

ResilienceP Analysis: Bounding Cache
Persistence Reload Overhead for Set-
Associative Caches

Conference Paper

CISTER-TR-190512

2019/07/09

Syed Aftab Rashid

Geoffrey Nelissen

Eduardo Tovar

Conference Paper CISTER-TR-190512 ResilienceP Analysis: Bounding Cache Persistence Reload ...

© 2019 CISTER Research Center
www.cister-labs.pt

1

ResilienceP Analysis: Bounding Cache Persistence Reload Overhead for Set-
Associative Caches

Syed Aftab Rashid, Geoffrey Nelissen, Eduardo Tovar

CISTER Research Centre

Polytechnic Institute of Porto (ISEP P.Porto)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail: syara@isep.ipp.pt, grrpn@isep.ipp.pt, emt@isep.ipp.pt

https://www.cister-labs.pt

Abstract

ResilienceP Analysis: Bounding Cache Persistence
Reload Overhead for Set-Associative Caches

Syed Aftab Rashid, Geoffrey Nelissen, Eduardo Tovar
CISTER, ISEP, Polytechnic Institute of Porto, Portugal

I. MOTIVATION AND INTRODUCTION

In modern systems, the latency of an access to the main

memory is much higher than the latency of an individual

computation on the processor. Cache memory bridge this

performance gap between the main memory and processor by

holding frequently required data and instructions. Intuitively,

caches are used to decrease average-case memory access

latency; however, due to their limited capacity in comparison

to main memory the use of caches can also cause large

variations in the execution times of tasks. Due to limited space,

not all data/instructions of all tasks can simultaneously reside

in the cache. Hence, tasks may compete for cache space,

with the execution of one task potentially evicting memory

blocks previously loaded into the cache by other tasks. This

may result in increasing the worse-case execution/response

time (WCET/WCRT) of tasks depending on whether the

instructions/data needed by the tasks are already present in

the cache (i.e. cache hit) or not (i.e. cache miss).

The impact of caches on the WCET/WCRT of tasks is more

evident under preemptive scheduling. In preemptive schedul-

ing, tasks may suffer additional execution delays depending

on the state of the cache, namely, Cache Related Preemption

Delays (CRPDs) and Cache Persistence Reload Overheads

(CPROs). CRPDs are delays suffered by the preempted tasks

in reloading useful cache blocks (UCBs) (blocks cached before

the preemption and potentially reused after) that were evicted

from the cache during the execution of preempting tasks. On

the other hand, CPROs result from the eviction of persistent

cache blocks (PCBs) (memory blocks that, once loaded into

cache by the task, will never be invalidated or evicted by the

task itself and hence always available for fast access) due to

the interleave or preemptive execution with other tasks. Many

different approaches have been presented in the state-of-the-

art (SoA) to bound CRPDs [2] and CPROs [3], [4]. However,

most of these approaches focus on CRPD/CPRO calculation

assuming a direct-mapped cache. In a direct-mapped cache,

each cache set can hold at most one memory block and in case

of a cache conflict between two tasks τi and τj , each cache

block used by τj during its execution (i.e., called an evicting

cache block (ECB)) can evict at most one UCB/PCB of τi
and vice versa. However, today most processor architectures

rely on set-associative caches. In set-associative caches, each

cache set may hold more than one memory block depending

on the number of available cache ways (also called cache

associativity). Hence, one cache access by a task τj to the

same cache set used by another task τi, may lead to multiple

cache misses for τi (i.e., known as the cascading effect).

The few analyses in the literature that consider set-

associative caches only focus on CRPD computation. How-

ever, it has been shown in recent works [3], [4] that only

considering CRPDs for tasks scheduled under fixed-priority

preemptive scheduling may result in largely pessimistic WCRT

bounds and that the analyses that considers both CRPD and

CPRO [3], [4] dominate the WCRT analyses that only consider

CRPD [1]. Considering that the existing approaches for CPRO

calculation only consider direct-mapped caches, in this paper

we present different approaches to bound CPRO for set-

associative caches. First, we present the PCB-ECB approach

that considers PCBs of the task under analysis and ECBs of

all other tasks in the system to calculate CPROs. We then

introduce the resilienceP analysis that removes some of the

pessimism in the PCB-ECB approach by considering the re-

silience of PCBs when calculating CPRO. Finally, we present

a multi-set alike resilienceP analysis that considers variation

in the resilience of PCBs over different job executions of a

task in order to have an even tighter CPRO bound.

II. NOTATIONS AND BACKGROUND

We focus on set-associative caches using the Least-

Recently-Used (LRU) replacement policy, i.e., on a cache miss

the least recently used memory block within a cache set is

evicted. The number of memory blocks each cache set can

store is known as the number of ways or the associativity of

the cache and is denoted by k. The total number of sets in

the cache is denoted by cs. We use dmem to denote the time

needed to load one cache block from the main memory into

the cache. As we consider fixed priority preemptive scheduling

(FPPS), we use hep(i) to denote the set of tasks with priorities

higher than or equal to that of τi (hence including τi).
Evicting and Useful Cache Blocks (ECBs and UCBs). All

cache blocks used by the task during its execution are called

ECBs [5] and an ECB m is also a UCB at a program point

P, if m is cached at P and may be reused at program point Q

that may be reached from P without eviction of m [6].

Cache Related Preemption Delay (CRPD). when a task τi is

preempted by a higher priority task τj , ECBs of τj may evict

UCBs of τi that are to be reloaded from the main memory

after τi resumes. The additional execution time incurred by τi
due to these extra cache reloads is termed as CRPD.

For set-associative caches, the resilience analysis [7] domi-

nates all other method in the SoA to compute CRPD. It uses

the notion of resilience to bound the CRPD of task τi due to

preemptions by a higher priority task τj .

Resilience [7]. The Resilience of a memory block m at

program point P is the largest l such that all possible next

accesses to m (i) would be cache hits if there is no preemption,

and (ii) would still be cache hits if there is a preemption at

7

program point P with l cache accesses to the same cache set

as m. The Resilience of a cache block m at a program point

P is given by

resP (m) = (k − 1)−max -ageP (m) (1)

where max -ageP (m) is the maximum LRU-age of m at

program point P, i.e., the maximum number of accesses to

the same cache set as m from the last use of m before

or at program point P to the next access to m after P [7].

In resilience analyses, the CPRD of task τi due to a single

preemption by a higher priority task τj in a cache set s is

given by γ
res,s
i,j ;

γ
res,s
i,j = dmem × |UCB

s
i \ {mi|res(mi) ≥ |ECBs

j |}| (2)

where |UCBs
i | and |ECBs

j | denote the number of UCBs/ECBs

of τi and τj in cache set s. Effectively, the total CRPD over

all cache sets s ∈ cs is given by γres
i,j , where

γ
res
i,j =

cs
∑

s=0

γ
res,s
i,j (3)

Note that since the number of UCBs and the resilience is

calculated for each program point, γres
i,j is given by the

program point that maximize Eq. (3) over all program points.

Details on the formulation of Eq. (1)-(2) can be found in [7].

Persistent Cache Block (PCB) [3]. A memory block mi of

task τi is a PCB if, once loaded by τi, mi will never be

invalidated or evicted from the cache when τi executes in

isolation.

Cache Persistence Reload Overhead (CPRO) [3]. The

CPRO of a task τj executing during the response time of a task

τi is denoted by ρj,i and is formally defined as the maximum

memory reload overhead suffered by task τj due to evictions

of its PCBs by tasks in hep(i) \ τj .

III. PCB-ECB APPROACH FOR CPRO CALCULATION

Existing approaches for CPRO calculation [3], [4] cannot

be used as is for set-associative caches. This is due to the

cascading effect in set-associative LRU caches which may

result in evicting several PCBs of task τj due to a single

ECB of tasks in hep(i) \ τj . This effect does not happen in a

direct-mapped cache where each ECB of tasks ∈ hep(i) \ τj
can evict at most one PCB of τj . Before presenting our

solution for set-associative caches, we first recall the CPRO-

union approach [3] that calculates the CPRO ρdirj,i of a task

τj executing during the response time of another task τi
considering a direct-mapped cache,

ρ
dir
j,i = dmem ×

∣

∣

∣

∣

PCB j ∩
(

⋃

∀τk∈hep(i)\τj

ECBk

)

∣

∣

∣

∣

(4)

where PCB j is the set of PCBs of τj and
⋃

∀τk∈hep(i)\τj
ECBk is the set of ECBs of all tasks

∈ hep(i) \ τj . For a formal proof of Eq. (4) see [3]. It is

proved in [3] that the set of PCBs of τj , i.e., PCB j , upper

bound the CPRO τj may suffer. We can easily extend that

concept to set-associative caches by observing that the number

of PCBs of τj in a cache set s, i.e., |PCBs
j |, upper bounds

the CPRO τj may suffer due to s. Let CPROs
j denote the

CPRO τj may suffer in cache set s, then CPROs
j = |PCBs

j |,
i.e., the total number of PCBs of τj in cache set s.

(a) SoA resilience Analysis (b) ResilienceP analysis

Fig. 1: Overestimation in the SoA resilience analysis

From [3], we also know that the worst-case impact of all

tasks in hep(i) \ τj on PCBs of τj is bounded by the set of

all ECBs of all tasks in hep(i) \ τj (See Eq. 4). Hence, the

worst-case impact of all task in hep(i)\τj on PCBs of τj in a

cache set s can be upper-bounded by CPROs
hep(i)\τj , where

CPRO
s
hep(i)\τj =

{

k if
⋃

∀τk∈hep(i)\τj
ECBs

k 6= ∅

0 otherwise
(5)

Consequently, the CPRO of task τj in cache set s is bounded

by ρ
set,s
j,i , where

ρ
set,s
j,i = dmem ×min

(

CPRO
s
j ,CPRO

s
hep(i)\τj

)

(6)

and the total CPRO one job of τj may suffer during the

response time of τi is thus given by ρsetj,i =
∑cs

s=0 ρ
set,s
j,i .

IV. RESILIENCEP ANALYSIS

The PCB-ECB approach presented in Section III assumes

that if one ECB of any task τk ∈ hep(i) \ τj is mapped to a

cache set s then all the PCBs of τj in s will be evicted. This

assumption is safe but very pessimistic. Therefore, to have

a tighter bound on the CPRO, in this section we determine

the set of PCBs of task τj that may remain cached even

after preemptions/executions of tasks ∈ hep(i) \ τj thanks to

the resilience of τj’s PCBs. However, we first note that the

SoA resilience analysis [7] cannot be used as is to calculate

the resilience of PCBs. To illustrate, see Fig. 1a showing the

control-flow graph (CFG) and mapping of memory blocks of

two jobs of task τj , i.e., τj,1, τj,2, in a 4-way set associative

cache. We assume that {m1,m2,m3,m4} are all PCBs of

τj . Using the SoA resilience analysis that only considers the

execution of one job of τj , i.e., τj,1, it results that the resilience

of PCB m1, m2, m3 and m4 is 0, 1, 2, and 3 respectively

(see Fig. 1a). However, these resilience bounds are not sound

considering that PCB m1, m2, m3 and m4 are reused only

during the execution of the next job of τj , i.e., τj,2. In fact,

the maximum-age of all these PCBs across two jobs of τj is 3

which leads to a resilience of 0 for all the PCBs (See Eq. (1)).

The ResilienceP analysis accounts for the overestimated

resilience of PCBs in the existing resilience analysis by

calculating the maximum-age of PCBs over all job executions

of τj . This is done by assuming that τj is cyclic, i.e., a loop

between the end point E and start point S of τj (e.g., see

Fig. 1b). The cyclic assumption ensures that the maximal

number of different cache accesses between the last use of

mj in one job of τj and the first access of mj in the next

job of τj are considered when determining the maximum-age

of mj . Moreover, knowing that PCBs are calculated at task

8

(a) Variation in the resilience of PCBs of task τj

(b) Different job executions of τj and τk

Fig. 2: Highlighting the pessimism in ResilienceP analysis

level [3] in contrast to UCBs (calculated per program point)

and the evictions of cache blocks in UCB ∩PCB are already

accounted for in the CRPD cost, the resilienceP analysis only

calculates the maximum-age of PCBs at the end point E

of a task τj using the same approach as proposed in [7].

Formally, under the resilienceP analysis the maximum-age of

a PCB mj is given by max -age(mj) = max -ageE(mj),
and the resilience of PCB mj is given by resPCB (mj) =
(k − 1) − max -age(mj). Consequently, the total CPRO of

one job of task τj executing during the response time of τi is

bounded by ρresj,i =
∑cs

s=1 ρ
res,s
i,j , where

ρ
res,s
j,i = dmem×

∣

∣

∣

∣

∣

∣

PCB
s
j \







mj |resPCB (mj) ≥
∑

∀τk∈hep(i)\τj

|ECB
s
k|







∣

∣

∣

∣

∣

∣

(7)

V. MULTISET ALIKE RESILIENCEP ANALYSIS

The resilienceP analysis always considers the worst-case

(i.e., minimum) resilience of PCBs for all jobs of τj that

may execute in a time interval of length t. This is true if

τj only has a single execution path as in Fig. 1b. However,

if τj has multiple execution paths, the resilience of PCBs

may vary depending on the actual execution paths taken by

two successive jobs of τj . Therefore, always considering the

minimum resilience of PCBs over all job executions of τj may

overestimate the total CPRO τj may suffer. To illustrate this,

see Fig. 2a that shows the CFG of a task τj with two execution

paths and four possible execution flows between two jobs of

τj , i.e., p1 → p2, p2 → p1, p1 → p1 and p2 → p2. The cache

contents along each execution flow are also shown in Fig. 2a.

We assume that all memory blocks of τj except m0 and m5

map to the same cache set s of a 4-way set-associative cache.

For clarity, we only focus on PCB m1.
We can see in Fig. 2a that the resilience of m1 is minimum,

i.e., resPCB (m1) = 0, if first job of τj follows path p1 and the

next job follow path p2. Now consider the example schedule

shown in Fig. 2b showing four jobs of τj along with three jobs

of a task τk ∈ hep(i) \ τj such that ECBs
k = {mx}. Fig. 2b

also shows the contents of cache set s after the execution of

every job of τj and τk.

TABLE I: CPRO-table for every PCB mj of task τj

Number of jobs of τj (J)

2 3 ...
⌈

t
Tj

⌉

1 min(1, x) min(2, x) ... min(
⌈

t
Tj

⌉

− 1, x)

2 min(1, x) min(2, x) ... min(
⌈

t
Tj

⌉

− 1, x)

D
is

tu
rb

an
ce

(D
)

...

≥ k 1 2 ...
⌈

t
Tj

⌉

− 1

As the minimum resilience of m1 is 0 and |ECBs
k| >

resPCB (m1), the resilienceP analysis (i.e., Eq. (7)) implies

that every time τk preempts τj or executes between two

subsequent jobs of τj , m1 will be evicted. This results in a

CPRO of dmem × 3. However, we can see in Fig. 2b that this

is not true. In fact even in the worst-case when we maximize

jobs of τj following the execution flow with the minimum

resilience (i.e., p1 → p2), m2 is evicted and reloaded only

two times resulting in a CPRO of dmem × 2.

The multi-set alike ResilienceP analysis reduces the pes-

simism in the ResilienceP analysis by considering the variation

in the resilience of PCBs across different job execution of a

task τj . For each PCB mj of τj we create a CPRO-table (See

Table I) to determine how many times mj can be evicted in an

interval of length t considering a given disturbance D, i.e., the

total number of ECBs of tasks in hep(i) \ τj . Given the value

of D and J, one entry in Table I (i.e., x) for a PCB mj tells

us how many times mj may be evicted and must therefore be

reloaded.

In future, we will investigate how to efficiently build Table I

and evaluate our solutions.

Acknowledgments. This work was partially supported under PhD grant

SFRH/BD/119150/2016, by National Funds through FCT/MCTES (Por-

tuguese Foundation for Science and Technology), within the CISTER Re-

search Unit (UID/CEC/04234); by the Operational Competitiveness Pro-

gramme and Internationalization (COMPETE 2020) under the PT2020 Part-

nership Agreement, through the European Regional Development Fund

(ERDF), and by national funds through the FCT, within project POCI-01-

0145-FEDER-029119 (PREFECT); by the European Union through the Clean

Sky 2 Joint Undertaking, under the H2020 Framework Programme (H2020-

CS2-CFP08-2018-01), grant agreement nr. 832011 (THERMAC).

REFERENCES

[1] S. Altmeyer, R. I. Davis, and C. Maiza, “Improved cache related pre-
emption delay aware response time analysis for fixed priority pre-emptive
systems,” Real-Time Systems, vol. 48, no. 5, pp. 499–526, 2012.

[2] M. Lv, N. Guan, J. Reineke, R. Wilhelm, and W. Yi, “A survey on static
cache analysis for real-time systems,” Leibniz Transactions on Embedded
Systems, vol. 3, no. 1, pp. 05–1, 2016.

[3] S. A. Rashid, G. Nelissen, D. Hardy, B. Akesson, I. Puaut, and E. Tovar,
“Cache-persistence-aware response-time analysis for fixed-priority pre-
emptive systems,” in ECRTS, 2016, pp. 262–272.

[4] S. A. Rashid, G. Nelissen, S. Altmeyer, R. I. Davis, and E. Tovar, “Inte-
grated analysis of cache related preemption delays and cache persistence
reload overheads,” in RTSS. IEEE, 2017, pp. 188–198.

[5] H. Tomiyama and N. D. Dutt, “Program path analysis to bound cache-
related preemption delay in preemptive real-time systems,” in CODES,
2000, pp. 67–71.

[6] C. G. Lee, J. Hahn, Y. M. Seo, S. L. Min, R. Ha, S. Hong, C. Y. Park,
M. Lee, and C. S. Kim, “Analysis of cache-related preemption delay in
fixed-priority preemptive scheduling,” Computers, IEEE Transactions on,
vol. 47, no. 6, pp. 700–713, 1998.

[7] S. Altmeyer, C. Maiza, and J. Reineke, “Resilience analysis: Tightening
the crpd bound for set-associative caches,” in LCTES. ACM, 2010, pp.
153–162.

9

