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Abstract—Classical lock-based concurrency control does not
scale with current and foreseen multi-core architectures, open-
ing space for alternative concurrency control mechanisms. The
concept of transactions executing concurrently in isolation with
an underlying mechanism maintaining a consistent system state
was already explored in fault-tolerant and distributed systems,
and is currently being explored by transactional memory, this
time being used to manage concurrent memory access. In this
paper we discuss the use of Software Transactional Memory
(STM), and how Ada can provide support for it. Furthermore,
we draft a general programming interface to transactional
memory, supporting future implementations of STM oriented
to real-time systems.

I. INTRODUCTION

Current architectures based on multiple processor cores in
a single chip are becoming widespread, and are challenging
our ability to develop concurrent and parallel software.
The tendency to integrate even larger number of cores will
further impact the way systems are developed, as software
performance can no longer rely on faster processors but
instead on efficient techniques to design and execute par-
allel software. It is also important to note that developing
scalable and safe concurrent code for such architectures
requires synchronisation control mechanisms that are able to
cope with an increasing number of parallel tasks, providing
the necessary building blocks for modular, concurrent, and
composable software.

In uniprocessor systems, lock-based synchronisation be-
came the de facto solution to avoid race conditions, despite
the well-known pitfalls, such as complexity, lack of com-
posability [1] or (bounded) priority inversion. In multipro-
cessor systems, lock-based synchronisation becomes more
problematic. Coarse-grained locks serialise non-conflicting
operations (which could actually progress in parallel) on
disjoint parts of a shared resource, and may cause cascading
or convoying blocks [2], wasting the parallel execution
opportunities provided by such architectures. Fine-grained
locks increase the complexity of system design, affecting
composability seriously, and produce an increasing burden
for the programmer. In multiprocessors, non-blocking ap-
proaches present strong conceptual advantages [3] and have
been shown in several cases to perform better than lock-
based ones [4].

Transactional memory is a concept that has been re-
searched in parallel systems for nearly two decades. Al-
though the first proposal of transactional memory was
hardware-based [5], it was soon followed by a software-
based adaptation [6]. Software Transactional Memory has
the advantage of being easily reconfigurable and to enable
transactional support on architectures that do not have native
support for atomic operations. Currently, STM research is
well ahead comparatively with hardware-support for trans-
actions.

Under the transactional memory paradigm, critical sec-
tions are executed optimistically in parallel while an un-
derlying mechanism maintains the consistency of shared
data. Data is kept consistent by serialising critical sections,
that is, the outcome is as if critical sections were executed
atomically, in sequence. Concurrent critical sections may
attempt to perform conflicting data accesses; such conflicts
are usually solved by selecting the critical section that will
conclude, and aborting or delaying the contenders. Due to
this similarity with database transactions, in which an atomic
sequence of operations can either commit or abort, critical
sections are called transactions.

Transactional Memory promises to ease concurrent pro-
gramming: the programmer must indicate which code be-
longs to a transaction and leaves the burden of synchronisa-
tion details on the underlying STM mechanism to conserve
the consistency of shared transactional data. This approach
has proved to scale well with multiprocessors [7], delivers
higher throughput than coarse-grained locks and does not
increase design complexity as fine-grained locks do [8].

The advantages of STM are counterbalanced with in-
creased times in memory accesses, memory utilisation over-
head and speculative execution of code. The latter is, in fact,
a challenge that has to be addressed if STM is to be applied
to real-time systems, because it is not admissible that one
transaction can be unboundedly aborted and forced to repeat.
Some work on the field of STM on multiprocessor real-time
systems was already published [9]–[12].

Several implementations of STM were implemented for
programming languages such as java, C++, C# and Haskell,
but currently there is no implementation for Ada. It is
thus in this context that this paper revisits previous work
on transactions support in Ada, for fault-tolerant systems,



and proposes a programming interface to support Software
Transactional Memory. A goal is for this interface to be in-
dependent of an eventual STM implementation, so programs
can, for instance, change the contention mechanism (the
algorithm that manages conflicting operations), according to
application specific characteristics.

The paper is structured as follows. Section II revisits
previous work on transaction support in Ada for fault-
tolerant and distributed systems. Afterwards, an introduction
to the STM essential issues is given in Section III. In Section
IV, we propose a general programming interface to access
STM functionality. This paper terminates with conclusions
and perspectives for further work in Section V.

II. PREVIOUS WORK ON TRANSACTIONS IN ADA

Transaction support in Ada has been a subject of research
in the field of fault-tolerant systems. The concept of a
transaction grouping a set of operations that appear to
be executed atomically (with respect to other concurrent
transactions) if it had success, or having no effect whatsoever
on the state of the system if aborted, is quite appealing
as a concurrent control mechanism for fault-tolerant and/or
distributed systems. The ability to abort a transaction due
to data access contention or to an unexpected error and,
consequently, rolling back any state modifications, automat-
ically preserves the system in a safe and consistent state.
Safe consistent states can be stored in a durable medium, so
they might be available even after a crash.

The loose parallelism provided by the isolation property
of the transactional paradigm is appealing for systems based
on multiple processors (either clustered or distributed) and
the inherent backward recoverability mechanisms suit fault-
tolerant concerns.

Two paradigmatic implementations of transaction support
in Ada are the Transactional Drago [13], [14] and the
OPTIMA framework [15].

Both proposals share many common attributes, aiming
to support competitive concurrency (between transactions)
and cooperative concurrency (inside a transaction). The two
provide the essential interface to start, commit and abort
transactions. Transactions can be multithreaded, i.e. multiple
tasks can work on behalf of a single transaction. Both
implementations support nested transactions and exception
handling.

Despite the similarities, both implementations take differ-
ent approaches.

Transactional Drago is an extension to the Ada language,
so it can only be used with compilers that include this
extension. Transactions are defined using the transactional
block, an extension that resembles an Ada block statement,
but identified with the keyword transaction [14]. The
transactional block creates a new scope in which data, tasks
and nested transactions can be defined. Data declared inside
a transactional block is volatile and subject to concurrency

control. Tasks inside a transactional block work coopera-
tively on behalf of the transaction and their results will
dictate the outcome of the transaction.

The transactional block provides a clean syntax, defining
clearly the limits of the transaction, without the need for an
explicit abort statement. Aborts are triggered by the raising
of unhandled exceptions from within the transactional block.
The following code sample illustrates a transactional block.
transaction
declare
-- data declared here is subject to

concurrency control
begin
-- sequence of statements
-- can include tasks that work on behalf of

transaction
-- can include nested transactions

exception
-- handle possible exceptions here...

end transaction;

The OPTIMA framework is provided as a library,
which does not modify the language. In this frame-
work, a transaction is created with the command
Begin_Transacion and, depending on the result of
the computation, ends with either Commit_Transaction
or Abort_Transaction. The OPTIMA framework
supports open multithreaded transactions, so the ad-
ditional command Join_Transaction allows one
task to join and cooperate on an ongoing trans-
action. When a task calls Begin_Transacion or
Join_Transaction, it becomes linked to the transaction
via the Ada.Task_Attributes standard library unit.
From that moment on, the transaction support is able to
determine the transaction context for the task. The following
code sample illustrates a task that starts a transaction.
begin
Begin_Transaction;

-- perform work
Commit_Transaction;

exception
when ...

-- handle recoverable exceptions here...
Commit_Transaction;

when others =>

Abort_Transaction;

raise;
end;

This example shows how the use of the exceptions
mechanism in this framework permits to define handlers for
foreseen exceptional cases, thus allowing forward recovery
in such cases. However, unexpected exceptions will abort
the transaction, like in Transactional Drago.

III. LIGHTWEIGHT MEMORY TRANSACTIONS

STM shares the basic principles of transactions from
databases and fault-tolerant systems: transactions can exe-
cute speculatively in parallel, but their effects should appear
as if they executed atomically in sequence. However, the



field of application has particular characteristics. Transac-
tions are expected to be the size of typical critical sec-
tions, i.e. as short as possible. In the STM perspective, the
transaction must conclude its work, so even if it aborts, the
transaction should try again the necessary number of times
until it is allowed to commit.

The STM mechanism keeps track of accesses to transac-
tional objects that are exclusively memory locations (words
or structures). Since memory accesses to transactional ob-
jects become indirect accesses, the STM mechanism must
be light enough to avoid performance issues.

Unlike the previous work oriented to fault-tolerant sys-
tems, STM does not intend to store consistent states in a
persistent medium, but simply to keep data in memory con-
sistent. Furthermore, the multithreaded transaction concept
does not apply: a transaction belongs exclusively to a task,
i.e. it is part of the sequential code of the task.

In comparison with database transactions and fault-
tolerant transactions, transactional memory transactions can
be considered lightweight memory transactions [16].

Transactions can be divided in two classes, according to
the transactional memory access pattern:

• read-only transactions, in which the transaction does
not try to modify any transactional object, and

• update transactions, in which the transaction tries to
modify at least one transactional object.

A conflict may occur when two or more transactions
concurrently access one object and at least one of the
accesses tries to modify the object: if the updating trans-
action commits before the contenders, the contenders will
be working with outdated data and should abort.

Conflicts are typically solved by selecting one transaction
that will commit and aborting the contenders. The perfor-
mance of a STM is therefore dependent on the frequency of
contention, which has direct effect on the transaction abort
ratio. Thus, STM behaves very well in systems exhibiting
a predominance of read-only transactions, short-running
transactions and a low ratio of context switching during the
execution of a transaction [17].

STM implementations may differ in multiple ways,
namely [18]:

• version management – how tentative writes are per-
formed;

• conflict detection – when conflicts are detected;
• granularity of conflicts – word, cache-line or object

granularity.
Eager version management allows the object to be imme-

diately modified, but requires that the object is unavailable
to concurrent transactions until the updating transaction
commits. If the updating transaction aborts, the value of
the object is rolled-back to the previous version. Lazy

version management defers the update of the object until
the transaction commits, leaving the object available to other

concurrent transactions. This implies that a transaction must
work with an image of the object that will eventually replace
the value of the transactional object.

Conflicts can be detected immediately, under eager con-

flict detection, or deferred until one transaction tries to com-
mit under lazy conflict detection. Eager conflict detection
inhibits a transaction to continue once it faces a conflict that
will not win. Lazy conflict detection permits transactions to
execute in total isolation and only when a transaction tries
to commit, conflicts are detected and solved. Eager conflict
detection better serves write-write conflicts, since one of the
transactions will inevitably abort, but lazy conflict detection
can be more efficient with read-write conflicts, as long as
read-only transactions commit before update transactions
[19].

The granularity of conflict detection determines the pos-
sibility of false conflict detection. Finer granularity means
less false conflicts detected and lower transaction abort ratio,
but at the expense of higher memory overheads.

Regardless which attributes are selected for an actual STM
implementation, transactions will eventually be aborted, and
some transactions may present characteristics (e.g. long
running, low priority) that can potentially lead to starvation.
In parallel systems literature, the main concern about STM
is on system throughput, and the contention management
policy has often the role to prevent livelock (a pair of
transactions indefinitely aborting each other) and starvation
(one transaction being constantly aborted by the contenders),
so that each transaction will eventually conclude and the
system will progress as a whole. In real-time systems, the
guarantee that a transaction will eventually conclude is not
sufficient to ensure the timing requirements that are critical
to such type of systems: the maximum time to commit must
be known. The verification of the schedulability of the task
set requires that the WCET of each task is known, which can
only be calculated if the maximum time used to commit the
included transaction is known. As such, STM can be used
in real-time systems as long as the employed contention
management policy provides guarantees on the maximum
number of retries associated with each transaction.

Recently, we have proposed new approaches to manage
contention between conflicting transactions, using on-line
information, with the purpose of reducing the overall number
of retries, increasing responsiveness and reducing wasted
processor utilization, while assuring deadlines are met [12].
With our proposed policy, conflicting transactions will com-
mit according to the chronological order of arrival, except if
an older contender is currently pre-empted. This approach
is fair in the sense that no transaction will be chronically
discriminated due to some innate characteristic. But most
importantly, this approach is predictable, because the time
overhead taken by a transaction until commit depends solely
on the ongoing transactions at the moment the transaction
arrives, being independent of future arrivals of other trans-



actions, except for conflicting transactions executing in the
same processor that arrive after the job being pre-empted by
another job with higher urgency.

IV. PROVIDING STM SUPPORT IN ADA

Essential support to STM can be implemented in a library,
without introducing modifications in the Ada programming
language, easing the portability of an STM service, without
the need to modify compilers and debuggers. The drawback
is that the programmer must adhere to a somewhat less clean
syntax.

The following code illustrates how a very simple transac-
tion should be written.
-- we need a transaction identifier structure
My_Transaction : Transaction;

-- start an update transaction
My_Transaction.Start(Update);

loop
-- read a value from a transactional object
x := trans_object_1.Get(My_Transaction);

-- write a value to a transactional object
trans_object_2.Set(My_Transaction, y);

-- try to commit transaction
exit when My_Transaction.Commit;

exception
-- handle possible exceptions here...

end loop;

This example shows how the initialisation of the trans-
action and the retry-until-commit loop have to be explicitly
written.

Our STM perspective requires two key classes of objects:
the transactional object and the transaction identifier.

The transactional object encapsulates a data structure
with the transactional functionality. For instance, a write
operation will not effectively modify the value of the object
if the STM applies lazy version management.

The transaction identifier is a structure that stores the data
required by the contention manager to apply the conflict
solving policy chosen for the system.

A. Transactional object

A transactional object is a type of class that wraps a
classical data structure with the transactional functionality.
The interface provided is similar to the non-transactional
version, but adds the operations required to maintain the
consistency of the object, according to the implementation
details of the STM.

Thus, for every access, the identification of the transaction
is required, either to locate the transaction holding the object
(case of eager version management) or track all transactions
referring the object (case of lazy version management).
In each case, the object must locate one or all accessing
transactions, respectively, so under contention, transactions

attributes are used to determine which transaction is allowed
to proceed, according to the contention management policy.

Reading accesses can also be tailored for read-only trans-
actions, if a multi-version STM is in use. Transparently, the
transactional object can return the latest version to an update
transaction, or a consistent previous version to a read-only
transaction.
-- Transactional object
package Transactional_Objects is
type Transactional_Object is tagged private;
-- examples of transactional class methods
procedure Set(T_Object: Transactional_Object;

Transaction_ID : Transaction;

Value : Object_Type);

function Get(T_Object: Transactional_Object;

Transaction_ID : Transaction)

return Object_Type;

private
type Transactional_Object is tagged
record

Current_Value : Object_Type;

Accesses_Set : <list of pointers to

transaction identifiers>

-- some other relevant fields...
end record;

end Transactional_Objects;

B. Transaction identifier

The transaction identifier provides the transactional ser-
vices to a task, uniquely identifying a transaction. The
essential interface of this class should provide the Start,
Commit and Abort operations, and keep track of the
accessed objects.
type Transaction_Type is (Read_Only, Update);

-- Transaction identifier
package Transactions is
type Transaction is tagged private;
procedure Start(T : Transaction;

TRX_Type : Transaction_Type);

procedure Abort(T : Transaction);

procedure Terminate(T : Transaction);

function Commit(T : Transaction)

return Boolean;

private
type Transaction is tagged
record
Data_Set : List_Ref_Transactional_Objects;

end record;
end Transactions;

The Start procedure initialises the transaction environ-
ment. Starting an already active transaction is not allowed,
and an exception should be raised.

The Abort procedure erases any possible effects of the
transaction, but the transaction remains active and is allowed
to undertake further execution attempts. Aborting an inactive
transaction is not allowed, and an exception should be raised.

The Terminate procedure cancels the transaction, leav-
ing the transaction inactive. Terminating an inactive trans-
action is not allowed, and an exception should be raised.



The last operation provided by this interface is the
Commit function that validates accessed data and resolves
possible conflicts. If the transaction is allowed to commit
its updates, then this function will return the True value.
Commiting an inactive transaction is not allowed, and an
exception should be raised.

This class also stores the references to the transactional
objects that were accessed in the context of the transaction.
These data are required when trying to commit, to validate
read and modification locations.

Specific STM implementations will, most likely, require
modified operation functionality and additional attributes.
For example, some STM algorithms require to know the
instant the transaction started, the current status of the
transaction [12], or the instant the current execution of the
transaction began [20]–[22].

These attributes can be included in extensions of this
class, deriving a new class for each implementation, as the
following example illustrates.
type Transaction_Status is (Active,

Preempted,

Zombie,

Validating,

Committed);

-- Transaction identifier
package Transactions_Foo_STM is
type Transaction_Foo_STM is new Transaction with

private;
overriding
function Commit(T : Transaction_Foo_STM) return

Boolean;

private
type Transaction_Foo_STM is new Transaction with
record
-- implementation specific elements
-- some examples below
Type_of_Accesses : Transaction_Type;

Time_Started : STM_Time;

Time_Current_Begin : STM_Time;

Status : Transaction_Status;

-- some other relevant fields...
end record;

end Transactions_Foo_STM;

Our current approach to STM assumes that a transaction
is not able to abort ongoing concurrent transactions, as this
could be very costly for the implementation. However, we
intend to evaluate this in future work, and if considered feasi-
ble we will also evaluate the usefulness of the Asynchronous
Transfer of Control (ATC) feature of the language to detect
the request to abort a transaction and execute the roll-back
operations.

V. CONCLUSIONS

Current and foreseen multi-core architectures have raised
performance issues to classical concurrency control based on
locks: either coarse-grained locking impairs parallelism or
fine-grained locking increases the difficulty to safely develop
concurrent software.

Transactions were already considered as a concurrency
control mechanism able to maintain the consistency of the
systems state in which parallel transactions could abort due
to data contention or hardware/software errors. Currently, the
same concept is being applied to manage concurrent access
to shared data, known as transactional memory.

In this paper, we discuss the use of software transactional
memory and we draft a common programming interface to
STM in Ada. This interface is independent of a particular
STM implementation, so different implementations can ad-
dress different utilization patterns. It is also the goal of this
work to allow the research on contention mechanisms for
software transactional memory in real-time systems. Future
work will address new contention mechanisms for these
systems and evolve the STM support in Ada (e.g. using
generics or Ada 2012 aspects as wrappers, and reflecting
the real-time issues in the Ada proposal).
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