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ABSTRACT
The rapid evolution of commercial multicore platforms has
raised the industry interest in developing and running ap-
plications independently on the same platform. However, in
realistic industrial settings, tasks belonging to different ap-
plications share resources that are not limited to the CPUs.
Applications share hardware components (e.g. co-processors
and actuators), and need to access portions of code that may
be protected by semaphores or mutexes.

In this paper we address the important challenge of re-
source sharing on multicore platforms through the use of
servers, i.e, through a hierarchical scheduling approach, which
is an effective technique to ensure the integration of indepen-
dently developed applications on the same computing plat-
form as well as the isolation of tasks. To solve that problem
we adapt and extend the MrsP [6] resource sharing protocol
and further combine it with the NPS-F scheduling algorithm
[5], which employs a server-base approach. A schedulability
analysis is then provided for the resulting framework.

1. INTRODUCTION
The interest of industry in real-time embedded applica-

tions has recently gained strength. This has been mainly
driven by the important need of taking as much benefit as
possible of the processing power offered by multicore plat-
forms, which can now be easily found in products ranging
from portable cell phones and smartphones to large com-
puter servers. Additionally, current software development
processes often involve more than one independent devel-
opment team (e.g. subcontractors) that produce software
components, which are further integrated to form a final
product.

In order to reach that goal, server-based techniques emerged
as an intuitive solution to effectively ensure the temporal
isolation and protection, while respecting all real-time con-
straints of the applications. Servers allow for the reservation
of a portion of the embedded system capacity for a specific
application. Therefore, it allows applications to run inde-
pendently through time partitioning.

The research on real-time systems for uniprocessor (sin-
gle core) is well established and consolidated, and there are
multiple works extending the uniprocessor scheduling algo-
rithms to multicore [7]. However, in practice, several chal-
lenges emerge when considering all the resources that must
be accessed by tasks running in a multicore environment.

In a realistic industrial application, the resources shared
by different tasks are not limited to the CPUs. Applications
share hardware components and need to access data or exe-

cute portions of code that may be protected by semaphores
or mutexes. This adds an additional layer of complexity
to the scheduling problem and requires the introduction of
Resource Sharing Protocols.

The objective of this work is to set the basis for the design
of a framework that is able to effectively handle the hierar-
chical scheduling of tasks on multicore platforms whilst tak-
ing the shared logical resources into consideration. Hence,
we adapt and combine the MrsP [6] resource sharing proto-
col with the NPS-F [5] scheduling algorithm.

2. SYSTEM MODEL
We consider the general sporadic task model, where each

task τi in a system τ is characterized by its minimum inter-
arrival time Ti, relative deadline Di, and worst-case compu-
tation time, Ci. That is, each task τi can generate a poten-
tially infinite number of jobs at least Ti time units apart,
and each job must execute for at most Ci time units before
its deadline occurring Di time units after its release. Arbi-
trary deadlines are assumed, but jobs from the same task
can never execute in parallel. The utilization ui of a task τi
is defined as ui = Ci/Ti and the system utilization, U(τ), is
defined as U(τ) =

∑n
i=1 ui.

The execution platform is composed of m identical phys-
ical processors, uniquely numbered P1 . . . Pm. We also con-
sider a set of k servers, uniquely numbered S1 . . . Sk. The
tasks are first mapped to a server, which are then allocated
to the processors. The server utilization U(Sq) is defined as:

U(Sq) =
∑

τi∈τ(Sq)

ui (1)

where τ(Sq) is the set of tasks assigned to Sq. We assume
that the utilization of a server never exceeds 1 and that it
never executes on more than one processor at a time.

Shared Resources (denoted as rj) are defined as the data
structures that are shared between tasks. They are divided
in two types; those that are shared by tasks mapped to
the same server, called local resources, and those that are
shared between tasks mapped to different servers, which are
called global resources. The code associated with a resource
is called a critical section and must be accessed under mu-
tual exclusion. The blocking time experienced by a task τi
when accessing a locked local resource is defined as the local
blocking time. Similarly, the blocking time experienced by
τi when it tries to access a locked global resource is defined
as the global blocking time.

The relation between tasks and resources is given by two
functions: F (τi) and G(rj). F (τi) returns the set of re-



sources used by task τi and G(rj) returns the set of tasks
that use resource rj . The parameter cj is used to denote the
worst case execution time of the resource rj when accessed
by any task.

3. RELATED WORK
This section provides an overview of the MrsP protocol [6]

and the NPS-F scheduling algorithm [5], which constitute
the basis for the present work.

3.1 Review of MrsP
One of the most recent resource sharing protocols for mul-

ticore platforms is MrsP [6]. MrsP is restricted to fully par-
titioned systems where tasks are scheduled using fixed prior-
ities. The general sporadic task model is employed and each
processor Pk implements a local extension of the Stack Re-
source Policy (SRP) applied to the Priority Ceiling Protocol
(PCP) [11] (denoted as PCP/SRP), where all resources rj

are assigned a set of ceiling priorities, one for each processor
Pk. The ceilings are defined as the maximum priority of all
tasks allocated to Pk that use rj . Whenever a task τi at-
tempts to access rj , its priority is raised to the local ceiling
of rj . For local resources, MrsP behaves as an implementa-
tion of the uniprocessor PCP/SRP. For global resources, the
access to a resource is granted through a FIFO queue. While
waiting to gain access to resource rj that is already locked
by another task τk, τi remains active, i.e., it busy-waits for
the lock to become available (spin-based locking).

The characteristics of MrsP reviewed so far are similar to
MSRP [9], of which it is a variant. Its main difference is
that tasks busy-waiting may use their “spin” time to under-
take the execution of other waiting tasks. This means that
although MrsP is defined for partitioned systems, the tasks
still have the ability to migrate from one processor to an-
other at run-time. If a task τi is preempted whilst accessing
a resource ri, then τi can migrate to any processor on which
a task is waiting to gain access to ri. The authors claim that
this property effectively leads to a schedulability analysis
that presents an identical form to the response-time analysis
for uniprocessor, thus providing several desirable properties
of the single processor PCP/SRP [11][2]. Therefore, under
MrsP, tasks can execute requests from other tasks, thus pre-
venting a degradation of the system performance that would
result from a preemption of the task holding the resource.

It was proved in [6] that the MrsP resource sharing pro-
tocol can be incorporated in the Response-Time Analysis
(RTA)[1] in the following way:

Ri = Ci + max{ê, b̂}+
∑

τj∈hpl(i)

⌈
Ri
Tj

⌉
× Cj (2)

where hpl(i) is the set of local tasks with priority greater
than τi. The parameter ê is the maximum execution time of
a resource used by a local task with priority less than that of
τi and a local task with an equal or higher priority than τi.
The parameter b̂ is the maximum non-preemptive execution
time induced by the Real-Time Operating System (RTOS).

The Ci parameter for each task is given by:

Ci = WCETi +
∑

rj∈F (τi)

ni × ej (3)

where WCETi is the worst-case execution time of the task,
ignoring the time it takes to access resources (but including

all time spend in the RTOS). The second term of Equation
3 accounts for the increased cost of the potential parallel ac-
cess to resource rj due to tasks running on different proces-
sors. ni is the number of times τi uses rj and parameter ej

is the maximum amount of time τi might need to execute rj ,
including its spinning time, given by: ej = |map(G(rj))|×cj ,
where function |map(G(rj))| returns the number of proces-
sors onto which tasks that use resource rj can execute.

3.2 Review of NPS-F
NPS-F is a semi-partitioned scheduling algorithm [5]. The

semi-partitioned approach allows the development of algo-
rithms with a higher utilization bound than the partitioned
approach (better work balance between processors) and also
reduces the number of migrating tasks by avoiding the use
of global shared queues for scheduling tasks to processors,
when compared to the global scheduling approaches.

This algorithm employs a server-based approach, consid-
ering a set of k servers. In the so-called flat-mapping, the
tasks are assigned to the servers and each server is then as-
signed to one or two processors at most. A server has a
utilization upper-bounded by 1 and can never execute on
more than one processor at a time. Hence, each sever Sq is
equivalent to a unicore processor with a computing capacity
U(Sq). Each server serves one or more tasks using EDF as
the internal scheduling policy.

The NPS-F algorithm is composed of 4 steps. The first
step is the assignment of tasks to the servers, based on the
task’s utilization (ui). The second step is the computa-
tion of the capacity of each server Sq. NPS-F ensures the
schedulability of all tasks allocated to Sq, even under the
most unfavorable arrival phasings, i.e. when there are ready
tasks, but their associated servers are not executing. This is
achieved by inflating the utilization of the server, given by
Equation (1) (see [5][13] for more details). The third step of
the off-line procedure is the allocation of the servers to the
processors, following a semi-partitioned approach. Servers
that are assigned to only one processor are called non-split
servers, whereas servers that are assigned to two proces-
sors each are called split servers. Note that the servers that
serve the spli-tasks must be carefully positioned within the
time slots in order to avoid their overlapping in time. The
last step of the algorithm is performed at run-time, when
the dispatching inside each server is performed under EDF
policy.

Under NPS-F, it is the execution time of the servers which
is split - not directly that of the underlying tasks served. In
principle, this allows an improved efficiency in the utiliza-
tion of a multiprocessor system. NPS-F has a utilization
bound of 75% configurable up to 100% at the cost of more
preemptions and migrations.

Recently, a new schedulability test for mapping tasks to
servers for NPS-F has been proposed in [13]. But since we
aim at defining a hierarchical scheduling framework that al-
lows resource sharing between tasks, we first present some
useful concepts defined in [12]. The Resource Demand of
a task set τ(Sq) represents the collective workload resource
requirements that the tasks in τ(Sq) request within a cer-
tain interval of time t. The Demand Bound Function(DBF)
[4] of τ(Sq) calculates the maximum possible resource de-
mands required to satisfy its timing requirements within a
time interval of length t. The Resources Supply represents
the amount of time the system can provide for τ(Sq)’s execu-



tion, which is in fact the execution time provided by a server
Sq, onto which τ(Sq) has been assigned. The Supply Bound
Function (SBF) calculates the minimum possible resources
supplies provided by a server Sq during a time interval of
length t. A server Sq is said to satisfy τ(Sq)’s execution
demand if:

DBF(Sq, t) ≤ SBF(Sq, t),∀t > 0 (4)

Inequality (4) is then used as the new NPS-F schedula-
bility test, meaning that the execution demand by all jobs
assigned to a server (computed using the DBF) cannot ex-
ceed the amount of time supplied by the server for their
execution, for every time interval of length t. Since the test
is based on the concept of the DBF (exact test for unicore
platforms) rather than on the utilization, it allows to over-
come many sources of pessimism that existed in the previous
analysis [5].

Assuming sporadic task sets with arbitrary deadlines and
ignoring all overheads (which can however be easily accounted
for as shown in [13]), the DBF(Sq, t) is given by:

DBF(Sq, t) =
∑
τi∈Sq

max

(
0,

⌊
t−Di
Ti

⌋
+ 1

)
× Ci (5)

To perform the assignment of the tasks to the servers,
NPS-F iterates over the set of all system tasks and attempts
to fit each one of them (according to the bin-packing heuris-
tic used, e.g., Next-Fit (NF) or First-Fit (FF)) in the servers.
Each task τi is provisionally added to the chosen server Sq
and the length of the testing time interval t is calculated.
The schedulability test defined by Equation (5) is then ap-
plied and if successful for some server Si, the task τi is per-
manently mapped to it. Otherwise, a new server is opened
and the task τi is added to it. If the schedulability test
fails for a server with only one task, then the task set is
considered unschedulable.

4. ACCOUNTING FOR SHARED
RESOURCES IN NPS-F

A current limitation of NPS-F is that it does not con-
sider the interaction between tasks (i.e. the access to shared
resources). The solution we propose in this paper comple-
ments NPS-F in that sense. It is based on an extension and
further adaptation of the MrsP [6] resource sharing proto-
col that takes the particularities of NPS-F into account. In
Section 4.1 we explain how the schedulability test of NPS
can be adapted to introduce MrsP resource sharing proto-
col. Then, the problem of mapping tasks to servers is briefly
addressed in Section 4.2.

We adapt MrsP to work with servers by instantiating the
concept of bandwidth inheritance [8]. With that solution,
one server may undertake the processing of a resource crit-
ical section on behalf of another task assigned to another
server. In order to better visualize the impact of such band-
width inheritance protocol, consider a simple system com-
posed of two servers and four tasks. It is assumed that both
servers are assigned to different physical processors and that
the global resource r1 is shared between the servers. Tasks
τ1 and τ2 are allocated to server S1; task τ1 uses the local
resource r1 and task τ2 does not use any shared resource
(apart from processor). Tasks τ3 and τ4 are allocated to
server S2; task τ3 also uses the global resource r1 and task
τ4 does not use any resource (apart from the processor).
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Figure 1: Example schedule with shared resource.

Two simple example schedules (with and without band-
width inheritance) for the system are provided in Fig.1 to
illustrate the solution. In Fig.1(a), tasks τ1 and τ3 are ex-
ecuting at instant t1. At instant t2 task τ1 locks resource
r1 and execute its critical section, represented by the nota-
tion τ1,r1 . At instant t3, task τ3 tries to access r1 but gets
blocked (represented in gray) because the resource is already
locked by τ1. Even worse, task τ1 is preempted by task τ2 at
t4. Task τ3 will only be able to continue its execution at t7,
after τ2 has finished its execution (t5) and after τ1 releases r1
(t6). The blocking interval of task τ3 is represented by B3.
In Fig.1(b), the notion of bandwidth inheritance is depicted.
The main difference in relation to the previous schedule is
that server S2 is able to undertake the processing of task
τ1 when it is preempted by τ2 at instant t4. Task τ1 then
executes the critical section and releases r1 at t = 5. Task
τ3 is then able to lock r1 much earlier than in the schedule
presented in Fig.1(a) and hence B3 is reduced.

4.1 Adaptation of the NPS-F Schedulability
Analysis

The main adaptation required is related to the restric-
tion adopted in MrsP [6] where tasks are scheduled using
fixed priority. Due to the fact that under NPS-F each server
serves one or more tasks employing an EDF scheduling pol-
icy [10], the scheduling analysis defined by Equation (2)
can no longer be applied. Considering this, a schedulability
analysis that accounts for resources sharing under the EDF
scheduling policy needs to be defined.

Thus we need to investigate how to account for the effects
of (global and local) shared resources into Equation (4). As
shown in [3], EDF-scheduled systems in which accessess to
shared resources are arbitrated by SRP can be integrated
into the analysis using a Blocking Function B(t). This func-
tion provides the longest blocking time a higher priority task
can experience when blocked by a lower priority task. Based
on [3], the Blocking Function B(t) can be approximated by
a function BL(Sq) and incorporated into Equation (4), re-
sulting in the following schedulability test:

∀t : BL(Sq) + DBF(Sq, t) ≤ SBF(Sq, t) (6)



where BL(Sq) = max{ê, b̂} is the blocking term due to local
resources used by tasks served by Sq. In order to account
for the global resources shared under the MrsP protocol, the
DBF can be expanded as follows:

BL(t)+

n∑
k=1

max

(
0,

⌊
t−Dk
Tk

⌋
+ 1

)
×Ck ≤ SBF(Sq, t) (7)

where Ck is given by:

Ck = WCET (τk) +
∑

rj∈F (τk)

ej (8)

where ej is now given by ej = |mapserv(G(rj))|× cj . Func-
tion mapserv returns the set of servers onto which the tasks
accessing rj are assigned. Therefore, similarly to Equation
(4), the worst-case execution time of a task τi is augmented
by the maximum number of parallel access to each resource
used by τi. Since global accesses are performed in a FIFO
manner and because a priority ceiling protocol is used locally
to each server, there may be at most one parallel access per
server in which the resource is used. The Ci of each task is
therefore influenced by the number of servers accessing the
resource rather than the number of processors as it was the
case in Equation (4).

4.2 Mapping of tasks to servers
Equation (8) shows that the execution time ej of resource

rj depends on the number of servers that have parallel access
to rj . This leads to one of the key challenges foreseen when
applying Inequality (7), i.e. how to perform the mapping
of tasks into servers under NPS-F. This mapping uses the
schedulability test provided by Inequality (7). However, to
perform that schedulability test on a task τi, it is necessary
to know where the tasks accessing the same resources than
τi are assigned (through function mapserv). Therefore, this
leads to a circular dependency between the calculation of
the parallel access time to the resources and the assignment
of tasks to the servers.

One of the possible solutions to overcome this circularity
issue for global resources is to assume a worst case scenario in
terms of parallelism, when computing the schedulability test
of each task τi. This can be achieved by assuming that all
the tasks sharing resources with τi are mapped to different
servers. Under this scenario, two kinds of upper bounds on
the amount of parallelism for the access to the resource can
be considered: (i) the number of tasks that share resources
with τi; (ii) the maximum number of servers onto which the
tasks can be allocated.

The smallest of these two values can then be used as an
upper bound on |mapserv(G(rj))|. In this way the circular-
ity issue is broken. The allocation of the subsequent tasks
can be improved by taking into consideration the mapping
decisions already taken, and not the worst case any more.
However, we still have to consider the worst case scenario for
the tasks that have not been allocated to a server yet, but
that share resources with τi. Note that, through the defi-
nition of the parameter ê, local resources exhibit a similar
circular dependency between the mapping decisions and the
schedulability test. Again, this dependency could be broken
by considering the worst-case value for ê, which can be com-
puted taking the maximum blocking time that τi can suffer
from tasks already assigned to the same server Sq and those
that are not yet assigned to any server.

5. CONCLUSIONS
In this paper we present a framework for scheduling real-

time tasks in multicore platforms with resources sharing.
The solution was based on an adaptation of MrsP resource
sharing protocol to work with the server-based semi-partitioned
scheduling algorithm NPS-F . The schedulability analysis of
tasks assigned to a server is provided, taking into account
the blocking time due to shared resources. The next foreseen
step is the mapping of the tasks to the servers, which has
circular dependencies with the schedulability test provided.
The method designed for NPS-F could then be extended to
any server based scheduling algorithm for multicore archi-
tectures and hence be used to design assignment techniques
ensuring the isolation of different applications sharing the
same computing platform.
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