

Run-time Monitoring Approach for the
Shark Kernel

Filipe Valpereiro
Miguel Pinho

www.hurray.isep.ipp.pt

Technical Report

TR-060104

Version: 1.0

Date: January 2006

Run-time Monitoring Approach for the Shark Kernel
Filipe VALPEREIRO, Miguel PINHO

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail: {fvalpereiro, lpinho}@dei.isep.ipp.pt

http://www.hurray.isep.ipp.pt

Abstract
Typically common embedded systems are designed with high resource constraints. Static designs are often
chosen to address very specific use cases. On contrast, a dynamic design must be used if the system must
supply a real-time service where the input may contain factors of indeterminism. Thus, adding new
functionality on these systems is often accomplished by higher development time, tests and costs, since new
functionality push the system complexity and dynamics to a higher level. Usually, these systems have to
adapt themselves to evolving requirements and changing service requests. In this perspective, run-time
monitoring of the system behaviour becomes an important requirement, allowing to dynamically capturing
the actual scheduling progress and resource utilization. For this to succeed, operating systems need to expose
their internal behaviour and state, making it available to the external applications, usually using a run-time
monitoring mechanism. However, such mechanism can impose a burden in the system itself if not wisely
used. In this paper we explore this problem and propose a framework, which is intended to provide this run-
time mechanism whilst achieving code separation, run-time efficiency and flexibility for the final developer.

Run-time Monitoring Approach for the Shark Kernel

Filipe Valpereiro, Luís M. Pinho
Polytechnic Institute of Porto, Porto, Portugal

{fvalpereiro, lpinho}@dei.isep.ipp.pt

Abstract

Typically common embedded systems are designed with
high resource constraints. Static designs are often chosen
to address very specific use cases. On contrast, a dynamic
design must be used if the system must supply a real-time
service where the input may contain factors of
indeterminism. Thus, adding new functionality on these
systems is often accomplished by higher development
time, tests and costs, since new functionality push the
system complexity and dynamics to a higher level.
Usually, these systems have to adapt themselves to
evolving requirements and changing service requests. In
this perspective, run-time monitoring of the system
behaviour becomes an important requirement, allowing to
dynamically capturing the actual scheduling progress and
resource utilization. For this to succeed, operating
systems need to expose their internal behaviour and state,
making it available to the external applications, usually
using a run-time monitoring mechanism. However, such
mechanism can impose a burden in the system itself if not
wisely used. In this paper we explore this problem and
propose a framework, which is intended to provide this
run-time mechanism whilst achieving code separation,
run-time efficiency and flexibility for the final developer.

1. Introduction
Modern real-time applications are no longer exclusively

dedicated to complex and expensive systems. A rich set of
applications are commonly used in everyday life. With
the emerging of inexpensive hardware and new
telecommunications technology, new applications are
emerging using Real-Time Operating Systems (RTOS)
theory. Common use cases where user can directly benefit
from this approach are mostly related to the multimedia
domain, but not limited to it.

This need for reliable but yet adaptable systems is now
a constant concern. With current and future demands for
real-time embedded applications, developers and system
engineers are faced with complex design problems [1].
Whether the OS should be designed to support a generic
application or a specific one depends heavily on the final
use case. OS reuse is very often the best way to minimize
development costs.

Efforts where made to create new tools and theories
that approach this problem in a straightforward way.
From all these research fields, one that is particularly
important, and that is still much unexploited, is
monitoring [1]. The Monitoring and Checking paradigm
(MaC) allows us to perform testing for verification,
validation of critical applications [2] and, importantly in
the context of this work, to observe the run-time
behaviour of the system after deployment. Nevertheless,
in order to monitor we must acquire sufficient information
about the state of the system [3], and avoid any
interference. Therefore, the monitoring mechanism must
allow the monitored information to be arbitrarily chosen
and a clear separation between monitoring code and
system code must exist.

In this paper we present a flexible framework for
information acquisition and monitoring, tailored to the
system and application requirements. Our goal for the
framework is to allow developers to create applications
where the monitoring mechanism is automatically
generated and merged with the system and application
code, leading to efficient and flexible applications. This
work is part of an ongoing project that intends to provide
feedback from the operating system to monitoring
applications running in parallel with the system
application. By providing such feedback, it will then be
possible to support quality of service requirement
evaluation [4] using real data from the system himself.
The practical benefits are obvious if we consider the
impact that such a tool has in developing modern
embedded systems.

This framework is currently being targeted for the
S.Ha.R.K. [5] operating system. The availability of its
source code, its modular structure, and the existence of a
tracing mechanism make him a good candidate for
experimentation. Nevertheless, the current trace
mechanism implementation does not allow much room
for freedom and it does not follow the POSIX trace
standard [6]. The standard defines this mechanism as a
monolithic component that can be embedded in all POSIX
RTOS profiles expect the Minimum Real-Time System
Profile (MRSP) [7]. We believe that this imposition
should not limit any developer from using the trace
standard as a regular tool on system development.

 By using a customization scheme at compile time it is
possible to integrate (or not) specific components of code

responsible for acquiring the necessary information and
support any needed functionality. Therefore, our
secondary goal is to implement a POSIX trace mechanism
[6] in the S.Ha.R.K. kernel [5] suing a modular approach
while respecting the standard semantics.

This paper is structured as follows. Section 2 presents
our motivation and the advantages of run-time
monitoring. Section 3 presents the POSIX tracer while in
section 4 we present the proposed framework for
monitoring, and we describe the basic mechanisms and
strategies that can be used for implementing this
framework. Sections 5 provide some conclusions and
further work.

2. Advantages of run-time monitoring
Monitoring should be considered a desired feature for

development and deployment phases. For soft real-time
applications, monitoring can be used successfully,
avoiding the typical state space explosion associated with
formal verification methodologies [2]. Run-time
monitoring gives to the system the necessary degree of
freedom in order to dynamically change, adapt and
evolve. With a system under monitoring a developer can
validate a set of constraints, ensure a quality of service
policy working on real data and to observe the internal
state of the system.

 Thus, it ensures the system overall response and can
account for unexpected situations. Furthermore, it is
possible to stress the application, supplying unpredictable
inputs and test the application response time and resource
utilization. In [8], the motivation for the separation of the
monitoring mechanisms from the application is provided.
From the development process to the actual design and
implementation of both the real-time application and the
monitoring mechanisms, the advantages are considerable
and must be taken into account.

2.1 How to Monitor
In order to monitor we must acquire sufficient

information about the state of the system [3], particularly
the internal behaviour and state of the operating system.
However, such task must be carefully planned. Providing
information which is not used decreases the system
response time, leaving pieces of non functional code (and
possible bugs). On the other hand, providing a reduced
amount of information may not allow guaranteeing valid
assumptions. Other important aspect to keep in mind
when we look into monitoring is the non deterministic
effect of observing a system. Through the addition of
code lines, we may expect to see the Heisenberg
uncertainty principle or probe effect [1] appearing into the
observed system.

We can however minimize this impact and turn
interference into a deterministic behaviour. Such task can
be accomplished if we provide a clear separation between
the real-time application and the existing mechanism for
information acquisition. Therefore, a clear separation
between monitoring code and application code [9] must
exist. As consequence, any monitoring mechanism must
be flexible enough to be tailored to specific application
needs and must avoid any system interference.

2.2 Collecting information
To efficiently generate system information it is

important to clearly identify which type of information is
needed to monitor the system. In order to easily manage
all the information that can be monitored, we can group it
according to its origins [1]: Data Flow (internal or
external), Control Flow (execution and timing) and
Resources. Furthermore, we can have sub-groups that
reflect the logical nature of this information. For example,
a Network Driver and Semaphore are sub-groups under
Resources, while network and console I/O are subgroups
of Data Flow. This partition scheme allows us (for
example) to select sets of related functionality at once,
and latter at run-time apply a filter to select only the
desired information. Still, individual selection can be
performed to achieve a fine-grained tuning of the
monitored information. When developing a real-time
application, the developer selects the data groups that best
reflect the requirements and then apply a higher control
over each individual part.

There are several ways to gather this data. Our
framework is implemented using the POSIX trace
mechanism [6] as the base mechanism for monitoring and
thus, trace events are the natural choice to collect
monitoring data.

2.3 When to monitor
The monitor system must not interfere with the system

being monitored, and thus, it is important to determine
when and where to monitor. Monitoring code acts as a
test probe in the system, generating information whenever
it is necessary or relevant. The strategies to place this
code depend solely on the origin of the information being
monitored and on the language used in the system. The
information to be monitored can be divided regarding the
origin. There are different problems to address whether
we plan to monitor a function call invocation or some
kernel attributes. Thus, monitored information divided in
three groups: function calls, module private attributes and
functions and the kernel attributes.

Furthermore, we need to consider the system time
evolution. New functionality can be added and some code
may be changed. Thus, it is not feasible to generate code
for all possible monitored information. However, it is

possible to maintain a set of information on function calls.
API’s do not change often, and thus we can reuse the
same monitoring information in the next system version.
The monitoring mechanism must support probe placement
in a way that minor code changes do not break the probe
context or validity. The remaining system aspects must be
monitored as needed, and thus, the developer may need to
place probes in some module or on the kernel primitives
to data. However, monitoring a module has become easier
given the proper support to manage probes during the
system development.

3. The POSIX Trace Standard
The POSIX trace standard [6] defines a portable set of

interfaces whose main purpose is to collect data over
selected functionality in the traced OS. For this purpose,
the standard defines two main data types and three
different roles that take part during the trace activity. The
trace activity is the period of time between a trace stream
activation and shutdown where events are recorded. Trace
events are a way of encapsulating data with meta-
attributes that capture the exact moment and conditions
where the data has occurred. Trace streams are a
convenient way of recording trace events. The trace
streams data type also supports the log functionality, a
feature useful to record data for post-mortem analysis.

The standard does not impose any restrictions on the
information type that can be collected by events, except
that event size is implementation dependent. It is even
possible for a user application to use the events to monitor
application code.

3.1 Flexibility

Trace Trace Log

Trace
Inheritance

Affects the
behaviour

User-defined
events

Filter

Figure 1 Trace components

Figure 1 presents the POSIX trace [6] components and
their relation internal relation. The standard defines the
trace mechanism as a monolithic component. Therefore,
in order to implement the trace mechanism a target OS
must support all the required functionality. The lake of
filesystem support is the main reason why the trace
standard does not figure in the optional components in
MRSP systems [7], since filesystem support is required
for trace log operations. However, the absence of

filesystem does not compromise the trace operations. An
application may only require the trace for online analysis
thus; it is possible to incorporate only the required trace
functionality in order to support a monitoring mechanism.

However, the trace operating semantics ties the
components in a way that makes them to be required even
if they are not used. We are currently implementing a
POSIX trace mechanism [6] using a modular approach
that breaks these functional dependencies through the use
of dispatch tables, which may point to the required
functionality. Through the use of one indirection level
code dependencies are broken. During compile time, the
monitoring framework will determine which trace
functionality is required for the application, creating the
dispatch table and compiling the final trace code.

4. Run-Time Monitoring Framework
The purpose of this framework (Figure2) is to allow

developers to choose which parts of the information
acquiring mechanism are needed in order to fully support
the desired monitoring scheme.

Code

Functional
Requirements

Monitoring
Requirements

Trace
Requirements

System Analysis

Real-Time
Application

Monitoring
Application

Compiler

Application
development

RTOS

Custom
Trace System

Final
Application

Monitoring
Application

RTOS

Custom
Trace System

Final
Application

Monitoring
Application

RTOS

Custom
Trace System

Final
Application

Monitoring
Application

Custom
Trace

System
RTOS

CodeCode

Selective code injector

Monitoring
application

development

Figure 2 Run-Time monitoring framework

During the development stage the developer must
specify which functionality should be monitored,
selecting any subset from the information groups or
performing an individual selection. It is possible to obtain

a fine-grained selection trough the use of event filtering at
run-time. The trace functionality requirements can be
automatically deduced from the monitoring application.
Based on this knowledge our framework will
automatically generate a customized trace implementation
and place the necessary probe code in the system.

Thus, the developer only needs to focus on the
application development, increasing the productivity,
shortening the developing phase and giving more time to
test and deploy the final application. Another advantage
comes from the fact that all communication issues are
removed from the real time system context and pass
directly to the monitoring application, making the system
even more versatile and clean. This separation is clearly
an advantage, minimizing intrusive behaviour and
approaching the intrusiveness principle that should be the
motivation for every monitoring solution, eliminating the
existence of non functional code, which could be
potentially hazardous [10].

The generated code only supplies the base
mechanism. To complete the process the developer has to
define the monitoring task body. The framework purpose
is to handle the monitoring mechanism. The developer
still needs to define the body of the monitoring task. A
code skeleton that handles the mechanism initialisation is
generated; however it is the developer responsibility to
tune any particular settings for the POSIX trace
mechanism [6] and to define the final monitoring purpose.

4.1 Strategies for customization
The trace customization is achieved using a tool to

analyze which components from the POSIX trace [6] are
used by our application based on the used API. An
example of this are calls to the tracer filter functionality.
If such a call is detected then, this component must be
incorporated in the trace implementation. Similar analyses
are performed for the remaining components. If some
component functionality is requested in other component,
a link is established using a dispatch table. This solution
is elegant given the language used for the target OS [5].
Trough the use of an indirection level we manage to break
the implementation into modules, yet retaining the
implementation semantics and improving our
implementation portability. On contrast, probe generation
code and placement is a different problem. Figure 3
illustrates a code injection point.

Code

Injection
point

Probe code

Code

Probe code

Code

Probe code

Code

Probe code

Figure 3 Code Injection

In order to perform these operations the tool must gain
some knowledge about the existing trace implementation.
Such knowledge can be represented as meta-information
(or meta-tags), over the system source code, allowing the
tool to instrument the system, incorporating the probes
code. To perform this we first analyze the previously
specify functionality to be monitored, crossing this
knowledge with the meta-information presented in the
system source code. For every match the tool defines all
the appropriated events, related constants and header files.
Finally the tool injects the event generating code in the
injection points. The resulting instrumented system code
can now be compiled with the custom trace mechanism
and the application code to create the final monitoring-
aware application.

4.2 Minimizing the probe effect
Probes must be carefully placed to avoid any probe

effect [1]. Our strategy depends on the type of
information to be monitored. We have proceeded to a
systematic identification of information for most of the
S.Ha.R.K. kernel [5] primitives grouped using the scheme
presented in section 2.2. Currently only the Control Flow
and Resources group where taken into account. Figure 4
illustrates some of the resource access policies
implemented in the S.Ha.R.K. kernel.

PCNOP SRPPI

Abstract MUTEX Cond. VarsPOSIX Sem.

Figure 4 S.Ha.R.K. Resource Access Policies

The kernel implements the usual mutex operation
trough the use of an interface, allowing the developer to
choose the access policy for each mutex at creation time,
and thus creating a flexible approach to resource
synchronization. For this particular group we monitor the
function invocation and the internal module attributes.
This is particular relevant for the QoS strategy [4] that we
plan to develop on top of our monitoring framework. This
need has leaded us to develop different monitoring
strategies based on the type of information to be collected.

If a function has to be monitored and it works
atomically (i.e. does not invoke other functions where
monitoring probes occur) then we can delay the
monitoring of these changes until the next return point in
the monitored function. This is efficient, since we avoid
unnecessary calls to the monitoring mechanism.
Examples of this strategy can be found on the kernel
memory allocators and mutex initialization and destroy
functions. On contrast, if a function invokes other

functions where probes occur then any monitored
information should be traced before the function
invocation. Our purpose is to guarantee that events are
traced in the same succession as they are generated.

For this to succeed we also need to define the streams
the events can be traced. Thus, every probe places the
trace event into a specific trace stream. The POSIX trace
standard [6] defines eight trace streams, from which we
reserve four streams to be used in our framework. Three
streams will be used for specialized trace purposes (ex.
mutexes policies and scheduler information) acting as
rotating buffers. The remaining one will be used for
general trace purposes (i.e: non-blocking functions). It is
up to the developer to specify the trace policy to avoid
lost of events in the trace streams.

4.3 Event definition
Events are the base unit to collect information in our

target system. We define a hierarchy of event classes
whose purpose is to diminish the number of events that
must be define for the monitoring framework. Figure 5
shows some event definitions for the mutex operations in
the S.Ha.R.K kernel [5].

// All structures are packaged, for simplicity
// the gcc macro is not show here.

typedef struct {
 short int func_id; // Function identifier
 short int class; // Event class type
} event_class;

// Base mutex class
typedef struct {
 event_class class;
 PID pid; // Current process pid
} mutex_class;

// Base type for all mutex operations
typedef struct {
 mutex_class class;
 int mutex_id; // Mutex ID
 int data; // Some data
 int flag; // Some flag data
} mutex_func_event;

// Base type for large amount of data
typedef struct {
 mutex_class class;
 int data[12]; // 12 bytes of data
 struct timespec time; // Time instant
} mutex_large_event;

/* ... */

Figure 5 Event definitions

The above structures are packed to minimize the
amount of unused bytes. By default the GCC compiler
performs byte alignment to some multiple of 2. Whenever
we mix C types with odd and even sizes we may get extra

pad bytes. While this is normal on common C structures
we may increase the structure size up to a point where we
can not take advantage of fast memory copies in just a
few instructions. We take advantage of a dedicated
memcpy implementation that takes direct advantages of
special CPU instructions that allow us to copy some
blocks of memory using fewer instructions than the block
size. Memory copies operations can impose a heavy
weight during kernel execution.

Some events are very specialized, due to the way they
collect information for the kernel functions. The
disadvantage of this approach is the growing number of
events to be generated for each traced function. A good
solution is to define a single event for function activation
if this is the only relevant information to be monitored.

While the meta-information recorded with the events
already possesses a time stamp it might the useful to
include this information in the event definition. This
happens frequently in kernel modules. Monitoring
information regarding scheduler decisions is very often
dependent on the exact moment where the decision was
made. Thus, for this case a timestamp is always placed in
the event body. In [10] we define events and trace points
for most of the schedulers implemented in the target OS.

4.4 Trace points placement
Our work in [10] has identified the trace points for most

of the functionality offered by our target OS. Figure 6
illustrates the placement of trace code.

int mutex_lock (mutex_t *mutex) {
 int val;
 mutex_resource_des *m;

 mutex_func_event e =
 MUTEX_EVENT_LOCK_START (mutex);

 // Check for init errors ...

 // Get the module for this mutex policy
 m = resource_table[mutex->mutexlevel];

 // Start lock
 TRACE_EVENT(e, sizeof(mutex_func_event));
 val = m->lock (mutex->mutexlevel, mutex);

 e = MUTEX_EVENT_LOCK_END (mutex);
 // End lock
 TRACE_EVENT(e, sizeof(mutex_func_event));

 return val;
}

Figure 6 Trace placement

In parallel with the framework implementation we are
also defining a language to allow some instrumentation of
C code inside the function body. Most probes need to be
placed inside functions and thus we need and simple and
efficient way of instrument this code. Currently we use

the pre-processing facility from the C language to switch
blocks of code. While this solution is straightforward to
implement and use, future work in the system code
become more difficult to manage and error prone.

4.5 Task definition
The code generated by the framework includes a

skeleton for the monitoring task and the necessary
changes in the kernel to initialize the monitoring
framework. These steps involves the initialization of the
trace mechanism and he insertion of the monitoring task
in the task descriptor table. Both steps are performed by
calls to special functions generated by the monitoring
framework. The developer can choose to configure the
trace policy used to manipulate the trace stream, and to
insert any filtering options if desired.

The other function is used to activate the monitoring
task. The developer is responsible for writing the code,
choose the scheduling options and perform any necessary
initialization. To avoid trace feedback generated by the
monitoring application the macros used to trace the events
check for the monitoring task PID value in the current
executing process, and thus no monitoring occurs. This
solution also avoids the placement of event filters to filter
any events regarding the monitoring process.

5. Conclusions
In this paper we elaborate on the need for run-time

monitoring of operating systems. We propose a
framework for run-time monitoring of real-time
embedded systems, which considers systems that have to
adapt themselves to evolving requirements and changing
service requests. Our perspective is that operating systems
must expose their internal behaviour and state, making it
available to external applications. The proposed
framework intends to provide such a mechanism whilst
achieving code separation, run-time efficiency and
flexibility for the application developer. With this
framework we pretend to create a tool to allow a complete
customization of monitoring mechanisms, based on a
customizable implementation of the POSIX tracing
standard.

Further work in this framework includes the
development of a meta-information language to model the
injection points and related events, dropping the actual
solution based on the C pre-processor facility and
automatic recreation of the monitored (exposed)
information. This aspect as raise some interesting
problems to solve. Nevertheless, we fell that automatic
recreation of monitored data is a must feature for every
monitoring framework to become fully flexible.

Acknowledgements
This work was partially supported by FCT, through the

CISTER Research Unit (FCT UI 608) and the Reflect
project (POSI/EIA/60797/2004).

References
[1] H. Thane, Monitoring, Testing and Debugging of

Distributed Real Time Systems, Ph.D. Thesis, MRTC
Report 00/15, 2000.

[2] I. Lee, H. Ben-Abdallah, S. Kannan, M. Kim, O. Sokolsky,
M. Viswanat, A Monitoring and Checking Framework for
Run-time Correctness Assurance, Proc. 1998 Korea-U.S.
Technical Conference on Strategic Technologies, Vienna,
VA, Oct 22-24, 1998

[3] S. Chodrow, F. Jahanian, M. Donner, Run Time Monitoring
of Real Time Systems, Proc. International Real-Time
Systems Symposium, 1991, pp. 74-83.

[4] L. Nogueira, L. M. Pinho, Dynamic QoS-Aware Coalition
Formation, Proceedings of the 19th IEEE International
Parallel & Distributed Processing Symposium, Workshop
on Parallel and Distributed Real-Time Systems, Denver,
USA, 2005

[5] Soft and Hard Real-Time Kernel (S.Ha.R.K.),
http://shark.sssup.it/

[6] IEEE Std. 1003.1, Information technology – Portable
Operating System Interface (POSIX), Section 4.17 –
Tracing, 2003

[7] IEEE Std. 1003.13, Standardized Application Environment
Profile – POSIX Realtime and Embedded Application
Support, 2003

[8] R. Barbosa, L. M. Pinho, Monitoring of Real time Systems:
a case for Reflection? Polytechnic Institute of Porto
Technical Report HURRAY-TR-0413, April 2004.
Available online at: http://www.hurray.isep.ipp.pt

[9] R. Barbosa, L. M. Pinho, Mechanisms for Reflection-based
Monitoring of Real-Time Systems, WIP Session of the 16th
Euromicro Conference on Real-Time Systems, Catania,
Italy, 2004, pp. 21-24.

[10] Leveson N. and Turner C. An investigation of the Therac-
25 accidents. IEEE Computer, 26(7):18-41, July 1993

