst-case number of cache misses addi-

tionally induced by task τi on another task
during preemption

Yi worst-case increase of execution time
caused by the additional yi cache misses
in the tasks preempted by τi.

Zi execution time of a job of task τi observed
Table 1. Terminology Used

but also the schedulability analysis.
During execution a task will displace a number

of cache entries. The amount of damage a task τi
causes in a preempted task τj , (CRPD) is dependent
on the cache architecture and replacement scheme. In
a direct-mapped cache the cache footprint equals the
worst-case amount of damage denoted by yi, while in
n-way set-associative caches with least-recently used or
FIFO replacement algorithms, a single access to one el-
ement of the set may cause n additional cache misses in
the preempted task. Again, for ease of presentation we
assume a single level direct mapped cache for the dis-
cussion, bearing in mind that other cache-architectures
are possible with only minor changes to the equations.
The additional yi cache misses caused in the preempted
task give rise to an execution time increase of Yi. At
this stage there is a linear relation between yi and Yi

but this can be easily changed to adapt to multi-level
memory architectures and other sources of preemption
delay, like branch prediction or translation look-aside
buffers. In the discussion, we will however limit our-
selves to CRPD. In this context we also assume that
the impact of a preemption is bounded. This rules out
some cache-replacement algorithms, like random cache
replacement.

We assume that the values Ci, Ti and Yi presented
above are readily available within the system, albeit
might be in the form of conservative estimates, like the
WCET. The most conservative estimate for Yi is that a
preemption removes the entire useful cache content in
the system, which means that entire cache replacement
has to be considered. During execution of a single job
of task τj we assume that the system is able to observe
the actual execution time of the job (Zj) ignoring the
preempted times but not the preemption delay.

4. Preemption Scenarios

In the first two subsections it is assumed that a sin-
gle job will behave properly and execute within its bud-

get when running without being preempted. Further-
more we assume that out of any preemption delay bud-
get (Yi) it receives as compensation for preemptions,
only at most the deserved part of that preemption de-
lay compensation will be used and remainder is passed.
The assumption is then relaxed in Section 4.3

4.1. Simple Preemption

t

Ci Yi

Cjτj

τi CRPD Donated Budget
CRPD Consumed Budget

Figure 1. Simple Preemption

Besides the budget assigned to each task, there is
a supplementary budget value (Y ) that accounts for
the possible cache interference caused to jobs of other
tasks. This additional value is added to the donating
task’s budget when performing the schedulability test.
The simplest preemption scenario is a system of two
tasks where τj is preempted by τi. This is depicted in
Figure 1. In this case τi would pass Yi to τj . The avail-
able budget for τj execution would thus be increased
by Yi units of time. The value assigned to Y may be
variable, evolving with system execution. The initial
approximation could be such that Y would be equal
to the time needed to refill the entire cache, since this
is guaranteed to be the worst case. Subsequently this
value may be reduced to a more realistic scenario.

When task τi finishes its execution, τj will obtain
access to the processor executing on its budget plus the
added Yi. Execution of τj ’s current job will eventually
come to a halt. The remaining value is handled as
slack. Because of the assumptions made, the system
will be idle and thus it needs to be handled as described
by Petters et al. [5].

The CRPD budget passing in this situation is similar
to slack donation. It is essentially the same idea as
principle 2 in Lin and Brandt’s work [14], since Y can
be perceived as slack resulting from overallocation of
budget by the preempting task that is then handed over
to the preempted task. Due to this fact, it is equally
valid in terms of maintaining the premisses used during
schedulability analysis. The budget passed in this form
will be executed with a longer relative deadline, since
under EDF a task can only preempt running tasks with
longer relative deadlines. This will always constitute a
relaxation of the local processor demand. As in slack
donation, no budget can be passed to a blocked task.
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Figure 2. Chained Preemption

4.2. Indirect Preemption

An indirect preemption scenario is presented in Fig-
ure 2. In this case task τk will preempt τi. The pro-
cedure is similar to the one previously described. Task
τk budget is increased by Yk. When the job of τi ends
(at ti), Zi will hold the execution time with the added
preemption delay incurred. The value Yk − (Zi − Ci)
estimates the unused CRPD budget. This leads to task
τj receiving Yk− (Zi−Ci)+Yi. Again the unused bud-
get will be treated as slack in the usual way if there is
no task preempted by τj .

This simple case is theoretically as sound as the pre-
vious one, for the same reason, provided that budgets
are not overrun.

4.3. Preemption and Overrun

An interesting case arises when τi consumes the en-
tire budget donated by τk. This could happen when
the resource allocateor assigns smaller budget than re-
quired for the completion of the job in a worst-case
scenario (depicted in Figure 3). In this situation, only
Yi would be donated to task τj . This is potentially in-
correct, since some cache misses of task τj could have
been induced by task τk, but τj is not getting any com-
pensation for the preemption. This would jeopardise
the timing isolation.

The approach should attempt to achieve temporal
isolation in the presence of misbehaving applications.
There is also a clear hierarchy in terms of timing re-
quirements of hard real-time, soft real-time, and best
effort tasks. It has to be noted that it is impossible
to distinguish an application which rightfully uses the
CRPD donation from a task overusing its budget as
the budget provided by the RA has been insufficient to
execute this job. We also assume that hard real-time
applications are provided with sufficient budget. A use-
ful property of EDF is that preemption relations can
be established on the respective deadlines, as a task
with a longer relative deadline may not preempt one
with a shorter relative deadline [8].

There are fundamental ways to address ambiguous
situation decribed in the previous paragraph. Firstly,
one could pass instead of task individual Y a global
Ȳ , which covers the worst-case preemption delay. The

t
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Figure 3. Chained Preemption with Overrun

solution is simple and easy to implement, but in the
presence of small tasks and ISRs this would be highly
pessimistic. Secondly one could make it mandatory to
pass Ȳ to a hard real-time task when it is preempted
by a non-hard real-time task, and reduced Y for other
cases. A disadvantage is that, in this case, the pre-
empting task is either disadvantaged or needs the bud-
get to account for Ȳ . The latter would have little to
no advantage over the first solution. Since the critical
hard real-time tasks are expected to have short dead-
lines, we believe that this we believe that that the ap-
proach of indemnifying the hard real-time tasks with Ȳ
might be a reasonable tradeoff, even if it occasionally
violates the temporal isolation properties for non-hard
real-time tasks.

Thirdly, when a hard real-time task τk is preempted,
all further preemption penalties made available while
the task τk is in the ready queue could be passed to τk
instead of the preempted task up to a limit of Ȳ . In
some sense this is expected to have similar advantages
when compared to the second solution, but the tem-
poral isolation property is now broken for potentially
several tasks. On the other hand it is also expected
that the number of tasks preempting a hard real-time
task is small. Which of the two proposed solutions is
suprior is largely dependent on the properties of the
task system to be scheduled.

A further problem is illustrated in Figure 4. When a
task has overrun, it is reinserted into the ready-queue
with the deadline of the new budget. The figure il-
lustrates the evolution of a ready-queue with several
significant events. In stage 1, task τ1 is released and
inserted into the ready-queue visible in stage 2 and
eventually τ1 exhausts its current budget. It is then
reinserted into the ready-queue in stage 3. On com-
pletion of task τ2 and τ3, it would obtain its own pre-
emption delay instead of it being passed by τ3 to τ4.
This violates one of the fundamental principles that a
misbehaving task should not impact on other tasks.

To avoid this problem we have devised an alternative
relationship for the budget passing: the preemption
queue. Whenever a job is first executed, it is placed
at the head of the preemption queue. Tasks which
complete or run out of budget are removed from the
preemption queue. This is indicated in stage 3 and 6
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τ1 preempt τ2 (pass Y1 to τ2)
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τ7 preempts τ4

τ6 preempts τ4

Figure 4. Evolution of the Preemption and Ready Queues

of Figure 4. This has two advantages. Firstly, the over-
head in maintaining the preemption queue is minimal.
Secondly, it avoids assigning preemption delay to jobs
which have not executed and therefore have no need
for preemption delay compensation. This is depicted
for task τ6 in stages 5 to 7 of Figure 4.

5. Generalisations

Although we have used RBED as reference point for
the discussion in the paper, the mechanism may be
adopted in other solutions where budgets are assigned
for execution such as CBS. Also, while the model used
as reference throughout the paper was strictly periodic,
there are no assumptions in the solution which require
this strict periodicity. As with the related work, the
solution provided suits direct-mapped caches naturally.
When n-way set-associative caches are present, Y has
to be n times the number of sets touched. While we also
only used a single cache layer as basis for our discus-
sion, the approach is flexible enough to deal with dif-
ferent sources of preemption delay, like multiple cache
levels or branch prediction.

6. Conclusion and Future Work

The presented approach forms the ground work for
further work in adaptive preemption delay estimation.
This is planned to be performed utilising hardware
counters available in many modern processors. In par-
ticular we plan to perform measurements to identify
the drawbacks and benefits of the different solutions
presented in Section 4.3. We expect specific challenges
when trying to obtain estimates for the preemption de-
lay in an active system.
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