Login
HomePublicationsBEng Thesis

Reengineering and development of IoT Systems for Home Automation
Ref: CISTER-TR-171204       Publication Date: 9, Nov, 2017

Reengineering and development of IoT Systems for Home Automation

Ref: CISTER-TR-171204       Publication Date: 9, Nov, 2017

Abstract:
With the increasing adoption of technology in today’s houses, electricity is at an all-time high demand. In fact, given the plethora of vital electricity-powered appliances used every day, such as refrigerators, washing machines, and so forth, it has been proven difficult to even handle all devices’ electric consumption. To reduce consumption costs and turn it into a more manageable process, the concept of flex-offers was created. A flex-offer is built around scheduling energy usage in conjunction with the prices of electricity, as provided by an energy market. More specifically, a flex-offer is an energy consumption offer containing the user’s energy consumption flexibility, which is sent to an entity called the Aggregator, who aggregates together flex-offers from multiple parties, bargains with the energy market, and responds to each flex-offer with a schedule that meets the lowest prices for consumption, while still satisfying the users’ needs. By using flex-offers on a house’s equipment, the idea of FlexHousing was born. The aspired goal of the CISTER Research Center’s FlexHousing project is to deliver a platform where users can register their smart appliances, regardless of its brand and distributor, set up preferences for the devices’ usage, and let the system manage the energy consumption and device activation schedules based on the energy market prices. A previous project had already built a prototype of the FlexHousing system. Nevertheless, the original platform had many limitations and lacked maturity from a software engineering point of view, and the goal of this internship is to apply a reengineering process on the FlexHousing project, while also adding new features to it. Thus, the project’s domain model, its database, and class structures were altered to satisfy the new requirements. Furthermore, its web platform was rebuilt from the ground up. Also, a new interface was developed to facilitate support for devices of different brands. As a proof of concept for the benefits provided by this new interface, a connection with a new device (Sonoff Pow) was also established. Moreover, a new functionality was developed to identify a device’s type of appliance based on its energy consumption, in other words, to specify if a device is, for instance, a refrigerator or not. Finally, another new feature was added in which, based on a device’s type and its energy consumption pattern, the flex-offer creation is automated, minimizing user input. As planned, the FlexHousing platform now supports multiple types of devices, and has a software interface to support more types in the future with minimal effort. The flex-offer creation process has been simplified and is now partially automated. Finally, the web platform’s UI has been updated, becoming more intuitive and appealing to the user.

Authors:
Rafael Rocha


BEng Thesis, Instituto Superior de Engenharia do Porto.
Porto.



Record Date: 7, Dec, 2017