
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Real-Time Scheduling on
Heterogeneous Multiprocessors

Gurulingesh Raravi

Doctoral Programme in Electrical and Computer Engineering

Supervisor: Dr. Vincent Nélis

March 11, 2014

c© Gurulingesh Raravi, 2014

Real-Time Scheduling on Heterogeneous Multiprocessors

Gurulingesh Raravi

Doctoral Programme in Electrical and Computer Engineering

Approved by:

External Referee: Sanjoy K. Baruah

External Referee: Laurent George

Internal Referee: Eduardo Tovar
FEUP Referee: Luís Almeida
Supervisor: Vincent Nélis

March 11, 2014

Abstract

Embedded computing is one of the most important areas in computer science today, witnessed
by the fact that 98% of all computers are embedded. Given that many embedded systems have to
interact “promptly” with their physical environment, the scientific community has invested signifi-
cant efforts in developing algorithms for scheduling the workload, which is generally implemented
as a set of tasks, at the right time and in proving before run-time that all the timing requirements
will be satisfied at run-time. This field of study is referred to as the real-time scheduling theory.

The scheduling theory for a unicore processor is well-developed; the scientific results are
taught at all major universities world-wide and the results are widely-used in industry. Scheduling
theory for multicores is emerging but the focus so far has been for multicores with identical pro-
cessing units. This is unfortunate because the computer industry is moving towards heterogeneous
multicores with a constant number of distinct processor types — AMD Fusion, Intel Atom and
NVIDIA Tegra are some of the examples of such multicores.

This work deals with the problem of scheduling a set of tasks to meet their deadlines on het-
erogeneous multiprocessors with a constant number of distinct processor types. On heterogeneous
multiprocessors, not all the processors are of the same type and further, the execution time of a task
depends on the type of processor on which it executes. For such platforms, designing scheduling
algorithms assuming that, tasks during their execution, can migrate between processors of different
types is hard to achieve (if not impossible) for many practical systems since processors of differ-
ent types typically vary in instructions sets, register formats, etc. Hence, designing algorithms in
which either tasks cannot migrate between any two processors (referred to as non-migrative) or
tasks can migrate between processors of same type (referred to as intra-migrative) is of greater
practical significance.

For the non-migrative scenario, the scheduling problem can be solved in two steps: (i) assign-
ing tasks to individual processors before run-time and (ii) once the assignment is done, scheduling
the tasks on each processor using a uniprocessor scheduling algorithm at run-time. Scheduling
tasks that are assigned to an individual processor is a well-studied problem and optimal schedul-
ing algorithms exist for this problem, in the sense that, if there exists a schedule that meets all
deadlines of the tasks then the optimal algorithms succeed in finding such a schedule as well.
Hence, assuming that the tasks are scheduled during run-time on each processor using such op-
timal scheduling algorithms, this work focuses on designing algorithms for assigning tasks to
individual processors on heterogeneous multiprocessors with a constant number of distinct pro-
cessor types such that there exists a schedule that meets all deadlines for the assignment obtained
by the algorithm.

Similarly, for intra-migrative scenario, the scheduling problem can be solved in two phases:
first, assigning tasks to processor types (rather than to individual processors) before run-time and
then scheduling the tasks on each processor type using a multiprocessor scheduling algorithm at
run-time. Scheduling tasks that are assigned to a processor type is also a well-researched topic
as this problem is equivalent to identical multiprocessor scheduling problem and optimal schedul-

i

ii

ing algorithms exist for this problem. Hence, the focus of this work is to design algorithms for
assigning tasks to processor types on heterogeneous multiprocessors with a constant number of
distinct processor types assuming that the tasks are later scheduled using the optimal scheduling
algorithms. Therefore, assuming that the tasks are scheduled during run-time on each processor
type using such optimal scheduling algorithms, this work focuses on designing algorithms for as-
signing tasks to processor types such that there exists a schedule that meets all deadlines for the
assignment output by the algorithm.

For the non-migrative scenario as well as the intra-migrative scenario, this work considers both
the two-type heterogeneous multiprocessors in which the number of distinct processor types is two
and the generic t-type heterogeneous multiprocessors in which the number of distinct processor
types is t ≥ 2.

For the task assignment problems under consideration, it is not possible to design an optimal
algorithm with polynomial time-complexity unless P = NP. Hence, non-optimal algorithms with
polynomial time-complexity are designed and a metric referred to as the speed competitive ratio
is used to quantify the the performance of these algorithms. The speed competitive ratio of an
algorithm A is the smallest number S, such that any task set that can be assigned by an optimal
algorithm upon a particular platform before run-time to meet all deadlines when scheduled at run-
time, can also be assigned by A to meet all deadlines if given a platform in which each processor
is S times as fast.

For the problem of assigning tasks to processor types, polynomial time-complexity algorithms
with finite speed competitive ratios are proposed for two-type and t-type heterogeneous multi-
processors. Similarly, several polynomial time-complexity algorithms with different speed com-
petitive ratios are also proposed for the problem of assigning tasks to individual processors on
two-type and t-type heterogeneous multiprocessors.

This work also studies the problem of scheduling tasks that share resources such as data struc-
tures and sensors on heterogeneous multiprocessors — referred to as the shared resource schedul-
ing problem. Tasks must operate on such resources in a mutually exclusive manner while accessing
the resource, that is, at all times, when a task holds a resource, no other task can hold that resource.
For this problem, polynomial time-complexity algorithms with finite speed competitive ratios are
proposed for two-type and t-type heterogeneous multiprocessors.

Overall, the proposed algorithms have the following advantages. The proposed algorithms for
shared resource scheduling problem are first of their kind since no previous algorithm exists for
this problem. The other algorithms proposed in this work either have a better speed competitive
ratio and/or a better time-complexity and/or a better average-case performance compared to the
existing algorithms in the literature.

Resumo

Hoje em dia, os sistemas embebidos são uma das áreas mais importantes no contexto das ciências
da computação, visto que 98% dos computadores são desse tipo. A maior parte dos sistemas em-
bebidos albergam aplicações de controlo que têm que interagir de uma forma quase “instantânea”
(isto é, as tarefas que compõem este tipos de aplicações têm que disponibilizar os resultados da
suas computações dentro de uma meta temporal) com o meio onde estão inseridos. Dada a im-
portância das áreas onde estes sistemas são usados, eles têm sido objecto de um grande esforço por
parte da comunidade científica na procura de algoritmos de escalonamento que permitam, por um
lado, quando em execução, satisfazer os requisitos das aplicações e por outro, antes da execução,
garantir que esses requisitos serão satisfeitos. Isto é designado de teoria de escalonamento para
sistemas de tempo real.

A teoria de escalonamento para sistemas de tempo real baseados em sistemas uni-processador
está bem desenvolvida; os resultados científicos dessa teoria são ensinados em universidades e são
bastante usados na indústria. A teoria de escalonamento para sistemas de tempo real baseados
em sistemas multi-processador é uma área emergente, no entanto, a maior parte dos trabalhos
considera somente sistemas multi-processador compostos por processadores idênticos. Porém,
a indústria de processadores está a dirigir a sua produção para sistemas com uma arquitectura
heterogénea, isto é, sistemas multi-processador compostos por processadores heterogéneos. como
são exemplo o AMD Fusion, o Intel Atom e o NVIDIA Tegra.

Este trabalho aborda o problema de escalonar conjuntos de tarefas por forma a cumprirem as
metas temporais em sistemas com arquitecturas heterogéneas. Nestes sistemas a execução das
tarefas depende to tipo de processador no qual está a ser executada. Para plataformas com este
tipo de arquitecturas, criar algoritmos de escalonamento assumindo que as tarefas podem, durante
a sua execução, migrar livremente entre processadores de diferentes tipos é bastante difícil de con-
seguir (senão impossível), porque diferentes tipos de processadores têm conjuntos de instruções
diferentes assim como formatos de registos e etc. Neste contexto, torna-se imperativo do ponto de
vista prático criar algoritmos de escalonamento nos quais as tarefas não possam migrar entre pro-
cessadores (designadas de não-migratórias) ou que possam migrar somente entre processadores
do mesmo tipo (designadas de intra-migratórias).

Assumindo uma aplicação em que todas as tarefas são não-migratórias, o problema pode ser
resolvido em dois passos: (i) atribuir previamente as tarefas aos processadores e (ii) em exe-
cução escalonar as tarefas usando um algoritmo apropriado para sistemas uni-processador. Os
algoritmos para sistemas uni-processador têm sido estudados durante as últimas décadas e são,
hoje-em-dia, considerados bem desenvolvidos. Existem alguns algoritmos para sistemas uni-
processador que são considerados óptimos (isto é, são capazes de escalonar qualquer conjunto
de tarefas escalonável). Portanto, o foco deste trabalho é criar algoritmos para atribuição de tare-
fas aos processadores heterogéneos e depois estas tarefas são escalonadas de acordo com um
qualquer algoritmo de escalonamento (preferencialmente óptimo) apropriado para sistemas uni-
processador.

iii

iv

De uma forma semelhante, para aplicações compostas por tarefas intra-migratórias, o prob-
lema pode ser resolvido, também, em dois passos: (i) atribuir tarefas aos tipos de processadores (ao
invés de atribuir aos processadores) e (ii) em tempo de execução escalonar essas tarefas de acordo
com um algoritmo apropriado para sistemas multi-processador. Os algoritmos de escalonamento
para sistemas multi-processador (assumindo sistemas com uma arquitectura idêntica, isto é, todos
os processadores são iguais) têm sido estudados durante os últimos anos, e existem alguns que
são considerados óptimos. Deste modo, este trabalho também endereça o problema de atribuição
de tarefas a tipos de processadores heterogéneos. Em execução as tarefas são escalonadas usando
algoritmos de escalonamento apropriados para sistemas com uma arquitectura idêntica.

Como estratégia de investigação foram assumidas as seguintes configurações: 2-tipos e t-tipos.
Na configuração 2-tipos assume-se que o sistema multi-processador é composto por dois tipos de
processadores heterogéneos enquanto que na configuração t-tipos assume-se que o sistema tem t
(mais do que dois) tipos de processadores heterogéneos. Para o problema de atribuição de tarefas
neste contexto, não é possível criar algoritmos de atribuição óptimos com uma complexidade tem-
poral do tipo polinomial. Portanto, os algoritmos de atribuição de tarefas (a atribuição de tarefas
é sempre feita antes da execução) desenvolvidos são considerados não-óptimos e é usado “speed
competitive ratio” (SCR) como métrica para quantificar o seu desempenho. O SCR representa a
relação da capacidade de processamento dos processadores. Assumindo que para um conjunto
de tarefas existe um qualquer algoritmo de atribuição de tarefas para uma dada plataforma e que
assegure que quando em execução, escalonadas de acordo com um algoritmo de escalonamento
óptimo, todas as tarefas cumprem as metas temporais. O SCR de um algoritmo A é o menor
número S (em que S representa a capacidade de processamento dos processadores) por forma a
atribuir esse conjunto de tarefas e assegurar que esse conjunto de tarefas é escalonável.

Para o problema de atribuir tarefas aos tipos de processadores, neste trabalho são propostos
dois algoritmos, um para os sistemas 2-tipos e outro para os sistemas t-tipos. Ambos algoritmos
apresentam um SCR finito. Para os sistemas 2-tipos, o algoritmo apresenta baixa complexidade
temporal do tipo polinomial enquanto que para os sistemas t-tipos apresenta complexidade tem-
poral do tipo polinomial. Para o problema de atribuir tarefas aos processadores, neste trabalho
também são propostos vários algoritmos para os sistemas 2-tipos e um para os sistemas t-tipos.
Todos algoritmos apresentam um SCR finito. Para os sistemas 2-tipos, alguns algoritmos apre-
sentam baixa complexidade temporal do tipo polinomial enquanto que para os sistemas t-tipos
apresenta complexidade temporal do tipo polinomial.

Em muitos sistemas de computação, além da partilha do processador, as tarefas também par-
tilham outros recursos como estruturas de dados, sensores e etc. Portanto, nestes casos as tarefas
devem usar tais recursos de uma forma exclusiva. Isto é, um recurso só pode ser usada por uma
tarefa de cada vez. Neste trabalho também foi estudado o problema associado a este tipo de tarefas
(que partilham outros recursos além do processador) em sistemas multi-processador composto por
processadores heterogéneos. Neste trabalho são propostos dois algoritmos para este tipos de tare-
fas, um para os sistemas 2-tipos e outro para os sistemas t-tipos. Ambos algoritmos apresentam
um SCR finito. Para os sistemas 2-tipos, o algoritmo apresenta baixa complexidade temporal do
tipo polinomial enquanto que para os sistemas t-tipos apresenta complexidade temporal do tipo
polinomial.

Os algoritmos propostos apresentam as seguintes vantagens quando comparados com os al-
goritmos existentes: (i) alguns dos algoritmos propostos são pioneiros (nomeadamente os que se
referem à atribuição de tarefas que partilham recursos); (ii) apresentam SCR melhor; (iii) apre-
sentam uma complexidade temporal melhor e (iv) também apresentam um desempenho médio
melhor.

Acknowledgments

First and foremost, I would like to express my deepest gratitude to Björn Andersson for his excel-
lent guidance during the first two years of my PhD when he was at CISTER Research center. I
thoroughly enjoyed the experience of working with him. Björn’s commitment to the highest stan-
dards, his enthusiasm towards research inspired and motivated me. He always made me comfort-
able during the discussions which I might have abused a couple of times with my stupid remarks
during some of our discussions in the middle of the nights.

I am deeply grateful to Vincent Nélis, my supervisor, for the guidance, motivation and in-
valuable support that he has provided over the last couple of years. Vincent is someone you will
instantly like and never forget once you meet him. I think he is one of the friendliest supervisors
that any student can wish for. It was really a pleasant experience to work with him as he gave me
so much freedom and always encouraged me to make my own choices. Of course, our various
coffee-table conversations on almost all the random topics in the world were always entertaining.

Thanks to all the people at CISTER for the great support at various levels. I would like to
specially address a few of them. I am thankful to Eduardo Tovar for creating such a great environ-
ment at CISTER and for going out of his way sometimes to make my stay at CISTER and Porto a
memorable one. I would like to thank some of my research collaborators, especially Konstantinos
Bletsas and Geoffrey Nelissen, who have enhanced my enthusiasm and understanding of real-time
systems. I would like to acknowledge Paulo Baltarejo Sousa for translating the abstract of the
thesis in Portuguese. Thanks to all the students at CISTER, who have given me hours of helpful
and enjoyable discussions; probably, the fact that most of us came from different parts of the world
with different perspectives made it a memorable experience. My thanks also go to Sandra Almeida
and Inês Almeida for the administrative support. Inês in particular has been extremely helpful with
all the logistics during my initial days in Porto. Thanks to all the ‘desi junta’ for innumerable and
unforgettable “Puerto Rico” moments; I will cherish those days/nights that we spent playing the
game, those post-game discussions, arguments, wins and losses, and of course, the great food will
stay with me for a long time.

Most importantly, none of this would have been possible without the love and patience of my
family. My parents have been a constant source of love, concern, support and strength all these
years. I would like to express my heart-felt gratitude to them. Finally, I would like to thank my best
friend and wife, Dakshina for her understanding and love during the past few years. Her support,
encouragement and care have helped me overcome setbacks and stay focused on my studies and
her sense of humor and perspective about life has helped me stay sane through these years.

This work was partially supported by FCT (Fundação para a Ciência e Tecnologia) under the
individual doctoral grant SFRH/BD/66771/2009.

v

vi

List of Author’s Publications

This is a list of papers and publications that reflects the results achieved during the development
of the research work presented in this dissertation.

Journals

• Gurulingesh Raravi, Björn Andersson, Vincent Nélis and Konstantinos Bletsas, “Task As-
signment Algorithms for Two-Type Heterogeneous Multiprocessors”, Real-Time Systems
(Accepted for publication).

• Gurulingesh Raravi, Björn Andersson and Konstantinos Bletsas, “Assigning Real-time Tasks
on Heterogeneous Multiprocessors with Two Unrelated Types of Processors”, Real-Time
Systems, Volume 49, Number 1, pages 29–72, January, 2013.

Conferences

• Gurulingesh Raravi and Vincent Nélis, “A PTAS for Assigning Sporadic Tasks on Two-
type Heterogeneous Multiprocessors”, In Proceedings of the 33rd IEEE Real-Time Systems
Symposium, pages 117–126, San Juan, Puerto Rico, December 4–7, 2012.

• Gurulingesh Raravi, Björn Andersson, Konstantinos Bletsas and Vincent Nélis, “Task As-
signment Algorithms for Two-Type Heterogeneous Multiprocessors”, In Proceedings of the
24th Euromicro Conference on Real-Time Systems, pages 34–43, Pisa, Italy, July 11–13,
2012. (Outstanding Paper Award)

• Gurulingesh Raravi, Björn Andersson and Konstantinos Bletsas, “Provably Good Schedul-
ing of Sporadic Tasks with Resource Sharing on a Two-Type Heterogeneous Multiproces-
sor Platform”, In Proceedings of the 16th International Conference On Principles Of Dis-
tributed Systems, pages 528–543, Toulouse, France, December 12–16, 2011.

• Björn Andersson, Gurulingesh Raravi and Konstantinos Bletsas, “Assigning Real-Time
Tasks on Heterogeneous Multiprocessors with Two Unrelated Types of Processors", In Pro-
ceedings of the 31st IEEE Real-Time Systems Symposium, pages 239–248, Washington, DC,
USA, November 30 – December 3, 2010.

Technical Reports

• Gurulingesh Raravi and Björn Andersson, “Real-Time Scheduling with Resource Sharing
on Heterogeneous Multiprocessors”, 2013.

vii

viii

• Gurulingesh Raravi and Björn Andersson, “Task Assignment Algorithm for Two-type Het-
erogeneous Multiprocessors using Cutting Planes”, 2013.

• Gurulingesh Raravi and Vincent Nélis, “Task assignment algorithms for heterogeneous mul-
tiprocessors”, 2013.

Contents

I Introduction 1

1 Background on Real-Time Systems 3
1.1 Introduction to real-time systems . 5
1.2 Modeling real-time systems . 6
1.3 Categorization of real-time systems . 14
1.4 Real-time scheduling paradigms . 16
1.5 Background on real-time scheduling theory . 17

2 Overview of This Research 23
2.1 Problem definition . 23
2.2 Hardness of the problem . 25
2.3 Why study heterogeneous multiprocessors? . 26
2.4 Common assumptions . 27
2.5 Performance metrics . 28
2.6 Contributions and significance of this work . 34
2.7 Organization of the report . 36

II Two-type Heterogeneous Multiprocessors 39

3 Intra-migrative Scheduling on Two-type Heterogeneous Multiprocessors 41
3.1 Introduction . 41
3.2 System model . 44
3.3 The hardness of the intra-migrative task assignment problem 45
3.4 MILP-Algo: An optimal intra-migrative task assignment algorithm 49
3.5 LP-Algo: An intra-migrative task assignment algorithm 52
3.6 SA: An intra-migrative task assignment algorithm 57
3.7 Speed competitive ratio of SA algorithm . 58
3.8 Average-case performance evaluations . 68
3.9 Conclusions . 71

4 Non-migrative Scheduling on Two-type Heterogeneous Multiprocessors 73
4.1 Introduction . 73
4.2 The hardness of the non-migrative task assignment problem 76
4.3 FF-3C algorithm and its variants . 80
4.4 SA-P algorithm . 118
4.5 Cutting plane algorithm . 129
4.6 A polynomial time approximation scheme . 154

ix

x CONTENTS

4.7 Conclusions and Discussions . 182

5 Shared Resource Scheduling on Two-type Heterogeneous Multiprocessors 187
5.1 Introduction . 187
5.2 System model and assumptions . 189
5.3 The hardness of the shared resource scheduling problem 190
5.4 Overview of our approach . 192
5.5 Few notations and useful results . 193
5.6 FF-3C-vpr algorithm and its speed competitive ratio 201
5.7 Conclusions . 206

III T-type Heterogeneous Multiprocessors 209

6 Intra-migrative Scheduling on T-type Heterogeneous Multiprocessors 211
6.1 Introduction . 211
6.2 System model . 214
6.3 MILP-Algo: An optimal intra-migrative algorithm 215
6.4 An overview of our intra-migrative task assignment algorithm, LPGIM 216
6.5 Step 1 of LPGIM: Solving the LP formulation 217
6.6 Step 2 of LPGIM: Forming the bi-partite graph 219
6.7 Step 3 of LPGIM: Detecting and removing the circuits in the graph 221
6.8 Step 4 of LPGIM: Integrally assigning the fractional tasks 226
6.9 Conclusions . 235

7 Non-migrative Scheduling on T-type Heterogeneous Multiprocessors 237
7.1 Introduction . 237
7.2 System model . 240
7.3 LPGNM: The non-migrative task assignment algorithm 241
7.4 Conclusions . 244

8 Shared Resource Scheduling on T-type Heterogeneous Multiprocessors 245
8.1 Introduction . 245
8.2 System model . 247
8.3 Overview of our algorithm . 251
8.4 The new algorithm, LP-EE-vpr . 253
8.5 Speed competitive ratio of LP-EE-vpr algorithm 260
8.6 Discussion . 280
8.7 Conclusions . 282

IV Conclusions 285

9 Conclusions, Discussions and Future Directions 287
9.1 Summary of results . 288
9.2 Implication of the results . 289
9.3 Future directions . 290
9.4 Concluding remarks . 292

References 295

Part I

Introduction

1

Chapter 1

Background on Real-Time Systems

For the past 40 years, the transistor/semi-conductor density has roughly doubled every 18 months

as observed by Gordon Moore [BC03]. Also, since 1980s, the processor clock speed has increased

about 30% every year. The microprocessor vendors improved their silicon technology to go faster

and faster until early 2000s. However, during this time, they realized that the clock speed has

hit a wall since it started violating the principles of fundamental physics. Although computing

power increases linearly with the clock speed, the power density increases with the square or

cube, depending on the electrical model. It was seen that clock frequencies beyond about 5GHz

could result in melting the chip unless cooled using exotic cooling technologies [LM08].

In order to overcome the limitations imposed by this clock speed wall and to continue lever-

aging Moore’s Law to increase performance and reduce power, microprocessor vendors decided

to go the multiprocessor/multicore chip way. Instead of increasing the clock rate of power-hungry

monolithic cores, chip vendors adapted a design in which multiple slower processors are integrated

on a single chip which collectively increase the computational capability while consuming lesser

power. With this design choice, the number of processing cores per chip started doubling with

each new generation of microprocessor chips, a trend which will continue for the foreseeable fu-

ture [LM08], which in turn is leading to a significant increase in the number of applications being

deployed on such chips.

Subsequently, computer controlled systems have percolated in all aspects of our daily lives.

From mobile phones to nuclear reactor controllers, computer controlled systems have reached

all aspects of human life in merely a few decades. In near future, it is expected that day-to-day

activities such as cleaning the house, driving the car, etc. will be performed by computer con-

trolled systems without human intervention. Actually, research prototypes that can perform such

activities already exist and a few of these are even commercially available. The complexity of

such computer-controlled systems is continuously increasing due to the increase in the function-

alities, the increase in the interactivity between different functionalities and the increase in the

responsiveness requirement. Hence, many of these computer-controlled systems demand more

and more performance from the processors that implement these functionalities and multicores

have emerged as an inevitable choice for such systems due to their high performance, low cost and

3

4 Background on Real-Time Systems

low power consumption characteristics and also due to the aggressive marketing of multicores by

all the chip vendors.

Most of the computer controlled systems these days are embedded systems. An embedded

system is defined as a computer-controlled system (sometimes, it can even be a simple monitoring

system) in which the hardware and software is specifically designed for a particular functionality.

For example, mobile phones, set-top boxes, cruise control systems in cars and autopilot system in

an airplane. It is estimated that over 98% of all computing devices are “embedded” in nature and

hence they do not even look like computers [RM09, Tan07, Zha03]. In other words, computers

are moving away from the well-known desktop and can be found in everyday devices like credit

cards, microwaves, mobile phones and cars. Let us consider an example of such an embedded

system listed in [And03].

Example 1. Consider a hypothetical car where a computer in the car is given a street address and

the computer automatically drives to that address with no human intervention (research prototypes

that can do things similar to this exist [JPKA95, Spe] but are not commercially available). Think

about yourself as being the computer in the car.

You are driving your car and approach a crossing. You see that there is no pedestrian there

(a sensor reading) so you close your eyes for a few seconds and listen to the radio while your

car approaches the intersection, and after those seconds you conclude that you can drive straight

ahead without any need to slow down (an action). If, during those seconds, a pedestrian starts to

walk at the crossing, an accident may occur, neither because your sensor reading was incorrect

nor because you inferred an incorrect action based on your sensor reading, but because your

action was based on a sensor reading that was too old. If you had monitored your environment

with periodic sampling of a high enough rate, an accident would not have occurred. Let us assume

that you woke up in time to see the pedestrian (a sensor reading) so you conclude that you should

break or steer away (an action). Although you computed the right answer (that is, made the

right decision) this is not sufficient for successful driving; you need to apply a break force quickly

enough, that is, before a deadline. This deadline depends on states in the environment, for example,

the speed of your car and the distance from your car to the pedestrian.

Observe that in the embedded system described in Example 1, it is not only essential to perform

the computations or actions in a logically correct manner but it is also important to perform them

at the right time. For example, failing to detect the pedestrian at the right time or failing to apply

the brakes with the right force at the right time may lead to an undesired output. Such embedded

systems in which the correctness of the output not only depends on the value but also depends on

the time of delivery, are referred to as real-time systems which is the topic of next section.

Organization of the chapter. The rest of the chapter is organized as follows. Section 1.1

introduces the concept of real-time systems. Section 1.2 discusses how such systems are modeled.

Section 1.3 discusses the classification of real-time systems. Section 1.4 introduces the design

space of real-time scheduling and finally a brief background on real-time scheduling theory is

provided in Section 1.5.

1.1 Introduction to real-time systems 5

1.1 Introduction to real-time systems

A real-time system is a system in which the correctness of the computations not only depends upon

the logical correctness of the computation but also upon the time at which the result is produced.

As mentioned earlier, in Example 1, if the pedestrian is not detected at the right time and/or if the

brakes are not applied at the right time with the right force to bring the car to a halt then it may

lead to an accident. Similarly, all real-time systems have temporal requirements which need to be

guaranteed in order to avoid an undesirable behavior from the system.

The temporal requirements in a real-time system generally have their origin in the design pro-

cess [And03]. Specifically, the designer specifies how the computer-controlled system in general

should behave. For example, consider Adaptive Cruise Control (ACC) in a car. The objective of

an ACC system is to ensure that the car approximately maintains a safe distance (typically set by

the driver) from any leading vehicle (i.e., a vehicle in front of the car in the same lane). Once the

behavior is defined, the designer derives the timing constraints such that, if these constraints are

satisfied, the behavior is said to be as desired. These derived timing requirements depend on the

state of the environment. For example, in an ACC system, the temporal delay that can be tolerated

between detecting the leading vehicle (sensing) and taking actions in order to maintain the car at a

pre-set safe separation distance from the leading vehicle depends on (i) the tolerable error margin,

(ii) the dynamics of the car, (iii) the current distance of separation between the car and the leading

vehicle, the speed of the leading vehicle, etc.

The consequence of violating the temporal requirements of a real-time system can depend on

the environment. In some cases, not satisfying the temporal requirements may lead to a catastrophe

such as severe damage to the equipment or even loss of human lives — such systems are referred

to as hard real-time systems. For example, failing to maintain the safe distance between the car and

the leading vehicle may lead to an accident which in turn may lead to loss of human lives. In other

cases, the consequence may not be that harmful and instead the user experiences a degradation in

the quality-of-service provided by the system which does not endanger the integrity of the user or

the equipment or the environment — such systems are referred to as soft real-time systems. For

example, in a multimedia application, failing to decode a video frame on time once in a while is

acceptable for the user as long as certain quality of service is ensured. (More discussion about

hard and soft real-time systems is provided later in the chapter.) Therefore, it is very essential to

ensure that all the timing requirements are met for hard real time systems and to ensure that an

acceptable quality-of-service is provided for soft real-time systems. This can be achieved using

schedulability analysis.

Scheduling and Schedulability Analysis. An important aspect in the process of designing real-

time systems is to ensure before run-time that the timing requirements are met at run-time. In order

to do this, the entities which perform computations (such as reading the sensor data, computing

the current distance of separation between the car and the leading vehicle based on the sensor

readings, computing the speed of the car) need to be scheduled using an algorithm so as to meet

all the timing requirements. In other words, these entities need to be allocated sufficient resources

6 Background on Real-Time Systems

such that they finish their execution before certain time thereby meeting all the timing requirements

of the system. The process of verifying whether the timing requirements of the real-time system

will be met or not when entities are scheduled using an algorithm on the computing resources, is

referred to as the schedulability analysis of the algorithm. For hard real-time systems, the analysis

needs to be rigorous and performed before run-time to provide a guarantee that all the timing

requirements will be met during the run time. Whereas for soft real-time systems, some kind of

stochastic analysis is sufficient as such systems need not meet all the timing requirements and

may afford to miss some of its timing requirements as long as the system continues to provide an

acceptable quality-of-service.

We now describe how the entities that perform computations (also referred to as the workload)

are modeled and the resources that need to be allocated to these entities (also referred to as the

computing platform) are modeled. Overall, modeling of real-time systems is discussed next.

1.2 Modeling real-time systems

First, the description of modeling the real-time workload is provided and then the modeling of the

computing platform on which the workload is executed is discussed.

1.2.1 Modeling real-time workload

This section describes how the real-time workload is modeled using the notion of job and task.

1.2.1.1 Job and its characterization in real-time systems

Definition 1 (Job). A unit of work (say, a set of instructions) that performs some computations

and which needs to be scheduled and executed is referred to as a job.

Informally, a job is a set of instructions in the context of the application that executes sequen-

tially and provides a given application-relevant logical result. In real-time systems, each job is

characterized by the following parameters:

• Release time of a job: The time instant at which a job becomes available for execution is

referred to as the release time of the job. So, a job can be scheduled and executed any time

instant at or after its release time1.

• Deadline of a job: The time instant by which the execution of a job needs to be completed

is referred to as the deadline of the job. The deadline can be expressed in two ways:

– Relative deadline of a job: It is the maximum allowable response time of the job,

where the response time of the job is the duration of time interval spanning from the

release time of the job to its completion time.

1Note that there may be other constraints as well such as data dependency and control dependency that need to be
considered before scheduling and executing the job.

1.2 Modeling real-time systems 7

Time t t+D

Absolute
deadline of

the job

Job is executing

Release of
the job

Response time of the job

Job begins
execution

Job finishes
execution

Relative deadline of the job = D

Figure 1.1: The parameters used to characterize a job in real-time systems. In this example, the
release time of the job is t and its relative deadline is D which implies that the absolute deadline
of the job is t +D.

– Absolute deadline: It is the absolute time instant by which the job is required to finish

its execution. In other words, it is given by the release time of the job plus the relative

deadline of the job.

Figure 1.1 illustrates the above discussed terms. As shown in the figure, the job has a release

time of t and a relative deadline of D.

1.2.1.2 Task and its characterization in real-time systems

This section defines a task, lists different kinds of tasks and parameters used to characterize the

tasks in the context of real-time systems.

Definition 2 (Task). A collection of related jobs which jointly provide some system function is

referred to as a task. Stated another way, a task releases a (potentially infinite) sequence of jobs.

A task is generally denoted by τi where i is the task index.

Remark about notation. From the definition of the job and the task, it can be seen that, a task is

an abstract entity which releases many jobs over a period of time and every job of a task executes

on some processor. However, to avoid tedium, in the rest of the thesis, instead of saying “a job of

a task executes”, we say that, “a task executes”.

A task is characterized by the following parameters.

• Worst-case execution time of a task: The worst-case execution time (WCET) of a task

is defined as the maximum duration of time that the task (i.e., any job of this task) could

8 Background on Real-Time Systems

take to execute on a given processor. All the jobs of a task will have the same worst-case

execution time which is that of the task. In other words, the WCET of a task is the upper

bound on the execution duration of any job of this task and hence the actual execution times

of some of the jobs of this task may be less than the WCET of the task. The WCET of a

task τi is commonly denoted by Ci.

• Relative Deadline of a task: The relative deadline of a task is defined as the maximum

allowable response time of any job of this task. Hence, all the jobs of a task have the same

relative deadline which is that of the task. The deadline of a task τi is generally denoted by

Di.

Remark about notation. To avoid tedium, in the rest of the thesis, we refer to “Relative Deadline”

as “Deadline”.

Definition 3 (Task set). A collection of tasks is referred to as a task set and is denoted by τ .

In real-time systems, tasks can be classified into three categories depending on the job release

pattern:

• Periodic: These tasks generate jobs periodically, separated by a fixed time interval, in the

sense that, after the arrival of the first job at any time instant, the arrival of subsequent jobs

are separated by a fixed time interval which is given by the period of the task. The period

of such a task τi is generally denoted by Ti.

• Sporadic: In this task model, jobs arrive sporadically, i.e, after the arrival of the first job

at any time instant, the subsequent jobs of this task may arrive at any time once a minimum

inter-arrival time has elapsed since the arrival of the previous job of the same task. The

minimum inter-arrival time of such a task τi is generally denoted by Ti.

• Aperiodic: The jobs of these tasks may arrive at any time instant, in the sense that, no

information about their arrival pattern is given.

Figure 1.2 illustrates the above discussed three categories of tasks. Figure 1.2a shows a peri-

odic task with a period of Ti. As shown in this figure, the first job of the task is released at time t

and then subsequent jobs of this task are released exactly Ti time units apart, i.e., the second job is

released at t +Ti, the third job is released at t +2Ti and so on. Figure 1.2b shows a sporadic task

with a minimum inter-arrival time of Ti. As shown in this figure, release of two consecutive jobs

is always separated by a time duration of at least Ti units; for example, the first job is released at t,

the second job is released at t1 ≥ t +Ti, the third job is released at t1 +Ti, the fourth job is released

at time t2 ≥ t1 +2Ti and so on. Figure 1.2c shows an aperiodic task for which nothing can be said

about the job release pattern.

A periodic task is characterized by its worst-case execution time, period and deadline. A

sporadic task is characterized by its worst-case execution time, minimum inter-arrival time and

deadline. An aperiodic task is characterized by its worst-case execution time and deadline.

1.2 Modeling real-time systems 9

Time

t t+Ti t+2Ti t+3Ti t+4Ti t+5Ti

Period of the task = Ti

(a) Periodic task with a period of Ti — the duration between the arrival of any two con-
secutive jobs is exactly equal to Ti units.

Time

t t+Ti t1+Ti t1 t1+2Ti t1+3Ti t2

Minimum inter-arrival time of the task = Ti

(b) Sporadic task with a minimum inter-arrival time of Ti — the duration between the
arrival of any two consecutive jobs is either equal to or greater than Ti units.

Time

t

Arrival information of the task is not known

(c) Aperiodic task with no information on release pattern — the duration between the
arrival of any two consecutive jobs is unknown.

Figure 1.2: A visualization of different categories of tasks — an upward arrow indicates the arrival
of a job of a task.

This research considers sporadic tasks.

We now define valid job arrival pattern for a sporadic task set.

Definition 4 (Valid job arrival pattern of a sporadic task set.). A job arrival pattern of a spo-

radic task set is said to be valid if every task in the task set respects its minimum inter-arrival time

while releasing the jobs. For a given sporadic task set, there can be multiple valid job arrival

patterns.

The following example illustrates the concept of valid job arrival pattern for a given sporadic

task set.

Example 2. Consider a sporadic task set τ = {τ1,τ2}. Let the minimum inter-arrival time of

task τ1 be given by T1 = 4 and let the minimum inter-arrival time of task τ2 be given by T2 = 5.

Figure 1.3a and Figure 1.3b show a valid job arrival pattern each for this task set. Note that, it is

10 Background on Real-Time Systems

Time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Release of

jobs of task τ1

Release of
jobs of task τ2

(a) A valid job arrival pattern.

Time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Release of

jobs of task τ1

Release of
jobs of task τ2

(b) Another valid job arrival pattern.

Time 0
Release of

jobs of task τ1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Release of
jobs of task τ2

(c) An invalid job arrival pattern.

Figure 1.3: Examples of valid and invalid job arrival patterns for the task set of Example 2.

easy to construct many more valid job arrival patterns for this task set in a similar manner. For

the sake of completeness, Figure 1.3c shows an invalid job arrival pattern for this task set (since

the release time of second and third job is not separated by at least 4 units).

The sporadic task sets can be classified into three categories depending on the relation between

the deadlines and the minimum inter-arrival times of every task in the task set.

• Implicit-deadline: In implicit-deadline sporadic task set, every task has its deadline equal

to its minimum inter-arrival time, i.e., ∀τi ∈ τ : Di = Ti.

• Constrained-deadline: In such a task set, every task has its deadline no greater than its

minimum inter-arrival time, i.e., ∀τi ∈ τ : Di ≤ Ti.

• Arbitrary-deadline: In arbitrary-deadline sporadic task set, there is no relation between

deadlines and minimum inter-arrival times of tasks. In other words, in such task sets, the

deadline of every task may be less than or equal to or greater than its minimum inter-arrival

time.

This work considers implicit-deadline sporadic task sets.

1.2 Modeling real-time systems 11

For the sake of completeness and future references, we now formally define an implicit-deadline

sporadic task set.

Definition 5 (Implicit-deadline sporadic task set). In an implicit-deadline sporadic task set τ ,

each task τi ∈ τ is characterized by a worst-case execution time (WCET) and a minimum inter-

arrival time Ti (which is equal to its deadline). Each task τi releases a (potentially infinite) se-

quence of jobs, with the first job released at any time and subsequent jobs released at least Ti time

units apart. Each job released by task τi has to complete its execution within Ti time units from its

release.

We now define a parameter that is used to characterize an implicit-deadline sporadic task and a pa-

rameter that is used to characterize a set of implicit-deadline sporadic tasks. These parameters are

extensively used while performing the schedulability analysis of algorithms in real-time literature

and also in subsequent chapters of this document.

Definition 6 (Utilization of an implicit-deadline sporadic task). For an implicit-deadline spo-

radic task, the ratio of its worst-case execution time and its minimum inter-arrival time is referred

to as the utilization of the task. The utilization of a task τi is denoted by ui and is formally defined

as: ui
def
= Ci

Ti
.

Definition 7 (Utilization of an implicit-deadline sporadic task set). It is the sum of utilizations

of all the tasks in the task set. The utilization of a task τ is denoted by Uτ and is formally defined

as: Uτ

def
= ∑τi∈τ ui.

1.2.2 Modeling the computing platform

This section describes how the computing resources, also referred to as computing platform, on

which the workload needs to be allocated and executed, is modeled. In the context of the work, we

are interested in modeling the computing platform as a set of processing elements which has a lim-

ited computational capacity. This is sufficient for the purpose of this work since the end objective

is to assign and execute the workload on these processing elements such that on each process-

ing element (a group of processing elements, respectively), the total computational demand of

the workload assigned on the processing element (the group of processing elements, respectively)

should not exceed the capacity of that processing element (that group of processing elements, re-

spectively) which in turn guarantees that all the timing requirements of the workload will be met

— more details are provided in the next chapter. For this reason, we ignore modeling the other

architectural features of the computing platform such as caches, memory, system bus, etc. and

hence do not consider the impact of sharing such hardware resources on the execution behavior of

the tasks.

If the computing platform on which the real-time workload needs to be executed consists of

a single processor then it is referred to as a uniprocessor platform. If the computing platform

consists of multiple processors then it is referred to as a multiprocessor platform or a multicore

platform. The real-time scheduling theory for uniprocessor system is well-understood. However,

12 Background on Real-Time Systems

the same cannot be said about the multiprocessor real-time scheduling theory (more details are

given in the subsequent parts of this chapter). Hence, in this work, we focus on multiprocessor

systems.

Remark about notation. In this dissertation, very often, the terms “processor” and “core” are

interchangeably used and they both refer to the processing element on which the tasks are assigned

and scheduled.

This work considers multiprocessor computing platforms.

Multiprocessor systems can be categorized into three groups as follows:

• Identical: In identical multiprocessors, all the processors are identical, in the sense that,

they all have exactly the same computing capacity. Hence, the rate of execution of all

tasks is the same on all processors. These multiprocessors are sometimes referred to as

homogeneous multiprocessors. Some example of such multiprocessors are: Intel Core 2

Quad Processor [Int13e], Intel Core 2 Extreme Processor [Int13d], AMD Dual Core Proces-

sors [AMD13b] and ARM Cortex-A9 MPCore [ARM13a].

• Uniform: By contrast, in uniform multiprocessors, each processor is characterized by its

own speed or computing capacity. Hence, the rate of execution of a task depends on the

speed of the processor. Thus, a processor of speed s > 1 will execute all tasks s times

faster than a processor of speed 1. Some examples of uniform multiprocessors are: ARM

big.LITTLE Processing [ARM13b] and Samsung Exynos 5 Octa [Sam13b].

• Heterogeneous: These are multiprocessors in which the processors are of different types.

For example, in a heterogeneous multiprocessor, some processors can be of type Cen-

tral Processing Units (CPUs), some processors can be of type Graphics Processing Units

(GPUs), some other processors can be of type network processors and so on. The proces-

sors of different types generally differ in their instruction sets, register formats, etc. Hence,

the rate of execution of a task depends on both the processor type and the task. Indeed, not

all tasks may be able to execute on all processors. These multiprocessors are sometimes

referred to as unrelated multiprocessors. Some examples of heterogeneous multiprocessors

are: AMD Fusion [AMD13a], Intel Atom [Int13c], Nvidia Tegra 3 [Nvi12].

Figure 1.4 illustrates the above discussed three categories of multiprocessors.

A special case of heterogeneous multiprocessor is a t-type heterogeneous multiprocessor which is

defined as follows.

Definition 8 (t-type heterogeneous multiprocessor). A heterogeneous multiprocessor in which

the number of distinct types of processors is a constant, t ≥ 2, is referred to as a t-type heteroge-

neous multiprocessor. It is also referred to as a t-type platform.

A special case of t-type heterogeneous multiprocessor is a two-type heterogeneous multiprocessor

which is defined as follows.

1.2 Modeling real-time systems 13

. . . CPU CPU CPU CPU

(a) Identical multiprocessors: all the processors have the same speed.

. . . CPU CPU CPU CPU

(b) Uniform multiprocessors: processors have different speeds — size is proportional to
the speed.

. CPU CPU DSP DSP GPU GPU

(c) Heterogeneous multiprocessors: processors are of different types; processors of dif-
ferent types can differ in their instruction sets, register formats, etc. — different shapes
correspond to different processor types.

Figure 1.4: A visualization of different categories of multiprocessor systems.

Definition 9 (Two-type heterogeneous multiprocessor). A two-type heterogeneous multiproces-

sor is a special case of t-type heterogeneous multiprocessor in which there are only two distinct

types of processors, i.e., t = 2, and thus each processor in the system belongs to one of these types.

It is also referred to as a two-type platform.

This research considers both two-type and t-type heterogeneous multiprocessors.

The reason for studying heterogeneous multiprocessor systems is that the heterogeneous mul-

tiprocessor model is more generic than identical or uniform multiprocessor model, in terms of the

systems that it can accommodate. Hence, the results obtained for this model are also applicable to

identical or uniform multiprocessor models. The reason for studying heterogeneous multiproces-

sors with a constant number of distinct types of processors (i.e., both two-type and t-type) is that,

(i) in practice, most of the heterogeneous multiprocessors are of this nature since many chip manu-

facturers offer chips having a constant number of distinct types of processors, especially two types

of processors, for example, see [AMD13a, Int13b, Nvi12, App13, Qua13, Sam13a, ST 12, Tex13]

and (ii) studying the generic t-type heterogeneous multiprocessors (in which t ≥ 2) helps in under-

standing the problem better and solutions to such generic models may cater to complex systems in

near future.

14 Background on Real-Time Systems

Release time Deadline

Time

U
se

fu
ln

e
ss

o

f
th

e
 r

e
su

lt

(a) Hard real-time job — usefulness of the result
drops to zero (or even becomes negative) when tar-
diness exceeds zero.

Release time Deadline

Time

U
se

fu
ln

e
ss

o

f
th

e
 r

e
su

lt

(b) Soft real-time job — usefulness of the result de-
grades gracefully as the tardiness increases.

Figure 1.5: A visualization of hard and soft jobs in real-time systems.

1.3 Categorization of real-time systems

With the understanding of a job and a task, we now discuss the earlier mentioned two categories of

real-time systems in detail. In literature, the real-time systems are generally categorized as either

hard or soft real-time systems [Kop11, Liu00, Bur91]. One way the distinction is done is based on

the usefulness of the result measured using the tardiness of jobs [Liu00].

Definition 10 (Tardiness of a job). The tardiness of a job indicates how late the job execution is

compared to its deadline. The tardiness of a job is zero if it completes execution on or before its

deadline; otherwise, the tardiness of a job is given by the difference between its completion time

and its deadline.

Based on the usefulness of the result measured using tardiness, the jobs in real-time systems are

categorized as follows:

• hard real-time job: the usefulness of the result (in the scope of the application) of a hard

real-time job falls abruptly and even may become negative (i.e., may be harmful or catas-

trophic) when the tardiness of such a job exceeds zero. The implication of this is that missing

the deadline of a hard real-time job can lead to a catastrophe and hence the user requires a

rigorous validation by provably correct and efficient procedures to ensure that such jobs

always meet their deadlines.

• soft real-time job: the usefulness of the result of a soft real-time job decreases gradually as

the tardiness of such a job increases. The implication of this is that missing some deadlines

of a soft real-time job is acceptable. The user in this case only requires a demonstration that

the job meets some statistical constraint, for example, average number of deadlines that are

met using techniques such as performance profiling.

The above defined hard and soft real-time jobs are illustrated in Figure 1.5.

1.3 Categorization of real-time systems 15

Note that the above definitions can be extended for a task to obtain the terms hard real-time

task and soft real-time task.

Definition 11 (Hard real-time system.). A system that consists of only hard real-time tasks is

referred to as hard real-time system.

For hard real-time systems, the designer of the system has to prove rigorously before run-time

that all the deadlines will be met and as a result system will not exhibit any undesired behavior at

run-time. We now give an example of a hard real-time system [Liu00].

Example 3. we consider an automatically controlled train. It cannot stop instantaneously. When

the signal is red (stop), its braking action must be activated a certain distance away from the signal

post at which the train must stop. This braking distance depends on the speed of the train and the

safe value of deceleration. From the speed and safe deceleration of the train, the controller can

compute the time for the train to travel the braking distance. This time in turn imposes a constraint

on the response time of the jobs which sense and process the stop signal and activate the brake.

This system is a hard real-time system as failing to meet the timing constraints here may lead to

a catastrophe as it can cause loss of human lives and and/or significant damage to the equipment

(i.e., train infrastructure) and hence this system needs to be formally validated at design time to

guarantee that all timing requirements will be met.

Definition 12 (Soft real-time system.). A system with all soft real-time tasks is referred to as soft

real-time system.

For soft real-time systems, the designer of the system is rarely required to prove rigorously

that the system meets its real-time performance objectives. However, in many systems, a statistical

based guarantee (for example, the average number of deadlines that are met) needs to be provided.

The following example of a soft real-time system is listed in [Liu00].

Example 4. Let us consider multimedia systems that provide the user with services of “guaran-

teed” quality. For example, a frame of a movie must be delivered every thirtieth of a second, and

the difference in the times when each video frame is displayed and when the accompanied speech

is presented should be no more than 80 msec. In fact, it is common to subject each new video

stream to be transmitted by a network to an acceptance test. If the network cannot guarantee

the satisfaction of timing constraints of the stream without violating the constraints of existing

streams, the new stream is rejected, and its admission is requested again at some later time. How-

ever, the users are often willing to tolerate a few glitches, as long as the glitches occur rarely and

for short lengths of time. At the same time, they are not willing to pay the cost of eliminating

the glitches completely. For this reason, we often see timing constraints of multimedia systems

guaranteed on a statistical basis, (e.g., the average number of late/lost frames per minute is less

than 2). Moreover, users of such systems rarely demand any proof that the system indeed honor

its guarantees. The quality-of-service guarantee is soft, the validation requirement is soft, and the

timing constraints defining the quality are soft.

This work focuses on hard real-time systems.

16 Background on Real-Time Systems

1.4 Real-time scheduling paradigms

In real-time systems, and especially in hard real-time systems, an important aspect while building

such systems is to schedule the tasks on the computing platform so as to meet all the deadlines.

Scheduling is an act of allocating resources (especially, processors) between various tasks with

the objective of meeting the deadlines of all the tasks. In real-time systems, there are at least two

different ways to schedule the tasks [RS94].

• Table-driven scheduling: In table-driven scheduling, a table is generated before run-time

with the time slots in which each task must be executed. During this process, it is ensured

that, on a processor, at any time, at most one task is executing. Later, at run time, this table

is used to execute the tasks in their respective time slots.

• Priority-driven scheduling: In priority-driven scheduling, a number referred to as prior-

ity is assigned to each task often based on the task parameters. For example, the priority

assignment can be based on periods, say a task with smaller period has a higher priority

compared to the priority of a task with a higher period. Then, among the tasks that are ready

to execute, the task with the highest priority is executed. The priority-driven scheduling

techniques can in turn be categorized as follows [DB11].

– Task-static priority scheduling. Each task has a single static priority that applies to

all of its jobs, i.e., every job of a task gets the same priority as that of the task. Rate

Monotonic scheduling (RM) [LL73] is an example of such a scheduling.

– Job-static priority scheduling. Different jobs of the same task may have different

priorities, but each job has a single static priority. An example of such a scheduling

technique is Earliest Deadline First (EDF) [LL73].

– Dynamic-priority scheduling. A job of a task may have different priorities at differ-

ent times. Least Laxity First (LLF) [Mok83a] is an example for this category.

This research considers job-static priority scheduling.

Every scheduling approach in general falls into one of the two categories: preemptive or non-

preemptive as defined below.

• Preemptive scheduling: In preemptive scheduling, a task executing on a processor can

be forced by the scheduler to relinquish the processor before it completes execution (i.e.,

preempted) in order to execute some other ready-to-run higher priority task. The task that is

interrupted is resumed sometime later for execution.

• Non-preemptive scheduling: In non-preemptive scheduling, a task executing on a proces-

sor will not be preempted and will therefore execute until completion.

This work considers preemptive scheduling.

1.5 Background on real-time scheduling theory 17

Another way to categorize the scheduling techniques, especially the ones intended for multipro-

cessors is based on whether a task is allowed to migrate from one processor to another or not. This

is describe next and is illustrated in Figure 1.6.

• Fully-migrative scheduling. In fully-migrative scheduling, tasks are not assigned/pinned

to individual processors and all the processors are scheduled using a single algorithm. This

scheduling technique is sometimes also referred to as global scheduling. Depending on the

granularity of migration, fully-migrative scheduling approaches are categorized as follows:

– Task-level migration: Different jobs of the same task may execute on different pro-

cessors; however, each job must execute entirely on a single processor.

– Job-level migration: Here, even a job may migrate during its execution and continue

to execute on a different processor; however, the job cannot execute in parallel on more

than one processor, i.e., a job can only execute on at most one processor at any time.

• Non-migrative scheduling. In non-migrative scheduling, each task is assigned to a single

processor, on which each of its jobs will execute. In this model, each processor is scheduled

independently. This scheduling technique is also referred to as partitioned scheduling.

For heterogeneous multiprocessor systems, we define another category, namely “intra-migrative”

scheduling, as follows.

Definition 13 (Intra-migrative scheduling.). In intra-migrative scheduling for heterogeneous

multiprocessors, each task is statically assigned to a processor type and the jobs of that task will

execute only on those processors that belong to the processor type to which the task is assigned.

In other words, tasks/jobs assigned to a processor type can only migrate between processors of

same type. Each processor type is scheduled independently.

Figure 1.7 illustrates intra-migrative scheduling approach in heterogeneous multiprocessors.

This research focuses on both intra-migrative and non-migrative scheduling.

1.5 Background on real-time scheduling theory

The real-time scheduling theory has its origin as early as 1960s during the Apollo space mission

in US. It was during this time, the first couple of real-time scheduling algorithms were designed,

analyzed and were used to schedule the real-time workload on the on-board computer in the first

manned space mission to the moon [LL73, Liu69].

The paper by Liu and Layland [LL73] is regarded as the foundational and most influential work

in real-time scheduling theory. The paper addressed the problem of scheduling implicit-deadline

periodic tasks with hard deadlines on a uniprocessor system. The paper presented two historical

algorithms — one on task-static priority scheduling and another on job-static priority scheduling.

These scheduling algorithms were preemptive in nature and made a couple of assumptions about

18 Background on Real-Time Systems

τ

Global scheduling

ττ

τ τ τ

τ

τ

τ τ

τ

. . . CPU CPU CPU

(a) Fully-migrative scheduling — no static assignment of
tasks to processors; tasks/jobs can migrate between proces-
sors.

. . .

τ

Uniprocessor
scheduling

Uniprocessor
scheduling

Uniprocessor
scheduling

τ

τ τ

τ τ

τ τ

τ

τ

τ

CPU CPU CPU

(b) Non-migrative scheduling — static assignment of tasks to proces-
sors; no migration is allowed.

Figure 1.6: A visualization of different categories of scheduling approaches.

the workload and the computing platform; some of the assumptions were: (i) tasks should be

implicit-deadline periodic, (ii) tasks should be independent and hence not share any resources

(except the processor) and (iii) computing platform should have a single processor.

The task-static priority algorithm proposed in [LL73] is referred to as Rate Monotonic (RM)

algorithm and it assigns the priority based on the periods of the tasks — the priority of a task

is inversely proportional to its period. Specifically, the task with the shortest period is given

the highest priority and the task with the longest period is given the lowest priority. For this

algorithm, following properties were shown. First, for any task set τ comprising n tasks, if it

holds that the utilization of the task set Uτ ≤ n×
(

2
1
n −1

)
then upon scheduling such a task set

with RM guarantees that all deadlines are met. Observe that as n approaches infinity, the value of

n
(
21/n−1

)
approaches ln(2) which is approximately 69%. Second, it was shown that RM is an

optimal task-static priority algorithm with the interpretation that, if a task set can be scheduled to

1.5 Background on real-time scheduling theory 19

. CPU CPU DSP DSP GPU GPU

τ

Global
scheduling

τ

τ τ

τ τ

τ

τ

τ

τ τ

Global
scheduling

Global
scheduling

Type-CPU Type-DSP Type-GPU

τ

Figure 1.7: Intra-migrative scheduling on heterogeneous multiprocessors — static assignment of
tasks to processor types; tasks/jobs can migrate between processors of same type.

meet all deadlines by any task-static priority algorithm then scheduling the same task set with RM

will also guarantee that all deadlines are met.

The job-static priority algorithm proposed in [LL73] is referred to as Earliest-Deadline First

(EDF) and it assigns the priority based on the deadlines of the tasks. The priorities assigned to

tasks are inversely proportional to the deadlines of the ready-to-run jobs. For this algorithm, it

was shown that, for any task set τ , if it holds that the utilization of the task set Uτ ≤ 1 then upon

scheduling such a task set with EDF guarantees that all deadlines are met. Also, it has been shown

that [LL73, Der74] EDF is an optimal job-static priority algorithm, in the sense that, if a task set

can be scheduled to meet all deadlines by any job-static priority algorithm then scheduling the

same task set with EDF will also guarantee that all deadlines are met.

Since then the real-time scheduling theory has evolved gradually by relaxing the assumptions

made by Liu and Layland and imposing more constraints as per the requirements/demands of the

new systems (e.g., embedded systems), applications (e.g., electronic software in cars, mobiles,

etc) and architectures (e.g., multi-cores).

After that seminal paper, lot of research has been done on real-time scheduling on uniproces-

sor systems (e.g., [KAS93, BTW95, Leh90, SRL90, BMR90, BRH90, LW82, LSD89, SAA+04]).

For example, the work in [KAS93, BTW95] provided a methodology for considering the pre-

emption overhead into schedulability analysis that arises due to context switching, task queue

manipulation and interrupt handling; the authors of [Leh90] provided an analysis technique for

arbitrary-deadline tasks; the work in [SRL90] provided analysis techniques for systems where

tasks can communicate/synchronize with each other and so on. Today, uniprocessor scheduling

techniques are considered mature, taught in undergraduate courses worldwide and they are also

adapted by the industry as well.

Although the multiprocessor real-time scheduling theory originated at the same time as that of

uniprocessor (i.e., in the late 1960s and early 1970s), unfortunately, it did not experience similar

20 Background on Real-Time Systems

success. In 1969, Liu [Liu69] observed that: “Few of the results obtained for a single processor

generalize directly to the multiple processor case; bringing in additional processors adds a new

dimension to the scheduling problem. The simple fact that a task can use only one processor even

when several processors are free at the same time adds a surprising amount of difficulty to the

scheduling of multiple processors."

Dhall and Liu [Dha77], [DL78] observed that popular uniprocessor algorithms such as RM

and EDF will not scale to multiprocessor when used as global scheduling algorithms and suffer

from the so called “Dhall effect" leading to deadline misses even when the computational capacity

requested by the workload from the underlying computing platform is nearly 0%. The following

example illustrates this scenario.

Example 5. Consider a system with n tasks and m processors (n > m) as shown in Table 1.1.

Tasks Ci Ti = Di
τ1 2ε 1
τ2 2ε 1
... ... 1

τn−1 2ε 1
τn 1 1+ε

Table 1.1: An example to illustrate Dhall effect — deadlines can be missed on multiprocessors
even though the computational capacity requested is nearly 0%.

If the task set is globally scheduled using either RM or EDF algorithms, the task τn with period

1+ ε will miss the deadline. (The exact number of processors is irrelevant here since task τn will

miss deadline as long as the number of processors m is less than the number of tasks m). Note

that the total utilization of this task set is: Uτ = (n−1)×2ε + 1
1+ε

and as ε → 0, Uτ → 1. Thus,

even with a multiprocessor system, i.e., m > 1, a task set with a utilization just above 1 may not be

schedulable to meet all deadlines.

Therefore, in those days, the research efforts were mostly focused on the partitioned ap-

proaches where tasks are assigned to individual processors and then a well-known uniproces-

sor scheduling algorithm is used on each processor to schedule the respective tasks. However,

from 1997 onwards, when Phillips et. al. [PSTW97] showed that the “Dhall effect" was more

to do with task sets having some tasks with high utilization than the nature of global scheduling

algorithms itself, there was a renewed interest in global scheduling policies [RSS90, BCPV96,

AJ03, ABJ01, GFB03, BCL05, BCL09] along with the continued interest in partitioned schedul-

ing [OS95, LBOS95, LGDG03, LDG04, FBB06, BF07b]. See the surveys [CFH+04, DB11] for

a more comprehensive list of contributions in multiprocessor scheduling.

Most of the multiprocessor scheduling theory has been developed for identical [FBB06, LDG04,

BCL05, GFB03] and uniform multiprocessors [FB03, CG06, DJ06, HS86] and only a few results

are available for heterogeneous multiprocessors [HS76, LST90, Bar04c, Bar04b, Bar04a, CSV12,

WBB13]. This is unfortunate because many chip manufacturers offer heterogeneous multicores

1.5 Background on real-time scheduling theory 21

these days [AMD13a, Int13b, Nvi12, App13, Qua13, Sam13a, ST 12, Tex13]. Hence, in this work,

we focus on heterogeneous multiprocessor scheduling.

In a heterogeneous multiprocessor system, fully-migrative scheduling algorithms that allow

tasks to migrate between processors of different types [Bar04a] are hard to realize (if not im-

possible as shown in [DVT12]) since processors with different functionalities (i.e., processors of

different types) typically have different instructions sets, register formats, etc. Hence, the prob-

lem of assigning tasks to processors (to processor types, respectively) and then scheduling them

with an uniprocessor scheduling algorithm (an identical multiprocessor scheduling algorithm, re-

spectively) is of much greater practical significance. This however requires that the following two

sub-problems be solved: (i) assigning tasks to processors (to processor types, respectively) and (ii)

once tasks are assigned, performing uniprocessor scheduling on each processor (identical multi-

processor scheduling on each processor type, respectively). The latter problem is well-understood:

it can be performed with an optimal uniprocessor scheduling algorithm such as EDF [LL73] for

example (an optimal identical multiprocessor scheduling algorithm such as DP-Fair [LFS+10],

respectively). But assigning tasks to processors is the difficult part (to avoid tedium, we will only

speak about assigning tasks to processors in the rest of this paragraph). Several approaches for

assigning real-time tasks to processors are available but for achieving provably good performance,

only the following classes are known

• Bin-packing schemes: Bin-packing schemes are popular for assigning tasks to processors

but unfortunately the proof techniques used on identical multiprocessors do not easily trans-

late to heterogeneous multiprocessors and consequently, no bin-packing schemes exist for

assigning real-time tasks on heterogeneous multiprocessors. Hence, in this work, we pro-

pose task assignment techniques that based on bin-packing heuristics and show how to prove

the performance of these algorithms for heterogeneous multiprocessor model.

• Integer-Linear-Programming (ILP) modeling: The problem of assigning tasks to proces-

sors is modeled as Zero-One Integer-Linear-Programming (ILP). Such a formulation can

be solved directly but it has the drawback of having a large computational complexity; the

decision problem ILP is NP-complete. Through relaxation of the ILP formulation to LP

and the use of certain tricks [Pot85], it is possible however to design an approximation

scheme [LST90, Bar04b, Bar04c] which runs in polynomial time. It must solve linear-

programming formulations so the degree of the polynomial is unfortunately high. Hence,

we propose algorithms with low-degree polynomial time-complexity that do not rely on ILP

modeling techniques. Also, we propose algorithms based on ILP modeling and its relax-

ation to LP but for such algorithms, we show how to prove a better performance guarantee

(as compared to state-of-the-algorithms [LST90, Bar04b, Bar04c]).

• Dynamic programming techniques: Using dynamic programming techniques, it is possi-

ble to design algorithms that can assign the tasks in polynomial time, to any desired degree

of accuracy [WBB13, HS76] — referred to as polynomial time approximation schemes.

22 Background on Real-Time Systems

However, the practical significance of such algorithms is severely limited since these poly-

nomial time approximation schemes generally incur a very high time-complexity as the con-

stants in the run-time expression for these algorithms are excessively large [CB11]. Hence,

in this work, by combining the dynamic programming technique and the bin-packing heuris-

tic, we show how to obtain a polynomial time approximation scheme which is efficient to

be usable in practice.

Overall, in this work, we aim to design (low-degree) polynomial time-complexity algorithms

with provably good performance for the problem of task assignment on both t-type and two-

type heterogeneous multiprocessors, which are becoming increasingly relevant [AMD13a, Int13b,

Nvi12, App13, Qua13, Sam13a, ST 12, Tex13] for the reasons stated earlier.

Chapter 2

Overview of This Research

This chapter gives an overview of this research. It formally defines the problem considered and

briefly discusses its hardness. Then, some of the assumptions that are common across all the

algorithms proposed here are stated. Also, the performance metrics used to evaluate the proposed

algorithms are discussed. Finally, the contributions and significance of this work is summarized.

Organization of the chapter. Section 2.1 defines the problems studied in this work and Sec-

tion 2.2 discusses the hardness of these problems. Section 2.3 describes why studying heteroge-

neous multiprocessors with a constant number of distinct processor types (i.e., both two-type and

the generic t-type) is relevant. Section 2.4 lists some of the assumptions and Section 2.5 defines the

metrics that are used to quantify the performance of the newly proposed algorithms. Section 2.6

lists the contributions and significance of this work and finally Section 2.7 gives an overview on

how the rest of the thesis is organized.

2.1 Problem definition

This work considers the following problem:

Problem Definition [Task scheduling problem]. Given a set of implicit-deadline sporadic tasks

and a heterogeneous multiprocessor platform with a constant number of distinct processor types

(i.e., both 2-type and generic t-type), design efficient algorithms to schedule the given tasks on the

given platform so as to meet all the deadlines.

As mentioned earlier, in heterogeneous multiprocessors, achieving task migration between

different types is hard to achieve (if not impossible as discussed by [DVT12]) as different pro-

cessor types typically differ in their register formats, instruction sets, etc. Hence the problem of

assigning tasks to processors (to processor types, respectively) and then scheduling them with

an optimal uniprocessor scheduling algorithm (optimal identical multiprocessor scheduling algo-

rithm, respectively) is of much greater practical significance. Hence, in this work, we consider

non-migrative and intra-migrative scheduling. With these approaches, the scheduling problem

translates to task assignment problem as described next.

23

24 Overview of This Research

In the non-migrative scheduling (sometimes referred to as partitioned scheduling in the liter-

ature), every task is statically assigned to a processor before run-time and all its jobs must execute

only on that processor at run-time. The challenge is to find, before run-time, a task-to-processor

assignment such that, at run-time, on each processor, the given uniprocessor scheduling algorithm

meets all deadlines of the tasks assigned on that processor. Scheduling tasks to meet deadlines

on single processor systems is a well-understood problem. One may use Earliest Deadline First

(EDF) [LL73] on each processor, for example. EDF is an optimal scheduling algorithm on a

uniprocessor system [LL73, Der74], with the interpretation that, for every valid job arrival pat-

tern, if a schedule exists that meets all deadlines then EDF always succeeds to construct such a

schedule in which all the deadlines are met. Therefore, assuming that such an optimal scheduling

algorithm is used on every processor, the challenging part is to find a task-to-processor assignment

such that, there exists a schedule that meets all deadlines — such an assignment is said to be fea-

sible assignment hereafter. Hence, in non-migrative model, the problem of scheduling the tasks

translates to the problem of assigning tasks to individual processors.

In the intra-migrative scheduling, every task is statically assigned to a processor type before

run-time, rather than to an individual processor. Then, the jobs of each task can migrate at run-

time from one processor to another as long as these processors are of the same type (to which the

task is assigned). Similar to the non-migrative model, once tasks are assigned to processor types,

scheduling them to meet all deadlines under the intra-migrative model is well-understood, e.g.,

one may use an optimal identical multiprocessor scheduling algorithm, such as, ERfair [AS00],

DP-Fair [LFS+10] or U-EDF [NBN+12]. Once again, assuming that such an optimal schedul-

ing algorithm is used for scheduling tasks on processors of each type, the challenging part is to

find a feasible task-to-processor-type assignment such that, there exists a schedule that meets all

deadlines. Hence, in intra-migrative model, the problem of scheduling the tasks translates to the

problem of assigning tasks to processor types.

With this information, the task scheduling problem can be re-written as follows:

Rewriting the Problem Definition [Task assignment problem]. Given a set of implicit-deadline

sporadic tasks and a heterogeneous multiprocessor platform with a constant number of distinct

processor types (either two-type or generic t-type), design efficient algorithms to assign tasks to

processors (to processor types, respectively) such that “there exists” a schedule (for every valid job

arrival pattern) that meets all deadlines. The problem of assigning tasks to processors is referred

to as non-migrative task assignment problem and the problem of assigning tasks to processor

types is referred to as intra-migrative task assignment problem.

We also study a variant of the task scheduling problem which is referred to as shared resource

scheduling problem. In this variant, tasks share some resources such as data structures, sensors,

etc. in addition to sharing processors. Tasks must operate on such resources in a mutually exclusive

manner while accessing the resource, that is, at all times, when a job of a task holds a resource, no

other job of any task can hold that resource. The problem is stated below.

New Problem Definition [Shared resource scheduling]. We consider the problem of scheduling

a task set of implicit-deadline sporadic tasks to meet all deadlines on a heterogeneous multiproces-

2.2 Hardness of the problem 25

sor platform (either two-type or generic t-type) where a task may access multiple shared resources

in a mutually exclusive manner. In other words, this is the “task assignment problem” (defined

earlier) with an additional constraint that the tasks may share some resources in a mutually ex-

clusive manner.

To summarize, with the larger goal of understanding the real-time scheduling on heteroge-

neous multiprocessors, we study the intra-migrative and non-migrative task assignment problems

along with the shared resource scheduling problem on both two-type and t-type heterogeneous

multiprocessors.

2.2 Hardness of the problem

The problems under consideration are shown to be intractable — informally, these problems are

shown to be “hard” to solve. In other words, for both the task assignment problems (i.e., assigning

tasks to processor types and assigning tasks to individual processors) as well as the shared resource

problem, it turns out that that, it is not possible to design optimal algorithms with polynomial time-

complexity unless P=NP. So, if one wishes to design an optimal algorithm for any of these prob-

lems, it is indeed possible but such an algorithm will have an exponential time-complexity. Such

exponential time-complexity algorithms are not scalable, in the sense that, for problem instances

with large number of tasks and processors, these algorithms may take ages to complete their exe-

cution. Hence, for such “hard” problems, it is desirable to design (non-optimal) polynomial-time

complexity algorithms and also to provide a bound on how much worse it performs, compared to

an optimal scheme. Therefore, it is essential to understand whether the problems under considera-

tion fall in this (intractable) class. Depending on the hardness, a problem can be categorized in one

of the many well-defined classes [KV06]. The problems under consideration can be categorized as

follows. The intra-migrative task assignment problem on two-type heterogeneous multiprocessors

can be categorized as NP-Complete and all the other problems (intra-migrative task assignment

problem on t-type, non-migrative task assignment problem on both two-type and t-type and shared

resource scheduling problem on both two-type and t-type) can be categorized as NP-Complete in

the strong sense. Informally, (i) both the classes of problems (i.e., NP-Complete and NP-Complete

in the strong sense) are difficult, (ii) no optimal algorithm with a polynomial time-complexity can

be designed for both the classes of problems unless P=NP and (iii) NP-Complete in the strong

sense is more difficult than NP-Complete. There has been a significant effort in studying prob-

lems of these classes and other classes (for example, see [GJ78, GJ79, Sip96, KV06, AB09]) —

interested reader can refer to such works which also define these terms more precisely.

Coming back to the problems under consideration, the above mentioned claims about the

hardness of the problems are formally proven in subsequent chapters. Here, we only give the

intuition.

Intra-migrative task assignment problem on two-type platforms. This problem is equivalent

to the problem of assigning tasks to two processors, each of different type, such that each

processor is used at most 100% of its capacity. Even the simpler instance of this problem,

26 Overview of This Research

in which tasks must be assigned to two identical processors, is known to be NP-Complete

(Theorem 18.1 in [KV06], p. 426). So, this result continues to hold for two-type platforms

as well. This is formally proven in Chapter 3.

Non-migrative task assignment problem on two-type platforms. Even in the simpler case of

identical multiprocessors, the problem of assigning tasks to individual processors is shown

to be NP-Complete in the strong sense [Joh73]. So, this result continues to hold for two-type

platforms as well. This is formally proven in Chapter 4.

Shared resource scheduling on two-type platforms. It can be seen that a restricted version of

this problem in which tasks do not share any resources is equivalent to the problem of

assigning tasks to individual processors which is NP-Complete in the strong sense (as men-

tioned above). Hence this result continues to hold for the shared resource problem as well.

This is formally proven in Chapter 5.

Intra-migrative task assignment problem on t-type platforms. Even in the simpler case, in which

each processor type has only one processor, finding a feasible task-to-processor-type assign-

ment is NP-Complete in the strong sense (since the restricted version of this special case in

which all the processors are identical is NP-Complete in the strong sense [Joh73]). Hence,

this result continues to hold for t-type platforms having one or more processors of each type

as well. This is discussed in Chapter 6.

Non-migrative task assignment problem on t-type platforms. Even in the simpler case of two-

type heterogeneous multiprocessors, the problem of assigning tasks to individual processors

is NP-Complete in the strong sense (as discussed earlier). So, this result continues to hold

for t-type heterogeneous multiprocessors as well. This is discussed in Chapter 7.

Shared resource scheduling on t-type platforms. Even in the simpler case of two-type hetero-

geneous multiprocessors, this problem is known to be NP-Complete in the strong sense.

Hence this result continues to hold for t-type heterogeneous multiprocessors as well. This

is formally proven in Chapter 8.

2.3 Why study heterogeneous multiprocessors?

The heterogeneous multiprocessor computing platform is a more generic computing platform than

identical and uniform platforms. In other words, identical and uniform multiprocessors are special

case of heterogeneous multiprocessors. Hence, it is interesting to study heterogeneous multi-

processors since a solution designed for heterogeneous multiprocessors can also be applied to

identical and uniform multiprocessors. In practice, many chip makers offer chips having a con-

stant number of distinct types of processors. For example, AMD [AMD13a], Apple [App13],

Intel [Int13c, Int13b], NVIDIA [Nvi12], Qualcomm [Qua13], Samsung [Sam13a], ST Micro-

electronic [ST 12], TI [Tex13] offer such chips. Traditionally, processors of the first type were

2.4 Common assumptions 27

meant for general purpose computations and processors of the second type (respectively, third

type, fourth type and so on) were meant for special purpose computations such as graphics pro-

cessing (respectively, signal processing, network processing and so on), hence task assignment

was trivial. Today though, designers use processors of the second type (and third type and so

on) for wide range of computations and this makes task assignment non-trivial [Gee05]. Unfortu-

nately, the literature does not provide any algorithm that takes advantage of this special structure.

Hence, in this work, we consider heterogeneous multiprocessors with a constant number of dis-

tinct processor types (i.e., both two-type and generic t-type). Also, we believe that studying the

generic t-type heterogeneous multiprocessors (in which t ≥ 2) provides a better understanding of

the problem and the solutions to such a generic model will cater to complex systems in near future.

2.4 Common assumptions

This section lists some of the assumptions that this work makes and hence these assumptions hold

for the rest of the discussion in this thesis. This list of assumptions is not comprehensive and some

of the assumptions specific to each proposed algorithm are listed in the respective chapters. The

assumptions that are common for all the chapters are listed below.

• Implicit-deadline sporadic tasks. The tasks considered in this work are implicit-deadline

sporadic tasks, that is, for each task, the deadline of the task is equal to its minimum inter-

arrival time.

• Heterogeneous multiprocessors. The computing platform considered in Part II (i.e., Chap-

ters 3-5) is two-type heterogeneous multiprocessor in which each processor is either of

type-1 or of type-2. The computing platform considered in Part III (i.e., Chapters 6-8) is

t-type heterogeneous multiprocessor in which each processor belongs to one and only one

of the t ≥ 2 types.

• No parallel execution. A task cannot execute in parallel, i.e., at any time instant, it can be

executing on at most one processor.

• Impact of shared hardware resources. The shared hardware resources such as shared cache

and memory bus are not modeled as part of the computing platform. Hence, the impact of

such shared hardware resources on the execution behavior of a task is ignored.

• (In)dependent tasks. Majority of this work assumes that the tasks are independent, i.e., they

do not share any resources such as data structures and do not have any data dependency. It

is only in Chapter 5 and Chapter 8 that we consider dependent tasks, i.e., tasks that share

resources such as data structures, sensors, etc.

28 Overview of This Research

2.5 Performance metrics

This section describes the performance metrics used in this work to quantify the performance of

the newly proposed algorithms.

Commonly, the performance of a real-time scheduling algorithm is characterized using the

notion of utilization bound [LL73]. The utilization bound of an algorithm is a number such that

if the utilization of the task set (see Definition 7 in Chapter 1 on page 11) is no greater than this

number then all deadlines will be met when the task set is scheduled using this algorithm. More

formally, it is defined as follows.

Definition 14 (Utilization bound of an algorithm). An algorithm A is said to have an utilization

bound of UB only if it is capable of scheduling any task set with an utilization of up to UB such

that all deadlines are met.

This metric has been used to evaluate scheduling algorithms on uniprocessor [LL73], identical

multiprocessors [ABJ01, GSYY10, OB98] and uniform multiprocessors [DJ06]. However, it does

not translate to algorithms on heterogeneous multiprocessors. This is because on heterogeneous

multiprocessors, each task is characterized by as many utilizations as the number of distinct pro-

cessor types and hence the syntax and semantics of utilization of a task set is not clear in this

context as of today. Hence we rely on the speed competitive ratio (also referred to as resource

augmentation [PSTW97] and speedup factor [Bar13, WBB13] in literature) to characterize the

performance of the algorithm under design.

2.5.1 Performance metric: Speed competitive ratio

The speed competitive ratio is an alternative method of comparing the performance of an algorithm

A with that of an optimal algorithm or class of algorithms. In this context, we first define the term

“adversary” as follows.

Definition 15 (Adversary). The adversary is the optimal algorithm or the class of optimal algo-

rithms against which the performance of an algorithm A is evaluated.

We define the speed competitive ratio of an algorithm as follows.

Definition 16 (Speed competitive ratio of a task assignment algorithm). We define the speed

competitive ratio SCRA of an algorithm A against an adversary, as the lowest number such that,

for every task set and computing platform, it holds that: if it is possible for the adversary to meet

all deadlines of the task set on the computing platform then algorithm A succeeds to output an

assignment of tasks that meets all deadlines of the task set as well but given a platform, in which

every processor is SCRA times faster than the corresponding processor in the platform used by

the adversary.

A low speed competitive ratio indicates high performance; the best achievable is one (which

reflects the optimal algorithm for a given problem). If a scheduling algorithm has an infinite

2.5 Performance metrics 29

Fully
migrative

Intra
migrative

Non
migrative

Fully
migrative

Intra
migrative

Non
migrative

Algorithm Adversary

Figure 2.1: Different adversaries that are referred in the subsequent parts of this report. Also,
corresponding categories of algorithms that can be designed are also listed. In this research, we
will not discuss any fully-migrative algorithms. However, we will use all the three categories of
adversaries shown here to quantify the performance of the algorithms.

speed competitive ratio then a task set exists which could be scheduled (by adversary) to meet

deadlines but would miss deadlines with the actually used algorithm even if processor speeds

were multiplied by an “infinite" factor. Therefore, a scheduling algorithm with a finite (ide-

ally small) speed competitive ratio is desirable because it can ensure the designer that deadlines

will be met by using faster processors. Consequently, the real-time systems community has em-

braced the development of scheduling algorithms with finite speed competitive ratio, for example,

see [AT07b, BF07b, DRBB09].

This research uses the speed competitive ratio as one of the performance metrics.

The task assignment algorithm A can be non-migrative or intra-migrative or fully-migrative.

Similarly, the adversary can be non-migrative or intra-migrative or fully-migrative as well. This

is shown in Figure 2.1. As shown in the figure, the class of non-migrative algorithms is strictly

contained in the class of intra-migrative algorithms which in turn is strictly contained in the class

of fully-migrative algorithms. This is because, every non-migrative assignment is also an intra-

migrative assignment (but vice versa is not true) which in turn is also a fully-migrative assignment

(but vice versa is not true).

Relative Powerfulness of the adversaries: We say that the fully-migrative model is more

powerful than the intra-migrative model which in turn is more powerful than the non-migrative

model, in the sense that, (i) a non-migrative solution can always be transformed into an intra-

migrative solution and similarly, an intra-migrative solution can always be transformed into a

30 Overview of This Research

fully-migrative solution whereas (ii) a fully-migrative solution cannot always be transformed into

an intra-migrative solution and similarly, an intra-migrative solution cannot always be transformed

into a non-migrative solution. So, the relation of these models can be depicted as shown in Fig-

ure 2.1 which reflects that the non-migrative model is contained in the intra-migrative model which

in turn is contained in the fully-migrative model.

Comparison of an algorithm with an adversary. Recall that, this thesis deals with de-

signing non-migrative and intra-migrative task assignment algorithms (apart from shared resource

scheduling problem, which will be discussed in detail in Chapter 5 and Chapter 8 separately). In

this context, it is important to know the adversaries against which the speed competitive ratio of

such algorithms can be quantified. This is illustrated in Figure 2.2. As shown in Figure 2.2a, the

speed competitive ratio of an intra-migrative algorithm can be expressed against an equally pow-

erful intra-migrative adversary or more powerful fully-migrative adversary. Similarly, as shown

in Figure 2.2b, the speed competitive ratio of a non-migrative algorithm can be expressed against

an equally powerful non-migrative adversary or a more powerful intra-migrative adversary or

even more powerful fully-migrative adversary.

Remark about the notations. In the rest of the thesis, the speed competitive ratio of an

algorithm against an adversary, for example, of a non-migrative algorithm against a non-migrative

adversary, will be stated as follows: “The speed competitive ratio of a non-migrative algorithm
A is SCRA against the non-migrative adversary”. For any other combinations of algorithms

and adversaries, the speed competitive ratio is expressed in a similar manner.

2.5.2 How do we use the speed competitive ratio metric

The speed competitive ratio can be used as a metric to compare different algorithms. We now

illustrate how this metric can be used to decide which of the two algorithms, say A1 and A2,

has a better performance. Obviously, both these algorithms must be of same category for a fair

comparison, for example, let us say both A1 and A2 are non-migrative algorithms. There are two

cases to be considered as described below.

• When the adversaries are same. When their adversaries are the same, the algorithm with

a lower speed competitive ratio is said to have a better performance guarantee. This is

illustrated in Table 2.1.

• When the adversaries are different. In this case, if the speed competitive ratio of an

algorithm, say A1, with a more powerful adversary is no greater than the speed competitive

ratio of the other algorithm, say A2, (which has a weaker adversary than A1) then A1 is

said to have a better performance than A2; otherwise, nothing can be inferred about their

performance. This is illustrated in Table 2.2.

As can be seen from the last row of Table 2.1, for the case when the adversaries of both

the algorithms are the same and their speed competitive ratios are same as well, using speed

competitive ratio alone is not sufficient to determine which algorithm offers a better performance

2.5 Performance metrics 31

Fully
migrative

Intra
migrative

Non
migrative

Fully
migrative

Intra
migrative

Non
migrative

Intra-migrative
Algorithm

Adversary

(a) An intra-migrative algorithm — adversary can be intra-migrative or fully-migrative.

Fully
migrative

Intra
migrative

Non
migrative

Fully
migrative

Intra
migrative

Non
migrative

Non-migrative
Algorithm

Adversary

(b) A non-migrative algorithm — adversary can be non-migrative or intra-migrative or fully-
migrative.

Figure 2.2: Comparison of (intra-migrative and non-migrative) algorithms against different adver-
saries — an algorithm can only be compared against either an equally powerful adversary or a
more powerful adversary.

32 Overview of This Research

When the adversaries of both the algorithms are same

SCRA 1 < SCRA 2
Algorithm A1 is said to have a better performance than
algorithm A2

SCRA 1 > SCRA 2
Algorithm A2 is said to have a better performance than
algorithm A1

SCRA 1 = SCRA 2
Both the algorithms, A1 and A2, are said to have the same
performance

Table 2.1: Comparison of algorithm A1 with a speed competitive ratio SCRA 1 and algorithm A2
with a speed competitive ratio SCRA 2 when their adversaries are the same. Note that both the
algorithms are of same category, for example, non-migrative.

When the adversary of A1 is more powerful than the adversary of A2

SCRA 1 ≤ SCRA 2
Algorithm A1 is said to have a better performance than
algorithm A2

SCRA 1 > SCRA 2
Nothing can be inferred about which algorithm has a better
performance

Table 2.2: Comparison of algorithm A1 with a speed competitive ratio SCRA 1 and algorithm
A2 with a speed competitive ratio SCRA 2 when their adversaries are different. Specifically, the
adversary of A1 is more powerful than the adversary of A2. Note that both the algorithms are of
same category, for example, non-migrative.

guarantee. To resolve the tie in such cases, we use two more metrics which are discussed in the

next section.

2.5.3 Performance metrics: Time-complexity and Necessary multiplication factor

In this section, we describe two more metrics that are used in this work to quantify the performance

of the algorithms. First metric is the time-complexity of the algorithm which indicates approxi-

mately how much time does an algorithm take to execute as a function of the input size and the

second metric is the necessary multiplication factor which indicates, for a given problem instance

(a task set and a heterogeneous platform), how much faster processors the algorithm needs in order

to succeed. This factor is always upper bounded by the speed competitive ratio of the algorithm

and in this work, this is observed via simulations. We now present these metrics in detail and also

discuss how they are used.

2.5.3.1 Time-Complexity of the algorithm

How much time does a given task assignment algorithm takes to output the solution? It could

possibly take a very long time on large inputs (that is many task sets and processors) to give a task

assignment; it is not desirable to wait indefinitely or for years to obtain such a task assignment!

So, it makes sense to be able to estimate the running time of the algorithm apriori. However, it is

not necessary to know the exact execution time of the algorithm and it only suffices to know the

approximate execution time. One way to do this is by quantifying the amount of time taken by the

2.5 Performance metrics 33

algorithm as a function of the length of the string representing the input — generally referred to

as the time-complexity of the algorithm. For example, the time-complexity of a task assignment

algorithm can be expressed as a function of its inputs, say as a function of the number of tasks n

and the number of processors m.

The worst-case running time of an algorithm is an upper bound on the running time for any

input. Knowing it gives us a guarantee that the algorithm will never take any longer. The worst-

case time-complexity of an algorithm can be and is generally expressed using big O notation,

which excludes coefficients and lower order terms [CLRS01]. When expressed this way, the time

complexity is said to be described asymptotically, i.e., as the input size goes to infinity. For

example, if the time required by an algorithm on all inputs of size n is at most 5n3 + 3n, the

asymptotic time complexity is O(n3).

An algorithm is said to be of polynomial time-complexity if its running time is upper bounded

by a polynomial expression in the size of the input of the algorithm. A task assignment algo-

rithm with a time-complexity of O(nk) for some constant k is an example of the polynomial time-

complexity algorithm.

2.5.3.2 How do we use the time-complexity metric

We make use of the time-complexity of the algorithm in this work as follows.

• We aim to design algorithms with polynomial time-complexity, preferably low-degree poly-

nomial.

• While comparing two algorithms, for the case when their adversaries as well as their speed

competitive ratios are same, the algorithm with a lower-degree polynomial time-complexity

among the two is said to have a better performance than the other.

This research uses time-complexity of the algorithm as one of the performance metrics.

2.5.3.3 Necessary multiplication factor of the algorithm

Recall that speed competitive ratio of an algorithm holds for any task set and computing platform,

in the sense that, for any task set, if it is possible for the adversary to schedule the tasks on the

computing platform to meet all deadlines then an algorithm A with a speed competitive ratio

SCRA succeeds in finding a feasible task assignment on a platform in which every processor is

SCRA times faster. In other words, there exists no task set such that the adversary can schedule

it on a computing platform to meet all deadlines but algorithm A will fail to do it on a platform

which is SCRA times faster. However, it may happen that, for a given task set, algorithm A might

succeed in finding a feasible task assignment on a platform which is less than SCRA times faster

(of course, this platform cannot be slower than the one used by the adversary). The necessary

multiplication factor captures this behavior.

34 Overview of This Research

Definition 17 (Necessary multiplication factor). For a given task set, we define the necessary

multiplication factor NMFA of an algorithm A as the minimum amount of extra speed of proces-

sors that algorithm A needs, so as to succeed in finding a feasible task assignment as compared to

adversary. This factor is always upper bounded by the speed competitive ratio SCRA of algorithm

A .

Speed competitive ratio vs. Necessary multiplication factor. The speed competitive ratio is a

property of an algorithm whereas the necessary multiplication factor is a property of an algorithm

but for a given problem instance (tasks and processors). Informally, the necessary multiplication

factor can be viewed as the speed competitive ratio of an algorithm for a given problem instance.

In the context of this work, the speed competitive ratio of an algorithm is a theoretically derived

value but the necessary multiplication factor of the algorithm is an observed value via simulations.

Also, note that for a given problem instance, the necessary multiplication factor of an algorithm is

always upper bounded by its speed competitive ratio, i.e., for a given task set τ and an algorithm

A , it always holds that: NMFA ≤ SCRA .

2.5.3.4 How do we use the necessary multiplication factor metric

We use the necessary multiplication factor metric to evaluate the average-case performance of the

algorithms. We use this metric as described below.

• For the case when the adversaries of two algorithms are same and the speed competitive ratio

of these algorithms are same as well, we use necessary multiplication factor to determine

the algorithm with a better performance. A large number of problem instances (number

of processors, number of tasks and their utilizations) are generated randomly. For each

problem instance we run both algorithms and obtain their necessary multiplication factors

for each problem instance. The algorithm that has low necessary multiplication factor for

many task sets is said to exhibit a better average-case performance than the other.

• The necessary multiplication factor is also used for stand-alone evaluation of the algorithm.

Specifically, it is used to evaluate the average-case performance behavior of the algorithm.

The problem instances are generated randomly and the algorithm is run to obtain the neces-

sary multiplication factor for each problem instance. Then, for the majority of the task sets,

if the algorithm has low necessary multiplication factor then the algorithm is said to exhibit

a good average-case behavior.

This research uses necessary multiplication factor as one of the performance metrics.

2.6 Contributions and significance of this work

This work makes the following contributions to state-of-the-art in real-time scheduling theory. A

more detailed description of the contributions will be given in subsequent chapters of this report.

2.6 Contributions and significance of this work 35

C1. Intra-migrative scheduling on two-type platforms. For this problem, this work proposes a

task assignment algorithm with a speed competitive ratio of 1.5 against an intra-migrative

adversary. For intra-migrative scheduling on two-type platforms, no previous task assign-

ment algorithm is known to exist and hence the proposed algorithm is the first of its kind1.

C2. Non-migrative scheduling on two-type platforms. For this problem, this work proposes

the following task assignment algorithms with finite speed competitive ratios.

C2.a A task assignment algorithm (and a couple of its variants) is proposed with a speed

competitive ratio of 2 against non-migrative adversary. This is the first work to show

how bin-packing heuristics can be used to design task assignment algorithms for two-

type heterogeneous multiprocessors with a finite speed competitive ratio. The pro-

posed algorithm has the same speed competitive ratio as the previously known algo-

rithms; however, it outperforms these algorithms in average-case performance evalua-

tions.

C2.b Another task assignment algorithm is proposed with a speed competitive ratio of 2 but

against a more powerful intra-migrative adversary. This algorithm outperforms all the

previously known task assignment algorithms for non-migrative scheduling (including

the one mentioned in C2.a above).

C2.c A task assignment algorithm is proposed with a speed competitive ratio of 1.5 and in

addition it requires three additional processors, compared to non-migrative adversary.

This algorithm outperforms all the previously known task assignment algorithms for

non-migrative scheduling (whose speed competitive ratios are derived against non-

migrative adversary). This is because, for systems with large number of processors,

the additional three processors become negligible and hence the speed competitive

ratio of this algorithm tends to 1.5. Also, this is the first work to show how cutting

planes can be used in linear programming to improve the speed competitive ratio of

algorithms for provably good algorithms for assigning real-time tasks to processors so

as to meet all deadlines.

C2.d Finally, a polynomial time approximation scheme (PTAS) for assigning tasks to pro-

cessors is proposed as well. It has a speed competitive ratio of 1+ 3ε (where ε is an

input parameter) against a non-migrative adversary. This algorithm combines dynamic

programming techniques and bin-packing heuristics to obtain a polynomial time ap-

proximation scheme which is efficient to be usable in practice. Further, it outperforms

the previously known PTAS in average-case performance evaluations.

C3. Shared resource scheduling on two-type platforms. For this problem, this work proposes

an algorithm with a proven speed competitive ratio. For this problem, no previous algorithm

is known to exist and hence the proposed algorithm is the first of its kind.
1Some of the non-migrative algorithms from state-of-the-art can be “adapted” to intra-migrative scenario, however,

these “adapted” algorithms will either end up with a significantly higher time-complexity (which severely limits the
practicality of these algorithms) or a higher speed competitive ratio compared to our proposed intra-migrative algorithm.

36 Overview of This Research

C4. Intra-migrative scheduling on t-type platforms. For this problem, a task assignment al-

gorithm is proposed with a speed competitive ratio of 1+ t−1
t against an intra-migrative

adversary where t is the number of distinct types of processors. For intra-migrative schedul-

ing on t-type platforms, no previous task assignment algorithm is known to exist and hence

the proposed algorithm is the first one2.

C5. Non-migrative scheduling on t-type platforms. For this problem, a task assignment algo-

rithm is proposed with a speed competitive ratio of 2 against a more powerful intra-migrative

adversary. This algorithm outperforms all the previously known task assignment algorithms

for non-migrative scheduling on t-type heterogeneous multiprocessors.

C6. Shared resource scheduling on t-type platforms. For this problem, this work proposes an

algorithm with a proven speed competitive ratio. For this problem, no previous algorithm is

known to exist and hence the proposed algorithm is the first of its kind.

2.7 Organization of the report

The rest of the report is organized as follows. Part II (i.e., Chapters 3–5) discusses in detail the

work on two-type heterogeneous multiprocessors carried out as part of this dissertation. Then

Part III (i.e., Chapters 6–8) discusses the work on t-type heterogeneous multiprocessors carried

out as part of this dissertation. Finally Part IV (i.e., Chapter 9) presents some concluding remarks.

Specifically, the rest of the thesis is organized as follows.

• Chapter 3 discusses the intra-migrative task assignment problem on two-type heterogeneous

multiprocessors and proves its hardness. It then proposes an algorithm, namely SA, for this

problem. The algorithms SA relies on a simple technique of sorting the tasks in a certain

way and then assigning them one by one to processor types. The speed competitive ratio of

SA is proven against an equally powerful intra-migrative adversary.

• Chapter 4 describes the non-migrative task assignment problem on two-type heterogeneous

multiprocessors and proves its hardness. For this problem, it presents several algorithms,

namely FF-3C, SA-P, LP-CUT and PTAS, in detail and proves their respective speed com-

petitive ratios:

– The algorithm FF-3C is based on bin-packing heuristics and its speed competitive ratio

is proven against an equally powerful non-migrative adversary.

– The algorithm SA-P is an extension of SA and its speed competitive ratio is proven

against a more powerful intra-migrative adversary.

2Similar to two-type heterogeneous multiprocessors, although some of the non-migrative algorithms from state-of-
the-art can be “adapted” to intra-migrative scenario, our algorithm performs better than the “adapted” algorithms either
in terms of the time-complexity or in terms of the speed competitive ratio.

2.7 Organization of the report 37

– The LP-CUT algorithm makes use of cutting planes in linear programming formula-

tion for assigning tasks. The speed competitive ratio of LP-CUT is proven against an

equally powerful non-migrative adversary.

– The PTASNF algorithm makes use of dynamic programming technique and bin-packing

heuristics to output the task assignment. For PTASNF, the speed competitive ratio is

proven as a function of an input parameter (such class of algorithms are referred to as

polynomial time approximation schemes) against an equally powerful non-migrative

adversary.

• Chapter 5 describes the shared resource scheduling problem on two-type heterogeneous

multiprocessors and proves its hardness. It then presents an algorithm, namely FF-3C-vpr,

for this problem which is based on the FF-3C algorithm, and proves its speed competitive

ratio against an equally powerful adversary.

• Chapter 6 discusses the intra-migrative task assignment problem on t-type heterogeneous

multiprocessors and its hardness. It then presents an algorithm, namely LPGIM, for this

problem. The LPGIM algorithm relies on solving a linear program formulation and uses

graph theory techniques for obtaining an intra-migrative task assignment. The speed com-

petitive ratio of LPGIM is proven against an equally powerful intra-migrative adversary.

• Chapter 7 describes the non-migrative task assignment problem on t-type heterogeneous

multiprocessors and its hardness. For this problem, it presents an algorithm, namely LPGNM,

which is an extension of the intra-migrative algorithm, LPGIM. The speed competitive ratio

of LPGNM algorithm is proven against a more powerful intra-migrative adversary.

• Chapter 8 describes the shared resource scheduling problem on t-type heterogeneous mul-

tiprocessors and its hardness. It then presents an algorithm, namely LP-EE-vpr, for this

problem which is based in LP-EE algorithm from the state-of-the-art and proves its speed

competitive ratio against an equally powerful adversary.

• Finally, Chapter 9 presents some concluding remarks by summarizing the results obtained

in this research, discussing the implications of these results and briefly mentioning a couple

of directions in which this research could be extended in the future.

38 Overview of This Research

Part II

Two-type Heterogeneous
Multiprocessors

39

Chapter 3

Intra-migrative Scheduling on Two-type
Heterogeneous Multiprocessors

3.1 Introduction

Recall that, on heterogeneous multiprocessor systems, scheduling algorithms that assume tasks

can migrate between processors of different types are hard to design for many practical systems

since processors of different types typically have different instructions sets, register formats, etc.

This is because it is difficult to achieve task migration between processors of different types (if not

impossible as shown in [DVT12]). Hence, we focus on studying scheduling approaches which do

not assume such migrations (between processors of different types). The intra-migrative schedul-

ing and non-migrative scheduling are two such approaches.

In this chapter, we consider the problem of intra-migrative scheduling of tasks on two-type

heterogeneous multiprocessors. Recall that in the intra-migrative model, every task needs to be

statically assigned to a processor type before run-time. Then during run-time, the jobs of each

task can migrate from one processor to another as long as these processors are of the same type

to which the task is assigned. Once all the tasks are assigned to processor types, by treating

processors of each type as an identical multiprocessor platform, tasks assigned to each processor

type are scheduled using a global scheduling algorithm (designed for identical multiprocessors)

on the respective processor types. The global scheduling problem on identical multiprocessors is

a well-studied topic — some optimal scheduling algorithms exist for this problem (such as ER-

Fair [AS00], DP-Fair [LFS+10], U-EDF [NBN+12], etc.). These algorithms are optimal, in the

sense that, for every valid job arrival pattern, if a schedule exists that meets all deadlines then these

algorithms construct a schedule that meets all deadlines as well. So, in the intra-migrative model,

once the tasks are assigned to processor types, one of these optimal scheduling algorithms can be

used to schedule the tasks on each processor type. Hence, the challenging part is to find a task-

to-processor-type assignment for which there exists a schedule (for every valid job arrival pattern)

that meets all the deadlines — such an assignment is said to be feasible task-to-processor-type

41

42 Intra-migrative Scheduling on Two-type Heterogeneous Multiprocessors

assignment hereafter. This problem is equivalent to the problem of assigning tasks to two proces-

sors, each of different type, such that each processor is used at most 100% of its capacity. Even

the simpler instance of this problem, in which tasks must be assigned to two identical processors,

is NP-Complete (Theorem 18.1 in [KV06], p. 426). So, this result continues to hold for two-type

platforms as well. Hence, in this work, we propose a non-optimal algorithm of low-degree poly-

nomial time-complexity for this problem, for which no previous algorithm is known to exist. We

also prove its speed competitive ratio against an equally powerful intra-migrative adversary.

Problem Statement. In this chapter, we consider the problem of intra-migrative scheduling

of implicit-deadline sporadic tasks on two-type heterogeneous multiprocessors. That is, assuming

that an optimal identical multiprocessor scheduling algorithm is used on processors of each type to

schedule the tasks, we design an algorithm to determine a feasible assignment of tasks to processor

types.

Related Work. The scheduling problem on heterogeneous multiprocessors has been stud-

ied in the past [HS76, Bar04b, Bar04c, CSV12, LST90, WBB13, JP99]. However, all these ap-

proaches [HS76, Bar04b, Bar04c, CSV12, LST90, WBB13, JP99] consider the problem of non-

migrative scheduling, i.e., the problem of assigning tasks to individual processors and none of

them consider the problem of intra-migrative scheduling in which tasks need to be assigned to

processor types.

Contributions and Significance of The Work Discussed in This Chapter. We present a task

assignment algorithm, called SA, which has a O(n logn) time-complexity and offers the following

guarantee. Consider a two-type platform π and an implicit-deadline sporadic task set τ in which,

for every task in τ , it holds that: (i) utilization of the task on processors of type-1 is either no greater

than α or is greater than 1 and (ii) utilization of the task on processors of type-2 is either no greater

than α or is greater than 1, where 0 < α ≤ 1. If there exists a feasible intra-migrative assignment

of τ on π (i.e., task-to-processor-type assignment) then, using SA, it is guaranteed to find such a

feasible intra-migrative assignment of τ on a platform π ′ in which only one processor is 1+ α

2 ≤
1.5 (since 0 < α ≤ 1) times faster than the corresponding processor in π . For defining the speed

competitive ratio of SA, we say that SA succeeds to find such a feasible intra-migrative assignment

on a platform π(1+ α

2), where π(1+ α

2) is a two-type platform in which every processor is 1+ α

2 times

faster than the corresponding processor in π; in other words, the speed competitive ratio of intra-

migrative algorithm SA is 1+ α

2 ≤ 1.5 against equally powerful intra-migrative adversary. We

also evaluate the average-case performance of algorithm SA by generating task sets randomly

and measuring how much faster processors the algorithm needs (i.e., its necessary multiplication

factor), for a given task set, in order to output a feasible intra-migrative task assignment.

We believe that the significance of this work is two-fold. First, for the problem of intra-

migrative task assignment, no previous algorithm exists and hence our algorithm, SA, is the first

for this problem1. Second, in our evaluations with randomly generated task sets, for the vast major-

1Some of the non-migrative algorithms from state-of-the-art (for example, the one presented in [HS76, LST90]) can
be “adapted” to intra-migrative scenario, however, these “adapted” algorithms will either end up with a significantly
higher time-complexity [HS76] (which severely limits the practicality of these algorithms) or a higher speed competitive
ratio [LST90] compared to our SA algorithm.

3.1 Introduction 43

ity of task sets, the necessary multiplication factor of our algorithm is observed to be significantly

smaller than its speed competitive ratio.

A global view. The context of the new algorithm, SA, can be visualized as shown in Figure 3.1.

Fully
migrative

Intra
migrative

Non
migrative

Fully
migrative

Intra
migrative

Non
migrative

Algorithm Adversary

SA

2-type

SCR=1+α/2

O(n log n)

Figure 3.1: A global view of the new algorithm, SA, proposed in this chapter. Here, SCR denotes
the “speed competitive ratio”, α is a property of the task set — it is the maximum of all the task
utilizations that are no greater than one (and hence can take a value in the range (0,1]) and n
denotes the number of tasks.

Organization of the chapter. The rest of the chapter is organized as follows. Section 3.2

describes the system model. Section 3.3 discusses the hardness of the intra-migrative task assign-

ment problem on two-type heterogeneous multiprocessors. Section 3.4 presents an optimal intra-

migrative task assignment algorithm, MILP-Algo, that uses Mixed Integer Linear Programming

(MILP) formulation. Since solving MILP typically takes a long time (MILP without restrictions is

known to be NP-Complete; see pp. 201–202 in [Pap94]), Section 3.5 presents another algorithm,

LP-Algo, by relaxing the MILP formulation to Linear Programming (LP) formulation and derives

its speed competitive ratio. As solving an LP formulation is also often time consuming, Sec-

tion 3.6 presents a new intra-migrative algorithm, SA, of time-complexity O(n logn) that does not

rely on solving an LP formulation but has the same speed competitive ratio as LP-Algo, which is

proven in Section 3.7. Section 3.8 offers average-case performance evaluations of SA and finally,

Section 3.9 concludes.

44 Intra-migrative Scheduling on Two-type Heterogeneous Multiprocessors

Tasks Utilizations of tasks
u1

i u2
i

τ1 0.5 ∞

τ2 1.2 0.8
τ3 0.7 0.9

Table 3.1: An example to illustrate how to determine the value of α from a given task set.

3.2 System model

We consider the problem of scheduling a task set τ = {τ1,τ2, . . . ,τn} of n implicit-deadline spo-

radic tasks on a two-type heterogeneous multiprocessor computing platform π = {π1,π2, . . . ,πm}
comprising m processors, of which m1 processors are of type-1 and m2 processors are of type-2.

On a two-type platform, the worst-case execution time of a task depends on the type of the

processor on which the task executes. We denote by C1
i and C2

i the worst-case execution time

of a task τi when executed on a processor of type-1 and a processor of type-2, respectively. The

minimum inter-arrival time of task τi is denoted by Ti. We denote by u1
i

def
= C1

i /Ti and u2
i

def
= C2

i /Ti

the utilizations of the task τi on type-1 and type-2 processors, respectively. A task that cannot be

executed upon a certain processor type is modeled by setting its worst-case execution time (and

thus its utilization) on that processor type to ∞.

Let α be a real number defined as follows:

α
def
= max
∀τi∈τ,t∈{1,2}

{
ut

i : ut
i ≤ 1

}
(3.1)

Then it holds that the utilization of any task on any processor type is either no greater than α or is

greater than 1. Formally,

∀τi ∈ τ : (u1
i ≤ α) ∨ (u1

i > 1) and

∀τi ∈ τ : (u2
i ≤ α) ∨ (u2

i > 1) (3.2)

The following example illustrates how to determine the value of α from a given task set.

Example 6. Consider a task set comprising three tasks, τ = {τ1,τ2,τ3} whose utilizations on

type-1 and type-2 processors are as shown in Table 3.1. For this task set, as can be seen from the

table, it holds that, α = 0.9.

We assume that all tasks assigned to type-1 (respectively, type-2) processors are scheduled

on the set of type-1 (respectively, type-2) processors using an algorithm that is optimal for the

problem of scheduling tasks on identical multiprocessors (e.g., ERFair [AS00], DP-Fair [LFS+10],

U-EDF [NBN+12]).

3.3 The hardness of the intra-migrative task assignment problem 45

For convenience, we sometimes denote a two-type platform π with m1 processors of type-1

and m2 processors of type-2 by π(m1,m2). Also, we denote by π(x), a two-type platform in which

every processor is x > 0 times faster than the corresponding processor in platform π .

3.3 The hardness of the intra-migrative task assignment problem

In this section, we show that the problem of intra-migrative task assignment on two-type heteroge-

neous multiprocessors is NP-Complete. We denote this problem as HET2-INTRA-ASSIGN and

is stated in Figure 3.2. In order to show this, we will first consider a restricted version of this

HET2-INTRA-ASSIGN PROBLEM
Instance A task set τ of n implicit-deadline sporadic tasks and a two-type platform π of

m processors of which m1 processors are of type-1 and m2 processors are of
type-2. The utilization of a task τi on a processor of type-t is given by ut

i where
i ∈ {1,2, . . . ,n} and t ∈ {1,2}.

Problem Find an assignment f : {1,2, . . . ,n} → {1,2} such that, ∀t ∈ {1,2}, it holds
that:

(
∑i: f (i)=t ut

i ≤ mt
)
∧
(
∀i ∈ {1,2, . . . ,n} such that f (i) = t : ut

i ≤ 1
)

.

Figure 3.2: The intra-migrative task assignment problem on a two-type heterogeneous multipro-
cessors

problem which is denoted as HET2-INTRA-ASSIGN-SPEC-CASE — see Figure 3.3. We will

show that this problem is NP-complete. It then follows that the HET2-INTRA-ASSIGN problem

is NP-complete as well.

HET2-INTRA-ASSIGN-SPEC-CASE PROBLEM
Instance A task set τ of n implicit-deadline sporadic tasks and a two-type platform π of

m processors of which m1 processors are of type-1 and m2 processors are of
type-2. The utilization of a task τi on a processor of type-t is given by ut

i where
i ∈ {1,2, . . . ,n} and t ∈ {1,2}.
Assume that: ∀τi ∈ τ : u1

i = u2
i and m1 = 1 and m2 = 1.

Problem Find an assignment f : {1,2, . . . ,n} → {1,2} such that, ∀t ∈ {1,2}, it holds
that:

(
∑i: f (i)=t ut

i ≤ mt
)
∧
(
∀i ∈ {1,2, . . . ,n} such that f (i) = t : ut

i ≤ 1
)

.

Figure 3.3: A restricted version of the intra-migrative task assignment problem on a two-type
heterogeneous multiprocessors.

For showing that the HET2-INTRA-ASSIGN-SPEC-CASE problem is NP-Complete, we make

use of the PARTITION problem. The PARTITION problem is shown in Figure 3.4 and it is well-

known that this problem is NP-Complete (Corollary 15.28 in [KV06], p. 365).

Lemma 1. The HET2-INTRA-ASSIGN-SPEC-CASE problem is NP-Complete.

Proof. In order to show that a problem is NP-Complete, we need to: (1) show that the problem is

in NP, (2) transform an NP-Complete problem to the problem under consideration and (3) show

46 Intra-migrative Scheduling on Two-type Heterogeneous Multiprocessors

PARTITION PROBLEM
Instance A list of n natural numbers c1,c2, . . . ,cn.
Question Is there a subset S⊆ {1,2, . . . ,n} such that ∑ j∈S c j = ∑ j∈({1,2,...,n}\S) c j.

Figure 3.4: The partitioning problem, which is known to be NP-Complete [KV06].

that the transformation (of Step (2)) can be done in polynomial time. We now show these for

HET2-INTRA-ASSIGN-SPEC-CASE problem.

1. It is straightforward to see that the problem belongs to NP. To show that the problem is

in NP, we should be able to verify, in polynomial time, the given certificate for an yes-

instance of the problem. As a certificate, we take the assignment on each processor type. To

check whether the given assignment in fact satisfies, for all t ∈ {1,2} :
(
∑i: f (i)=t ut

i ≤ mt
)

∧
(
∀i ∈ {1,2, . . . ,n} such that f (i) = t : ut

i ≤ 1
)

, is obviously possible in polynomial time;

specifically, the time complexity of this step is O(n).

2. We now transform the PARTITION problem (which is NP-Complete) to the above decision

problem. Given an instance c1,c2, . . . ,cn ∈ N of the PARTITION problem, transform it into

an instance of HET2-INTRA-ASSIGN-SPEC-CASE problem with n tasks and compute

utilizations of tasks as follows:

∀τi ∈ τ,∀t ∈ {1,2} : ut
i =

2ci

∑
n
k=1 ck

∈ (0,1] (3.3)

We now show that (intra-migrative) assignment of these n tasks on two processor types is

possible if and only if there is a set S ⊆ {1,2, . . . ,n} such that ∑ j∈S c j = ∑ j∈({1,2,...,n}\S) c j.

We do so by first showing, in (a), some results we will use and then showing, in (b), the

implication in one direction and finally showing, in (c), the implication in the other direction.

(a) Results we will use:

(a.1) It is trivial to see that (a = b)⇒
(
a = b = a+b

2

)
. This gives us:(

∑
j∈S

c j = ∑
j∈({1,2,...,n}\S)

c j

)
⇒(

∑
j∈S

c j = ∑
j∈({1,2,...,n}\S)

c j =
∑ j∈{1,2,...,n} c j

2

)

(a.2) It is also trivial to see that
((

a≤ a+b
2

)
∧
(
b≤ a+b

2

))
⇒ (a = b). This gives us:((

∑
j∈S

c j ≤ ∑
n
k=1 ck

2

)
∧
(

∑
j∈({1,2,...,n}\S)

c j ≤ ∑
n
k=1 ck

2

))
⇒(

∑
j∈S

c j = ∑
j∈({1,2,...,n}\S)

c j

)

3.3 The hardness of the intra-migrative task assignment problem 47

(a.3) Let us introduce g that maps an element in {1,2, . . . ,n} to a processor type. It is

defined as follows:

i ∈ S ⇔ g(i) = 1

i ∈ ({1,2, . . . ,n}\S) ⇔ g(i) = 2

(b) Implication in one direction: We now show (using g) that if there is a set S⊆{1,2, . . . ,n}
such that ∑ j∈S c j = ∑ j∈({1,2,...,n}\S) c j then intra-migrative assignment of these n tasks

on two processor types is possible.

We will do so by assuming that the if-condition of (b) is true and then show that

this implies that the then-condition of (b) must also be true. We know that ∑ j∈S c j =

∑ j∈({1,2,...,n}\S) c j. Using (a.1) on this gives us:

∑
j∈S

c j =
∑ j∈{1,2,...,n} c j

2

∑
j∈({1,2,...,n}\S)

c j =
∑ j∈{1,2,...,n} c j

2

Multiplying each side by 2
∑

n
k=1 ck

and applying the definition of ut
i on the left hand side

and using the definition of g gives us:

∑
j∈{1,2,...,n} such that g(j)=1

u1
j = 1

∑
j∈{1,2,...,n} such that g(j)=1

u2
j = 1

∑
j∈{1,2,...,n} such that g(j)=2

u1
j = 1

∑
j∈{1,2,...,n} such that g(j)=2

u2
j = 1

It obviously holds that, for a set of non-negative numbers, each element cannot be

greater than the sum of all numbers in the set. Using this observation on the above

gives us:

∀ j ∈ {1,2, . . . ,n} such that g(j) = 1 : u1
j ≤ 1

∀ j ∈ {1,2, . . . ,n} such that g(j) = 1 : u2
j ≤ 1

∀ j ∈ {1,2, . . . ,n} such that g(j) = 2 : u1
j ≤ 1

∀ j ∈ {1,2, . . . ,n} such that g(j) = 2 : u2
j ≤ 1

Hence, we have shown that g is an assignment of tasks to processor types that satisfies

the constraints stated in HET2-INTRA-ASSIGN-SPEC-CASE problem.

48 Intra-migrative Scheduling on Two-type Heterogeneous Multiprocessors

(c) Implication in the other direction: We now show (using g) that if intra-migrative as-

signment of these n tasks on two processor types is possible then there is a set S ⊆
{1,2, . . . ,n} such that ∑ j∈S c j = ∑ j∈({1,2,...,n}\S) c j.

We will do so by assuming that the if-condition of (c) is true and then show that

this implies that the then-condition of (c) must also be true. We know that an intra-

migrative assignment of these n tasks is possible. Using the function g to express this

gives us: (
∑

∀ j∈{1,2,...,n} such that g(j)=1
u1

j ≤ 1

)
∧(

∑
∀ j∈{1,2,...,n} such that g(j)=2

u2
j ≤ 1

)
∧(

∀ j ∈ {1,2, . . . ,n} such that g(j) = 1 : u1
j ≤ 1

)
∧(

∀ j ∈ {1,2, . . . ,n} such that g(j) = 2 : u2
j ≤ 1

)
Using the definition of ut

i and the mapping g and multiplying each side by ∑
n
k=1 ck

2 gives

us: (
∑
∀ j∈S

c j ≤ ∑
n
k=1 ck

2

)
∧(

∑
∀ j∈({1,2,...,n}\S)

c j ≤ ∑
n
k=1 ck

2

)
∧(

∀ j ∈ S : c j ≤ ∑
n
k=1 ck

2

)
∧(

∀ j ∈ ({1,2, . . . ,n}\S) : c j ≤ ∑
n
k=1 ck

2

)
Observing the first two expressions and using (a.2) gives us:

∑
j∈S

c j = ∑
j∈({1,2,...,n}\S)

c j

This satisfies the constraints of the PARTITION problem.

3. Finally, it can be easily seen that the transformation from PARTITION to HET2-INTRA-

ASSIGN-SPEC-CASE using Expression (3.3) is possible in polynomial time; specifically,

the time complexity is O(n).

Hence the proof.

Theorem 1. The HET2-INTRA-ASSIGN problem is NP-Complete.

Proof. Follows from Lemma 1 and the fact that HET2-INTRA-ASSIGN-SPEC-CASE problem is

a restricted form of HET2-INTRA-ASSIGN problem.

3.4 MILP-Algo: An optimal intra-migrative task assignment algorithm 49

3.4 MILP-Algo: An optimal intra-migrative task assignment algo-
rithm

In this section, we provide an optimal intra-migrative task assignment algorithm for assigning

tasks from a task set τ to processor types on a two-type platform π . Recall that a task assignment

algorithm is said to be optimal if, for each task set, it succeeds in finding a feasible assignment,

provided such an assignment exists. The proposed algorithm is based on solving Mixed Integer

Linear Programming (MILP) formulation. As described earlier, once the tasks have been assigned

to processor types, we assume that, an optimal scheduling algorithm (e.g., ERfair [AS00], DP-

Fair [LFS+10] or U-EDF [NBN+12]) that is designed for identical multiprocessors, will be used to

schedule the tasks on processors of each type. From the feasibility tests of identical multiprocessor

scheduling [Hor74], the following necessary and sufficient set of conditions must hold ∀t ∈ {1,2},
for intra-migrative task assignment to be feasible:

∀t ∈ {1,2} : ∀τi ∈ τ t : ut
i ≤ 1 (3.4)

∀t ∈ {1,2} : ∑
τi∈τ t

ut
i ≤ mt (3.5)

where τ t denotes the set of tasks that are assigned to processors of type-t. The first condition (Ex-

pression (3.4)) is essential since the system model does not allow a task to execute simultaneously

on more than one processor at any time (as mentioned earlier in Section 3.2). The second con-

dition (Expression (3.5)) is essential as it is a feasibility condition for implicit-deadline sporadic

tasks on identical multiprocessors [Hor74] which ensures that the computing load does not exceed

the processing capacity.

Given these necessary and sufficient feasibility conditions, we now describe, how to obtain an

optimal intra-migrative task assignment algorithm. We partition the task set τ into four subsets

H12, H1, H2 and L as defined below.

H12 is the set of tasks whose utilization exceeds one on both processor types, i.e., these tasks

violate the feasibility condition shown in Expression (3.4), irrespective of the processor type they

are assigned to. Formally,

H12 def
=
{

τi ∈ τ : u1
i > 1 ∧ u2

i > 1
}

(3.6)

A task in H12 cannot be scheduled to meet its deadline unless it executes in parallel, which is

forbidden in our system model. Hence, for task sets with H12 6= /0, no feasible task assignment

exists and thus we assume this set to be empty hereafter.

H1 is the set of tasks that must be assigned to type-1 processors as their utilization on type-

2 exceeds one (and hence assigning them to type-2 processors violates the feasibility condition

shown in Expression (3.4)), i.e.,

H1 def
=
{

τi ∈ τ : u1
i ≤ α ∧ u2

i > 1
}

(3.7)

50 Intra-migrative Scheduling on Two-type Heterogeneous Multiprocessors

Minimize Z subject to the following constraints:
I1. ∀τi ∈ L: x1

i + x2
i = 1

I2. U1 +∑τi∈L x1
i ×u1

i ≤ Z×m1
I3. U2 +∑τi∈L x2

i ×u2
i ≤ Z×m2

I4. ∀τi ∈ L: x1
i ∈ {0,1} and x2

i ∈ {0,1};
Z is a non-negative real number

Figure 3.5: MILP formulation – MILP-Feas(L,π,U1,U2) for assigning tasks in L to processor
types in π .

Analogously, H2 is the set of tasks that must be assigned to type-2 processors as their utiliza-

tion on type-1 exceeds one (and hence assigning them to type-2 processors violates the feasibility

condition shown in Expression (3.4)), i.e.,

H2 def
=
{

τi ∈ τ : u1
i > 1 ∧ u2

i ≤ α
}

(3.8)

Finally, L is the set of tasks that can be assigned to either processor type as their utilizations

on both processor types do not exceed one, i.e.,

L def
=
{

τi ∈ τ : u1
i ≤ α ∧ u2

i ≤ α
}

(3.9)

In these definitions, we can intuitively understand the meaning of “H" as “heavy" and “L" as

“light" tasks.

The optimal intra-migrative task assignment algorithm that we propose, namely MILP-Algo,

works as follows.

First, assign the tasks in H1 to type-1 (respectively, tasks in H2 to type-2) processors. Let U1

denote the capacity consumed on type-1 processors after assigning H1 tasks, formally,

U1 = ∑
τi∈H1

u1
i (3.10)

Analogously, let U2 denote the capacity consumed on type-2 processors after assigning H2 tasks,

formally,

U2 = ∑
τi∈H2

u2
i (3.11)

If U1 > m1 or U2 > m2 then declare failure as this violates the feasibility condition shown in

Expression (3.5).

Second, solve the MILP formulation shown in Figure 3.5 for assigning tasks in L. The formu-

lation in Figure 3.5 is an MILP formulation on x j
i variables and Z variable.” In this formulation,

variable Z denotes the average used capacity of either type-1 or type-2 processors, whichever is

greater, and is set as the objective function to be minimized. Each variable xt
i (where t ∈ {1,2})

indicates the assignment of task τi to type-t processors. The first set of constraints specifies that

3.4 MILP-Algo: An optimal intra-migrative task assignment algorithm 51

every task must be assigned to a processor type. The second (respectively, third) set of constraints

asserts that at most Z×m1 capacity of type-1 (respectively, Z×m2 capacity of type-2) proces-

sors can be used. The fourth set of constraints asserts that each task must be assigned entirely

to either processors of type-1 or type-2. Using the solution of this MILP formulation, assign the

tasks in L to processor types as follows: for each τi ∈ L, τi is assigned to type-t processors if

and only if xt
i = 1. If Z > 1 then declare failure as this indicates that the feasibility condition in

Expression (3.5) is violated.

Theorem 2. The MILP formulation MILP-Feas(L,π,∑τi∈H1 u1
i ,∑τi∈H2 u2

i) shown in Figure 3.5

has a solution with Z ≤ 1 if and only if the task set τ is intra-migrative feasible on the two-type

platform π .

Proof. Suppose that the task set τ is intra-migrative feasible on platform π and let X denote a

feasible assignment. It then holds that, in this assignment, all the tasks in H1 are assigned to

processors of type-1 (otherwise, the condition shown in Expression (3.4) is violated) and analo-

gously, all the tasks in H2 are assigned to processors of type-2. It can be seen that, by setting

U1← ∑τi∈H1 u1
i and by setting U2← ∑τi∈H2 u2

i and ∀τi ∈ L, by assigning values to xt
i variables of

MILP formulation of Figure 3.5 as:

if X (i) = 1 then x1
i ← 1,x2

i ← 0

if X (i) = 2 then x1
i ← 0,x2

i ← 1

gives a (feasible) solution to the MILP formulation in which it holds that: Z ≤ 1.

Now, suppose that there is a feasible solution with Z ≤ 1 to the MILP formulation, MILP-

Feas(L, π , ∑τi∈H1 u1
i , ∑τi∈H2 u2

i), of Figure 3.5. Using this solution, define the assignment of tasks

to processor types as follows:

∀i ∈ H1 : X (i)← 1

∀i ∈ H2 : X (i)← 2

∀i ∈ L : X (i)← 1, if x1
i = 1∧ x2

i = 0

X (i)← 2, if x1
i = 0∧ x2

i = 1

By constraint I1 of the MILP formulation, each task is assigned to exactly one processor type in the

assignment X obtained as shown above. By constraint I2 (respectively, I3) of the MILP formula-

tion, the capacity of type-2 (respectively, type-3) processors is not exceeded in the assignment X

(since Z ≤ 1 in the feasible solution to MILP formulation). Hence, X is a feasible intra-migrative

task assignment.

Corollary 1 (MILP-Algo is an optimal intra-migrative algorithm). If there exists a feasible

intra-migrative task assignment of τ on π then MILP-Algo is guaranteed to return such a feasible

intra-migrative task assignment. In other words, MILP-Algo is an optimal intra-migrative task

assignment algorithm.

52 Intra-migrative Scheduling on Two-type Heterogeneous Multiprocessors

Minimize Z subject to the following constraints:
C1. ∀τi ∈ L: x1

i + x2
i = 1

C2. U1 +∑τi∈L x1
i ×u1

i ≤ Z×m1
C3. U2 +∑τi∈L x2

i ×u2
i ≤ Z×m2

C4. ∀τi ∈ L: x1
i ,x

2
i are non-negative real numbers ∈ [0,1];

Z is a non-negative real number

Figure 3.6: Relaxed LP formulation – LP-Feas(L,π,U1,U2) for assigning tasks in L to processor
types in π .

Proof. Follows from Theorem 2.

Since MILP-Algo relies on solving MILP formulation for which no polynomial time-complexity

algorithm is known to exist (when there are no restrictions [Pap94]), we now present a sub-optimal

polynomial-time algorithm by relaxing the MILP formulation to an LP formulation.

3.5 LP-Algo: An intra-migrative task assignment algorithm

We relax our MILP formulation to LP as shown in Figure 3.6. In this LP formulation, variables Z

and xt
i have the same meaning as the corresponding variables in the MILP formulation and the first

three constraints are the same as well. Only the fourth constraint is different (i.e., relaxed) and it

now asserts that a task can either be integrally or fractionally assigned to processor types. Since

the LP formulation is less constrained than the MILP, the following lemma holds.

Lemma 2. For any task set L, two-type platform π and non-negative real numbers U1 and U2, let

ZMILP be the value of the objective function that any MILP solver would return by solving MILP-

Feas(L,π,U1,U2) shown in Figure 3.5. Similarly, let ZLP be the value of the objective function

that any LP solver would return by solving LP-Feas(L, π , U1, U2) shown in Figure 3.6. It then

holds that ZLP ≤ ZMILP.

Our intra-migrative task assignment algorithm, LP-Algo, works as follows.

1. Assign the tasks in H1 to type-1 (respectively, tasks in H2 to type-2) processors. Let U1

and U2 denote the same entities as before. If U1 > m1 or U2 > m2 then declare failure as it

violates the feasibility condition shown in Expression (3.5).

2. Assign the tasks in L by solving the LP formulation shown in Figure 3.6. In the returned

solution, if xt
i = 1 (where t ∈ {1,2}) then entirely (also referred to as integrally) assign the

corresponding task τi to processors of type-t. If 0 < xt
i < 1 then assign a fraction xt

i of task

τi to processors of type-t; we say that such tasks are fractionally assigned and are referred

to as fractional tasks in the rest of the chapter. If Z > 1 then declare failure as this indicates

that the feasibility condition shown in Expression (3.5) is violated.

3.5 LP-Algo: An intra-migrative task assignment algorithm 53

Among all the optimal solutions to an LP problem, at least one solution lies at a vertex of the

feasible region2(see pp. 117 in [LY08]). We are interested in such a solution, as we show below

that it leads to a task assignment with at most one fractional task. For ease of discussion, we use

index 1,2, . . . , ` to refer to tasks in subset L hereafter.

Lemma 3. For any optimal solution S = {x1
1,x

2
1,x

1
2,x

2
2, . . . ,x

1
` ,x

2
` ,Z} to the LP formulation shown

in Figure 3.6, if S lies at a vertex of the feasible region then there exists at most one task from

L which is fractionally assigned to both processor types (and the rest are integrally assigned to

processors of type-1 and type-2) in the task assignment that S reflects, i.e., there exists at most one

index f ∈ {1,2, . . . , `} such that 0 < x1
f < 1 and 0 < x2

f < 1.

Proof. The proof is based on Fact 2 in [Bar04c]: “consider a linear program on n variables

x1,x2, . . . ,xn, in which each variable xi is subject to the non-negativity constraint, i.e., xi ≥ 0.

Suppose that there are further m linear constraints. If m < n, then at each vertex of the feasible

region (including the basic solution), at most m of the variables have non-zero values”. Clearly,

the LP formulation of Figure 3.6 is a linear program on n′ = 2`+1 variables (i.e., 2` variables xt
i ,

plus variable Z), all subject to non-negativity constraint, and m′ = `+2 further linear constraints

(` constraints due to C1 plus one constraint each due to C2 and C3). As m′ < n′ (we assume

` > 1; otherwise the problem becomes trivial), we know from the above fact that in every optimal

solution at the vertex of the feasible region, it holds that at most m′ = `+2 variables take non-zero

values. Since Z is certain to be non-zero, at most `+1 variables xt
i can be non-zero.

Since there are only ` constraints x1
i +x2

i = 1 and at most `+1 non-zero variables xt
i , it can be

seen that at most one constraint can have its two variables set to non-zero values. Indeed, for any

f ∈ {1,2, . . . , `}, if we set the two variables x1
f and x2

f of the constraint x1
f + x2

f = 1 to fractional

values, then there remain `− 1 non-zero values to distribute to the `− 1 remaining constraints

x1
k + x2

k = 1 (∀k ∈ {1,2, . . . , `}, k 6= f). Since none of those constraints can have its two variables

set to 0, at least one variable (either x1
k or x2

k) has to take a non-zero value in each of these (`−1)

remaining constraints. Again, because x1
k + x2

k = 1 (∀k ∈ {1,2, . . . , `}, k 6= f), all these non-zero

values have to be equal to 1 and thus, at most one task (in this case, τ f) can be fractionally

assigned.

Lemma 4. Any solution, SLP
f , to the LP formulation (shown in Figure 3.6) with at most one frac-

tional task and ZLP
f ≤ 1, can be converted to a solution, SLP

nf , with no fractional task and

ZLP
nf ≤ ZLP

f +
α

2
≤ 1+

α

2
(3.12)

Proof. Let SLP
f = {x1

1,x
2
1,x

1
2,x

2
2, . . . ,x

1
` ,x

2
` ,Z

LP
f } be a solution with only one index f ∈ {1,2, . . . , `}

such that 0< x1
f < 1 and 0< x2

f < 1 (i.e., τ f is the fractional task). Now, let us convert this solution,

2The feasible region of a linear program in n-dimensional space is the region over which all the constraints hold.

54 Intra-migrative Scheduling on Two-type Heterogeneous Multiprocessors

SLP
f , into SLP

nf = {x1′
1 , x2′

1 , x1′
2 , x2′

2 , . . . , x1′
` , x2′

` , ZLP
nf } such that ∀i ∈ {1,2, . . . , `}: x1′

i = 1∨x2′
i = 1, as

follows:

∀i ∈ {1,2, . . . , `} , i 6= f : x1′
i ← x1

i ∧ x2′
i ← x2

i (3.13)

Now, for index f , two options remain:

either perform x1′
f ← x1

f + x2
f ∧ x2′

f ← 0 which results in

ZLP
nf ≤ ZLP

f +
x2

f ×u1
f

m1

or perform x1′
f ← 0 ∧ x2′

f ← x1
f + x2

f which results in

ZLP
nf ≤ ZLP

f +
x1

f ×u2
f

m2

None of the above two operations violate constraints C1-C4 of the LP formulation. So, let us

choose the one that results in the lowest upper bound on ZLP
nf , i.e.,

ZLP
nf ≤min

(
ZLP

f +
x2

f ×u1
f

m1
, ZLP

f +
x1

f ×u2
f

m2

)
Rewriting the above expression, we get:

ZLP
nf ≤ ZLP

f +min
(x2

f ×u1
f

m1
,

x1
f ×u2

f

m2

)

The min term in the above expression increases as (i) m1 and m2 decrease and (ii) u1
f and u2

f

increase. Hence, by setting m1 and m2 to their minimum values, i.e., m1 = m2 = 1, and by setting

u1
f and u2

f to their maximum values, i.e., u1
f = u2

f = α , we get:

ZLP
nf ≤ ZLP

f +min
(

α× x2
f , α× x1

f

)

Using the fact x2
f = 1− x1

f and rewriting yields:

ZLP
nf ≤ ZLP

f +α×min
(
1− x1

f , x1
f
)

The maximum values that ZLP
f and the “min” term can take are 1.0 and 0.5, respectively.

Hence, the above expression becomes:

ZLP
nf ≤ ZLP

f +
α

2
≤ 1+

α

2

Thus, we showed that this transformed solution SLP
nf = {x1′

1 , x2′
1 , x1′

2 , x2′
2 , . . . , x1′

` , x2′
` , ZLP

nf } has

no fractional tasks (i.e., indicator variables with fractional values) and satisfies Expression (3.12)

and all the constraints of LP formulation. Hence the proof.

3.5 LP-Algo: An intra-migrative task assignment algorithm 55

Tasks Utilizations of tasks
u1

i u2
i

τ1 0.5 0.5
τ2 1.0 1.0
τ3 0.5 0.5

Table 3.2: An example to illustrate that the proven speed competitive ratio of LP-Algo algorithm
is a tight bound.

Recall that π(x) denotes a two-type platform in which each processor is x > 0 times faster than

the corresponding processor in platform π . We now prove the speed competitive ratio of LP-Algo.

Corollary 2 (Speed competitive ratio of LP-Algo). If there exists a feasible intra-migrative

assignment of τ on π then using LP-Algo, it is guaranteed to find such a feasible intra-migrative

assignment of τ on π(1+ α

2).

Proof. We know that LP-Algo assigns tasks in H1 and H2 in the same way as an optimal intra-

migrative task assignment algorithm does (as there is no other way to assign those tasks to meet

deadlines). It then uses LP formulation to assign tasks in L. Combining Lemma 1, 2 and 3 gives

us: if there exists a feasible intra-migrative task assignment of τ on π then LP-Algo returns an

assignment of τ on π in which at most one task from L is fractionally assigned and the rest are

integrally assigned to either type-1 or type-2 processors. Then, it follows from Lemma 4 that this

fractional task can be assigned integrally to one of the processor types if given a platform in which

processors are 1+ α

2 ≤ 1.5 (since 0 < α ≤ 1) times faster. Hence the proof.

We now show that the proven speed competitive ratio 1+ α

2 ≤ 1.5 of LP-Algo is a tight bound.

Theorem 3 (Speed competitive ratio of LP-Algo is tight). The proven speed competitive ratio

1.5 of algorithm LP-Algo is a tight bound.

Proof. In order to show that the proven speed competitive ratio of LP-Algo algorithm is a tight

bound, it is sufficient to show that there exists a (feasible intra-migrative) problem instance for

which LP-Algo needs 1.5 times faster processors to output a feasible intra-migrative assignment.

We now show that such a problem instance exists.

Consider a problem instance with a task set τ = {τ1,τ2,τ3} comprising three tasks and a two-

type platform π = {π1,π2} comprising two processors. Let π1 be a processor of type-1 and π2 be

a processor of type-2. The utilizations of tasks are shown in Table 3.2.

Observe that the given task set τ is intra-migrative feasible on the given platform π . A feasible

intra-migrative assignment is obtained by assigning (i) τ1 and τ3 to type-1 processors (which has

a single processor, π1) and (ii) τ2 to type-2 processors (which has a single processor, π2). This

assignment is shown in Table 3.3.

Now consider algorithm LP-Algo. Initially, the task set is partitioned using Expressions (3.6)–

(3.9) as follows: H12 = /0, H1 = /0, H2 = /0 and L = {τ1,τ2,τ3}. Since there are no heavy tasks,

56 Intra-migrative Scheduling on Two-type Heterogeneous Multiprocessors

Processor types Tasks assigned
type-1 (π1) τ1 and τ3

type-2 (π2) τ2

Table 3.3: A feasible intra-migrative assignment for tasks shown in Table 3.2 on a two-type plat-
form π having one processor of type-1 and one processor of type-2.

LP-Algo solves LP formulation shown in Figure 3.6 for assigning light tasks. Upon solving the

LP formulation, we obtain a solution shown in Table 3.4. Upon assigning tasks to processor types

using the solution output by the solver (which is shown in Table 3.4), it holds that:

• type-1 processors are fully utilized

• type-2 processors are fully utilized and

• task τ2 is equally split between type-1 and type-2 processors

It can be seen that, in order to assign τ2 integrally to type-1 processors, the speed of type-1

processors must be increased to 1.5. Analogously, for assigning τ2 integrally to type-2 processors,

the speed of type-2 processors must be increased to 1.5 as well. Therefore, a speedup of 1.5 is

required to assign τ2 integrally to one of the processor types.

Hence, the proven speed competitive ratio 1.5 of LP-Algo algorithm is a tight bound.

Remark 1 Although Corollary 2 states that, for an intra-migrative feasible task set, LP-Algo needs

a platform in which every processor is 1+ α

2 times faster, in order to output an intra-migrative

feasible task assignment, it is trivial to see from the proof of Corollary 2 that a platform in which

only one processor is 1+ α

2 times faster is sufficient (to which the at most one fractional task can

be integrally assigned).

Recall that π(m1,m2) denotes a two-type platform in which m1 > 0 processors are of type-

1 and m2 > 0 processors are of type-2. We now state the performance of LP-Algo in terms of

additional number of processors.

Corollary 3. If there exists a feasible intra-migrative assignment of τ on π(m1,m2) then, using LP-

Algo, it is guaranteed to obtain such a feasible intra-migrative assignment of τ on π ′(m1 +1,m2),

which has one additional processor of type-1 compared to π .

Proof. Combining Lemma 1, 2 and 3 gives us: if there exists a feasible intra-migrative task as-

signment of τ on π then LP-Algo returns an assignment of τ on π in which at most one task from

L, say τ f , is fractionally assigned to both processor types and the rest are integrally assigned to

either type-1 or type-2 processors. From the definition of L, we know that u1
f ≤ α and u2

f ≤ α

where 0 < α ≤ 1. Hence, if such a task τ f exists then it could be integrally assigned to the set of

type-1 processors, which has an additional processor in π ′. Hence the proof.

3.6 SA: An intra-migrative task assignment algorithm 57

Variables Values
Z 1.0
x1

1 1.0
x2

1 0.0
x1

2 0.5
x2

2 0.5
x1

3 0.0
x2

3 1.0

Table 3.4: A solution output by the LP solver to the LP formulation shown in Figure 3.6 for the
problem instance under consideration.

Remark 2 It is trivial to see that Corollary 3 holds true if LP-Algo is given a platform π ′(m1,m2+

1) comprising m+1 processors of which m1 processors are of type-1 and m2+1 processors are of

type-2.

It is trivial to see that the assignment techniques that rely on solving LP formulations take

considerable amount of time to output a solution compared to techniques that do not solve LP

formulations and rely on simpler techniques. So, we now propose an algorithm, namely SA, that

has the same speed competitive ratio as LP-Algo but does not solve LP formulation and instead

uses a simple and elegant assignment technique.

3.6 SA: An intra-migrative task assignment algorithm

In this section, we describe the working of algorithm, SA, and show that it has a time-complexity

of O(n logn).

3.6.1 The description of SA algorithm

SA is an intra-migrative task assignment algorithm and works as follows.

1. Partition the task set τ into subsets H12, H1, H2 and L as shown in Expression (3.6) to

Expression (3.9). If H12 6= /0 then declare failure.

2. Assign tasks in H1 to type-1 (respectively, H2 to type-2) processors on platform π . If

U1 = ∑τi∈H1 u1
i > m1 or U2 = ∑τi∈H2 u2

i > m2 then declare failure.

3. Sort the tasks in L in non-increasing order of u2
i

u1
i

— intuitively, in non-increasing order of

their preference to be assigned to type-1 processors.

4. Traverse this sorted list from “left to right" and assign the tasks one after the other to type-1

processors until there is no capacity left on type-1 processors to assign a task integrally (or

all the tasks in L are assigned to type-1 processors leading to a successful assignment).

58 Intra-migrative Scheduling on Two-type Heterogeneous Multiprocessors

5. Traverse the sorted list from “right to left" and assign the remaining tasks one after the

other to type-2 processors until there is no capacity left on type-2 processors to assign a task

integrally (or the task that could not be assigned in the previous step is assigned to type-2

processors thereby resulting in a successful assignment).

6. Finally, assign the remaining task, if any, fractionally to both processor types (we show in

Theorem 4 that there can be at most one such task, if there exists a feasible intra-migrative

assignment of τ on π). While assigning this remaining task, assign as big a fraction of the

task as possible to type-1 processors (i.e., the entire remaining capacity of type-1 processors

is used), and assign the remaining fraction to type-2 processors. If there is not enough

capacity left to assign this remaining task fractionally then declare failure.

SA is named so because we “Sort and Assign” the tasks in L.

3.6.2 Time-complexity of SA algorithm

We now show that the time-complexity of SA is a low-degree polynomial function of the number

of tasks (n). By inspecting the six steps of algorithm, SA, described above, we know that:

• H1 tasks are assigned to type-1 processors (i.e., at most n tasks). The time-complexity of

this operation is O(n).

• H2 tasks are assigned to type-2 processors (i.e., at most n tasks). The time-complexity of

this operation is O(n).

• Sorting is performed over a subset of τ (i.e., at most n tasks). The time-complexity of this

operation is O(n · logn) e.g., using Heapsort.

• Traverse the sorted list L (i.e., at most n tasks) and assign the tasks to processor types. The

time-complexity of this operation is O(n).

Thus, the time-complexity of the algorithm is at most

O(n)︸︷︷︸
assign H1 tasks

+ O(n)︸︷︷︸
assign H2 tasks

+O(n · logn)︸ ︷︷ ︸
sort L tasks

+ O(n)︸︷︷︸
assign L tasks

= O(n · logn)

3.7 Speed competitive ratio of SA algorithm

In this section, we derive the speed competitive ratio of SA. For this, we mainly focus on the

assignment of tasks in L as SA assigns tasks in H1 and H2 in the same way as an optimal intra-

migrative assignment algorithm does.

First, we introduce a term, swap solution, that is extensively used in the rest of this section.

Definition 18 (Swap solution). A solution S = {x1
1,x

2
1,x

1
2,x

2
2, . . . ,x

1
` ,x

2
` ,Z} to the LP formulation

of Figure 3.6 is said to be a swap solution if and only if ∀τi,τ j ∈ L such that τi 6= τ j and u2
i

u1
i
≥ u2

j

u1
j
,

it holds that x1
i = 1∨ x2

j = 1.

3.7 Speed competitive ratio of SA algorithm 59

Property 1 (A single fractional task). From Definition 18, it can be easily shown that, in any

swap solution S = {x1
1,x

2
1,x

1
2,x

2
2, . . . ,x

1
` ,x

2
` ,Z}, there exists at most one task which is fractionally

assigned to both processor types, i.e., there exists at most one index f ∈ {1,2, . . . , `} such that

0 < x1
f < 1 and 0 < x2

f < 1.

The remainder of this section is organized as follows. In subsection 3.7.1, we describe a

method to transform any feasible solution of the LP formulation (shown in Figure 3.6) into a

feasible swap solution (Lemma 5). Then, in subsection 3.7.2, we show that the solution returned

by SA for assigning tasks in L is similar to the swap solution, in the sense that, at most one task is

fractionally assigned to both processor types and the rest are integrally assigned to type-1 and type-

2 processors (Theorem 4). Finally, we show that this fractional task can be integrally assigned to

a processor type if given a platform in which processors are 1+ α

2 ≤ 1.5 times faster (Theorem 5).

Using all this information and considering that SA assigns tasks in H1 and H2 in a same way as

an optimal intra-migrative task assignment algorithm does, we establish that its speed competitive

ratio is 1+ α

2 ≤ 1.5.

3.7.1 The swapping method

We now show that any feasible solution to our LP formulation can be transformed into a feasible

swap solution.

Lemma 5. Any feasible solution S = {x1
1,x

2
1,x

1
2,x

2
2, . . . ,x

1
` ,x

2
` ,Z} to the LP formulation of Fig-

ure 3.6 can be transformed into a feasible swap solution S′ = {x1′
1 , x2′

1 , x1′
2 , x2′

2 , . . . , x1′
` , x2′

` , Z′} for

which Z′ = Z.

Proof. If S is not a swap solution, then we know by definition that there exists τp,τq ∈ L such that:

τp 6= τq and
u2

p

u1
p
≥

u2
q

u1
q

and x1
p < 1 ∧ x2

q < 1 (3.14)

We prove the claim by (iteratively) transforming this solution S into another solution S′ in which

the following properties hold:

P1. ∀τi ∈ L, τi 6= τp,τi 6= τq: x1′
i = x1

i and x2′
i = x2

i

P2. x1′
p = 1∨ x2′

q = 1

P3. Constraints C1-C4 of LP formulation hold and Z′ = Z

The steps involved in transforming solution S into S′ are described below. Performing those

steps iteratively as long as such a pair τp,τq ∈ L fulfilling Expression (3.14) exists, will ultimately

lead to a feasible swap solution S′ with Z′ equal to Z. Property P1 and P2 ensure that, with

each iteration, the solution is moving closer towards the swap solution and P3 ensures that this

(intermediate) solution is feasible. At each iteration, we denote by S = {x1
1, x2

1, x1
2, x2

2, . . . , x1
` , x2

` ,

Z} the feasible solution computed in the previous iteration (in the first iteration, this solution is

60 Intra-migrative Scheduling on Two-type Heterogeneous Multiprocessors

the given one) and by S′ = {x1′
1 ,x

2′
1 ,x

1′
2 ,x

2′
2 , . . . ,x

1′
` ,x

2′
` ,Z

′} the modified feasible solution after the

current iteration (note that S′ of iteration k acts as S in iteration k+1). The solution obtained after

the final iteration is the feasible swap solution. Each iteration is performed as follows:

∀τi ∈ L,τi 6= τp,τi 6= τq:

x1′
i ← x1

i (3.15)

x2′
i ← x2

i (3.16)

and

x1′
p ← x1

p +δ1 (3.17)

x2′
p ← x2

p−δ1 (3.18)

x1′
q ← x1

q−δ2 (3.19)

x2′
q ← x2

q +δ2 (3.20)

where δ1
def
= min(x2

p,x
1
q×

u1
q

u1
p
) and δ2

def
= min(x2

p×
u1

p
u1

q
,x1

q).

Proof of P1. From Expressions (3.15) and (3.16), it is trivial to see that Property P1 holds.

Proof of P2. We have to consider two cases:

Case (i): x2
p ≤ x1

q×
u1

q
u1

p
. In this case, δ1 = x2

p and δ2 = x2
p×

u1
p

u1
q
. Substituting the value of δ1 in

Expression (3.17) gives: x1′
p ← x1

p + x2
p. Since we know that x1

p + x2
p = 1 (it is true in the initial

solution S and it holds true in all the subsequent iterations as well, as shown later in Proof of P3),

we get x1′
p ← 1 and hence Property P2 is satisfied.

Case (ii): x2
p > x1

q×
u1

q
u1

p
. This case is analogous to the previous case. In this case, δ1 = x1

q×
u1

q
u1

p
and

δ2 = x1
q. Substituting the value of δ2 in Expression (3.20) gives: x2′

q ← x1
q + x2

q. Since we know

that x1
q + x2

q = 1 (it is true in the initial solution S and it holds true in all the subsequent iterations

as well, as shown later in Proof of P3), we get x2′
q ← 1 and hence Property P2 is satisfied.

Proof of P3. Since the initial solution S is feasible, constraint C1 holds by definition, i.e., ∀τi ∈
L : x1

i +x2
i = 1. Let us see whether this holds in solution S′ which is obtained from S with the help

of Expressions (3.15)-(3.20). Let us consider the following two cases:

Case (i): ∀τi ∈L,τi 6= τp,τi 6= τq. Adding Expressions (3.15) and (3.16), we get: x1′
i +x2′

i = x1
i +x2

i .

Since we know that ∀τi ∈ L : x1
i +x2

i = 1, we obtain: x1′
i +x2′

i = 1. Recall that, in the next iteration,

this solution S′ acts as S while computing another S′. Hence, this holds in that iteration and all

subsequent iterations. Hence constraint C1 holds true.

Case (ii): τi = τp∨τi = τq. Analogous to the previous case, adding Expressions (3.17) and (3.18),

gives: x1′
p + x2′

p = 1 and adding Expressions (3.19) and (3.20), gives: x1′
q + x2′

q = 1. This holds true

in all the iterations for the reasons stated in the previous case. Hence, ∀τi ∈ L, constraint C1 holds

true.

3.7 Speed competitive ratio of SA algorithm 61

Now, we show that constraint C2 holds. From Equations (3.15)–(3.20), we have:

`

∑
i=1

(x1′
i ×u1

i) =
`

∑
i=1

i6=p,i6=q

(x1
i ×u1

i)

+

(
x1

p +min

(
x2

p,x
1
q×

u1
q

u1
p

))
×u1

p

+

(
x1

q−min

(
x2

p×
u1

p

u1
q
,x1

q

))
×u1

q (3.21)

In both cases (i.e., x2
p ≤ x1

q×
u1

q
u1

p
and x2

p > x1
q×

u1
q

u1
p
), the ‘min’ terms in Expression (3.21) cancel out

and hence the expression simplifies to:

`

∑
i=1

(x1′
i ×u1

i) =
`

∑
i=1

(x1
i ×u1

i)≤ Z×m1 (3.22)

Hence, Constraint C2 is not violated. With analogous reasoning, it can be shown that

`

∑
i=1

(x2′
i ×u2

i) =
`

∑
i=1

(x2
i ×u2

i)≤ Z×m2 (3.23)

Hence, Constraint C3 is also not violated.

Now let us consider constraint C4. We know by definition that in solution S, ∀τi ∈ L, it holds

that x1
i ≥ 0 and x2

i ≥ 0. Hence, from Expressions (3.15) and (3.16), in solution S′, ∀τi ∈ L,τi 6=
τp,τi 6= τq, it holds that x1′

i ≥ 0 and x2′
i ≥ 0. Now, for τi = τp∨ τi = τq, we have two cases:

Case (i): x2
p ≤ x1

q×
u1

q
u1

p
. In this case, we have δ1 = x2

p and δ2 = x2
p×

u1
p

u1
q
. Since we have shown that

constraint C1 holds, substituting the value of δ1 in Expression (3.17) and (3.18), we get x1′
p = 1

and x2′
p = 0, respectively. From the case, we have: x1

q ≥ x2
p×

u1
p

u1
q
> 0. So, substituting the value of

δ2 in Expression (3.19) and (3.20) gives us x1′
q ≥ 0 and x2′

q > 0, respectively. Hence, constraint C4

holds in this case.

Case (ii): x2
p > x1

q ×
u1

q
u1

p
. This case is analogous to the previous case. In this case, we have

δ1 = x1
q×

u1
q

u1
p

and δ2 = x1
q. Since we have shown that constraint C1 holds, substituting the value

of δ2 in Expression (3.19) and (3.20), we get x1′
q = 0 and x2′

q = 1, respectively. From the case,

we have: x2
p ≥ x1

q×
u1

q
u1

p
> 0. So, substituting the value of δ1 in Expression (3.17) and (3.18) gives

us x1′
p > 0 and x2′

p ≥ 0, respectively. Hence, constraint C4 holds in this case. Thus, ∀τi ∈ L,

constraint C4 holds true.

Since none of the constraints, C1-C4, of LP formulation are violated, the transformed solution

remains feasible, and from Expression (3.22) and Expression (3.23), we can conclude that Z′ = Z.

Thus, at the end of the iteration, for a pair of tasks τp,τq that are considered in the iteration, it

holds that: x1
p = 1∨ x2

q = 1. Hence, applying the transformation shown in Expressions (3.15)–

(3.20) repeatedly, we obtain a feasible swap solution.

62 Intra-migrative Scheduling on Two-type Heterogeneous Multiprocessors

Lemma 6. For any feasible swap solution S = {x1
1,x

2
1,x

1
2,x

2
2, . . . ,x

1
` ,x

2
` ,Z} to the LP formulation,

we can re-index tasks in L such that u2
1

u1
1
≥ u2

2
u1

2
≥ ·· · ≥ u2

`

u1
`

(with ties broken favoring the task with

lower index before re-indexing) and with this order, there is an index f ∈ {0,1,2, . . . , `, `+1} such

that:

∀i < f : x1
i = 1 and

∀i > f : x2
i = 1

Proof. Let S = {x1
1,x

2
1,x

1
2,x

2
2, . . . ,x

1
` ,x

2
` ,Z} be any feasible swap solution. We re-index the tasks

(together with x1
i and x2

i values in S, ∀τi ∈ L) such that:

u2
1

u1
1
≥ u2

2

u1
2
≥ ·· · ≥ u2

`

u1
`

(3.24)

with ties broken as described in the claim. We now prove that there exists f ∈ {0,1,2, . . . , `, `+1}
such that ∀τi ∈ L, if i < f then x1

i = 1 and if i > f then x2
i = 1. The following three cases may arise

(recall from Property 1 that, in a swap solution, there is at most one fractional task): (1) all the

tasks in L are assigned to the same processor type or (2) tasks in L are assigned to both processor

types and there is one fractional task or (3) tasks in L are assigned to both processor types and

there is no fractional task. We now consider each of these cases separately below.

Case (1): All the tasks in L are assigned to processors of type-1 (respectively, type-2); The claim

trivially holds for f = `+1 (respectively, f = 0).

Case (2): The tasks in L are assigned to both processor types and there is one fractional task; let

f be the index of this fractional task, i.e., there exists τ f ∈ L for which 0 < x1
f < 1 and 0 < x2

f < 1.

We need to consider two sub-cases:

Case 2.1 (∀τi ∈ L such that i < f): Since u2
i

u1
i
≥ u2

f

u1
f
, we know from Definition 18 that x1

i =

1∨ x2
f = 1. However, by definition of f we know that τ f is fractionally assigned and thus,

0 < x2
f < 1; so, it must hold that x1

i = 1. Consequently, all the tasks τi ∈ L with i < f are

integrally assigned to type-1 processors.

Case 2.2 (∀τi ∈ L such that i > f): Since
u2

f

u1
f
≥ u2

i
u1

i
, we know from Definition 18 that x1

f =

1∨ x2
i = 1. Following the same reasoning as above, we have 0 < x1

f < 1 and thus, it must hold

that x2
i = 1. Hence, all tasks τi ∈ L with i > f are integrally assigned to type-2 processors.

Case (3): The tasks in L are assigned to both processor types and there is no fractional task.

In this case, let f be the index of the first task in the sorted order (of tasks in L as shown in

Expression (3.24)) that is integrally assigned to type-2 processors. By definition of τ f , we know

that all the tasks τi ∈ L with i < f must be integrally assigned to type-1 processors. Now consider

any task τi ∈ L with i > f . Since
u2

f

u1
f
≥ u2

i
u1

i
, we know from Definition 18 that x1

f = 1∨ x2
i = 1. But,

we know that x1
f = 0, so it must hold that x2

i = 1. Hence, all tasks τi ∈ L with i > f are integrally

assigned to type-2 processors.

3.7 Speed competitive ratio of SA algorithm 63

We showed that the claim holds for all the cases, i.e., there exists an index f ∈{0,1,2, . . . , `, `+1}
such that all the tasks in L (sorted as shown in Expression (3.24)) to its left are assigned to type-1

processors and all the tasks in L to its right are assigned to type-2 processors. Hence the proof.

3.7.2 The speed competitive ratio of SA algorithm

In this section, we show that the speed competitive ratio of SA algorithm is 1+ α

2 ≤ 1.5. Before

that, we prove a property of SA which in turn helps us to prove its speed competitive ratio.

Theorem 4. If there exists an intra-migrative feasible assignment of task set τ on two-type plat-

form π then SA succeeds in finding a feasible assignment of τ on π in which at most one task from

L is fractionally assigned to both processor types and the rest are integrally assigned to type-1

and type-2 processors.

Proof. We know from Lemma 1 that if task set τ is intra-migrative feasible on two-type platform

π then MILP-Algo succeeds in finding such an intra-migrative feasible assignment of τ on π as

well. This implies that there exists a feasible solution to the MILP formulation of Figure 3.5

with ZMILP ≤ 1. Then, we know from Lemma 2 that, since there exists a solution to the MILP

formulation with ZMILP≤ 1, there also exists a feasible solution to the LP formulation of Figure 3.6

with ZLP ≤ 1. We also know from Lemma 5 that such a solution can be converted into a feasible

swap solution in which at most one task from L is fractionally assigned. Finally, we know from

Lemma 6 that in this feasible swap solution, tasks in L can be re-indexed such that u2
1

u1
1
≥ u2

2
u1

2
≥ ·· · ≥

u2
`

u1
`

(with ties broken, during re-indexing favoring the task with lower index before re-indexing) and

with this order, there is an index f ∈ {0,1, . . . , `, `+1} such that:

∀i < f : x1
i = 1 and

∀i > f : x2
i = 1

For the sake of readability, henceforth we simply denote by S = {x1
1, x2

1, x1
2, x2

2, . . . , x1
` , x2

` , Z}
this sorted feasible swap solution (in which tasks are sorted as mentioned above). With this back-

ground, we now prove the theorem. The intuition behind the proof is that SA always succeeds in

returning a solution similar to the sorted feasible swap solution S (from the reasoning above, we

already know that such a swap solution always exists if τ is intra-migrative feasible on π).

We prove the theorem by contradiction. Let us assume that the task set τ is intra-migrative

feasible on π but SA fails to find an assignment of τ on π in which at most one task from L

is fractionally assigned. We consider all the scenarios and show that it is impossible for this to

happen.

Let us study the behavior of SA. It assigns tasks in H1 and H2 in the same manner as an optimal

intra-migrative task assignment algorithm does (see the algorithm, MILP-Algo, in Section 3.4).

Hence, we only need to look at the assignment of tasks in L. It considers these tasks in the order:

u2
1

u1
1
≥ u2

2

u1
2
≥ ·· · ≥ u2

`

u1
`

(3.25)

64 Intra-migrative Scheduling on Two-type Heterogeneous Multiprocessors

with ties broken favoring the task with lower index before re-indexing. It considers tasks one by

one from the left-hand side in the sorted order (as shown in Expression (3.25)) and starts assigning

them to type-1 processors. It stops assigning tasks to type-1 processors upon failing to assign

a task say, τx, integrally on type-1 processors or all the tasks are successfully assigned thereby

resulting in a successful assignment — whichever happens first. If it stops at τx then it considers

tasks one by one from the right-hand side in the sorted order and starts assigning them to type-2

processors. It stops assigning tasks to processors of type-2 as soon as it fails to assign a task

integrally (if τ is intra-migrative feasible on π then this task can be none other than τx as shown

later in the theorem) or it successfully assigns τx integrally to a type-2 processor thereby resulting

in a successful assignment — whichever happens first. If it stopped because it could not assign τx

integrally to type-2 processor then it fractionally assigns τx to type-1 and type-2 processors.

We now compare the output of SA with that of the sorted feasible swap solution S and show

that it is impossible for SA to fail (i.e., not to return an assignment with at most one fractional

task) when τ is intra-migrative feasible on π . Note that the tasks are indexed in the same manner

in both SA and S, i.e., u2
1

u1
1
≥ u2

2
u1

2
≥ ·· · ≥ u2

`

u1
`
, with ties broken in the same way.

We need to consider two cases with respect to the existence of a fractional task in S, i.e., a

task τ f for which 0 < x1
f < 1 and 0 < x2

f < 1. The remainder of the proof consists in exploring all

the possible scenarios (and showing that each case leads to contradiction): it is first split into two

parts, corresponding to the two cases ‘such a fractional task exists or not’, and each part is further

divided into three cases.

Part 1: There exists a task τ f ∈ L in the swap solution S which is fractionally assigned to both

processor types, i.e., 0 < x1
f < 1 and 0 < x2

f < 1. In this part, we need to consider three cases with

respect to the position of x and f.

Case 1.1 (x < f): We know that tasks
{

τ1,τ2, . . . ,τ f−1
}
∈ L have been integrally assigned to

type-1 processors in solution S, i.e., ∀i ∈ {1,2, . . . , f −1}: x1
i = 1 ∧ x2

i = 0. This means that

U1 +∑
f−1
i=1 u1

i ≤ m1 where U1 = ∑τi∈H1 u1
i and since x < f , it must hold that:

U1 +
x

∑
i=1

u1
i ≤ m1 (3.26)

i.e., tasks {τ1,τ2, . . . ,τx} ∈L have been integrally assigned to processors of type-1 in S. However,

we know that SA failed to integrally assign those tasks {τ1,τ2, . . . ,τx} to type-1 processors, which

means that U1 +∑
x
i=1 u1

i > m1, in contradiction with Expression (3.26).

Case 1.2 (x > f): This case is symmetrical to Case 1.1 and also leads to contradiction. We know

that tasks
{

τ f+1,τ f+2, . . . ,τ`
}
∈ L have been integrally assigned to type-2 processors in solution

S, i.e., ∀i ∈ { f +1, f +2, . . . , `}: x1
i = 0 ∧ x2

i = 1. This means that U2 +∑
`
i= f+1 u2

i ≤ m2 where

U2 = ∑τi∈H2 u2
i and since x > f , it must hold that:

U2 +
`

∑
i=x

u2
i ≤ m2 (3.27)

3.7 Speed competitive ratio of SA algorithm 65

i.e., tasks {τx,τx+1, . . . ,τ`} ∈ L have been integrally assigned to processors of type-2 in S. How-

ever, we know that SA failed to integrally assign those tasks {τx,τx+1, . . . ,τ`} to type-2 proces-

sors, which means that U2 +∑
`
i=x u2

i > m2, in contradiction with Expression (3.27).

Case 1.3 (x = f): This indicates that the two sets of tasks, i.e., {τ1,τ2, . . . ,τx−1} ∈ L and

{τx+1,τx+2, . . . ,τ`} ∈ L, are integrally assigned to type-1 and type-2 processors, respectively, in

both S and the solution returned by SA. Let x1,S
f denote the fraction of τ f ∈ L assigned to type-1

processors in S, and similarly let x1,SA
x denote the fraction of τx ∈ L assigned to type-1 processors

in the solution returned by SA. Since S is feasible we know that U1 +∑
f−1
i=1 u1

i + x1,S
f ×u1

f ≤ m1,

and since f = x we have:

U1 +
x−1

∑
i=1

u1
i + x1,S

f ×u1
x ≤ m1 (3.28)

But, by design (see step 6 of SA algorithm in Section 3.6), we also know that τx is split under SA

such that:

U1 +
x−1

∑
i=1

u1
i + x1,SA

x ×u1
x = m1 (3.29)

From Expression (3.28) and (3.29), we then observe that x1,S
f ≤ x1,SA

x . As a first conclusion, SA

is thus able to integrally assign to type-1 processors all the tasks in τ that are integrally assigned

to type-1 processors in solution S, plus (at least) the same fraction of task τx as that of task τ f

assigned to type-1 processor in S. Also, x1,S
f ≤ x1,SA

x implies that x2,S
f ≥ x2,SA

x , which in turn

yields:

U2 +
n

∑
i= f+1

u2
i + x2,S

f ×u2
f ≥ U2 +

n

∑
i=x+1

u2
i + x2,SA

x ×u2
x

The left-hand (respectively, right-hand) side of the above expression denotes the utilization of

the tasks, including the fractional assignment of τ f (which is same task as τx), assigned to type-

2 processors in the solution S (respectively, SA). As a second conclusion, SA is thus able to

integrally assign to type-2 processors all the tasks in τ that are integrally assigned to type-2

processors in solution S, and assign no greater fraction of the task τx (which is same task as τ f)

to type-2 processor than in solution S. So, SA succeeds in assigning all the tasks and hence this

leads to a contradiction.

Thus, for the case when there is a fractional task in the swap solution, we have shown that all the

three sub-cases lead to contradiction.

Part 2: There is no fractional task in solution S. Let τ f be the first task that is integrally assigned

to type-2 processor in S. Again, we need to consider three cases with respect to the position of x

and f .

66 Intra-migrative Scheduling on Two-type Heterogeneous Multiprocessors

Case 2.1 (x < f): This case is analogous to Case 1.1 and leads to contradiction.

Case 2.2 (x > f): This case is analogous to Case 1.2 and leads to contradiction.

Case 2.3 (f = x): This indicates that SA algorithm was able to assign tasks {τ1, . . . ,τx−1} ∈ L

integrally to type-1 processors as in S. However, it failed to integrally assign tasks {τx, . . . ,τ`}∈ L

to type-2 processors that are integrally assigned in S. This means U2 +∑
`
i=x u2

i > m2 whereas

U2 +∑
`
i= f u2

i ≤ m2. From the case (i.e., f = x), this is a contradiction and hence SA would also

succeed in assigning those tasks to type-2 processors.

Thus, for the case when there is no fractional task in the swap solution, we have shown that all the

three sub-cases lead to contradiction.

From Parts 1 and 2 of the proof, we have shown that all the cases lead to contradiction, hence

proving the theorem.

Theorem 5 (Speed competitive ratio of SA). If there exists a feasible intra-migrative assignment

of τ on π then, using SA, it is guaranteed to obtain such a feasible intra-migrative assignment of

τ on π(1+ α

2).

Proof. We know from Theorem 4 that if τ is intra-migrative feasible on π then SA succeeds in

returning a feasible assignment of τ on π in which at most one task from L is fractionally assigned

and the rest are integrally assigned to type-1 and type-2 processors. It follows from Lemma 4 that

this fractional task can also be assigned integrally to one of the processor types if given a platform

in which processors are 1+ α

2 ≤ 1.5 times faster. Hence the proof.

We now show that the proven speed competitive ratio 1+ α

2 ≤ 1.5 of SA algorithm is a tight

bound. This is shown using the same technique that was used earlier (Theorem 3 in Section 3.5)

to show that the proven speed competitive ratio of LP-Algo is a tight bound and also the same

problem instance is used here (and for the sake of convenience, the problem instance is repeated).

Theorem 6 (Speed competitive ratio of SA algorithm is tight). The speed competitive ratio 1+
α

2 ≤ 1.5 of SA algorithm is a tight bound.

Proof. In order to show that the speed competitive ratio is tight for SA algorithm, it is sufficient

to show that, there exists a (feasible intra-migrative) problem instance for which SA needs 1.5

times faster processors to output a feasible intra-migrative assignment. We now show that such a

problem instance exists.

Consider a problem instance with a task set τ = {τ1,τ2,τ3} comprising three tasks and a two-

type platform π = {π1,π2} comprising two processors. Let π1 be a processor of type-1 and π2 be

a processor of type-2. The utilizations of tasks are shown in Table 3.5.

Observe that the given task set τ is intra-migrative feasible on the given platform π . A feasible

intra-migrative assignment is obtained by assigning (i) τ1 and τ3 to type-1 processors (which has

a single processor, π1) and (ii) τ2 to type-2 processors (which has a single processor, π2). This

assignment is shown in Table 3.6.

3.7 Speed competitive ratio of SA algorithm 67

Tasks Utilizations of tasks
u1

i u2
i

τ1 0.5 0.5
τ2 1.0 1.0
τ3 0.5 0.5

Table 3.5: An example to illustrate that the proven speed competitive ratio of SA algorithm is a
tight bound.

Now consider SA algorithm. Initially, the task set is partitioned using Expressions (3.6)–(3.9)

as follows: H12 = /0, H1 = /0, H2 = /0 and L = {τ1,τ2,τ3}. Since all the tasks in the task set are

light, SA sorts the tasks in non-increasing order of u2
i

u1
i
. Since this ratio is same for all the three

tasks, a sorted order is as follows: τ1→ τ2→ τ3. With this sorted order, SA assigns the tasks as

shown in Table 3.7. In the assignment output by SA (which is shown in Table 3.7), it holds that:

• type-1 processors are fully utilized

• type-2 processors are fully utilized and

• task τ2 is equally split between type-1 and type-2 processors

In order to assign τ2 integrally to type-1 processors, the speed of type-1 processors must be

increased to 1.5. Analogously, for assigning τ2 integrally to type-2 processors, the speed of type-2

processors must be increased to 1.5 as well. Therefore, a speedup of 1.5 is required to assign τ2

integrally to one of the processor types.

Hence, the proven speed competitive ratio 1+ α

2 ≤ 1.5 of SA algorithm is a tight bound.

Remark 3 Although Theorem 5 states that, for an intra-migrative feasible task set, SA needs a

platform in which every processor is 1+ α

2 times faster, in order to output a schedulable intra-type

task assignment, it is trivial to see that a platform in which only one processor is 1+ α

2 times faster

is sufficient (to which the at most one fractional task can be integrally assigned).

Corollary 4. If there exists a feasible intra-migrative assignment of τ on π(m1,m2) then, using

SA, it is guaranteed to obtain such a feasible intra-migrative assignment of τ on π ′(m1 + 1,m2),

which has one additional processor of type-1 compared to π .

Proof. It follows from Theorem 4 that if there exists an intra-migrative feasible assignment of τ on

π then SA succeeds in returning a feasible assignment of τ on π in which at most one task from L,

say τ f , is fractionally assigned and the rest are integrally assigned to type-1 and type-2 processors.

From Corollary 3, we know that if such a task τ f exists then it can be integrally assigned to the set

of type-1 processors, which has an additional processor in π ′. Hence the proof.

Remark 4 It is trivial to see that Corollary 4 holds true if SA is given a platform π ′(m1,m2 +1),

which has one additional processor of type-2 compared to π .

68 Intra-migrative Scheduling on Two-type Heterogeneous Multiprocessors

Processor types Tasks assigned
type-1 (π1) τ1 and τ3

type-2 (π2) τ2

Table 3.6: A feasible intra-migrative assignment for tasks shown in Table 3.5 on platform π .

3.8 Average-case performance evaluations

After studying the theoretical bound of SA algorithm (i.e., its speed competitive ratio), we evalu-

ate its average-case performance by generating random task sets and by computing its necessary

multiplication factor for each task set. For a given task set, we define the necessary multiplica-

tion factor of SA algorithm as the minimum amount of extra processor speed that SA needs, so

as to succeed in finding a feasible task-to-processor-type assignment as compared to an optimal

intra-migrative task assignment algorithm. For each task set, we evaluate the performance of SA

algorithm by comparing the necessary multiplication factor (which is computed via simulations)

with the speed competitive ratio (which is derived theoretically). In our simulations, we observed

that for vast majority of task sets, SA performed significantly better by succeeding in finding a

feasible intra-migrative task assignment with necessary multiplication factor much smaller than

the speed competitive ratio. We now discuss the evaluations in detail.

The problem instances (number of tasks, their utilizations and the number of processors of

each type) were generated randomly. Each problem instance had at most 25 tasks and at most

3 processors of each type. We generated 100000 task sets, denoted as {τ(1),τ(2), . . . ,τ(100000)},
which we transformed into “critically feasible intra-migrative task sets”. We define a critically

feasible intra-migrative task set as a task set which is intra-migrative feasible on a given two-

type platform but rendered intra-migrative infeasible if all the task utilizations (i.e., both u1
i and

u2
i of each task) are increased by an arbitrarily small factor. The intuition behind using critically

feasible task sets in our simulations is that it is “hard” to find a feasible assignment for these task

sets since only a few task assignments are feasible among all possible assignments. Therefore,

we believe that using such task sets in the evaluations tests the limits of the algorithm and the

average-case performance exhibited by the algorithm for these task sets is be a good indicator of

its true potential.

To obtain an intra-migrative critically feasible task set τ
(k)
crit from a randomly generated task set

τ(k), k ∈ [1,100000], we perform the task-to-processor-type assignment of τ(k) by formulating the

problem as MILP (as shown in Figure 3.5) and feeding it to IBM ILOG CPLEX tool which outputs

Z, the utilization of the most utilized processor type. Then, we multiply all the task utilizations by
1
Z and repeatedly feed it back to the CPLEX solver until 0.99 < Z ≤ 1 (which gives us τ

(k)
crit).

For each critically feasible intra-migrative task set τ
(k)
crit, we measure the necessary multipli-

cation factor of algorithm SA, denoted by NMF(k)
SA. We then compare NMF(k)

SA with the speed

competitive ratio denoted by SCR(k)
SA

3. Algorithm 1 shows how we compute NMF(k)
SA for every

3Note that, as opposed to the generic definition of the speed competitive ratio provided in Section 2.5.1 of Chapter 2

3.8 Average-case performance evaluations 69

Processor types Tasks assigned by SA
type-1 (π1) 100% of τ1 and 50% of τ2

type-2 (π2) 100% of τ3 and 50% of τ2

Table 3.7: The task assignment output by SA algorithm for tasks shown in Table 3.5 on platform
π comprising one processor of type-1 and another processor of type-2.

critically feasible intra-migrative task set, τ
(k)
crit. On line 3, we initially set NMF(k)

SA to 1.0 as it

denotes the speed of processors on which an optimal intra-migrative task assignment algorithm

succeeds in finding a feasible assignment for τ
(k)
crit. Then, we input the task set to algorithm SA (on

line 5) and if SA cannot find a feasible assignment, the necessary multiplication factor NMF(k)
SA

is incremented by a small value, here 0.01 (on line 7), and the original u1
i and u2

i of each task

of τ
(k)
crit are divided by the new necessary multiplication factor (on line 8, this step can be seen as

increasing the speed of every processor by 0.01) and this resulting task set is fed back to algorithm

SA (on line 5). These steps (necessary multiplication factor adjustment and feeding back the de-

rived task set) are repeated until the algorithm SA succeeds in finding a feasible intra-migrative

task assignment, which gives us the necessary multiplication factor of SA for the task set under

consideration.

Recall that we want to evaluate the average-case performance of our algorithm by measuring

how well it performs compared to its theoretical bound. In this regard, for each critically feasible

intra-migrative task set, τ
(k)
crit, we compute the performance ratio PR(k)

SA (in %) of algorithm SA as

follows:

PR(k)
SA

def
=

NMF(k)
SA−1

SCR(k)
SA−1

×100 (3.30)

Note that both NMF(k)
SA and SCR(k)

SA are numbers that take a value of 1.x where the integral part

1 can be seen as the speed of the processors on which an optimal algorithm succeeds to find a

feasible intra-migrative task assignment and the fractional part x can be seen as the increase in

the speed of processors that algorithm SA requires (compared to the optimal algorithm) in order

to succeed. Hence, 1 is subtracted from both NMF(k)
SA and SCR(k)

SA in the above expression. The

multiplication factor 100 converts the ratio in percentage. This expression enables us to compare

the average-case performance of SA algorithm for task sets with different values of α on a same

scale. For example, for a given task set τ
(k)
crit with α = 0.1, if SA succeeds in finding a feasible

intra-migrative task assignment with NMF(k)
SA = 1.01 then the value of the above ratio is 20%

(since SCR(k)
SA of SA for this task set is 1+ α

2 = 1.05) indicating that SA required only 20% faster

processors than indicated by the theoretical upper bound. As another example, for a given task

set in which α = 0.2, if SA succeeds in finding a feasible intra-migrative task assignment with

NMF(k)
SA = 1.02 then the value of the above ratio is again 20% (since SCR(k)

SA of SA for this task

on page 16 which says that the speed competitive ratio is a property of the algorithm alone, the speed competitive ratio
of SA algorithm which is shown to be 1+ α

2 ≤ 1.5, is not only a property of the algorithm but also a property of the
task set as it depends on the parameter 0 < α ≤ 1 whose value in turn depends on the (utilization values of the tasks in
the) task set.

70 Intra-migrative Scheduling on Two-type Heterogeneous Multiprocessors

Algorithm 1: Pseudo-code for determining all the necessary multiplication factor, NMF(k)
SA,

of SA algorithm, for 100000 critically feasible intra-migrative task sets.
Input : Algorithm SA

The critically feasible intra-migrative task sets {τ(1)
crit ,τ

(2)
crit , . . . ,τ

(100000)
crit }

Output: The necessary multiplication factors {NMF(1)
SA,NMF(2)

SA, . . . ,NMF(100000)
SA }

1 step← 0.01
2 for k = 1 to 100000 do
3 τ ← τ

(k)
crit; NMF(k)

SA← 1.0
4 while true do
5 result← call SA(τ

(k)
crit,assignment) // assignment is an output variable

which contains the task assignment information
6 if result 6= SUCCESS then
7 NMF(k)

SA← NMF(k)
SA+step

8 τ
(k)
crit← τ

(k)
crit× (1/NMF(k)

SA) // both the utilizations of each task

are divided by NMF(k)
SA

9 else
10 break
11 end
12 end
13 end
14 return {NMF(1)

SA,NMF(2)
SA, . . . ,NMF(100000)

SA } ;

set is 1+ α

2 = 1.10) indicating that SA required only 20% faster processors than indicated by the

theoretical upper bound.

In general, for a given task set and a given algorithm, the smaller the performance ratio (shown

in Expression (3.30)), the better the average-case performance of the algorithm. For example, if

this ratio takes a value of 100% then it implies that the algorithm is not performing any better than

what is indicated by its theoretical bound and if this ratio takes a smaller value, say 10%, then it

implies that the algorithm is performing much better (to be precise, 90% better) than its theoretical

bound. Hence, an algorithm is said to exhibit a good average-case performance if this ratio is small

for many task sets.

We plot the histogram of the performance ratios for algorithm SA in Figure 3.7. As we can

see from Figure 3.7, for approximately 70% of the task sets, SA succeeds in finding a feasible

intra-migrative assignment within (0− 10]% of its theoretical bound, for approximately 15% of

the task sets, SA succeeds in finding a feasible intra-migrative assignment within (10− 20]% of

its theoretical bound, and so on.

To summarize, in our simulations, for the vast majority of task sets, the algorithm SA per-

formed significantly better than indicated by its theoretical bound.

3.9 Conclusions 71

0

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100

N
u

m
b

e
r

o
f

ta
sk

 s
e

ts
 (

in
 %

)

Performance ratio (in %)

Histogram for SA

Figure 3.7: Average-case performance of SA algorithm in terms of the performance ratio for task
sets with different values of α (if an algorithm has low performance ratio for many task sets then
the algorithm is said to perform well).

3.9 Conclusions

In this chapter, we considered the problem of intra-migrative scheduling of implicit-deadline spo-

radic tasks on two-type heterogeneous multiprocessors. This problem can be solved in two steps:

first, assign tasks to processor types and then globally schedule the tasks assigned to each proces-

sor type (since all the processors of each type can be seen an identical multiprocessor platform)

using a global scheduling algorithm designed for identical multiprocessors. The global scheduling

problem on identical multiprocessors is well-studied. There are couple of optimal global schedul-

ing algorithms in literature (for example, ERFair [AS00], DP-Fair [LFS+10], U-EDF [NBN+12]).

So, assuming that such an optimal scheduling algorithm is used to schedule the tasks on each

processor type (by treating all the processors of each type as identical multiprocessors), the chal-

lenge is to assign tasks to processor types such that, for all valid job arrival patterns, there exists a

schedule that meets all deadlines.

We showed that the problem of assigning tasks to processor types on two-type platforms is

NP-Complete. We then proposed an optimal intra-migrative task assignment algorithm that re-

lies on solving a Mixed Integer Linear Programming (MILP) formulation. Since solving MILP

formulation is NP-Complete, we then relaxed this MILP formulation to LP formulation and pro-

posed another algorithm that relies on solving this relaxed LP formulation and showed that it has

a finite speed competitive ratio. Since solving a linear programming formulation is generally time

consuming, we then proposed a low-degree polynomial time-complexity algorithm with a finite

speed competitive ratio. Specifically, the proposed algorithm, SA, has O(n logn) time-complexity

72 Intra-migrative Scheduling on Two-type Heterogeneous Multiprocessors

and offers the following guarantee. If there exists a feasible intra-migrative assignment of a task

set on a two-type platform then using SA, it is guaranteed to find such a feasible intra-migrative

assignment for the task set but given a platform in which one processor is 1+ α

2 times faster where

the parameter 0 < α ≤ 1 is a property of the task set; it is the maximum of all the task utilizations

that are no greater than one. From the perspective of speed competitive ratio, we say that SA needs

a platform in which every processor is 1+ α

2 ≤ 1.5 times faster which defines the speed compet-

itive ratio of SA algorithm as 1+ α

2 ≤ 1.5. To the best of our knowledge, no previous algorithm

exists for the problem of intra-migrative scheduling on two-type heterogeneous multiprocessors

and hence SA is the first algorithm with proven performance guarantee. Although some of the

non-migrative algorithms from state-of-the-art (for example, the one presented in [HS76, LST90])

can be “adapted” to intra-migrative scenario, however, these “adapted” algorithms will either end

up with a significantly higher time-complexity [HS76] (which severely limits the practicality of

these algorithms) or a higher speed competitive ratio [LST90] compared to our SA algorithm. We

also evaluated the average-case performance of SA algorithm by generating task sets randomly

and measuring how much faster processors the algorithm needs (i.e., its necessary multiplication

factor), for a given task set, in order to output a feasible intra-migrative task assignment. In our

simulations, we observed that, SA exhibits a good average-case behavior since, for the vast ma-

jority of the task sets, SA requires significantly smaller necessary multiplication factor than what

is indicated by its theoretical bound (i.e., its speed competitive ratio).

Chapter 4

Non-migrative Scheduling on Two-type
Heterogeneous Multiprocessors

4.1 Introduction

In this chapter, we consider the problem of non-migrative scheduling of tasks on two-type hetero-

geneous multiprocessors. Recall that in the non-migrative model (also referred to as partitioned

model in the literature), every task must be statically assigned to a processor before run time and

all its jobs must execute on that processor at run time (i.e., jobs cannot migrate between different

processors). The challenge is to find, before run time, a task-to-processor assignment such that,

at run time, a uniprocessor scheduling algorithm running on each processor meets all deadlines of

the tasks on the respective processor. Scheduling the tasks to meet deadlines on a uniprocessor is a

well-understood problem. One may use Earliest-Deadline First (EDF) [LL73], for example. EDF

is an optimal scheduling algorithm on a uniprocessor system [LL73, Der74], with the interpreta-

tion that, for every valid job arrival pattern, if a schedule exists that meets all deadlines then EDF

succeeds to construct such a schedule that meets all the deadlines as well. Therefore, assuming

that an optimal uniprocessor scheduling algorithm is used on every processor, the challenging part

is to find a task-to-processor assignment for which there exists a schedule that meets all deadlines

— such an assignment is said to be a feasible task-to-processor assignment hereafter. Even in

the simpler case of identical multiprocessors, finding a feasible task-to-processor assignment is

NP-Complete in the strong sense [Joh73]. So, this result continues to hold for two-type platforms

as well. In this chapter, for the problem under consideration, we propose four polynomial time-

complexity algorithms (of which two are low-degree polynomial) with different speed competitive

ratios which outperform state-of-the-art.

Problem Definition. In this chapter, we consider the problem of non-migrative scheduling

of implicit-deadline sporadic tasks on two-type heterogeneous multiprocessors. That is, assuming

that an optimal uniprocessor scheduling algorithm (such as EDF) is used on each processor to

schedule the tasks, we design algorithms to determine a feasible assignment of tasks to individual

processors.

73

74 Non-migrative Scheduling on Two-type Heterogeneous Multiprocessors

Computing Adversary Task Assignment Algorithms
Platform Task migration Algorithm Task migration Speed competitive ratio Complexity

t-typea non-migrative [Bar04b] non-migrative 2 O(P)c

t-type non-migrative [Bar04c] non-migrative 2 O(P)
t-type non-migrative [LST90] non-migrative 2 O(P)
t-type fully-migrative [CSV12] non-migrative 4 O(P)

t-type non-migrative [HS76] non-migrative PTASd exponential
in procs

t-type non-migrative [JP99] non-migrative PTAS exponential in
procs and O(P)

t-type non-migrative [WBB13] non-migrative PTAS exponential
in 1/ε and O(P)

2-typeb intra-migrative SA intra-migrative 1+ α

2
e≤ 1.5 low-degree

(Chapter 3) polynomial

2-type non-migrative FF-3C non-migrative 1+α ≤ 2 low-degree
(Section 4.3) polynomial

2-type intra-migrative SA-P non-migrative 1+α ≤ 2 low-degree
(Section 4.4) polynomial

2-type non-migrative LPC non-migrative 1.5 O(P)(Section 4.5) (and 3 extra processors)

2-type non-migrative PTASNF non-migrative PTAS exponential
(Section 4.6) in 1/ε

a A heterogeneous multiprocessor platform having two or more processor types.
b A heterogeneous multiprocessor platform having only two processor types.
c The time-complexity O(P) indicates that the algorithm relies on solving a Linear Program (LP) formulation — note that

although an LP formulation can be solved in polynomial time, the polynomial generally has a higher degree.
d A PTAS takes an instance of an optimization problem and a parameter ε > 0 as inputs and, in time polynomial in the

problem size (although not necessarily in the value of ε), produces a solution that is within a factor 1+ ε of being
optimal.

e The parameter 0 < α ≤ 1 is a property of the task set — it is the maximum of all the task utilizations that are no greater
than one.

Table 4.1: Summary of the state-of-the-art task assignment algorithms for heterogeneous multi-
processors along with the algorithms proposed in this chapter.

Related work. The partitioning problem on heterogeneous multiprocessors has been stud-

ied in the past [Bar04c, Bar04b, RABN12, RAB13, RN12b, WBB13]. It is a well-known fact

that the problem under consideration is equivalent to the problem of scheduling a set of non-

real-time jobs, arriving at time zero, on unrelated parallel machine, so that they all finish be-

fore a specified time and this equivalent problem is studied in [HS76, LST90, JP99, CSV12].

In [Bar04c, Bar04b, LST90], the authors propose algorithms for the problem of non-migrative

task assignment on heterogeneous multiprocessors with a speed competitive ratio of 2 against an

equally powerful non-migrative adversary. All these approaches [Bar04c, Bar04b, LST90] focused

on generic heterogeneous multiprocessor platforms with two or more processor types and the task

assignment was modeled as Zero-One ILP. Such a formulation can be solved directly but has high

computational complexity. In particular, the decision problem ILP is NP-complete and even with

knowledge of the structure of the constraints in the modeling of heterogeneous multiprocessor

scheduling, no polynomial-time algorithm is known (see [GJ79], p. 245). However, via relaxation

of ILP formulation to LP and certain tricks [Pot85], these approaches [Bar04c, Bar04b, LST90]

attain polynomial time-complexity. None of these algorithms, however, attains low-degree (linear

or quadratic) polynomial time-complexity.

4.1 Introduction 75

Moving to algorithms whose speed competitive ratios have been proven against a more pow-

erful adversary, recently, in [CSV12], authors propose a non-migrative algorithm with a speed

competitive ratio of 4 against the fully-migrative adversary. Further, it is also shown that, this

bound is exact, i.e., it is impossible to design a non-migrative algorithm with a speed competitive

ratio smaller than 4 against the fully-migrative adversary [CSV12].

In [HS76, JP99, WBB13], authors propose polynomial-time approximation schemes (PTAS)

for this problem. A PTAS takes an instance of an optimization problem and a parameter ε > 0

as inputs and, in time polynomial in the problem size (although not necessarily in the value of

ε), produces a solution that is within a factor 1+ ε of being optimal. PTAS is theoretically a

significant result since such algorithms partition the task set in polynomial time, to any desired

degree of accuracy. However, (most often) their practical significance is severely limited since

they incur a very high run-time complexity.

The state-of-the-art (along with the contributions of this chapter) is summarized in Table 4.1.

Each row in the table corresponds to a different algorithm. For example, the first row in the table

is read as follows: for a generic t-type heterogeneous multiprocessor platform in which there can

be two or more types of processors, a non-migrative algorithm is proposed in [Bar04b] and it has

been shown that this algorithm has a speed competitive ratio of 2 against equally powerful non-

migrative adversary and the algorithm has a time-complexity of O(P) (explained in Table 4.1).

For the benefit of the reader, this table is repeated at several places in this chapter, especially in

the sections that introduce and describe a new algorithm.

Contributions and Significance of the work discussed in this chapter. This chapter pro-

poses four polynomial time-complexity algorithms for the problem of non-migrative task as-

signment on two-type heterogeneous multiprocessors. The first algorithm, FF-3C, relies on bin-

packing heuristics to output the task assignment. Its speed competitive ratio is proven against an

equally powerful non-migrative adversary. The second algorithm, SA-P, is an extension of algo-

rithm SA (discussed in Chapter 3), and for SA-P, the speed competitive ratio is proven against a

more powerful intra-migrative adversary. The third algorithm, LPC, relies on solving linear pro-

gramming formulation to find the task assignment. Its speed competitive ratio is proven against

an equally powerful non-migrative adversary. The fourth and the last non-migrative algorithm,

PTASNF, is a Polynomial Time Approximation Scheme (PTAS) which makes use of dynamic pro-

gramming techniques for determining the task assignment and its speed competitive ratio is proven

against an equally powerful non-migrative adversary.

The significance of each algorithm is listed in the section in which the algorithm is described.

The overall significance of this chapter can be summarized as follows. First, this is the first work

(FF-3C algorithm) to show how bin packing heuristics can be applied to the problem of non-

migrative task assignment on two-type heterogeneous multiprocessors to obtain an algorithm with

a finite speed competitive ratio. Second, this is the first work (LPC algorithm) to show how cutting

planes can be used to improve the speed competitive ratio of algorithms for assigning real-time

tasks to processors. Third, this work (PTASNF) shows how to design a polynomial time approx-

imation scheme for non-migrative task assignment on two-type heterogeneous multiprocessors

76 Non-migrative Scheduling on Two-type Heterogeneous Multiprocessors

HET2-NON-ASSIGN PROBLEM
Instance A task set τ of n implicit-deadline sporadic tasks and a two-type platform π of

m processors of which m1 processors are of type-1 and m2 processors are of
type-2. The utilization of a task τi on a processor of type-t is given by ut

i where
i ∈ {1,2, . . . ,n} and t ∈ {1,2}.

Problem Find an assignment f : {1,2, . . . ,n}→{1,2, . . . ,m} such that ∀ j ∈ type-t of π ,
it holds that: ∑i: f (i)= j ut

i ≤ 1, where t ∈ {1,2}.

Figure 4.1: The non-migrative task assignment problem on two-type heterogeneous multiproces-
sors.

which is efficient to be usable in practice.

Organization of the chapter. The rest of the chapter is organized as follows. Section 4.2

discusses the hardness of the non-migrative task assignment problem on two-type heterogeneous

multiprocessors. Section 4.3 discusses FF-3C algorithm, proves its speed competitive ratio. It

also discusses a couple of variants of FF-3C (which exhibit a better average-case performance)

and proves their speed competitive ratios as well and lastly presents average-case performance

evaluations. Section 4.4 discusses another algorithm, namely SA-P, proves its speed competitive

ratio and also presents average-case performance evaluations. Section 4.5 presents LPC algorithm

and proves its speed competitive ratio and Section 4.6 describes the polynomial time approxima-

tion scheme, PTASNF, proves its speed competitive ratio and presents average-case performance

evaluations. Finally, Section 4.7 concludes.

4.2 The hardness of the non-migrative task assignment problem

In this section, we show that the problem of non-migrative task assignment on a two-type hetero-

geneous multiprocessor platform is NP-Complete in the strong sense. We denote this problem as

HET2-NON-ASSIGN and is stated in Figure 4.1. In order to show this, we will first consider a

restricted version of this problem which is denoted as HET2-NON-ASSIGN-SPEC-CASE — see

Figure 4.2. We will show that this problem is NP-complete in the strong sense. It then follows that

the HET2-NON-ASSIGN problem is NP-complete in the strong sense as well.

For showing that the HET2-NON-ASSIGN-SPEC-CASE problem is NP-Complete in the strong

sense, we make use of the 3-PARTITION problem. The 3-PARTITION problem is shown in Fig-

ure 4.3 and it is well-known that this problem is NP-Complete in the strong sense [GJ78].

Lemma 7. The HET2-NON-ASSIGN-SPEC-CASE problem is NP-Complete in the strong sense.

Proof. In order to show that a problem is NP-Complete in the strong sense, we need to: (1) show

that the problem is in NP, (2) transform a problem which is NP-Complete in the strong sense to

the problem under consideration and (3) show that the transformation (of Step (2)) can be done in

polynomial time. We now show these for HET2-NON-ASSIGN-SPEC-CASE problem.

1. It is straightforward to see that the problem belongs to NP. As a certificate, we take the

assignment on each processor. To check whether the given assignment in fact satisfies

4.2 The hardness of the non-migrative task assignment problem 77

HET2-NON-ASSIGN-SPEC-CASE PROBLEM
Instance A task set τ of n implicit-deadline sporadic tasks and a two-type platform π of

m processors of which m1 processors are of type-1 and m2 processors are of
type-2. The utilization of a task τi on a processor of type-t is given by ut

i where
i ∈ {1,2, . . . ,n} and t ∈ {1,2}.
Assume that: ∀τi ∈ τ : u1

i = u2
i and ∀τi ∈ τ,∀t ∈ {1,2} : 1

4 < ut
i <

1
2 and 1

m ×(
∑i∈{1,2,...,n} u1

i
)
= 1

m ×
(
∑i∈{1,2,...,n} u2

i
)
= 1.

Problem Find an assignment f : {1,2, . . . ,n}→{1,2, . . . ,m} such that ∀ j ∈ type-t of π ,
it holds that ∑i: f (i)= j ut

i ≤ 1, where t ∈ {1,2}.

Figure 4.2: A restricted version of the non-migrative task assignment problem on two-type het-
erogeneous multiprocessors.

∑i: f (i)= j ut
i ≤ 1 for every processor j ∈ type-t of π (where t ∈ {1,2}) is obviously possi-

ble in polynomial time; specifically the time complexity is O(n).

2. We now transform the 3-PARTITION problem (which is NP-Complete in the strong sense [GJ78])

to the above decision problem. Given an instance c1,c2, . . . ,cn=3m and B of the 3-PARTITION

problem, transform it into an instance of HET2-NON-ASSIGN-SPEC-CASE problem with

n = 3m tasks by computing utilizations of tasks as follows:

∀τi ∈ τ,∀t ∈ {1,2} : ut
i =

ci

B
(4.1)

We now show that (non-migrative) assignment of these 3m tasks on m processors is possible

if and only if c1,c2, . . . ,cn=3m can be partitioned into m subsets I1, I2, . . . , Im such that ∀ j ∈
{1,2, . . . ,m} : ∑i∈I j ci = B. We do so by first showing, in (a), some results we will use

and then showing, in (b), the implication in one direction and finally showing, in (c), the

implication in the other direction.

(a) Results we will use:

(a.1) Let us introduce g that maps an element in {1,2, . . . ,3m} to a processor. It is

defined as follows:

i ∈ I j⇔ g(i) = j

(b) Implication in one direction: We now show (using g) that if c1,c2, . . . ,c3m can be parti-

tioned into m subsets I1, I2, . . . , Im such that ∀ j ∈ {1,2, . . . ,m} : ∑i∈I j ci = B then there

is an assignment of these 3m tasks on m processors.

We will do so by assuming that the if-condition of (b) is true and then show that this

implies that the then-condition of (b) must also be true. We know that c1,c2, . . . ,c3m

can be partitioned into m subsets I1, I2, . . . , Im such that ∀ j ∈ {1,2, . . . ,m} : ∑i∈I j ci = B.

Multiplying each side by 1
B and applying the definition of ut

i on the left hand side and

78 Non-migrative Scheduling on Two-type Heterogeneous Multiprocessors

3-PARTITION PROBLEM
Instance A list of 3m integers I = {c1,c2, . . . ,c3m} where ∀i : ci ≥ 2 and a bound B such

that ∑
3m
i=1 ci = mB and ∀i : B/4 < ci < B/2.

Question Can I be partitioned into m subsets I1, I2, . . . , Im such that ∀ j : ∑i∈I j ci = B.

Figure 4.3: The 3-partitioning problem, which is known to be NP-Complete in the strong
sense [GJ78].

using the definition of g gives us:

∀ j ∈ {1,2, . . . ,m} : ∑
∀i∈{1,2,...,n} such that g(i)= j

u1
i = 1

∀ j ∈ {1,2, . . . ,m} : ∑
∀i∈{1,2,...,n} such that g(i)= j

u2
i = 1

Hence, we have shown that g is an assignment of tasks to processors that satisfies the

constraints stated in HET2-NON-ASSIGN-SPEC-CASE problem.

(c) Implication in the other direction: We now show (using g) that if non-migrative assign-

ment of these n tasks on m processors is possible then c1, c2, . . ., c3m can be partitioned

into m subsets I1, I2, . . . , Im such that ∀ j ∈ {1,2, . . . ,m} : ∑i∈I j ci = B.

We will do so by assuming that the if-condition of (c) is true and then show that this

implies that the then-condition of (c) must also be true. We know that a non-migrative

assignment of these n tasks is possible. Using the function g to express this gives us:

∀ j ∈ {1,2, . . . ,m} :

(
∑

∀i∈{1,2,...,n} such that g(i)= j
u1

i ≤ 1

)
∧

∀ j ∈ {1,2, . . . ,m} :

(
∑

∀i∈{1,2,...,n} such that g(i)= j
u2

i ≤ 1

)

Since it is a non-migrative assignment, it also holds that (from one of the assumptions

of HET2-NON-ASSIGN-SPEC-CASE problem):

1
m
×
(

∑
i∈{1,2,...,n}

u1
i

)
=

1
m
×
(

∑
i∈{1,2,...,n}

u2
i

)
= 1

Applying this on the earlier expression gives:

∀ j ∈ {1,2, . . . ,m} :

(
∑

∀i∈{1,2,...,n} such that g(i)= j
u1

i = 1

)
∧

∀ j ∈ {1,2, . . . ,m} :

(
∑

∀i∈{1,2,...,n} such that g(i)= j
u2

i = 1

)

4.2 The hardness of the non-migrative task assignment problem 79

Multiply both sides by B and using the definition of ut
i gives us:

∀ j ∈ {1,2, . . . ,m} :

(
∑

∀i∈{1,2,...,n} such that g(i)= j
ci = B

)
∧

∀ j ∈ {1,2, . . . ,m} :

(
∑

∀i∈{1,2,...,n} such that g(i)= j
ci = B

)

Note that these two expressions state the same thing so only one is needed. Also,

we form the partitioning as follows. Let I j be the set of all integers such that i ∈
{1,2, . . . ,n} and g(i) = j. This gives us:

∀ j ∈ {1,2, . . . ,m} : ∑
∀i∈I j

ci = B

This satisfies the constraints of the 3-PARTITION problem.

3. Finally, it can be easily seen that the transformation from 3-PARTITION to HET2-NON-

ASSIGN-SPEC-CASE using Expression (4.1) is possible in polynomial time; specifically,

the time complexity is O(n).

Hence the proof.

Theorem 7. The HET2-NON-ASSIGN problem is NP-Complete in the strong sense.

Proof. Follows from Lemma 7 and the fact that HET2-NON-ASSIGN-SPEC-CASE problem is a

restricted form of HET2-NON-ASSIGN problem.

In the subsequent sections, we describe our four low-degree polynomial time-complexity al-

gorithms for the problem under consideration. We also prove the speed competitive ratios of these

algorithms.

80 Non-migrative Scheduling on Two-type Heterogeneous Multiprocessors

4.3 FF-3C algorithm and its variants

4.3.1 Introduction

Among known task assignment schemes for multiprocessors in general (i.e., not necessarily het-

erogeneous), (i) bin-packing heuristics (e.g., first-fit), (ii) Integer Linear Programming (ILP) mod-

eling and the Linear Programming (LP) relaxation approaches and (iii) dynamic programming

techniques perform provably well. Bin-packing heuristics [CGJ97] are popular for task assignment

but unfortunately, the proof techniques used on identical multiprocessors do not easily translate

to heterogeneous multiprocessors. Traditionally, the literature offered no bin-packing heuristic for

assigning real-time tasks on heterogeneous multiprocessors. Our work discussed in this section is

the first one to make use of bin-packing heuristics for designing an algorithm with a finite speed

competitive ratio for assigning tasks to processors on two-type heterogeneous multiprocessors.

Related Work. As discussed earlier in Section 4.1, the problem of assigning tasks to pro-

cessors on heterogeneous multiprocessors has been studied in the past [Bar04c, Bar04b, LST90,

HS76, JP99, WBB13, CSV12]. However, most of these approaches rely on Linear Program-

ming and/or dynamic programming techniques to provide a solution. Hence, they have a high

time-complexity as shown in Table 4.2. Therefore, we provide a low-degree polynomial time-

complexity algorithm using bin-packing heuristics.

Computing Adversary Task Assignment Algorithms
Platform Task migration Algorithm Task migration Speed competitive ratio Complexity

t-typea non-migrative [Bar04b] non-migrative 2 O(P)c

t-type non-migrative [Bar04c] non-migrative 2 O(P)
t-type non-migrative [LST90] non-migrative 2 O(P)
t-type fully-migrative [CSV12] non-migrative 4 O(P)

t-type non-migrative [HS76] non-migrative PTASd exponential
in procs

t-type non-migrative [JP99] non-migrative PTAS exponential in
procs and O(P)

t-type non-migrative [WBB13] non-migrative PTAS exponential
in 1/ε and O(P)

2-typeb intra-migrative SA intra-migrative 1+ α

2
e≤ 1.5 low-degree

(Chapter 3) polynomial

2-type non-migrative FF-3C and non-migrative 1+α ≤ 2 low-degree
its variants polynomial

a A heterogeneous multiprocessor platform having two or more processor types.
b A heterogeneous multiprocessor platform having only two processor types.
c The time-complexity O(P) indicates that the algorithm relies on solving a Linear Program (LP) formulation — note

that though a linear program can be solved in polynomial time, the polynomial generally has a higher degree.
d A PTAS takes an instance of an optimization problem and a parameter ε > 0 as inputs and, in time polynomial in the

problem size (although not necessarily in the value of ε), produces a solution that is within a factor 1+ ε of being
optimal.

e The parameter 0 < α ≤ 1 is a property of the task set — it is the maximum of all the task utilizations that are no greater
than one.

Table 4.2: Summary of state-of-the-art task assignment algorithms along with the FF-3C algorithm
proposed in this section.

Contributions and Significance of the work discussed in this section. We present a new

algorithm, FF-3C, for the problem of non-migrative task assignment — this algorithm uses a

4.3 FF-3C algorithm and its variants 81

bin-packing heuristic for assigning tasks and also makes use of the fact that in bin-packing,

packing small items (i.e., tasks with small utilizations) allows better performance bounds. FF-

3C offers low time-complexity and provably good performance. Specifically, FF-3C (i) offers

a time-complexity of O(n ·max(m, logn)), where n denotes the number of tasks and m denotes

the number of processors and (ii) has a speed competitive ratio of 1+α ≤ 2 against the non-

migrative adversary, where the parameter 0 < α ≤ 1 is a property of the task set; it is the maxi-

mum of all the task utilizations that are no greater than one. We also present several extensions

to FF-3C; these offer the same time-complexity and speed competitive ratio but in addition, they

offer improved average-case performance. As can be seen from Table 4.2, FF-3C has a supe-

rior performance to state-of-the-art1. This is because (i) FF-3C has the same speed competi-

tive ratio as algorithms in [Bar04b, Bar04c, LST90] (whose speed competitive ratios have been

proven against a non-migrative adversary) but with a better time-complexity and also has a better

speed competitive ratio compared to the algorithm in [CSV12] (whose speed competitive ratio

has been proven against a more powerful fully-migrative adversary) and (ii) compared to PTAS

algorithms [HS76, JP99, WBB13] that offer better speed competitive ratios (for lower values of

ε) but whose practical significance is severely limited as they incur a very high time-complexity

(i.e., exponential in number processors or exponential in 1/ε), our algorithm offers a significantly

lower (i.e., low-degree polynomial) time-complexity.

Via experiments with randomly generated task sets, we compare the performance of FF-3C and

its variants with two established state-of-the-art algorithms and their variations [Bar04b, Bar04c].

We evaluate algorithms based on (i) the average running time and (ii) the necessary multiplication

factor. Overall our new algorithms compare favorably to the state-of-the-art. In particular, in

our evaluations with randomly generated task sets, one of the variants of FF-3C, namely FF-4C-

COMB, runs 12000 to 160000 times faster and further, for vast majority of the task sets, it has a

significantly smaller necessary multiplication factor than the state-of-the-art algorithms [Bar04b,

Bar04c].

A global view. The context of the new algorithm FF-3C can be visualized as shown in Fig-

ure 4.4.

Organization of Section 4.3. The rest of the section is organized as follows. Section 4.3.2

describes the system model and offers necessary preliminaries. Section 4.3.3 presents some pre-

viously known and some new results that we use while proving the speed competitive ratio of

FF-3C. Section 4.3.4 formulates the algorithm FF-3C and an example illustrating the working of

FF-3C algorithm is given in Section 4.3.5. Section 4.3.6 proves its speed competitive ratio and

its time-complexity is discussed in Section 4.3.7. Section 4.3.8 describes the variants of FF-3C

that offer better average-case performance and proves their speed competitive ratios. Section 4.3.9

offers average-case performance evaluations and finally Section 4.3.10 concludes.

1SA algorithm is listed in the table for the sake of completeness and since it is an intra-migrative algorithm, FF-3C
cannot be compared with it.

82 Non-migrative Scheduling on Two-type Heterogeneous Multiprocessors

Fully
migrative

Intra
migrative

Non
migrative

Fully
migrative

Intra
migrative

Non
migrative

Algorithm Adversary

FF-3C

2-type

SCR=1+α

O(n max(m, log n)

Figure 4.4: A global view of the new algorithm, FF-3C, proposed in this section. Here, SCR
denotes the “speed competitive ratio”, n denotes the number of tasks and m denotes the number of
processors.

4.3.2 System model and some preliminaries

In a computer platform with two distinct types of processors, let P1 be the set of type-1 processors

and P2 be the set of type-2 processors. The workload consists of τ , a set of implicit-deadline

sporadic tasks.

A task is assigned to a processor and all jobs released by this task must execute there. The

utilization of a task τi depends on the type of processor to which it is assigned. The utilization of

task τi is u1
i if τi is assigned to a type-1 processor. Analogously, the utilization of task τi is u2

i if

τi is assigned to a type-2 processor. Note that we allow u1
i = ∞ (respectively, u2

i = ∞) if task τi

cannot be assigned at all to a type-1 (respectively, type-2) processor.

We assume that tasks are assigned unique identifiers. This allows two tasks with the same

parameters to be in a set. For example, with u1
i = 0.2, u2

i = 0.4 and u1
j = 0.2, u2

j = 0.4, we

can form the set
{

τi,τ j
}

. We also assume that processors are assigned unique identifiers. This

assumption is instrumental because if we sort processors in ascending order of their identifiers

then we can be sure that, when applying normal bin-packing schemes (e.g., first-fit) repeatedly on

the same task set, with tasks ordered in the same way, the bin-packing scheme outputs the same

task assignment for each run.

Let τ[p] denote the set of tasks assigned to a processor p. Earliest-Deadline-First (EDF) is

a very popular algorithm in uniprocessor scheduling [LL73]. A slight adaptation of a previously

known result [LL73] about EDF gives the following:

4.3 FF-3C algorithm and its variants 83

Lemma 8. If all tasks in τ[p] are scheduled under EDF on a processor p (which is of type-t,

where t ∈ {1,2}) and ∑τi∈τ[p] ut
i ≤ 1, then all deadlines are met.

Then the necessary and sufficient set of conditions for schedulability on a partitioned hetero-

geneous multiprocessor with two types of processors is the following:

∀p ∈ P1 : ∑
τi∈τ[p]

u1
i ≤ 1 (4.2)

∀p ∈ P2 : ∑
τi∈τ[p]

u2
i ≤ 1 (4.3)

Thus our problem of scheduling tasks on two-type heterogeneous multiprocessors is reduced to

assigning tasks to processors such that the above constraints are satisfied.

We now introduce few notations that will be used later (from Section 4.3.6 onwards) while

proving the speed competitive ratio of our algorithms.

Let Π(|P1|, |P2|) denote a two-type heterogeneous platform comprising |P1| processors of

type-1 and |P2| processors of type-2. Let Π(|P1|, |P2|)×〈s1,s2〉 denote a two-type heterogeneous

platform in which the speed of every processor of type-1 is s1 times the speed of a type-1 proces-

sor in Π(|P1|, |P2|) and the speed of every processor of type-2 is s2 times the speed of a type-2

processor in Π(|P1|, |P2|) where s1 and s2 are positive real-numbers.

Let sched(A,τ,Π(|P1|, |P2|)× 〈s1,s2〉) denote a predicate to signify that a task set τ meets

all its deadlines when scheduled by an algorithm A on a two-type heterogeneous multiprocessor

platform — Π(|P1|, |P2|)×〈s1,s2〉. The term meets all its deadlines in this and other predicates

means ‘meets deadlines for every possible arrival of tasks that is valid as per the given parameters

of τ’.

Let sched(nmo-feasible,τ,Π(|P1|, |P2|)×〈s1,s2〉) denote a predicate to signify that there ex-

ists a non-migrative-offline-feasible preemptive schedule which meets all deadlines for the speci-

fied system. Here, non-migrative schedule refers to a schedule in which all jobs of a task execute

on the same processor to which the task is assigned. In this predicate and other predicates, the

term offline encompasses the schedules generated by algorithms which (i) may use inserted idle

times and/or (ii) are “clairvoyant” (i.e., use knowledge of future task arrival times).

4.3.3 Useful results

Bin-packing heuristics are popular for assigning tasks on identical [LDG04, LGDG03] and uni-

form [AT07b, AT07a] multiprocessors (where a processor x times faster executes all tasks x times

faster) because they run fast and offer finite speed competitive ratio. Yet, straightforward appli-

cation of bin-packing heuristics to two-type heterogeneous multiprocessors performs poorly, as

illustrated by Example 7.

Example 7. Consider a task set τ of 2k tasks and a two-type heterogeneous multiprocessor Π of

2 processors (for an integer k ≥ 3). Processor π1 ∈ Π is of type-1 and processor π2 ∈ Π is of

84 Non-migrative Scheduling on Two-type Heterogeneous Multiprocessors

type-2. Tasks indexed 1, . . . ,k are characterized by u1
i = 1, u2

i =
1
k and tasks indexed k+1, . . . ,2k

are characterized by u1
i =

1
k , u2

i = 1.

Tasks can be assigned such that the condition of Lemma 8 is met for both processors, e.g.,

assigning tasks 1, . . . ,k to π2 and the rest to π1 as shown in Figure 4.5a. Yet, the application of

a normal bin-packing algorithm (designed for identical multiprocessors such as First-Fit) causes

failure. These algorithms consider tasks in a sequence and each time use the condition of Lemma 8

to decide if the task in consideration can be assigned to a processor. Under First-Fit, τ1 ends up

on π1 (as processors are considered by order of ascending index). Yet, at most one task of those

indexed 1, . . . ,k can be assigned there. Thus, the k− 1 ≥ 2 tasks indexed 2, . . . ,k will have to be

assigned to π2. Next, the bin-packing scheme tries to assign tasks k+1, . . . ,2k to π2; none fits and

the algorithm fails.

Let us now provide this bin-packing algorithm with processors k−1 times faster. Then, tasks

indexed 1, . . . ,k−1 will be assigned to π1 and the kth task to π2 before considering tasks indexed

k+1, . . . ,2k. Of the latter, many can be assigned to π2 but not all and, since none can be assigned

to π1, the bin-packing algorithm would again fail as shown in Figure 4.5b.

This holds for any k ≥ 3. For k→ ∞, we see that the speed competitive ratio of such bin-

packing schemes is infinite.

It can be seen that the cause of low performance of such a bin-packing scheme is that, by

considering tasks one by one, it lacks a “global view” of the problem, hence may assign a task to a

processor where it executes slowly. It seems a good idea to try to assign each task to the processor

where it executes faster. We will use this idea; let us thus introduce the following definitions:

P1 is the set of type-1 processors and P2 is the set of type-2 processors. The task set τ is

viewed as two disjoint subsets, τ1 and τ2. The set τ1 consists of those tasks which run at least as

fast on a type-1 processor as on a type-2 processor; τ2 consists of all other tasks. In notation:

τ = τ
1∪ τ

2 (4.4)

∀τi ∈ τ
1 : u1

i ≤ u2
i (4.5)

∀τi ∈ τ
2 : u1

i > u2
i (4.6)

We now list two useful observations along with their proofs.

Lemma 9. If there is a task τi in τ1 such that u1
i > 1, it is then impossible to meet all deadlines

with partitioning. Likewise for a task τi in τ2 with u2
i > 1.

Proof. Intuitively, if the execution time of τi exceeds its deadline on processor type where it runs

fastest, it cannot be assigned anywhere to meet deadlines.

Lemma 10. It is impossible to meet all deadlines of a task set τ on a two-type platform Π if

∑
τi∈τ1

u1
i + ∑

τi∈τ2

u2
i > |P1|+ |P2| (4.7)

4.3 FF-3C algorithm and its variants 85

k

1
u ;1u 2

1

1

1 



k

1
u ;1u 2

k

1

k 

1u ;
k

1
u 2

1k

1

1k  



1u ;
k

1
u 2

2k

1

2k 

1

k



1k 



2k

1π

2π

Tasks Processors

k

1
u ;1u 2

1k

1

1k  1k 

(a) A successful assignment of tasks on processors.

k

1
u ;1u 2

1

1

1 



k

1
u ;1u 2

k

1

k 

1u ;
k

1
u 2

1k

1

1k  



1u ;
k

1
u 2

2k

1

2k 

1

k



1k 



2k

1π

2π

Tasks Processors

k

1
u ;1u 2

1k

1

1k  1k 

(b) The standard first-fit bin packing fails to assign tasks on k−1 times
faster processors.

Figure 4.5: The standard first-fit (or any other) bin-packing heuristic does not perform well for
assigning tasks on two-type heterogeneous multiprocessor platform.

Proof. The proof is by contradiction. Let τ be a task set for which Inequality 4.7 holds and for

which a feasible partitioning exists. Given that τ is feasible, the set of constraints expressed by

86 Non-migrative Scheduling on Two-type Heterogeneous Multiprocessors

Inequalities 4.2 and 4.3 must hold. Then, respectively from those inequalities, we have:

∀p ∈ P1 : ∑
τi∈τ[p]∩τ1

u1
i + ∑

τi∈τ[p]∩τ2

u1
i ≤ 1 (4.8)

∀p ∈ P2 : ∑
τi∈τ[p]∩τ1

u2
i + ∑

τi∈τ[p]∩τ2

u2
i ≤ 1 (4.9)

However, from Inequalities 4.6 and 4.5, we know that:

(4.6)⇒ ∀τi ∈ τ
2 : u1

i > u2
i (4.10)

and (4.5)⇒ ∀τi ∈ τ
1 : u1

i ≤ u2
i (4.11)

Then, respectively:

(4.8)
(4.10)⇒ ∀p ∈ P1 : ∑

τi∈τ[p]∩τ1

u1
i + ∑

τi∈τ[p]∩τ2

u2
i < 1 (4.12)

(4.9)
(4.11)⇒ ∀p ∈ P2 : ∑

τi∈τ[p]∩τ1

u1
i + ∑

τi∈τ[p]∩τ2

u2
i ≤ 1 (4.13)

We can combine Inequalities 4.12 and 4.13 into:

∀p ∈Π : ∑
τi∈τ[p]∩τ1

u1
i + ∑

τi∈τ[p]∩τ2

u2
i ≤ 1 (4.14)

Via summation of Inequality 4.14 over all p we obtain

∑
p

∑
τi∈τ[p]∩τ1

u1
i +∑

p
∑

τi∈τ[p]∩τ2

u2
i ≤∑

p
1

⇒ ∑
τi∈τ1

u1
i + ∑

τi∈τ2

u2
i ≤ |P1|+ |P2| (4.15)

This contradicts Inequality 4.7.

We next highlight how the problem in consideration is related to fractional knapsack problem,

to help with proofs later. If you read this chapter for the first time, you may want to skip this

section now and revisit it later.

Fractional Knapsack Problem: A vector x has n elements. The problem instance is repre-

sented by vectors v and w of real numbers, arranged such that vi
wi
≥ vi+1

wi+1
∀i ∈ {1,2, . . . ,n− 1}.

Intuitively, vi and wi may be thought of as, respectively, the “value" and “weight" of an element.

Consider the problem of assigning values to the elements in vector x so as to maximize ∑
n
i=1 xi · vi

subject to ∑
n
i=1 xi ·wi ≤ CAP where xi is a real number such that 0 ≤ xi ≤ 1 and CAP is a given

upper bound. Intuitively, determine how much of each item to use such that cumulative value is

maximized, subject to cumulative weight not exceeding some bound.

Lemma 11. An optimal solution to the Fractional Knapsack Problem is obtained by Algorithm 15.

4.3 FF-3C algorithm and its variants 87

Algorithm 2: An optimal algorithm for fractional knapsack problem.
1 re-index tuples {vi,wi} by order of descending vi/wi
2 for i=1 to n do xi := 0;
3 end
4 i := 1; SUMWEIGHT:=0; SUMVALUE:=0
5 while (SUMWEIGHT+wi ≤ CAP) ∧ (i≤ n) do
6 xi:=1
7 SUMWEIGHT:=SUMWEIGHT+wi
8 SUMVALUE:=SUMVALUE+vi
9 i:=i+1

10 end
11 if i≤ n then
12 xi:=(CAP – SUMWEIGHT)/wi
13 SUMWEIGHT:=SUMWEIGHT+wi · xi
14 SUMVALUE:=SUMVALUE+vi · xi

15 end

Proof. This is found in textbooks (Chap. 16.2 [CLRS01]).

For a given problem instance in our scheduling problem, we can create an instance of a frac-

tional knapsack problem as follows: (i) for each task in our scheduling problem, create a cor-

responding item in the fractional knapsack problem, (ii) the weight of an item in the fractional

knapsack problem is the utilization of the corresponding task where the utilization here is taken

for the processor on which the task executes fast and (iii) the value of an item in the fractional

knapsack problem is how much lower the utilization of its corresponding task is when the task

is assigned to the processor on which it executes fast as compared to its utilization if assigned to

the processor on which it executes slowly. Informally speaking, we can see that if tasks could be

split, then solving the fractional knapsack problem is equivalent to assigning tasks to processors

so that the cumulative utilization of tasks is minimized. Again, informally speaking, we can then

show that a task assignment minimizes the cumulative utilization of tasks assuming that (i) the

cumulative utilization of tasks that are assigned to the processors on which they execute fast is

sufficiently high and (ii) the tasks that are assigned to the processors where they execute fast has a

higher ratio (u2
i /u1

i) than the ones that are not. Lemma 12 and Lemma 13 expresses this formally

and proves it.

Lemma 12. Consider n tasks and a heterogeneous multiprocessor conforming to the system model

of Section 4.3.2. Let x denote a number such that 0 ≤ x ≤ |P1| · (1− y) where 0 < y ≤ 1
2 . Let A1

denote a subset of τ1 such that

∑
τi∈A1

u1
i > |P1| · (1− y)− x (4.16)

and for every pair of tasks τi ∈ A1 and τ j ∈ τ1\A1 it holds that u2
i

u1
i
− 1 ≥ u2

j

u1
j
− 1. Let A2 denote

τ1\A1.

88 Non-migrative Scheduling on Two-type Heterogeneous Multiprocessors

Let B1 denote a subset of τ1 such that

∑
τi∈B1

u1
i ≤ |P1| · (1− y)− x (4.17)

Let B2 denote τ\B1. It then holds that:

∑
τi∈A1

u1
i + ∑

τi∈A2
u2

i + ∑
τi∈τ2

u2
i ≤ ∑

τi∈B1
u1

i + ∑
τi∈B2

u2
i (4.18)

Proof. Let us arbitrarily choose A1, B1 as defined. We will prove that this implies Inequality 4.18.

Using Inequalities 4.16 and 4.17 we clearly get:

∑
τi∈A1

u1
i > ∑

τi∈B1
u1

i (4.19)

With this choice of A1 and B1, let us consider different instances of the fractional knapsack prob-

lem:

Instance1:
CAP = left-hand side of Inequality 4.19.

For each τi ∈ τ , create an item i with vi = u2
i −u1

i and wi = u1
i

SUMVALUE1=value of variable SUMVALUE when Algorithm 15 terminates with Instance1 as

input.

Instance2:
CAP = left-hand side of Inequality 4.19.

For each τi ∈ A1, create an item i with vi = u2
i −u1

i and wi = u1
i

SUMVALUE2=value of variable SUMVALUE when Algorithm 15 terminates with Instance2 as

input.

Instance3:
CAP = right-hand side of Inequality 4.19.

For each τi ∈ B1, create an item i with vi = u2
i −u1

i and wi = u1
i

SUMVALUE3=value of variable SUMVALUE when Algorithm 15 terminates with Instance3 as

input.

Instance4:
CAP = right-hand side of Inequality 4.19.

For each τi ∈ τ , create an item i with vi = u2
i −u1

i and wi = u1
i

SUMVALUE4=value of variable SUMVALUE when Algorithm 15 terminates with Instance4 as

input.

Observe that:

O1: In all four instances, it holds for each element that vi
wi

=
u2

i
u1

i
−1.

O2: Instance1 and Instance2 have the same capacity.

O3: Although Instance2 has a subset of the elements of Instance1, this subset is the subset of those

4.3 FF-3C algorithm and its variants 89

elements with the largest vi/wi — follows from definition of A1.

O4: CAP in Instance2 is exactly the sum of the weights of the elements in A1.

O5: From O1,O2,O3 and O4: SUMVALUE2=SUMVALUE1.

O6: Instance3 and Instance4 have the same capacity.

O7: Instance3 has a subset of the elements of Instance4.

O8: From O6 and O7: SUMVALUE3≤SUMVALUE4.

O9: Instance4 has smaller capacity than Instance1.

O10: Instance4 has the same elements as Instance1.

O11: From O9 and O10: SUMVALUE4≤SUMVALUE1.

O12: From O8 and O11: SUMVALUE3≤SUMVALUE1.

O13: From O12 and O5: SUMVALUE3≤SUMVALUE2.

Using O13 and the definitions of the instances of A1 and B1 and observing that the capacity of

Instance2 and Instance3 are set such that all elements in either instance will fit into the respective

“knapsack", we obtain:

∑
τi∈B1

(u2
i −u1

i)≤ ∑
τi∈A1

(u2
i −u1

i) (4.20)

Now, observing that τ=τ1∪τ2=B1∪B2 gives us:

∑
τi∈τ1

u2
i + ∑

τi∈τ2

u2
i = ∑

τi∈B1
u2

i + ∑
τi∈B2

u2
i (4.21)

Combining Expression 4.20 and 4.21 gives us:

∑
τi∈τ1

u2
i + ∑

τi∈τ2

u2
i −
(

∑
τi∈A1

u2
i − ∑

τi∈A1
u1

i

)
≤ ∑

τi∈B1
u2

i + ∑
τi∈B2

u2
i −
(

∑
τi∈B1

u2
i − ∑

τi∈B1
u1

i

)
(4.22)

Rearranging terms and exploiting A2 = τ1\A1 yields:

∑
τi∈A1

u1
i + ∑

τi∈A2
u2

i + ∑
τi∈τ2

u2
i ≤ ∑

τi∈B1
u1

i + ∑
τi∈B2

u2
i

This is the statement of the lemma.

Lemma 12 considers a task set τ . We can however apply this on only a subset of τ . Let us

assume that H1 and H2 are two disjoint subsets of τ . By applying Lemma 12 on τ \ (H1∪H2)

and then adding the same sum to both sides of Inequality 4.18, we get:

Lemma 13. Consider n tasks and a heterogeneous multiprocessor conforming to the system model

(and notation) of Section 4.3.2. Let x denote a number such that 0≤x≤ |P1| · (1− y) where 0 <

y≤ 1
2 . Let A1 denote a subset of (τ1\(H1∪H2)) such that

∑
τi∈A1

u1
i > |P1| · (1− y)− x (4.23)

90 Non-migrative Scheduling on Two-type Heterogeneous Multiprocessors

and for every pair of tasks τi∈A1 and τ j∈(τ1\(H1∪H2))\A1 it holds that u2
i

u1
i
−1≥u2

j

u1
j
−1. Let A2

denote (τ1 \ (H1∪H2))\A1.

Let B1 denote a subset of τ1 \ (H1∪H2) such that

∑
τi∈B1

u1
i ≤ |P1| · (1− y)− x (4.24)

Let B2 denote (τ \ (H1∪H2))\B1. It then holds that:

∑
τi∈H1

u1
i + ∑

τi∈H2
u2

i + ∑
τi∈A1

u1
i + ∑

τi∈A2
u2

i + ∑
τi∈τ2 \ (H1∪H2)

u2
i ≤ ∑

τi∈H1
u1

i + ∑
τi∈H2

u2
i + ∑

τi∈B1
u1

i + ∑
τi∈B2

u2
i

Lemma 13 is used while proving the performance of our new algorithm, FF-3C, which is

described in the next section.

4.3.4 The FF-3C algorithm

The new algorithm, FF-3C, is based on two ideas.

Idea1: A task should ideally be assigned to the processor type where it runs faster (termed

“favorite" type).

Idea2: A task with utilization above 1
2 on its non-favorite type of processor must be assigned to

its favorite type of processor. This special case of Idea1 is stated separately because this facilitates

creating an algorithm with the desired speed competitive ratio (which is upper bounded by 2):

Since we will compare the performance of our new algorithm versus every other algorithm that

uses processors of at most 1
2 the speed, following Idea2 ensures that each of those tasks is assigned

to the same corresponding processor type as under every other successful assignment algorithm.

Based on these ideas and the concepts of τ1 and τ2 (defined in Section 4.3.2), we also define

the following disjoint sets:

H1 = {τi ∈ τ1 : u2
i >

1
2} (4.25)

H2 = {τi ∈ τ2 : u1
i >

1
2} (4.26)

F1 = τ1 \H1 (4.27)

F2 = τ2 \H2 (4.28)

A task is termed to be heavy on type-1 processors (respectively, type-2 processors) if its utiliza-

tion on that processor type strictly exceeds 1
2 . Intuitively, H1 and H2 identify those tasks which

should be assigned based on Idea2. H1 stands for “Set of tasks with type-1 processors as favorite

and are heavy if they are assigned to their non-favorite processor type (type-2)". Analogous for

H2. (Obviously, a task in H1 or H2 might also be heavy on its favorite processor type.) Also,

intuitively, F1 and F2 identify those tasks which should be assigned based on Idea1. F1 stands

for “Set of tasks that have type-1 processors as their favorite and are not heavy on either processor

4.3 FF-3C algorithm and its variants 91

Algorithm 3: FF-3C: An algorithm for assigning implicit-deadline sporadic tasks on two-
type heterogeneous multiprocessors.

Input : τ denotes set of tasks; Π denotes set of processors
Output: τ[p] specifies the tasks assigned to processor p

1 Form sets H1,H2,F1,F2 as defined by Expressions 4.25-4.28
2 ∀p: U[p] := 0
3 ∀p: τ[p] := /0
4 if (first-fit(H1,P1) 6= H1) then declare FAILURE;
5 if (first-fit(H2,P2) 6= H2) then declare FAILURE;
6 F11 := first-fit(F1, P1)
7 F22 := first-fit(F2, P2)
8 if (F11 = F1)∧ (F22 = F2) then declare SUCCESS;
9 if (F11 6= F1)∧ (F22 6= F2) then declare FAILURE;

10 if (F11 6= F1)∧ (F22 = F2) then
11 F12 := F1 \ F11
12 if (first-fit(F12,P2) = F12) then
13 declare SUCCESS
14 else
15 declare FAILURE
16 end
17 end
18 if (F11 = F1)∧ (F22 6= F2) then
19 F21 := F2 \ F22
20 if (first-fit(F21,P1) = F21) then
21 declare SUCCESS
22 else
23 declare FAILURE
24 end
25 end

type". Analogous for F2. From the definitions of H1, H2, F1, F2 (and Inequalities 4.5 and 4.6),

we have:

τi ∈ H1⇒ u2
i >

1
2

(4.29)

τi ∈ H2⇒ u1
i >

1
2

(4.30)

τi ∈ F1⇒ u1
i ≤

1
2
∧ u2

i ≤
1
2

(4.31)

τi ∈ F2⇒ u1
i ≤

1
2
∧ u2

i ≤
1
2

(4.32)

Algorithm 3 shows the pseudo-code of the new algorithm, FF-3C. The intuition behind the de-

sign of FF-3C is that first we assign tasks to their favorite processors which would be heavy on

other processor type (Lines 4-5). Then we assign the non-heavy tasks to their favorite processors

(Lines 6-7). Then, if there are remaining non-heavy tasks, these have to be assigned to processors

that are not their favorite (Lines 12 and 20).

92 Non-migrative Scheduling on Two-type Heterogeneous Multiprocessors

Algorithm 4: first-fit(ts, ps): First-fit bin-packing algorithm for assigning tasks to proces-
sors.

Input : ts denotes set of tasks; ps denotes set of processors
Output: assigned_tasks denotes set of assigned tasks

1 assigned_tasks := /0
2 If ps consists of type-1 (respectively, type-2) processors, then order ts by decreasing u2

i /u1
i (respectively,

decreasing u1
i /u2

i) with ties broken favoring the task with lower identifier. Sort processors in ascending order of
their unique identifiers.

3 τi := first task in ts
4 p := first processor in ps
5 Let k denote the type of processor p (either 1 or 2)
6 if (U[p]+ uk

i ≤ 1) then
7 U[p] := U[p] + uk

i
8 τ[p] := τ[p] ∪ {τi}
9 assigned_tasks := assigned_tasks ∪ {τi}

10 if remaining tasks exist in ts then
11 τi := next task in ts
12 go to Line 4.
13 else
14 return assigned_tasks
15 end
16 else
17 if remaining processors exist in ps then
18 p := next processor in ps
19 go to Line 6.
20 else
21 return assigned_tasks
22 end
23 end

FF-3C is named after the fact that each task has three chances to be assigned using first-fit:

(i) according to Idea2 (to avoid making a task heavy), (ii) assignment to its favorite and (iii) as-

signment to its non-favorite processor type.

As already mentioned, the FF-3C algorithm performs several passes with first-fit bin-packing.

It uses the subroutine first-fit (see Algorithm 4 for pseudo-code) which takes two parameters,

a set of tasks to be assigned using first-fit bin-packing heuristic and a set of processors to assign

these tasks, and it returns the set of successfully assigned tasks. FF-3C keeps track of processor

utilizations in a global vector U, initialized to zero (Line 2 in Algorithm 3).

4.3.5 An example to illustrate the working of FF-3C algorithm

In this section, we illustrate the working of FF-3C with an example.

Example 8. Consider a two-type heterogeneous multiprocessor platform Π with one processor

of type-1 (namely, π1) and two processors of type-2 (namely, π2 and π3) and a task set as shown

in Table 4.3. Let us see how FF-3C assigns tasks to processors. The task set τ is partitioned

as follows: τ1 = {τ1,τ3,τ6,τ7} and τ2 = {τ2,τ4,τ5,τ8,τ9} — see Inequalities 4.5 and 4.6. On

Line 1, FF-3C (pseudo-code shown in Algorithm 3) forms sets H1, H2, F1 and F2 (as defined

4.3 FF-3C algorithm and its variants 93

τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8 τ9
u1

i 0.60 0.70 0.14 0.35 0.98 0.10 0.25 0.60 0.15
u2

i 0.80 0.06 0.48 0.25 0.75 0.15 0.85 0.20 0.10
Table 4.3: An example task set to illustrate the working of FF-3C algorithm.

by Inequalities 4.25-4.28) as follows: H1 = {τ1,τ7}, H2 = {τ2,τ5,τ8}, F1 = {τ3,τ6} and F2 =

{τ4,τ9}.

On Line 4, FF-3C calls first-fit sub-routine (shown in Algorithm 4) to assign tasks in H1 =

{τ1,τ7} on processor π1 (of type-1). The first-fit sub-routine (on Line 2 in Algorithm 4) sorts the

tasks in H1 in descending order of u2
i /u1

i , i.e., 〈τ7,τ1〉. The sub-routine successfully assigns both

the tasks in H1 to processor π1. After assigning H1 tasks, the remaining utilization of processor

π1 is 0.15.

On Line 5, FF-3C calls first-fit sub-routine to assign tasks in H2 = {τ2,τ5,τ8} on processor

π2 and π3 (of type-2). The first-fit sub-routine sorts the tasks in H2 in ascending order of u2
i /u1

i ,

i.e., 〈τ2,τ8,τ5〉. The sub-routine successfully assigns τ2 and τ8 to processor π2 (but fails to assign

τ5 to π2) and τ5 to processor π3. After assigning H2 tasks, the remaining utilization of processor

π2 is 0.74 and the remaining utilization of processor π3 is 0.25.

On Line 6, FF-3C calls first-fit sub-routine to assign tasks in F1 = {τ3,τ6} on processor π1 (of

type-1). The first-fit sub-routine sorts the tasks in F1 in descending order of u2
i /u1

i , i.e., 〈τ3,τ6〉.
The sub-routine successfully assigns the task τ3 to π1 but fails to assign τ6 to π1 as there is not

enough capacity left in π1. After assigning τ3, the remaining utilization of processor π1 is 0.01.

Hence, when first-fit returns on Line 6, we have: F11 = {τ3}.

On Line 7, FF-3C calls first-fit sub-routine to assign tasks in F2 = {τ4,τ9} on processors

π2 and π3 (of type-2). The first-fit sub-routine (on Line 2 in Algorithm 4) sorts the tasks in F2

in ascending order of u2
i /u1

i , i.e., 〈τ9,τ4〉. The sub-routine successfully assigns both the tasks in

F2 to processor π2. After assigning τ9 and τ4, the remaining utilization of processor π2 is 0.39.

Hence, when first-fit returns on Line 7, we have: F22 = {τ4,τ9}.

The condition on Line 10, i.e., (F11 6= F1)∧ (F22 = F2) is TRUE and hence, new task set

F12 is formed on Line 11, i.e., F12 = {τ6}. FF-3C on Line 12 calls first-fit sub-routine to assign

tasks in F12 to processors π2 and π3 (of type-2). The first-fit sub-routine successfully assigns the

single task τ6 of F12 to processor π2. The remaining utilization of processor π2 is 0.24. Since the

sub-routine managed to assign all tasks in F12 to type-2 processors, FF-3C declares SUCCESS

on Line 13.

So, the final assignment of tasks to processors looks as follows: τ1,τ3 and τ7 are assigned

to processor π1 (of type-1), τ2,τ4,τ6,τ8 and τ9 are assigned to processor π2 (of type-2) and τ5 is

assigned to processor π3 (of type-2).

94 Non-migrative Scheduling on Two-type Heterogeneous Multiprocessors

4.3.6 The speed competitive ratio of FF-3C algorithm

In this section, we will prove the speed competitive ratio of FF-3C. We will derive its speed

competitive ratio in terms of a task set parameter, namely β . The parameter β is a property of

the task set on which FF-3C is applied and it reflects the values that the task utilizations on either

processor types range over. Specifically, 0 < β ≤ 0.5 is the smallest number such that, for each

task (in the task set on which FF-3C is applied), it holds that its utilization is no greater than β or

greater than 1−β on a processor of type-1 and its utilization is no greater than β or greater than

1−β on a processor of type-2.

Lemma 14. Let β denote a real number:

0 < β ≤ 1
2

(4.33)

Let us derive a new task set τ ′ from the task set τ as follows:

∀τi ∈ τ : u1′
i =

u1
i

1−β
∧ u2′

i =
u2

i

1−β
(4.34)

If for τ , it holds that:

∀τi ∈ τ : (u1
i ≤ β) ∨ (1−β < u1

i)

and ∀τi ∈ τ : (u2
i ≤ β) ∨ (1−β < u2

i) (4.35)

then
sched(nmo-feasible, τ ′, Π(|P1|, |P2|))⇒ sched(FF-3C, τ , Π(|P1|, |P2|))

Proof. An equivalent claim is that if a task set τ is not schedulable under FF-3C over a comput-

ing platform Π then the task set τ ′ would likewise be unschedulable, using any algorithm, over

platform Π. We will prove this by contradiction.

Combining the definitions of H1–F2 (Inequalities 4.29–4.32), the definition of β (Inequal-

ity 4.33 in Lemma 14) and the assumptions of task set τ (Inequality 4.35 in Lemma 14), we

obtain:

τi ∈ H1
(4.29)⇒ u2

i >
1
2
(4.33)⇒ u2

i 6≤ β
(4.35)⇒ u2

i > 1−β (4.36)

τi ∈ H2
(4.30)⇒ u1

i >
1
2
(4.33)⇒ u1

i 6≤ β
(4.35)⇒ u1

i > 1−β (4.37)

τi ∈ F1
(4.31)⇒ u1

i ≤ 1
2 ∧u2

i ≤ 1
2
(4.33)⇒ u1

i 6> 1−β ∧u2
i 6> 1−β

(4.35)⇒ u1
i ≤ β ∧u2

i ≤ β (4.38)

τi ∈ F2
(4.32)⇒ u1

i ≤ 1
2 ∧u2

i ≤ 1
2
(4.33)⇒ u1

i 6> 1−β ∧u2
i 6> 1−β

(4.35)⇒ u1
i ≤ β ∧u2

i ≤ β (4.39)

Assume that FF-3C failed to assign τ on Π but it is possible (using an algorithm OPT) to

assign τ ′ on Π. Since FF-3C failed to assign τ on Π, it must have declared FAILURE. We explore

all possibilities for the failure of FF-3C to occur:

4.3 FF-3C algorithm and its variants 95

Failure on Line 4 in FF-3C.
It has been shown [LDG04] that if first-fit (or any other reasonable allocation algorithm2) is used

and

∑
τi∈τ

ui ≤ m− (m−1)umax

then the task set is successfully assigned on an identical multiprocessor platform; where m is the

number of processors and umax is the maximum utilization of any task in the given task set.

Clearly, from trivial arithmetic, we have m(1− umax) <= m− (m− 1)umax and this gives us

the following: if first-fit (or any other reasonable allocation algorithm) is used and

∑
τi∈τ

ui ≤ m(1−umax)

then the task set is successfully assigned on an identical multiprocessor platform.

Applying the above expression to the tasks in H1 for which it holds that ∀τi ∈ H1 : u1
i ≤ β

(shown later in the proof, immediately after Expression 4.55) and to the type-1 processors, we

obtain:

If ∑
τi∈H1

ui ≤ |P1|(1−β) then first-fit succeeds.

Since FF-3C failed (because first-fit failed), it must hold that

∑
τi∈H1

u1
i > |P1| · (1−β)

(4.34)⇒ ∑
τi∈H1

u1′
i > |P1|

Therefore, OPT cannot assign all tasks in H1 to P1. Hence, it assigns at least one task τi∈H1

to P2. From Expression 4.34 and 4.36 we get u2′
i > 1, hence (from Lemma 9) OPT produces an

infeasible assignment – a contradiction.

Failure on Line 5 in FF-3C.
This results in contradiction (symmetric to the case above).

Failure on Line 9 in FF-3C.
From the case, we obtain that F11⊂F1 and F22⊂F2. Therefore, when executing Line 6 in FF-

3C, there was a task τ f ailed1 ∈ F1 which could not be assigned on any processor in P1 and when

executing Line 7 in FF-3C there was a task τ f ailed2 ∈ F2 which could not be assigned on any

processor in P2. Hence:

∀p ∈ P1 : U [p]+u1
f ailed1 > 1 (4.40)

and ∀p ∈ P2 : U [p]+u2
f ailed2 > 1 (4.41)

where U [p] is the current utilization of a processor p.

2A reasonable allocation algorithm is an algorithm that fails to assign a task only when there is no processor in
the system that can hold the task [LDG04]. Allocation algorithms such as first-fit and best-fit are two examples of
reasonable allocation algorithms.

96 Non-migrative Scheduling on Two-type Heterogeneous Multiprocessors

We know from Expression 4.38 that u1
f ailed1 ≤ β and from Expression 4.39 that u2

f ailed2 ≤ β .

Using these on Inequalities 4.40 and 4.41 gives:

∀p ∈ P1 : U [p]> 1−β (4.42)

and ∀p ∈ P2 : U [p]> 1−β (4.43)

Observing that tasks assigned on processors in P1 are a subset of τ1 and using Inequality 4.42

gives us:

∑
τi∈τ1

u1
i > |P1| · (1−β) (4.44)

With analogous reasoning, Inequality 4.43 gives us:

∑
τi∈τ2

u2
i > |P2| · (1−β) (4.45)

Applying Expression 4.34 on Inequalities 4.44 and 4.45, we obtain:

∑
τi∈τ1

u1′
i > |P1| (4.46)

and ∑
τi∈τ2

u2′
i > |P2| (4.47)

Observing these two inequalities and Lemma 10 gives us that OPT fails to assign τ ′ on Π.

This is a contradiction.

Failure on Line 15 in FF-3C.
From the case, we obtain that F11⊂F1 and F22=F2. Therefore, when executing Line 12 there

was a task τ f ailed ∈ (F1\F11) for which an assignment attempt was made on each of the proces-

sors in P2. But all of these attempts failed. Therefore:

∀p ∈ P2 : U [p]+u2
f ailed > 1 (4.48)

We can add these inequalities together and get:

∑
p∈P2

U [p]> |P2| · (1−u2
f ailed) (4.49)

We know that the tasks assigned to processors in P2 are H2∪F22∪ τF12assigned where τF12assigned

is the set of tasks that were assigned when executing Line 12 of FF-3C. We also know that

τF12assigned ⊂ F12. Hence, Inequality 4.49 becomes:

∑
τi∈(H2∪F22∪F12)

u2
i > |P2| · (1−u2

f ailed)

4.3 FF-3C algorithm and its variants 97

From Expression 4.38, we obtain u2
f ailed ≤ β . Thus, the above inequality becomes:

∑
τi∈(H2∪F22∪F12)

u2
i > |P2| · (1−β) (4.50)

We also know that FF-3C has executed Line 6 and when it performed first-fit bin-packing,

there must have been a task τ f ailed1 ∈ (F1 \F11) which was attempted to each of the processors

in P1. But all of them failed. Note that this task τ f ailed1 may be the same as τ f ailed or it may be

different. Because it was not possible to assign τ f ailed1 on any of the processors in P1, we have:

∀p ∈ P1 : U [p]+u1
f ailed1 > 1 (4.51)

Adding these inequalities together gives us:

∑
p∈P1

U [p]> |P1| · (1−u1
f ailed1) (4.52)

We know that the tasks assigned to processors in P1 just after executing Line 6 in FF-3C are

H1∪F11. Also, we know from Expression 4.38 that u1
f ailed1 ≤ β . Therefore, we have:

∑
τi∈(H1∪F11)

u1
i > |P1| · (1−β) (4.53)

Let us now discuss OPT, the algorithm which succeeds in assigning the task set τ ′ on platform Π.

Let us discuss tasks in H1. From Expression 4.36, we know that:

∀τi ∈ H1 : u2
i > 1−β (4.54)

Using Expression 4.34 gives us:

∀τi ∈ H1 : u2′
i > 1 (4.55)

If ∃τi ∈ H1 : u1
i > 1−β , then ∃τi ∈ H1 : u1′

i > 1 and using τi ∈ H1 and Inequality 4.5 gives us

∃τi ∈ H1 ⊆ τ1 : u2′
i > 1. Hence such a task cannot be assigned by OPT on any processor of Π

(of any type) and this is a contradiction. Hence we can assume that ∀τi ∈ H1 : u1
i ≤ 1−β , to be

precise, ∀τi ∈ H1 : u1
i ≤ β — see Expression 4.35. Combining this and Expression 4.34, we get:

∀τi ∈ H1 : u1′
i ≤ 1 (4.56)

Using Inequalities 4.55 and 4.56 yields that every task in H1 is assigned to processors in P1 by

OPT. With analogous reasoning, we have that every task in H2 is assigned to a processor in P2. Let

τOPT 1 denote the tasks (except those from H1) assigned to processors in P1 by OPT. Analogously,

let τOPT 2 denote the tasks (except those from H2) assigned to processors in P2 by OPT. Therefore

98 Non-migrative Scheduling on Two-type Heterogeneous Multiprocessors

(using Inequalities 1 and 2), we know that:

∑
τi∈(H1∪τOPT 1)

u1′
i ≤ |P1| (4.57)

and ∑
τi∈(H2∪τOPT 2)

u2′
i ≤ |P2| (4.58)

Using Expression 4.34 gives us:

∑
τi∈(H1∪τOPT 1)

u1
i ≤ |P1| · (1−β) (4.59)

and ∑
τi∈(H2∪τOPT 2)

u2
i ≤ |P2| · (1−β) (4.60)

We can now reason about the inequalities we obtained about the assignments of FF-3C and OPT.

Rewriting Inequalities 4.53 and 4.59 respectively yields:

∑
τi∈F11

u1
i > |P1| · (1−β)− ∑

τi∈H1
u1

i (4.61)

∑
τi∈τOPT 1

u1
i ≤ |P1| · (1−β)− ∑

τi∈H1
u1

i (4.62)

We can see that Inequalities 4.61 and 4.62 with x = ∑τi∈H1 u1
i and y = β ensure that the as-

sumptions of Lemma 13 are true, given also the ordering of F1 during assignment over P1 (Line 2

in Algorithm 4), which ensures that ∀τi ∈ F11,∀τ j ∈ F12 : u2
i

u1
i
≥ u2

j

u1
j
. Using Lemma 13 gives us:

∑
τi∈H1

u1
i + ∑

τi∈H2
u2

i + ∑
τi∈F11

u1
i + ∑

τi∈F12
u2

i + ∑
τi∈F22

u2
i ≤ ∑

τi∈H1
u1

i + ∑
τi∈H2

u2
i + ∑

τi∈τOPT 1

u1
i + ∑

τi∈τOPT 2

u2
i

Applying Inequalities 4.59 and 4.60 to the inequality above gives us:

∑
τi∈H1

u1
i + ∑

τi∈H2
u2

i + ∑
τi∈F11

u1
i + ∑

τi∈F12
u2

i + ∑
τi∈F22

u2
i ≤ |P1| · (1−β)+ |P2| · (1−β) (4.63)

Applying Inequalities 4.50 and 4.53 to left-hand side of Inequality 4.63 gives us:

|P1| · (1−β)+ |P2| · (1−β) < |P1| · (1−β)+ |P2| · (1−β) (4.64)

This is a contradiction.

Failure on Line 23 in FF-3C.
A contradiction results – proof analogous to previous case.

We see that all cases where FF-3C declares FAILURE lead to contradiction. Hence, the lemma

holds.

Note: The value of β must depend on the utilization of tasks in the task set on which FF-

3C is applied. To apply the above result for a task assignment problem, β must be assigned the

4.3 FF-3C algorithm and its variants 99

smallest value so that Expression 4.35 holds for the task set. As the value of β increases, the speed

competitive ratio of FF-3C also increases.

In Lemma 14, we used β to denote a bound on the utilization of a task set (τ) on which we

apply FF-3C and we stated a relation between the utilization of one task set (τ) used for FF-3C and

another task set (τ ′) used for an optimal task assignment algorithm. It is sometimes convenient

to express similar relationship but with an expression of a bound on the utilization of a task set

on which we apply the optimal algorithm. For this purpose, we use α to denote a bound on the

utilization of a task set (τ ′) on which the optimal algorithm is applied. Let α = β

1−β
. Algebraic

rewriting gives us β = α

1+α
. With this α , note that the expression u1′

i =
u1

i
1−β

can be rewritten as:

u1
i = u1′

i ×
(
1− α

1+α

)
which in turn can be rewritten as: u1

i =
u1′

i
1+α

. Also, with this α , the expression

u1
i ≤ β can be rewritten as: u1′

i ≤ α . Applying this on Lemma 14 gives us:

Lemma 15. Let α denote a real number:

0 < α ≤ 1 (4.65)

Let us derive a new task set τ from the task set τ ′ as follows:

∀τi ∈ τ
′ : u1

i =
u1′

i

1+α
∧ u2

i =
u2′

i

1+α
(4.66)

If for τ ′, it holds that:

∀τi ∈ τ ′ : (u1′
i ≤ α) ∨ (1 < u1′

i)

and ∀τi ∈ τ ′ : (u2′
i ≤ α) ∨ (1 < u2′

i) (4.67)

then
sched(nmo-feasible, τ ′, Π(|P1|, |P2|))⇒ sched(FF-3C, τ , Π(|P1|, |P2|))

Proof. The proof follows from the discussion above.

The above result can also be expressed in terms of the additional processor speed required by

FF-3C as compared to that of an optimal algorithm for scheduling a given task set.

Theorem 8. Let α denote a real number: 0 < α ≤ 1.

If for a task set τ ′, it holds that:

∀τi ∈ τ ′ : (u1′
i ≤ α) ∨ (1 < u1′

i)

and ∀τi ∈ τ ′ : (u2′
i ≤ α) ∨ (1 < u2′

i)

then sched(nmo-feasible, τ ′, Π(|P1|, |P2|))⇒ sched(FF-3C, τ ′, Π(|P1|, |P2|)×〈1+α,1+α〉)

Proof. The theorem directly follows from Lemma 15.

100 Non-migrative Scheduling on Two-type Heterogeneous Multiprocessors

Note: The value of α must depend on the utilization of tasks in the task set (τ ′) on which the

optimal algorithm is applied. To apply the above results for a task assignment problem, α must be

assigned the smallest value so that Expression 4.67 holds for a given task set.

Theorem 9. The speed competitive ratio of FF-3C is at most 2.

Proof. This is trivial to see from Theorem 8 when α takes the maximum possible value of 1.

Remark: Our results continue to hold if we replace first-fit with any reasonable allocation

algorithm that has a resource augmentation bound of 1−β . Another example of such an algorithm

is best-fit. We have used first-fit for ease of explanation.

4.3.7 Time-complexity of FF-3C algorithm

We show that the time-complexity of FF-3C is a low-degree polynomial function of the number

of tasks (n) and processors (m). By inspection of the pseudo-code for FF-3C (Algorithm 3), the

function first-fit is invoked at most 5 times. Within each of those invocations:

• Sorting is performed over a subset of τ (i.e., at most n tasks). The time-complexity of this

operation is O(n · logn) e.g., using Heapsort.

• Sorting is performed over all processors, (i.e., m processors). The time complexity of this

operation is O(m · logm).

• First-fit bin-packing is performed whose time complexity is O(n ·m).

Thus the time-complexity of the algorithm is at most

5 ·
(

O(n · logn)︸ ︷︷ ︸
sort tasks

+ O(m · logm)︸ ︷︷ ︸
sort processors

+ O(n ·m)︸ ︷︷ ︸
bin-packing

)
= O(n ·max(m, logn)+m · logm)

n>m
= O(n ·max(m, logn))

4.3.8 Variants of FF-3C algorithm

We now extend FF-3C to obtain a couple of its variants with the objective of achieving better

average-case performance.

4.3.8.1 The FF-4C algorithm

One drawback of FF-3C is the early declaration of failure while trying to assign heavy tasks. If

heavy tasks could not be assigned to their favorite processor type then FF-3C declares failure (on

Line 4 and 5 in Algorithm 3) without even trying to assign them on their non-favorite processor

type. In an extreme case, FF-3C would fail with a system composed of (i) a heavy task of type

H1 (respectively, of type H2) that could fit on a processor of type-2 (respectively, type-1) and

(ii) zero processors of type-1 (respectively, type-2) and infinite processors of type-2 (respectively,

4.3 FF-3C algorithm and its variants 101

type-1). FF-4C, an enhanced version of FF-3C, overcomes this drawback and hence gives better

average-case performance than FF-3C. The FF-4C algorithm, upon failing to assign tasks in H1

(respectively, H2) on processors of type-1 (respectively, type-2), tries to assign those unassigned

tasks onto their non-favorite processors of type-2 (respectively, type-1).

The pseudo-code of FF-4C is shown in Algorithm 5. Lines 1-3 of FF-4C are the same as

that of Lines 1-3 of FF-3C (shown in Algorithm 3) and Lines 21-40 of FF-4C are same as that of

Lines 6-25 of FF-3C. Lines 4-5 of FF-3C are replaced as shown in Lines 4-20 of FF-4C.

4.3.8.2 The speed competitive ratio of FF-4C algorithm

We first prove the superiority of FF-4C in terms of the task sets that it can successfully schedule

as compared to that of FF-3C and then we prove the speed competitive ratio of FF-4C.

Theorem 10. The task sets that are schedulable by FF-4C are a strict superset of those that are

schedulable by FF-3C.

Proof. To prove that the claim is true, we need to show that:

1. whenever FF-4C fails, FF-3C would also fail and

2. there is at least one task set τ for which FF-3C fails to assign τ on Π whereas FF-4C succeeds

in assigning τ on Π

The intuition for proving (1) is that if H11 = H1 and H22 = H2 (i.e., the code between Lines 7-11

and 15-19 are not executed in FF-4C) then the behavior of FF-4C is exactly the same as that of

FF-3C. For proving (1), we consider all the cases where FF-4C declares FAILURE and show that

FF-3C will also declare FAILURE in each of those cases.

Failure on Line 10 in FF-4C.
This implies that FF-4C could not assign all the tasks in H1 to their favorite processor type P1

and hence only few tasks (H11) were assigned to P1 and the rest were attempted to be assigned to

their non-favorite processors P2 and failed. In such a case, FF-3C would have declared failure on

Line 4 (in Algorithm 3) itself as it would also fail to assign all the tasks in H1 to P1 since it also

uses the same first-fit algorithm (of Algorithm 4) that is used by FF-4C.

Failure on Line 18 in FF-4C.
When the algorithm fails here, there are two scenarios that need to be considered with respect to

the assignment of tasks in H1 (earlier in the algorithm): (i) all the tasks in H1 were successfully

assigned to P1 (indicated by boolH1 = FALSE, i.e., Lines 7-11 were not executed at all) and (ii)

only few tasks from H1 could be assigned to P1 and hence the rest were assigned to P2 (indicated

by boolH1 = T RUE). For the first scenario, the reasoning is symmetric to the previous case (i.e.,

the reasoning given for ‘Failure on Line 10 in FF-4C’ — FF-3C would have declared FAILURE on

Line 5 itself as it would also fail to assign all the tasks in H2 to processors in P2). For the second

scenario, the proof is analogous to the previous case as FF-3C would have declared FAILURE on

Line 4 (in Algorithm 3) itself as soon as a task from H1 was failed to be assigned to P1.

102 Non-migrative Scheduling on Two-type Heterogeneous Multiprocessors

Algorithm 5: FF-4C: A variant of FF-3C algorithm for assigning tasks on two-type hetero-
geneous multiprocessors.

Input : τ denotes set of tasks; Π denotes set of processors
Output: τ[p] specifies the tasks assigned to processor p

1 Form sets H1,H2,F1,F2 as defined by Expressions 4.25–4.28
2 ∀p: U[p] := 0
3 ∀p: τ[p] := /0
4 boolH1 := FALSE; boolH2 := FALSE
5 H11 := first-fit(H1,P1)
6 if (H11 6= H1) then
7 boolH1 := TRUE
8 H12 := H1 \ H11
9 if (first-fit(H12,P2) 6= H12) then

10 declare FAILURE
11 end
12 end
13 H22 := first-fit(H2,P2)
14 if (H22 6= H2) then
15 boolH2 := TRUE
16 H21 := H2 \ H22
17 if (first-fit(H21,P1) 6= H21) then
18 declare FAILURE
19 end
20 end
21 F11 := first-fit(F1,P1)
22 F22 := first-fit(F2,P2)
23 if (F11 = F1)∧ (F22 = F2) then declare SUCCESS;
24 if (F11 6= F1)∧ (F22 6= F2) then declare FAILURE;
25 if (F11 6= F1)∧ (F22 = F2) then
26 F12 := F1 \ F11
27 if (first-fit(F12,P2) = F12) then
28 declare SUCCESS
29 else
30 declare FAILURE
31 end
32 end
33 if (F11 = F1)∧ (F22 6= F2) then
34 F21 := F2 \ F22
35 if (first-fit(F21,P1) = F21) then
36 declare SUCCESS
37 else
38 declare FAILURE
39 end
40 end

Failure on Lines 24, 30 and 38 in FF-4C.
When the algorithm fails on one of these lines, our proof depends on the assignment of tasks in

4.3 FF-3C algorithm and its variants 103

boolH1 boolH2 Description of the scenario Use the reasoning pro-
vided in

FALSE FALSE All the tasks of H1 and H2 are assigned to
their favorite processors P1 and P2 respec-
tively. This indicates that the behavior of
FF-4C is same as that of FF-3C in this case
(i.e., code on Lines 7-11 and 15-19 of FF-
4C is not executed). Hence, the reason for
failure of FF-4C on Line 24, 30 and 38 is
same as that of failure of FF-3C on Line 9,
15 and 23.

Proof of Lemma 14, ‘Fail-
ure on Line 9, 15 and 23’
respectively.

FALSE TRUE Only few tasks of H2 (H22) could be as-
signed on P2 and the rest (H21) are assigned
to P1. In such a case, FF-3C would have
failed on Line 5 itself during the assignment
of H2 on P2 as it fails to assign all the tasks
from H2 on P2 and does not even try to as-
sign the failed tasks of H2 on P1.

Proof of Theorem 10,
‘Failure on Line 18 in FF-
4C’.

TRUE FALSE This case is analogous to the previous case
where only few tasks of H1 (H11) could be
assigned to P1 and rest (H12) are assigned
to P2. In this case, FF-3C would have failed
on Line 4 itself during the assignment of H1
on P1 as it fails to assign all the tasks from
H1 on P1 and does not even try to assign the
failed tasks of H1 on P2.

Proof of Theorem 10,
‘Failure on Line 10 in FF-
4C’.

TRUE TRUE This case is similar to one of the two
previous cases, i.e., boolH1=FALSE ∧
boolH2=TRUE and boolH1=TRUE ∧
boolH2=FALSE

Proof of Theorem 10,
‘Failure on Line 10 in FF-
4C’ and ‘Failure on Line
18 in FF-4C’ respectively.

Table 4.4: Summary of proof of speed competitive ratio of FF-4C for different scenarios.

H1 (respectively, H2) earlier in the algorithm, i.e., whether all the tasks of H1 (respectively, H2)

have been successfully assigned to their favorite processors, i.e., P1 (respectively, P2) or only few

tasks could be assigned to their favorite processors and the rest to the non-favorite processors, i.e.,

H11 on P1 and H12 on P2 (respectively, H22 on P2 and H21 on P1). In the FF-4C algorithm, this

information is captured using the boolean variable, boolH1 (respectively, boolH2). For example,

boolH1 = FALSE indicates that all the tasks of H1 are assigned on their favorite processors, P1,

and boolH1 = TRUE implies that only few tasks from H1, i.e., H11, could be assigned on their

favorite processors, P1, and the rest, i.e., H12, are assigned on their non-favorite processors, P2.

Analogous explanation holds for boolean variable boolH2. Hence, with the help of these two

boolean variables we have captured all the possible scenarios for FF-4C to fail (on one of the

Lines 24, 30 or 38 in Algorithm 5) in Table 4.4 along with the corresponding proof to look for in

the chapter (as the proofs provided earlier in the chapter can be reused for these scenarios).

104 Non-migrative Scheduling on Two-type Heterogeneous Multiprocessors

For proving (2), we illustrate the superiority of FF-4C over FF-3C with an example task set.

Example 9. Consider a platform comprising a processor π1 of type-1 and a processor π2 of type-2,

a task set τ = {τ1,τ2,τ3} shown in Table 4.5.

τi u1
i u2

i belongs to
τ1

1
2 + ε

1
2 +2ε H1

τ2
1
2 + ε

1
2 +2ε H1

τ3
1
2 − ε

1
2 F1

Table 4.5: An example task set schedulable by FF-4C but not by FF-3C.

It is trivial to observe that a schedulable assignment exists for this task set on the given plat-

form: assign τ1 and τ3 to π1 and τ2 to π2. We now simulate the behavior of FF-4C and FF-3C for

this task set on the given platform and show that FF-4C succeeds whereas FF-3C fails.

First, let us look at FF-4C. On Line 1 (see Algorithm 5), FF-4C groups the tasks as follows:

H1 = {τ1,τ2} and F1 = {τ3}.
On Line 5, FF-4C calls first-fit sub-routine to assign tasks in H1 to processor π1 of type-1. The

sub-routine succeeds in assigning task τ1 to π1 and fails to assign the other task τ2 to π1 as there

is not enough capacity left on π1. Hence, after executing Line 5 of FF-4C, we have: H11 = {τ1}.
After assigning τ1 to π1, the remaining utilization on π1 is 1

2 − ε .

On Line 8, it creates H12 = {τ2}.
On Line 9, it successfully assigns τ2 to processor π2 using first-fit sub-routine. After assigning

τ2 to processor π2; the remaining utilization on π2 is 1
2 −2ε .

On Line 21, it successfully assigns τ3 (of F1) to processor π1 using first-fit sub-routine. After

assigning τ3 to π1, the remaining utilization on π1 is 0.

So, the final assignment of tasks is as follows: τ1 and τ3 are assigned to π1 and τ2 is assigned

to π2 — hence, FF-4C succeeds.

Now let us look at FF-3C. FF-3C groups the tasks as follows: H1 = {τ1,τ2} and F1 = {τ3}.
FF-3C fails to assign both the tasks in H1 to processor π1 of type-1 since the sum of their utiliza-

tion ((1
2 + ε)+(1

2 + ε) = 1+2ε) exceeds 1.0.

Hence FF-3C declares FAILURE on Line 4 (see Algorithm 3).

Thus, we showed that: (1) whenever FF-4C fails, FF-3C also fails and (2) there is at least one

task set τ for which FF-3C fails to assign τ on platform Π whereas FF-4C succeeds in assigning τ

on Π. Hence the theorem holds.

Now we prove the speed competitive ratio of FF-4C algorithm.

Lemma 16. Let β denote a real number: 0 < β ≤ 1
2 .

Let us derive a new task set τ ′ from the task set τ as follows:

∀τi ∈ τ : u1′
i =

u1
i

1−β
∧ u2′

i =
u2

i

1−β

4.3 FF-3C algorithm and its variants 105

If for τ , it holds that:

∀τi ∈ τ : (u1
i ≤ β) ∨ (1−β < u1

i)

and ∀τi ∈ τ : (u2
i ≤ β) ∨ (1−β < u2

i)

then
sched(nmo-feasible, τ ′, Π(|P1|, |P2|))⇒ sched(FF-4C, τ , Π(|P1|, |P2|))

Proof. We know from Lemma 14 that

sched(nmo-feasible,τ ′,Π(|P1|, |P2|))⇒ sched(FF-3C,τ,Π(|P1|, |P2|)) (4.68)

Also, from Theorem 10 we know that if FF-3C succeeds to assign a task set τ on a computing

platform Π(|P1|, |P2|) then FF-4C succeeds as well (on the same platform). Formally, this can be

stated as:

sched(FF-3C,τ,Π(|P1|, |P2|))⇒ sched(FF-4C,τ,Π(|P1|, |P2|)) (4.69)

Combining Expression 4.68 and 4.69 gives us:

sched(nmo-feasible,τ ′,Π(|P1|, |P2|))⇒ sched(FF-4C,τ,Π(|P1|, |P2|))

Hence, the proof.

Similar to Lemma 14, the above lemma uses β to denote a bound on the utilization of a task set

(τ) on which we apply FF-4C and states a relation between the utilization of one task set (τ) used

for FF-4C and another task set (τ ′) used for an optimal task assignment algorithm. Now, similar

to Lemma 15, let us express this relationship with α , an expression of a bound on the utilization

of a task set (τ ′) on which we apply the optimal algorithm.

Lemma 17. Let α denote a real number: 0 < α ≤ 1.

Let us derive a new task set τ from the task set τ ′ as follows:

∀τi ∈ τ
′ : u1

i =
u1′

i

1+α
∧ u2

i =
u2′

i

1+α

If for τ ′, it holds that:

∀τi ∈ τ ′ : (u1′
i ≤ α) ∨ (1 < u1′

i)

and ∀τi ∈ τ ′ : (u2′
i ≤ α) ∨ (1 < u2′

i)

then
sched(nmo-feasible, τ ′, Π(|P1|, |P2|))⇒ sched(FF-4C, τ , Π(|P1|, |P2|))

Proof. The reasoning is analogous to the proof of Lemma 15.

106 Non-migrative Scheduling on Two-type Heterogeneous Multiprocessors

Now, we express the above result in terms of the additional processor speed required by FF-4C

as compared to that of an optimal algorithm for scheduling a given task set.

Theorem 11. Let α denote a real number 0 < α ≤ 1.

If for a task set τ ′, it holds that:

∀τi ∈ τ ′ : (u1′
i ≤ α) ∨ (1 < u1′

i)

and ∀τi ∈ τ ′ : (u2′
i ≤ α) ∨ (1 < u2′

i)

then sched(nmo-feasible, τ ′, Π(|P1|, |P2|))⇒ sched(FF-4C, τ ′, Π(|P1|, |P2|)×〈1+α,1+α〉)

Proof. The theorem directly follows from Lemma 17.

Theorem 12. The speed competitive ratio of FF-4C is at most 2.

Proof. The proof follows from applying α = 1 in Theorem 11.

4.3.8.3 Time-complexity of FF-4C algorithm

We can use the same reasoning provided for the time-complexity of FF-3C in Section 4.3.7 for

FF-4C as well. FF-4C uses the first-fit sub-routine at most seven times (see Algorithm 5) and each

time (i) sorting is performed over at most n tasks whose complexity is O(n · logn) (ii) sorting is

performed over m processors whose complexity is O(m · logm) and (iii) first-fit bin-packing takes

O(n ·m) time. Hence, the time-complexity of FF-4C is: O(n ·max(m, logn)).

4.3.8.4 The FF-4C-NTC algorithm

In FF-3C (and also in FF-4C), tasks are categorized as H1, F1, H2 and F2 and this makes it

possible to prove the speed competitive ratio the way we do it. Unfortunately, this categorization

can misguide the algorithm to assign a task in a way which causes a failure later on. For example,

consider a task set with two tasks τ1 with u1
1=0.5, u2

1=1.0 and τ2 with u1
2=1.0, u2

2=1.0+ ε and a

two-type platform comprising a processor π1 of type-1 and π2 of type-2. Clearly, there exists a

schedulable assignment of the given task set on the given platform: assign τ1 to π2 and τ2 to π1.

Now let us see what FF-3C does for this problem instance. FF-3C classifies τ1 and τ2 as H1 and

assigns τ1 to π1 and then tries to assign τ2 to π1 but fails and hence declares FAILURE. FF-4C

also exhibits similar behavior: it assigns τ1 to π1 and then it attempts to assign τ2 to π2 after an

unsuccessful attempt to assign it to π1 and fails and hence declares FAILURE. Hence, both FF-3C

and FF-4C declare FAILURE for this task set. Therefore, we present a new algorithm namely,

FF-4C-NTC to handle such cases.

The algorithm FF-4C-NTC classifies tasks as τ1 and τ2 as defined by Inequalities 4.5 and 4.6

(on page 84), and for each class, assigns tasks in order of decreasing u2
i /u1

i for type-1 processors

and decreasing u1
i /u2

i for type-2 processors, respectively with ties broken favoring the task with

lower identifier. FF-4C-NTC does not classify τ1 into H1 and F1 nor τ2 into H2 and F2 (as

4.3 FF-3C algorithm and its variants 107

was the case with FF-3C and FF-4C): It only considers favorite/non-favorite processor types and

disregards the information (used by both FF-3C and FF-4C) whether a task is heavy or not. The

pseudo-code of FF-4C-NTC is shown in Algorithm 6. The algorithm first tries to assign tasks from

τ1 on their favorite processors, set P1, using first-fit and if any of these tasks could not be assigned

then it tries to assign them on their non-favorite processors, set P2, and analogously for τ2. For

the above example, FF-4C-NTC assigns τ1 to π2 and τ2 to π1.

FF-4C-NTC also has the same time-complexity of O(n ·max(m, logn)) as the previously dis-

cussed algorithms.

Algorithm 6: FF-4C-NTC: new algorithm for assigning tasks on two-type heterogeneous
multiprocessors — does not make use of the heavy task concept.

Input : τ denotes set of tasks; Π denotes set of processors
Output: τ[p] specifies the tasks assigned to processor p

1 Form sets τ1, τ2 as defined by Eq. 4.5 and 4.6
2 ∀p: U[p] := 0
3 ∀p: τ[p] := /0
4 τ11 := first-fit(τ1,P1)
5 if (τ11 6= τ1) then
6 τ12 := τ1 \ τ11
7 if (first-fit(τ12,P2) 6= τ12) then
8 declare FAILURE
9 end

10 end
11 τ22 := first-fit(τ2,P2)
12 if (τ22 6= τ2) then
13 τ21 := τ2 \ τ22
14 if (first-fit(τ21,P1) 6= τ21) then
15 declare FAILURE
16 end
17 end
18 declare SUCCESS

This algorithm will be used as a sub-routine in our next algorithm, namely FF-4C-COMB,

which is discussed next. We will not use FF-4C-NTC as a stand-alone algorithm and hence we

will not discuss its speed competitive ratio.

4.3.8.5 The FF-4C-COMB algorithm

As discussed in earlier sections, for some task sets FF-4C succeeds whereas FF-4C-NTC fails and

for other task sets FF-4C-NTC succeeds whereas FF-4C fails. FF-4C-COMB exploits this fact

by making use of both the algorithms to get the best out of two — its pseudo-code is listed in

Algorithm 7. It first attempts to assign the task set with FF-4C and, upon failing, it tries with

FF-4C-NTC.

4.3.8.6 The speed competitive ratio of FF-4C-COMB algorithm

In this section, we establish the speed competitive ratio of FF-4C-COMB.

108 Non-migrative Scheduling on Two-type Heterogeneous Multiprocessors

Algorithm 7: FF-4C-COMB: new algorithm for assigning tasks on two-type heterogeneous
multiprocessors — combination of FF-4C and FF-4C-NTC.

Input : τ denotes set of tasks; Π denotes set of processors
Output: returns SUCCESS or FAILURE

1 status := FF-4C(τ,Π)
2 if (status = FAILURE) then
3 status := FF-4C-NTC(τ,Π)
4 if (status = FAILURE) then
5 declare FAILURE
6 else
7 declare SUCCESS
8 end
9 else

10 declare SUCCESS
11 end

Lemma 18. Let β denote a real number: 0 < β ≤ 1
2 .

Let us derive a new task set τ ′ from the task set τ as follows:

∀τi ∈ τ : u1′
i =

u1
i

1−β
∧ u2′

i =
u2

i

1−β

If for τ , it holds that:

∀τi ∈ τ : (u1
i ≤ β) ∨ (1−β < u1

i)

and ∀τi ∈ τ : (u2
i ≤ β) ∨ (1−β < u2

i)

then
sched(nmo-feasible, τ ′, Π(|P1|, |P2|))⇒ sched(FF-4C-COMB, τ , Π(|P1|, |P2|))

Proof. An equivalent claim is that, if a task set τ is not schedulable under FF-4C-COMB over a

computing platform Π then the task set τ ′ would likewise be unschedulable, using any algorithm,

over computing platform Π. We will prove this by contradiction.

Assume that FF-4C-COMB has failed to assign τ on Π but it is possible (using an algorithm

OPT) to assign τ ′ on Π. Since FF-4C-COMB failed to assign τ on Π, it follows that FF-4C-COMB

declared FAILURE. We explore the only possibility for this to occur:

Failure on Line 5 in FF-4C-COMB.
For FF-4C-COMB to declare FAILURE on this line, FF-4C must have failed on Line 1 (in Algo-

rithm 7). But, from Lemma 16 we know that

sched(nmo-feasible,τ ′,Π(|P1|, |P2|))⇒ sched(FF-4C,τ,Π(|P1|, |P2|))

Since FF-4C declared FAILURE, it must hold that τ ′ is (nmo-) infeasible on Π. Hence, OPT

produces an infeasible assignment — this is a contradiction.

As done previously for FF-3C and FF-4C, the following lemma expresses this relationship

4.3 FF-3C algorithm and its variants 109

with α , an expression of a bound on the utilization of a task set (τ ′) on which we apply the optimal

algorithm.

Lemma 19. Let α denote a real number: 0 < α ≤ 1.

Let us derive a new task set τ from the task set τ ′ as follows:

∀τi ∈ τ
′ : u1

i =
u1′

i

1+α
∧ u2

i =
u2′

i

1+α

If for τ ′, it holds that:

∀τi ∈ τ ′ : (u1′
i ≤ α) ∨ (1 < u1′

i)

and ∀τi ∈ τ ′ : (u2′
i ≤ α) ∨ (1 < u2′

i)

then
sched(nmo-feasible, τ ′, Π(|P1|, |P2|))⇒ sched(FF-4C-COMB, τ , Π(|P1|, |P2|))

Proof. The reasoning is analogous to the proof of Lemma 15.

The following theorem expresses the above result in terms of the additional processor speed

required by FF-4C-COMB as compared to that of an optimal algorithm for scheduling a given task

set.

Theorem 13. Let α denote a real number 0 < α ≤ 1.

If for a task set τ ′, it holds that:

∀τi ∈ τ ′ : (u1′
i ≤ α) ∨ (1 < u1′

i)

and ∀τi ∈ τ ′ : (u2′
i ≤ α) ∨ (1 < u2′

i)

then
sched(nmo-feasible, τ ′, Π(|P1|, |P2|))⇒
sched(FF-4C-COMB, τ ′, Π(|P1|, |P2|)×〈1+α,1+α〉)

Proof. The theorem directly follows from Lemma 19.

Theorem 14. The speed competitive ratio of FF-4C-COMB is at most 2.

Proof. The proof follows from applying α = 1 in Theorem 13.

4.3.8.7 Time-complexity of FF-4C-COMB algorithm

We know that both FF-4C and FF-4C-NTC have the same time-complexity of O(n ·max(m, logn)).

FF-4C-COMB (pseudo-code in Algorithm 6) calls FF-4C first and upon failing it calls FF-4C-

NTC. Hence, time-complexity of FF-4C-COMB is also O(n ·max(m, logn)).

110 Non-migrative Scheduling on Two-type Heterogeneous Multiprocessors

4.3.9 Average-case performance evaluations

After seeing the theoretical bounds of our algorithms, we wanted to evaluate their average-case

performance and compare it with state-of-the-art. For this purpose, we looked at the following

issues: (i) how well our algorithms perform compared to state-of-the-art in successfully assigning

the tasks to processors, i.e., how much faster processors our algorithms need in order to assign a

task set compared to state-of-the-art algorithms? (i.e., comparison of their necessary multiplication

factors), (ii) how fast our algorithms run compared to state-of-the-art algorithms? and (iii) how

much pessimism is there in the theoretically derived performance bounds of our algorithms (i.e.,

in speed competitive ratio)?

In order to answer these questions, we performed two sets of experiments. First, we compared

the average-case performance of our algorithms with two state-of-the-art algorithms [Bar04b,

Bar04c]. Both [Bar04b, Bar04c] proposed solutions with a speed competitive ratio of 2 against

non-migrative adversary. Hence, we evaluated the average-case performance of our algorithms

with [Bar04b, Bar04c] by setting α = 1 for our algorithms since their speed competitive ratios

become 2 as well with this setting. In our evaluations with randomly generated task sets, we

observed that, our algorithms exhibit a better average-case performance than state-of-the-art algo-

rithms [Bar04b, Bar04c]. We also observed that our algorithms run significantly faster compared

to those algorithms. Then, we simulated our algorithms for different values of α . We observed

that even for this improved analysis case (where the speed competitive ratio is quantified with task

set parameters as opposed to a constant number [ARB10]), they still perform better than indicated

by their respective speed competitive ratios. We now discuss both the cases in detail.

4.3.9.1 Comparison with state-of-the-art

We implemented two versions of [Bar04c] (referred to as SKB-RTAS and SKB-RTAS-IMP) and

two versions of [Bar04b] (referred to as SKB-ICPP and SKB-ICPP-IMP). SKB-RTAS and SKB-

ICPP follow from the corresponding papers; the -IMP variants are our improved versions of the

respective algorithms (see description below). We implemented all algorithms using C on Win-

dows XP on an Intel Core2 (2.80 GHz) machine. For SKB- algorithms, we also used a state-of-art

LP/ILP solver, IBM ILOG CPLEX [IBM12].

In [Bar04c], a two step algorithm for assigning tasks on heterogeneous multiprocessors is

proposed. The algorithm is as follows:

1. The assignment problem is formulated as ILP and then relaxed to LP. The LP formulation is

solved using an LP solver. Tasks are then assigned to the processors according to the values

of the respective indicator variables in the solution. Using certain tricks [Pot85], it is shown

that there exists a solution (for example, the solution that lies on the vertex of the feasible

region) to the LP formulation in which all but at most m−1 tasks are integrally assigned to

processors, where m is the number of processors.

4.3 FF-3C algorithm and its variants 111

2. The remaining at most m−1 tasks are integrally assigned on the remaining capacity of the

processors using “exhaustive enumeration”.

While assigning the remaining tasks in Step 2, the author illustrates [Bar04c] with an example

that the utilization of the task under consideration is compared against the value 1− z for assign-

ment decisions on any processor, where variable z (returned by the LP solver) is the maximum

utilized fraction of any processor — SKB-RTAS implements this (pessimistic) rule. Since the

actual remaining capacity of each processor3 can easily be computed from the LP solver solu-

tion, SKB-RTAS-IMP uses that, instead of 1− z, to test assignments, for improved average-case

performance.

In [Bar04b], author proposes a two step algorithm, namely taskPartition, to assign tasks on a

heterogeneous platform. The algorithm is as follows:

1. This step is similar to Step 1 of [Bar04c] as described above.

2. The remaining at most m−1 tasks are assigned using the bipartite matching technique such

that at most one task from the m−1 remaining tasks is assigned to each processor.

Let r1,r2, . . . ,rk denote the distinct utilization values in the given task set sorted in the increasing

order, where 1 ≤ k ≤ m ∗ n. The two step algorithm is called repeatedly by a procedure, namely

optSrch, with different values of ri, 1 ≤ i ≤ k. When taskPartition is called by optSrch with a

ri, all the utilizations that are greater than ri are set to ∞. The procedure optSrch checks for the

condition U ri
OPT ≤ 1− ri in order to determine whether a feasible mapping has been obtained by

taskPartition where U ri
OPT denotes the value of objective function of the vertex solution returned

by LP solver — SKB-ICPP implements this feasibility test. This pessimistic condition severely

impacts performance. Hence, SKB-ICPP-IMP implements a better feasibility condition which

checks that the sum of utilizations of all the tasks assigned to each processor does not exceed its

computing capacity thereby improving its performance significantly in practice.

We assess the average-case performance of algorithms by (i) creating a histogram of necessary

multiplication factor and (ii) comparing the average running time of each algorithm. Since all the

SKB- algorithms use CPLEX, an external program, for assigning tasks to processors (for solving

LP), they are penalized by the startup time and reading of the problem instance from an input file

— we refer to this overhead as CPLEX overhead. We deal with this issue by measuring the average

time for CPLEX overhead and subtract it from the measured running time of those algorithms that

rely on CPLEX. In particular, SKB-ICPP and SKB-ICPP-IMP invoke CPLEX multiple times for

a single task set. So, we record, for such algorithms for each task set how many times CPLEX was

invoked and subtract as many times the average CPLEX overhead.

We have considered the following as CPLEX overhead: (i) starting CPLEX from our program

through a system call and (ii) reading of an input file (i.e., problem instance) by CPLEX. We
3The actual remaining capacity on processor p is 1−∑i:xi,p=1 ui,p where ui,p represents the utilization of task τi on

processor p [Bar04c]. The symbol xi,p represents the indicator variable and the value of 0 ≤ xi,p ≤ 1 indicates how
much fraction of task τi must be assigned to processor p. The term 1−∑i:xi,p=1 ui,p gives an accurate estimation of the
remaining capacity on processor p as it ignores the fractionally assigned tasks on that processor whereas z is pessimistic
since it includes those tasks as well.

112 Non-migrative Scheduling on Two-type Heterogeneous Multiprocessors

measured the total time that CPLEX takes to start and read the largest input file possible for our

simulation (i.e., problem involving 12 tasks and 6 processors). We measured this time for 200

iterations (same as the number of task sets for which we have computed the average execution

times) and took the average of these measurements. This average value was subtracted (i) once for

every measurement of SKB-RTAS and SKB-RTAS-IMP and (ii) r times for every measurement of

SKB-ICPP and SKB-ICPP-IMP where r is the number of different ui, j values the algorithm tries

for each task set.

The problem instances (number of tasks, their utilizations and number of processors of each

type) were generated randomly. Each problem instance had at most 12 tasks and at most 3 proces-

sors of each type. We term a task set critically feasible non-migrative task set if it is feasible on a

given heterogeneous multiprocessor platform but rendered infeasible if u1
i and u2

i of all the tasks in

the system are increased by an arbitrarily small factor. To obtain critically feasible non-migrative

task sets from randomly generated task sets, we perform the assignment with ILP as discussed

in [Bar04b] and obtain z — the utilization of the most utilized processor, and then multiply all the

task utilizations by a factor of 1
z and repeatedly feed back to CPLEX till 0.99 < z≤ 1.

We ran each algorithm on 15000 critically feasible non-migrative task sets to obtain the nec-

essary multiplication factors of each algorithm for every task set. Recall that, an algorithm is said

to have a good average-case performance, if for vast majority of task sets, it has a low necessary

multiplication factor. Figure 4.6 shows the comparison of all the versions of SKB- algorithms.

The SKB-RTAS-IMP and SKB-ICPP-IMP with their improved tests (to check the feasibility of

task assignment to processors) give better average-case performance compared to their counter-

parts. As we can see, SKB-RTAS-IMP gives the best average-case performance among all the

SKB- algorithms.

Figure 4.7 shows the performance of all our FF- algorithms. As we can see, FF-3C performs

poorly compared to the other three, and FF-4C-COMB gives the best average-case performance

among all the FF- algorithms as it makes use of both FF-4C and FF-4C-NTC algorithms (whose

performance lies between FF-3C and FF-4C-COMB).

Since SKB-RTAS-IMP offered the best necessary multiplication factor among all the SKB-

algorithms and FF-4C-COMB offered the best necessary multiplication factor among all the FF-

algorithms, we only depict these along with FF-3C since it is the baseline of all our algorithms

in Figure 4.8. As can be seen, in our evaluations, the necessary multiplication factor of FF-

4C-COMB never exceeded 1.35 whereas for FF-3C and SKB-RTAS-IMP this factor is close to

2.00 and 1.60, respectively. Therefore, FF-4C-COMB offers significantly better average-case

performance compared to state-of-the-art.

We also measured the running times of each algorithm for the same task set. Table 4.6 shows

the average running time of FF- algorithms, Table 4.7 shows the average running time of SKB-

algorithms with CPLEX overhead and finally Table 4.8 shows the average running time of SKB-

algorithms after subtracting the measured CPLEX overhead (from the values shown in Table 4.7).

We deal with the CPLEX overhead in the SKB- algorithms for fair evaluation. We can see that, in

the evaluations, our proposed algorithms all run in less than 1.1 µs (Table 4.6) but SKB- algorithms

4.3 FF-3C algorithm and its variants 113

1

10

100

1000

10000

100000

1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50 1.55 1.60 1.65 1.70 1.75 1.80 1.85 1.90 1.95 2.00

N
u

m
b

e
r

o
f

ta
sk

 s
e

ts
 (

lo
g

1
0
)

Necessary Multiplication Factor

Comparison of all SKB- Algorithms (Y-axis: log10 scale) SKB-RTAS

SKB-RTAS-IMP

SKB-ICPP

SKB-ICPP-IMP

Figure 4.6: Comparison of the necessary multiplication factors for all the SKB- algorithms (if an
algorithm has low necessary multiplication factor for many task sets then the algorithm is said to
perform well).

1

10

100

1000

10000

100000

1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50 1.55 1.60 1.65 1.70 1.75 1.80 1.85 1.90 1.95 2.00

N
u

m
b

e
r

o
f

ta
sk

 s
e

ts
 (

lo
g

1
0
)

Necessary Multiplication Factor

Comparison of all new algorithms (Y-axis: log10 scale)

FF-3C

FF-4C

FF-4C-NTC

FF-4C-COMB

Figure 4.7: Comparison of the necessary multiplication factors for all of our FF- algorithms (if an
algorithm has low necessary multiplication factor for many task sets then the algorithm is said to
perform well).

have running times in the range of 13500 to 160000 µs (Table 4.8). Hence all of our algorithms

114 Non-migrative Scheduling on Two-type Heterogeneous Multiprocessors

run at least 12000 times faster.

1

10

100

1000

10000

100000

1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50 1.55 1.60 1.65 1.70 1.75 1.80 1.85 1.90 1.95 2.00

N
u

m
b

e
r

o
f

ta
sk

 s
e

ts
 (

lo
g

1
0
)

Necessary Multiplication Factor

Comparison of three algorithms (Y-axis: log10 scale)

FF-3C

SKB-RTAS-IMP

FF-4C-COMB

Figure 4.8: Comparison of the necessary multiplication factors for three algorithms — FF-3C,
the baselines of all our algorithms, SKB-RTAS-IMP, the better one among the previously known
algorithms and FF-4C-COMB, the best of our algorithms.

Multiplication factor
New (FF-) Algorithms

Measured average execution time
FF-3C FF-4C FF-4C-NTC FF-4C-COMB

1.00 0.84 0.73 0.97 1.06
1.25 0.53 0.55 0.54 0.56
1.50 0.49 0.48 0.46 0.48
1.75 0.49 0.46 0.40 0.42
2.00 0.51 0.47 0.43 0.50

Table 4.6: Measured average execution times of our algorithms (in microseconds)

4.3.9.2 Evaluation of our algorithms for different values of α

We evaluated the average-case performance of our algorithms for different values of α . We gener-

ated 100000 critically feasible non-migrative task sets. Each critically feasible non-migrative task

set had at most 25 tasks and at most 2 processors of each type4. We then classified the critically

feasible task sets based on the value of α of each task set into ten groups — for a given critically

4Since we only evaluate FF- algorithms in this batch of experiments and do not run SKB- algorithms which make
use of linear programming solvers thereby taking much longer to output the solution, we could afford to set a higher
bound on the number of tasks in each problem instance compared to previous set of experiments.

4.3 FF-3C algorithm and its variants 115

Multiplication Previous (SKB-) Algorithms
Average execution time including CPLEX overhead

factor SKB-RTAS SKB-RTAS-IMP SKB-ICPP SKB-ICPP-IMP
1.00 32477.35 32562.27 394753.66 369170.79
1.25 31665.74 31525.82 393745.52 325010.43
1.50 31747.28 31740.34 381912.81 297383.55
1.75 31749.19 31598.63 337205.23 290102.20
2.00 31752.65 31781.70 291689.45 287692.93

Table 4.7: Measured average execution times of SKB- algorithms (in microseconds) with the
CPLEX overhead

Multiplication Previous (SKB-) Algorithms
Average execution time excluding CPLEX overhead

factor SKB-RTAS SKB-RTAS-IMP SKB-ICPP SKB-ICPP-IMP
1.00 14263.68 14348.60 164551.87 161689.21
1.25 13452.07 13312.15 163565.96 149459.82
1.50 13533.61 13526.67 161373.08 140211.38
1.75 13535.52 13384.96 151003.87 137302.53
2.00 13538.98 13568.03 137989.63 136490.37

Table 4.8: Measured average execution times of SKB- algorithms (in microseconds) after sub-
tracting the CPLEX overhead

feasible task set, if α ≤ 0.1 then the task set belongs to the first group, if 0.1 < α ≤ 0.2 then the

task set belongs to the second group, . . ., and finally if 0.9 < α ≤ 1.0 then the task set belongs to

the tenth group. Then, we ran all our FF- algorithms, i.e., FF-3C, FF-4C, FF-4C-NTC and FF-

4C-COMB, for the above generated critically feasible non-migrative task sets and observed their

necessary multiplication factors. We plotted the histogram of necessary multiplication factors for

each of these algorithms for task sets in each of the groups. Since the evaluations in previous

subsection have confirmed that FF-4C-COMB performs better compared to all other algorithms

and since FF-3C is the baseline of all our algorithms, we only depict these two.

Figure 4.9a to Figure 4.9e shows the performance of FF-3C and FF-4C-COMB algorithms.

We only show the results obtained for five cases, i.e., 0.1 < α ′ ≤ 0.2, 0.3 < α ′ ≤ 0.4, . . ., 0.9 <

α ′ ≤ 1.0. The observations for other cases follow the same trend. As we can see from the graphs,

for the vast majority of task sets, the algorithms exhibit much better average-case performance

than indicated by their speed competitive ratio, even when we consider the speed competitive ratio

as a function of task set parameters.

4.3.10 Summary

In this section, for the problem of non-migrative task assignment on two-type heterogeneous mul-

tiprocessors, we presented a low-degree polynomial time-complexity algorithm, FF-3C, and a

116 Non-migrative Scheduling on Two-type Heterogeneous Multiprocessors

0

50

100

150

200

250

N
u

m
b

e
r

o
f

ta
sk

 s
e

ts

Necessary Multiplication Factor

FF-4C-COMB

FF-3C

(a) 0.1 < α ′ ≤ 0.2 (SCR≤ 1.2)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1
.0

1

1
.0

3

1
.0

5

1
.0

7

1
.0

9

1
.1

1

1
.1

3

1
.1

5

1
.1

7

1
.1

9

1
.2

1

1
.2

3

1
.2

5

1
.2

7

1
.2

9

1
.3

1

1
.3

3

1
.3

5

1
.3

7

1
.3

9

N
u

m
b

e
r

o
f

ta
sk

 s
e

ts

Necessary Multiplication Factor

FF-4C-COMB

FF-3C

(b) 0.3 < α ′ ≤ 0.4 (SCR≤ 1.4)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1.02 1.06 1.10 1.14 1.18 1.22 1.26 1.30 1.34 1.38 1.42 1.46 1.50 1.54 1.58

N
u

m
b

e
r

o
f

ta
sk

 s
e

ts

Necessary Multiplication Factor

FF-4C-COMB

FF-3C

(c) 0.5 < α ′ ≤ 0.6 (SCR≤ 1.6)

0

1000

2000

3000

4000

5000

6000

1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50 1.55 1.60 1.65 1.70 1.75 1.80

N
u

m
b

e
r

o
f

ta
sk

 s
e

ts

Necessary Multiplication Factor

FF-4C-COMB

FF-3C

(d) 0.7 < α ′ ≤ 0.8 (SCR≤ 1.8)

0

5000

10000

15000

20000

25000

1
.0

5

1
.1

0

1
.1

5

1
.2

0

1
.2

5

1
.3

0

1
.3

5

1
.4

0

1
.4

5

1
.5

0

1
.5

5

1
.6

0

1
.6

5

1
.7

0

1
.7

5

1
.8

0

1
.8

5

1
.9

0

1
.9

5

2
.0

0

N
u

m
b

e
r

o
f

ta
sk

 s
e

ts

Necessary Multiplication Factor

FF-4C-COMB

FF-3C

(e) 0.9 < α ′ ≤ 1.0 (SCR≤ 2.0)

Figure 4.9: Average-case performance of FF-3C and FF-4C-COMB algorithm in terms of neces-
sary multiplication factors for different values of α ′ (if an algorithm has low necessary multipli-
cation factor for many task sets then the algorithm performs well)

couple of its variants. These algorithms use bin-packing heuristics (e.g., first-fit) to output the

solution. We proved that the speed competitive ratio of each of these algorithms is 2 against

an equally powerful non-migrative adversary. We also evaluated their average-case performance.

This is done by generating random task sets and converting these task sets into critically feasible

non-migrative task sets and then measuring the necessary multiplication factor of the algorithms

for each of these critically feasible non-migrative task sets and by measuring their average running

times. The proposed FF-3C algorithm (and its variants) is shown to outperform the state-of-the-art

algorithms either in terms of (i) the speed competitive ratio or (ii) the time-complexity or (iii) the

average-case performance (which is characterized by necessary multiplication factor and average

4.3 FF-3C algorithm and its variants 117

running time of the algorithm in the simulations) or (iv) a combination of these factors.

In the next section, we propose another non-migrative algorithm and prove its speed competi-

tive ratio against a more powerful intra-migrative adversary.

118 Non-migrative Scheduling on Two-type Heterogeneous Multiprocessors

4.4 SA-P algorithm

4.4.1 Introduction

In this section, we present our second non-migrative task assignment algorithm, SA-P, an en-

hanced version of SA algorithm (discussed in Chapter 3), for assigning tasks in τ to individual

processors on a two-type platform π . We also prove its speed competitive ratio against a more

powerful intra-migrative adversary.

Related Work. As discussed at the beginning of this chapter, the problem of non-migrative

task assignment on heterogeneous multiprocessors has been studied in the past [Bar04c, Bar04b,

LST90, HS76, JP99, WBB13, CSV12, RAB13]. However, most of these approaches provide a

performance guarantee in terms of speed competitive ratio against equally powerful non-migrative

adversary including our FF-3C algorithm discussed in Section 4.3 — see Table 4.9. Also, most

of these solutions (except FF-3C) have a high-degree polynomial time-complexity. Hence, we

propose a non-migrative task assignment algorithm of low-degree polynomial time-complexity

and prove its speed competitive ratio against a more powerful intra-migrative adversary.

Computing Adversary Task Assignment Algorithms
Platform Task migration Algorithm Task migration Speed competitive ratio Complexity

t-typea non-migrative [Bar04b] non-migrative 2 O(P)c

t-type non-migrative [Bar04c] non-migrative 2 O(P)
t-type non-migrative [LST90] non-migrative 2 O(P)
t-type fully-migrative [CSV12] non-migrative 4 O(P)

t-type non-migrative [HS76] non-migrative PTASd exponential
in procs

t-type non-migrative [JP99] non-migrative PTAS exponential in
procs and O(P)

t-type non-migrative [WBB13] non-migrative PTAS exponential
in 1/ε and O(P)

2-typeb intra-migrative SA intra-migrative 1+ α

2
e≤ 1.5 low-degree

(Chapter 3) polynomial

2-type non-migrative FF-3C non-migrative 1+α ≤ 2 low-degree
(Section 4.3) polynomial

2-type intra-migrative SA-P non-migrative 1+α ≤ 2 low-degree
polynomial

a A heterogeneous multiprocessor platform having two or more processor types.
b A heterogeneous multiprocessor platform having only two processor types.
c The time-complexity O(P) indicates that the algorithm relies on solving a Linear Program (LP) formulation — note that

though a linear program can be solved in polynomial time, the polynomial generally has a higher degree.
d A PTAS takes an instance of an optimization problem and a parameter ε > 0 as inputs and, in time polynomial in the

problem size (although not necessarily in the value of ε), produces a solution that is within a factor 1+ ε of being
optimal.

e The parameter 0 < α ≤ 1 is a property of the task set — it is the maximum of all the task utilizations that are no greater
than one.

Table 4.9: Summary of state-of-the-art task assignment algorithms along with the SA-P algorithm
proposed in this section.

Contributions and Significance of the work discussed in this section. We present a non-

migrative task assignment algorithm, namely SA-P, of O(n logn) time-complexity which offers

the following guarantee. For a given task set τ and a two-type platform π , if there exists a feasible

intra-migrative assignment of τ on π then SA-P succeeds in finding a feasible non-migrative

4.4 SA-P algorithm 119

assignment of τ but on a platform π(1+α) in which every processor is 1+α times faster than the

corresponding processor in π . In other words, the speed competitive ratio of our non-migrative

algorithm, SA-P, is 1+α against a more powerful intra-migrative adversary. We also evaluate the

average-case performance of our new algorithm by generating task sets randomly and measuring

the necessary multiplication factors for each of these task sets.

We believe that the significance of this work is two-fold. First, for the problem of non-

migrative task assignment, our algorithm, SA-P, has superior performance compared to state-

of-the-art. This can be seen from Table 4.9 since (i) SA-P has the same speed competitive ratio

as FF-3C [ARB10, RAB13] and other algorithms in [Bar04b, Bar04c, LST90] but with a stronger

adversary and also a better time-complexity, (ii) compared to the algorithms whose speed com-

petitive ratio have been proven against an adversary with a migration model of intra-migrative or

greater power [CSV12], SA-P offers the best speed competitive ratio and (iii) compared to PTAS

algorithms [HS76, JP99, WBB13] that offer better speed competitive ratios (for lower values of

ε) but whose practical significance is severely limited as they incur a very high time-complexity

(i.e., exponential in number processors or exponential in 1/ε), our algorithm offers a significantly

lower (i.e., low-degree polynomial) time-complexity. Second, in our average-case performance

evaluations with randomly generated task sets, for the vast majority of task sets, our algorithm

requires significantly smaller processor speedup than what is indicated by its theoretical bound.

A global view. The context of the new algorithm, SA-P, can be visualized as shown in Fig-

ure 4.10.

Fully
migrative

Intra
migrative

Non
migrative

Fully
migrative

Intra
migrative

Non
migrative

Algorithm Adversary

Figure 4.10: A global view of the new algorithm, SA-P, proposed in this section. Here, SCR
denotes the “speed competitive ratio”, α is a property of the task set — it is the maximum of all
the task utilizations that are no greater than one (and hence can take a value in the range (0,1])
and n denotes the number of tasks.

120 Non-migrative Scheduling on Two-type Heterogeneous Multiprocessors

Organization of Section 4.4 The rest of the section is organized as follows. Section 4.4.2

briefs the system model. The description of SA-P algorithm is given in Section 4.4.3 and its time-

complexity is discussed in Section 4.4.4. Section 4.4.5 proves the speed competitive ratio of SA-P

and also shows that this proven bound of SA-P is indeed a tight bound. Section 4.4.6 offers the

average-case performance evaluations and Section 4.4.7 concludes.

4.4.2 System model

We consider the problem of scheduling a task set τ = {τ1,τ2, . . . ,τn} of n implicit-deadline spo-

radic tasks on a two-type heterogeneous multiprocessor platform comprising m processors, of

which m1 are of type-1 and m2 are of type-2.

On a two-type platform, we denote by u1
i and u2

i the utilizations of task τi on type-1 and type-2

processors, respectively. A task that cannot be executed upon a certain processor type is modeled

by setting its worst-case execution time (and thus its utilization) on that processor type to ∞.

Let α be a real number defined as follows:

α
def
= max
∀τi∈τ,t∈{1,2}

{
ut

i : ut
i ≤ 1

}
Then it holds that the utilization of any task on any processor type is either no greater than α or is

greater than 1, i.e.,

∀τi ∈ τ : (u1
i ≤ α) ∨ (u1

i > 1) and

∀τi ∈ τ : (u2
i ≤ α) ∨ (u2

i > 1)

We assume that all the tasks assigned to a processor are scheduled on this processor using an

algorithm that is optimal for the problem of scheduling tasks on a uniprocessor (e.g., EDF [LL73]).

4.4.3 The description of SA-P algorithm

For this algorithm, we consider that the processors are indexed in some order and this indexing is

maintained throughout the algorithm. The new algorithm, SA-P, for assigning tasks to processors,

works as follows.

1. Assign tasks in τ to processor types on π using algorithm SA (discussed in Section 3.6 of

Chapter 3 on page 57).

• SA assigns tasks to only processor types (and not to individual processors); let τ1

(respectively, τ2) be the subset of tasks assigned to type-1 (respectively, type-2) pro-

cessors.

• SA guarantees that, for an intra-migrative feasible task set, at most one task is frac-

tionally assigned to both processor types; let τ f be this task and let fraction x1
f of τ f be

assigned to type-1 and fraction x2
f = 1− x1

f be assigned to type-2.

4.4 SA-P algorithm 121

2. Assign tasks from τ1 (respectively, τ2) to individual processors of type-1 (respectively, type-

2) using next-fit but allowing splitting of tasks between consecutive processors (also referred

to as “wrap-around" assignment in literature). Assign the fraction, x1
f of τ f , to the last

processor (i.e., the mth
1 processor) of type-1 and the fraction, x2

f , to the last processor (i.e.,

the mth
2 processor) of type-2. It is trivial to see that such an assignment ensures following

properties:

• at most m1−1 tasks are split between processors of type-1 with one task split between

each pair of consecutive processors

• at most m2−1 tasks are split between processors of type-2 with one task split between

each pair of consecutive processors and

• at most one task, τ f , is fractionally assigned between processors of type-1 and type-2;

specifically, τ f is split between the mth
1 processor of type-1 and the mth

2 processor of

type-2

3. Copy this assignment of tasks onto a faster platform π ′ (we show in Theorem 15 that a

platform in which every processor is 1+α times faster than the corresponding processor in

π is sufficient).

4. On platform π ′, assign a task split between processor p and p+1 of type-1 to processor p,

where 1≤ p < m1; similarly, assign a task split between processor q and q+1 of type-2 to

processor q, where 1≤ q < m2. Finally, assign the task τ f to the mth
1 processor of type-1 (or

to the mth
2 processor of type-2).

SA-P is named so because it is the “Partitioned” (i.e., non-migrative) version of SA algorithm.

4.4.4 Time-complexity of SA-P algorithm

We now show that the time-complexity of SA-P is a low-degree polynomial function of the number

of tasks (n). By inspecting the four steps of SA-P algorithm, we know that:

• In Step 1, tasks are assigned to processor types using SA. The time-complexity of this

operation is O(n · logn) (shown in previous chapter — See Section 3.6.2 on page 58).

• In Step 2, tasks that are assigned to type-1 (respectively, type-2) processors by SA (at most

n) are assigned to individual processors of type-1 (respectively, type-2) using “wrap-around”

technique. The time-complexity of each of these operations is O(n).

• In Step 3, the assignment (of n tasks) is copied onto a faster platform. The time-complexity

of this operation is O(n).

• In Step 4, tasks that are fractionally assigned (at most m) are integrally assigned. The time-

complexity of this operation is O(n) since the number of fractionally assigned tasks is upper

bounded by n.

122 Non-migrative Scheduling on Two-type Heterogeneous Multiprocessors

Thus, the time-complexity of the algorithm is at most

O(n · logn)︸ ︷︷ ︸
Step 1

+O(n)︸︷︷︸
Step 2

+O(n)︸︷︷︸
Step 3

+O(n)︸︷︷︸
Step 4

= O(n · logn)

4.4.5 Speed competitive ratio of SA-P algorithm

In this section, we derive the speed competitive ratio of SA-P algorithm.

Theorem 15. If there exists a feasible intra-migrative assignment of a task set τ on a two-type

platform π then SA-P is guaranteed to find a feasible non-migrative assignment of τ but on a plat-

form π(1+α) in which every processor is 1+α ≤ 2 times faster than the corresponding processor

in π .

Proof. We know from Theorem 4 of Chapter 4 (see page 63) that if τ is intra-migrative feasible

on π then SA succeeds in returning an assignment of tasks in τ to processor types on π in which

at most one task from set L (recall from Expression 3.9 on page 50 that, L is defined as: L def
={

τi ∈ τ : u1
i ≤ α ∧ u2

i ≤ α
}

) is fractionally assigned and the rest are integrally assigned to type-

1 and type-2 processors. Hence, we only need to show that, if SA assigns tasks in τ to processor

types on π with at most one fractional task then SA-P can assign tasks in τ to individual processors

on π(1+α) in which the speed of each processor is 1+α times that of the corresponding processor

in π .

Let us consider the assignment of tasks in τ to processor types in π returned by SA with at

most one fractional task. We know that, SA assigns tasks to processor types (and not to individual

processors) — let τ1 (respectively, τ2) denote the subset of tasks that are assigned to processors

of type-1 (respectively, type-2). Let τ f denote the task that is fractionally assigned to both the

processor types — fraction x1
f to type-1 and fraction x2

f = 1− x1
f to type-2. Clearly, τ = τ1∪ τ2∪{

τ f
}

, τ1∩
{

τ f
}
= /0, τ2∩

{
τ f
}
= /0 and finally τ1∩ τ2 = /0. We also know that:

∀τi ∈ τ
1 : u1

i ≤ α and (4.70)

∀τi ∈ τ
2 : u2

i ≤ α and (4.71)

τ f ∈ τ : u1
f ≤ α ∧ u2

f ≤ α (4.72)

SA-P uses this assignment information and assigns tasks to individual processors (using “wrap-

around” technique which allows splitting of tasks between processors of same type) as described

earlier in Step 2 of SA-P algorithm. After this step, it must hold that:

∀p ∈ π : U [p]≤ 1 (4.73)

where U [p] is the utilization of tasks assigned to processor p. Let τ1
p1,p1+1 denote the task split

between the pth
1 processor and the (p1+1)th processor of type-1 where 1≤ p1 < m1. Analogously,

let τ2
p2,p2+1 denote the task split between the pth

2 processor and the (p2 +1)th processor of type-2

where 1≤ p2 < m2.

4.4 SA-P algorithm 123

On step 3, SA-P copies this assignment onto the faster platform π(1+α). Let u1′
i and u2′

i denote

the utilizations of task τi on platform π(1+α). Then, it holds that:

∀τi ∈ τ :
u2′

i

u2
i
=

u1′
i

u1
i
=

1
1+α

(4.74)

Combining Expression (4.73) and (4.74) gives us:

∀p ∈ π
(1+α) : U [p]≤ 1

1+α
(4.75)

Also, combining Expressions (4.70)-(4.72) and (4.74), we get:

∀τi ∈ τ
1 : u1′

i ≤
α

1+α
and (4.76)

∀τi ∈ τ
2 : u2′

i ≤
α

1+α
and (4.77)

τ f ∈ τ : u1′
f ≤

α

1+α
∧ u2′

f ≤
α

1+α
(4.78)

On step 4, SA-P assigns the split tasks integrally. So, ∀p1 ∈ type-1 of π(1+α), it moves the

fraction of the task τ1
p1,p1+1 that is assigned to the (p1+1)th processor of type-1 to the pth

1 processor

of type-1. After this re-assignment, it follows from Expressions (4.75) and (4.76) that:

∀p1 ∈ type-1 of π
(1+α) ∧ p1 6= m1 : U [p1]≤ 1.0 (4.79)

Note that the mth
1 processor of type-1 is still utilized at most 1

1+α
of its capacity as no fraction of

any task is moved to this processor in the above step.

Analogously, ∀p2 ∈ type-2 of π(1+α), SA-P moves the fraction of the task τ2
p2,p2+1 that is as-

signed to the (p2+1)th processor of type-2 to the pth
2 processor of type-2. After this re-assignment,

it follows from Expressions (4.75) and (4.77) that:

∀p2 ∈ type-2 of π
(1+α) ∧ p2 6= m2 : U [p2]≤ 1.0 (4.80)

Once again, since no fraction of any task is moved to the mth
2 processor of type-2 in the above step,

this processor is still utilized at most 1
1+α

of its capacity.

Finally, the task τ f (split between the mth
1 processor and the mth

2 processor) remains to be

integrally assigned. It turns out that this task can be entirely assigned to either the mth
1 processor

of type-1 or the mth
2 processor of type-1. Consider the case that it is integrally assigned to the mth

1

processor of type-1. Since, this processor is used at most 1
1+α

of its capacity and since u1′
f ≤ α

1+α

(see Expression (4.78)), this re-assignment does not allow the used capacity of the mth
1 processor

to exceed one. Combining this with the fact that the mth
2 processor of type-2 is still utilized at most

1
1+α

of its capacity and with Expression (4.79) and Expression (4.80), we obtain:

∀p ∈ π
(1+α) : U [p]≤ 1.0 (4.81)

124 Non-migrative Scheduling on Two-type Heterogeneous Multiprocessors

(Analogous reasoning holds for the case when τ f is integrally assigned to the mth
2 processor of

type-2.)

Since Expression (4.81) is a necessary and sufficient feasibility condition for task assignment

on a uniprocessor [LL73], the non-migrative assignment of τ on π(1+α) returned by SA-P is fea-

sible. Hence the proof.

We now show that the proven speed competitive ratio of SA-P is a tight bound.

Theorem 16 (Speed competitive ratio of SA-P is tight). The proven speed competitive ratio

1+α ≤ 2 of algorithm SA-P is a tight bound.

Proof. In order to show that, the proven speed competitive ratio is tight for SA-P algorithm, it is

sufficient to show that, there exists a (feasible intra-migrative) problem instance for which SA-P

needs 2 times faster processors to output a feasible non-migrative assignment. We now show that

such a problem instance exists.

Consider a problem instance with a task set τ = {τ1,τ2, . . . ,τn} comprising n tasks and a two-

type platform π = {π1,π2, . . . ,πm} comprising m processors of which m1 processors are of type-1

and m2 processors are of type-2. Also, let n = m1 +m2 +2. The task set τ can be partitioned into

two subsets, τ1 of m1 +1 tasks and τ2 of m2 +1 tasks, such that:

τ
1∪ τ

2 = τ

τ
1∩ τ

2 = /0

∀τi ∈ τ
1 : u1

i =
m1

m1 +1
and u2

i =
m1

m1 +1
+

1
(m1 +1)2

∀τi ∈ τ
2 : u1

i =
m2

m2 +1
+

1
(m2 +1)2 and u2

i =
m2

m2 +1

Now consider SA-P algorithm. Initially, the task set τ is partitioned as follows using Expres-

sions (3.6)–(3.9): H12 = /0, H1 = /0, H2 = /0 and L = {τ1,τ2, . . . ,τn}. As a consequence, it holds

that L = τ1∪τ2. Since all the tasks in the task set are light, SA-P sorts the tasks in non-increasing

order of u2
i

u1
i
. From the utilizations of the tasks, it can be seen that, in such a sorted order, all the

tasks from τ1 precede all the tasks from τ2 (i.e., all the tasks from τ1 appear before any task from

τ2 in the list). Since ∀τi ∈ τ1 : u1
i =

m1
m1+1 and |τ1| = m1 + 1, it can be seen that: ∑τi∈τ1 u1

i = m1.

Combining this with the fact that, all the tasks of τ1 appear before any task of τ2 in the sorted

order and the fact that, there are m1 processors of type-1, it can be seen that SA-P assigns all the

tasks of τ1 to type-1 processors. Analogously, it can be seen that SA-P assigns all the tasks of τ2

to type-2 processors. Note that, at this stage, tasks have been assigned to processor types and not

to individual processors. Now, the tasks need to be assigned to individual processors.

Consider tasks of τ1 that are assigned to type-1 processors. We know that |τ1| = m1 + 1 and

there are m1 processors of type-1 (i.e., one processor less than the number of tasks). Hence, to

obtain a non-migrative assignment, SA-P must assign two tasks of τ1 to at least one processor of

type-1. Since, ∀τi ∈ τ1 : u1
i =

m1
m1+1 , we need to speedup at least one processor of type-1 (which

4.4 SA-P algorithm 125

is the processor to which two tasks from τ1 will be assigned) to 2m1
m1+1 . Analogously, we need to

speedup at least one processor of type-2 to 2m2
m2+1 . By the definition of speed competitive ratio,

we need to speedup every processor by the same factor. Therefore, we need to speedup every

processor by a factor of:

max
{

2m1

m1 +1
,

2m2

m2 +1

}
Rewriting the above max term gives us: we need to speedup every processor by a factor of:

2×max
{

m1

m1 +1
,

m2

m2 +1

}
In the above expression, the maximum value that the max term can take is 1 when either m1 tends

to an infinitely large value or when m2 tends to an infinitely large value. Therefore, we need to

speedup every processor by a factor of 2.

Hence the proof.

Let π(m1,m2) denote a two-type platform in which m1 > 0 processors are of type-1 and m2 > 0

processors are of type-2. We now state the performance of LP-Algo in terms of additional number

of processors.

Corollary 5. If there exists a feasible intra-migrative assignment of τ on π(m1,m2) then SA-P is

guaranteed to obtain a feasible non-migrative assignment of τ on π ′(2m1,2m2).

Proof. We know from Theorem 15 that, after executing Step 1 in SA-P, it holds that:

• the utilization of any task that is assigned to processors of type-1 (respectively, type-2) does

not exceed α on processors of type-1 (respectively, type-2) — see Expression (4.70) and

Expression (4.71) and

• the utilization of the task split between processors of type-1 and type-2 does not exceed α

on both processor types — see Expression (4.72)

Also, we know from Theorem 15 that, after executing Step 2 in SA-P, it holds that:

• every processor is utilized at most 100% of its capacity (see Expression (4.73)) and

• at most m1− 1 (respectively, m2− 1) tasks are split between processors of type-1 (respec-

tively, type-2) with one task split between each pair of consecutive processors and at most 1

task is split between processors of type-1 and type-2

Hence, if such fractional tasks exist then

• the m1−1 (respectively, m2−1) tasks that are fractionally assigned between processors of

type-1 (respectively, type-2) can be integrally assigned to the additional m1−1 (respectively,

m2−1) processors of type-1 (respectively, type-2) in π ′.

126 Non-migrative Scheduling on Two-type Heterogeneous Multiprocessors

• the single task that is fractionally assigned between processors of type-1 and type-2 can be

integrally assigned to yet another additional processor of either type-1 or type-2 in π ′ since

only m1−1 (respectively, m2−1) additional processors of type-1 (respectively, type-2) were

used in the previous step out of m1 (respectively, m2) additional processors.

From earlier observations about the capacity used on each processor and the utilizations of the

tasks assigned on each processor type, it is trivial to see that, the above re-assignment satisfies the

uniprocessor feasibility test on every processor in π ′. Hence the proof.

4.4.6 Average-case performance evaluation SA-P algorithm

After studying the theoretical bound of SA-P algorithm (i.e., its speed competitive ratio), we eval-

uate its average-case performance by measuring how well it performs compared to its theoretical

bound. We assess its average-case performance by measuring its necessary multiplication factor

for various randomly generated task sets. For a given task set, we define the necessary multiplica-

tion factor of SA-P as the minimum amount of extra speed of processors that SA-P needs, so as to

succeed in finding a feasible non-migrative assignment as compared to an optimal intra-migrative

task assignment algorithm5. For each task set, we evaluate the performance of SA-P algorithm by

comparing the necessary multiplication factor (computed via simulations) with the speed competi-

tive ratio (derived theoretically). In our evaluations, we observed that, for the vast majority of task

sets, our algorithm performs significantly better by succeeding in finding a feasible non-migrative

assignment with necessary multiplication factor much smaller than the speed competitive ratio.

We now discuss these evaluations in detail.

The problem instances (number of tasks, their utilizations and the number of processors of

each type) were generated randomly. Each problem instance had at most 25 tasks and at most

3 processors of each type. We generated 100000 task sets, denoted as {τ(1),τ(2), . . . ,τ(100000)},
which we transformed into “critically feasible intra-migrative task sets” as described in Section 3.8

in Chapter 4 (see page 68).

For each critically feasible task set τ
(k)
crit, we measure the necessary multiplication factor of al-

gorithm SA-P, denoted by NMF(k)
SA-P. We then compare NMF(k)

SA-P with the speed competitive ratio

denoted by SCR(k)
SA-P

6. The pseudo-code to compute NMF(k)
SA-P for every intra-migrative critically

feasible task set, τ
(k)
crit, is obtained by replacing all the occurrences of SA with SA-P in Algorithm 1

in Section 3.8 (see page 70).

Recall that we want to evaluate the average-case performance of our algorithm by measuring

how well it performs compared to its theoretical bound. In this regard, for each critically feasible

5Note the subtle difference in this version of the necessary multiplication factor definition compared to the ear-
lier/standard definition. This is due to the fact that, here we are comparing a non-migrative algorithm with an optimal
intra-migrative algorithm.

6Note that, as opposed to the generic definition of the speed competitive ratio provided in Section 2.5.1 of Chapter 2
on page 16 which says that the speed competitive ratio is a property of the algorithm alone, the speed competitive ratio
of SA-P algorithm which is shown to be 1+α ≤ 2, is not only a property of the algorithm but also a property of the
task set as it depends on the parameter 0 < α ≤ 1 whose value in turn depends on the (utilization values of the tasks in
the) task set.

4.4 SA-P algorithm 127

intra-migrative task set, τ
(k)
crit, we compute the performance ratio PR(k)

SA-P (in %) of SA-P algorithm

as follows (similar to the definition in Section 3.8 of Chapter 3):

PR(k)
SA-P

def
=

NMF(k)
SA-P−1

SCR(k)
SA-P−1

×100 (4.82)

Note that both NMF(k)
SA-P and SCR(k)

SA-P are numbers that take a value of 1.x where the integral

part 1 can be seen as the speed of the processors on which an optimal intra-migrative algorithm

succeeds to find a feasible intra-migrative task assignment and the fractional part x can be seen

as the increase in the speed of processors that algorithm SA requires (compared to the optimal

algorithm) in order to find a feasible non-migrative task assignment. Hence, 1 is subtracted from

both NMF(k)
SA-P and SCR(k)

SA-P in the above expression. The multiplication factor 100 converts the

ratio in percentage. This expression enables us to compare the average-case performance of SA-P

algorithm for task sets with different values of α on a same scale. For example, for a given

critically feasible intra-migrative task set, τ
(k)
crit, with α = 0.1, if SA-P succeeds in finding a feasible

non-migrative task assignment with NMF(k)
SA-P = 1.01 then the value of the above ratio is 10%

(since SCR(k)
SA-P of SA-P for this task set is 1 + α = 1.10) indicating that SA-P required only

10% faster processors than indicated by the theoretical estimate. Similarly, for a given task set

in which α = 0.2, if SA-P succeeds in finding a feasible non-migrative task assignment with

NMF(k)
SA-P = 1.02 then the value of the above ratio is again 10% (since SCR(k)

SA-P of SA-P for this

task set is 1+α = 1.20) indicating that SA-P required only 10% faster processors than indicated

by the theoretical estimate.

In general, for a given task set and a given algorithm, the smaller the performance ratio, the

better the average-case performance of the algorithm. For example, if this ratio takes a value

of 100% then it implies that the algorithm is not performing any better than what is indicated

by its theoretical bound and if this ratio takes a smaller value, say 10%, then it implies that the

algorithm is performing much better (to be precise, 90% better) than its theoretical bound. Hence,

an algorithm is said to perform better if this ratio is less for many task sets.

We plot the histogram of the performance ratios of SA-P algorithm in Figure 4.11. As we can

see from Figure 4.11, for approximately 70% of the task sets, SA-P succeeded in finding a feasible

non-migrative assignment within (0−10]% of its theoretical bound, for approximately 20% of the

task sets, SA-P succeeded in finding a feasible non-migrative assignment within (10−20]% of its

theoretical bound, and so on.

To summarize, in our evaluations, for the vast majority of task sets, the SA-P algorithm per-

formed significantly better than indicated by its theoretical bound.

4.4.7 Summary

In this section, for the problem of non-migrative task assignment on two-type heterogeneous mul-

tiprocessors, we presented a low-degree polynomial time-complexity algorithm, SA-P. This algo-

rithm is an extension of the intra-migrative algorithm, SA, that was discussed earlier in Chapter 3.

128 Non-migrative Scheduling on Two-type Heterogeneous Multiprocessors

0

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100

N
u

m
b

e
r

o
f

ta
sk

 s
e

ts
 (

in
 %

)

Performance Ratio (in %)

Histogram for SA-P

Figure 4.11: Performance of algorithm, SA-P, in terms of performance ratio for task sets with dif-
ferent values of α (if an algorithm has low performance ratio for many task sets then the algorithm
is said to perform well).

We showed that SA-P algorithm has a time-complexity of O(n logn) and proved that its speed

competitive ratio is 1+α ≤ 2 against a more powerful intra-migrative adversary, where the pa-

rameter 0 < α ≤ 1 is a property of the task set; it is the maximum of all the task utilizations that

are no greater than one. The proposed algorithm, SA-P, is shown to be better than the state-of-

the-art either in terms of the speed competitive ratio or the time-complexity or a combination of

both. We also evaluated the average-case performance of SA-P by randomly generating task sets,

converting these task sets to critically feasible intra-migrative task sets and then measuring the

necessary multiplication factor of SA-P algorithm for each of these critically feasible task sets. In

our evaluations, we observed that, for the vast majority of task sets, SA-P algorithm performed

significantly better by succeeding in finding a feasible non-migrative assignment with necessary

multiplication factor much smaller than the speed competitive ratio.

In the next section, we propose another non-migrative algorithm, LPC, that relies on solving

a linear program. We prove its speed competitive ratio against equally powerful non-migrative

adversary.

4.5 Cutting plane algorithm 129

4.5 Cutting plane algorithm

4.5.1 Introduction

In this section, we propose a non-migrative task assignment algorithm, LPC, for assigning tasks

in τ to processors in π . This task assignment algorithm is based on solving a Linear Program with

Cutting planes. We also prove the speed competitive ratio of LPC algorithm against an equally

powerful non-migrative adversary.

Related Work. As discussed in Section 4.1, the problem of assigning tasks to processors on

heterogeneous multiprocessors has been studied in the past [Bar04c, Bar04b, LST90, HS76, JP99,

WBB13, CSV12, RAB13, RABN12] — summarized in Table 4.10. However, as can be seen in

Table 4.10, most of these approaches [Bar04c, Bar04b, LST90] have a speed competitive ratio

of 2 or higher [CSV12] (except for PTAS algorithms [HS76, JP99, WBB13] which have a better

speed competitive ratio but incur a very high time-complexity) including our FF-3C [RAB13] and

SA-P [RABN12] algorithms discussed in Section 4.3 and Section 4.4, respectively.

Computing Adversary Task Assignment Algorithms
Platform Task migration Algorithm Task migration Speed competitive ratio Complexity

t-typea non-migrative [Bar04b] non-migrative 2 O(P)c

t-type non-migrative [Bar04c] non-migrative 2 O(P)
t-type non-migrative [LST90] non-migrative 2 O(P)
t-type fully-migrative [CSV12] non-migrative 4 O(P)

t-type non-migrative [HS76] non-migrative PTASd exponential
in procs

t-type non-migrative [JP99] non-migrative PTAS exponential in
procs and O(P)

t-type non-migrative [WBB13] non-migrative PTAS exponential
in 1/ε and O(P)

2-typeb intra-migrative SA intra-migrative 1+ α

2
e≤ 1.5 low-degree

(Chapter 3) polynomial

2-type non-migrative FF-3C non-migrative 1+α ≤ 2 low-degree
(Section 4.3) polynomial

2-type intra-migrative SA-P non-migrative 1+α ≤ 2 low-degree
(Section 4.4) polynomial

2-type non-migrative LPC non-migrative 1.5 O(P)(and 3 extra processors)
a A heterogeneous multiprocessor platform having two or more processor types.
b A heterogeneous multiprocessor platform having only two processor types.
c The time-complexity O(P) indicates that the algorithm relies on solving a Linear Program (LP) formulation — note that

though a linear program can be solved in polynomial time, the polynomial generally has a higher degree.
d A PTAS takes an instance of an optimization problem and a parameter ε > 0 as inputs and, in time polynomial in the

problem size (although not necessarily in the value of ε), produces a solution that is within a factor 1+ ε of being
optimal.

e The parameter 0 < α ≤ 1 is a property of the task set — it is the maximum of all the task utilizations that are no greater
than one.

Table 4.10: Summary of state-of-the-art task assignment algorithms along with the LPC algorithm
proposed in this section.

Contributions and Significance of the work discussed in this section. We present a non-

migrative algorithm, LPC (task assignment based on solving a Linear Program with Cutting

planes), for assigning implicit-deadline sporadic tasks to processors on a two-type heterogeneous

130 Non-migrative Scheduling on Two-type Heterogeneous Multiprocessors

multiprocessor platform, which offers the following guarantee. If there exists a feasible non-

migrative assignment of a task set τ on a two-type platform π then, LPC succeeds in finding such

a feasible non-migrative assignment of τ but on a platform π(1.5x+3p) in which (i) each processor

is 1.5 times faster than the corresponding processor in π and (ii) there are 3 additional processors

than π .

The significance of this work is two-fold. First, for the problem of non-migrative task as-

signment, our algorithm, has superior performance compared to state-of-the-art. This can be

seen from Table 4.10 since, for systems with large number of processors, our algorithm offers

a better speed competitive ratio than all the previous algorithms. This is because (i) for sys-

tems with large number of processors, the additional 3 processors that our algorithm requires

become negligible and hence its speed competitive ratio tends to 1.5x which is better than the al-

gorithms in [Bar04b, Bar04c, LST90, CSV12, RAB13, RABN12] including the FF-3C [RAB13]

and SA-P [RABN12] algorithms proposed in previous sections and (ii) compared to PTAS al-

gorithms [HS76, JP99, WBB13] which incur a very high time-complexity (i.e., exponential in

processors or exponential in 1/ε), our algorithm offers a lower (i.e., polynomial) time-complexity.

Second, although task assignment schemes with provably good performance have previously been

developed by relaxing an MILP formulation to an LP formulation (e.g., [Bar04c, Bar04b, LST90])

and cutting planes have been used to solve such formulations in different efforts, no work in the

past has shown how cutting planes can be used to improve the speed competitive ratio of algo-

rithms for provably good algorithms for assigning real-time tasks to processors. Hence, to the best

of our knowledge, this is the first work to do so.

A global view. The context of the new algorithm LPC can be visualized as shown in Fig-

ure 4.12.

Organization of Section 4.5 The rest of the section is organized as follows. Section 4.5.2

briefs the system model. Section 4.5.3 discusses task assignment using Integer Linear Program,

Linear Program relaxation and cutting planes. Section 4.5.4 presents our new algorithm, LPC, and

Section 4.5.5 derives its speed competitive ratio. Finally, Section 4.5.6 concludes.

4.5.2 System model

We consider the problem of scheduling a task set τ = {τ1,τ2, . . . ,τn} of n implicit-deadline spo-

radic tasks on a two-type heterogeneous multiprocessor platform π = {π1, π2, . . ., πm} comprising

m processors, of which |Pt(π)| are of type-t; where t ∈ {1,2}. The set of processors of type-t is

represented by Pt(π). Note that P1(π)
⋃

P2(π) = π . We assume that an optimal scheduling algo-

rithm (such as EDF [LL73]) is used to schedule the tasks on each processor.

On a two-type platform, the WCET of a task depends on the type of processor on which the

task executes. We denote by Ci,1 and Ci,2 the WCET of task τi when executed on a processor of

type-1 and type-2, respectively. The minimum inter-arrival time of task τi is denoted by Ti. We

denote by ui,1
def
=

Ci,1
Ti

and ui,2
def
=

Ci,2
Ti

the utilizations of task τi on type-1 and type-2 processors,

4.5 Cutting plane algorithm 131

Fully
migrative

Intra
migrative

Non
migrative

Fully
migrative

Intra
migrative

Non
migrative

Algorithm Adversary

LPC

2-type

SCR=1.5+3p

O(P)

Figure 4.12: A global view of the new algorithm, LPC, proposed in this section. Here, SCR
denotes the “speed competitive ratio”, the term “+3p” in the speed competitive ratio signifies that,
it needs “three extra processors” (in addition to 1.5 times faster processors) and O(P) indicates
that the algorithm relies on solving a Linear Program formulation.

respectively. A task that cannot be executed upon a certain processor type is modeled by setting

its utilization on that processor type to ∞7.

We now define a couple of auxiliary functions that are used in the rest of the discussion related

to LPC algorithm.

Let aot
(

ts : set of tasks,t : type
)

be a function that returns the subset of tasks in set ts

such that ui,t > 1/3. Similarly, let ah(ts, t) be a function which returns the subset of tasks in set ts

such that ui,t > 1/2. Intuitively, “aot" means “above one third".

Let solve
(

lp:linear program
)

be a function which solves the linear program lp and if

this solution is not a vertex optimal solution then it converts this solution into a vertex optimal

solution (previous work [Bar04c] did such a transformation). It returns the values assigned to

variables and the value of the objective function.

Let mp
(∣∣P1 (pl)

∣∣ : #processors,
∣∣P2 (pl)

∣∣ : #processors, s:relative speed of

processors, pl:two-type platform
)

denote a function that returns a computing platform

with |P1(pl)| (respectively, |P2(pl)|) processors of type-1 (respectively, type-2) that are s> 0 times

as fast as the corresponding processors of type-1 (respectively, type-2) in computing platform pl.

Intuitively, “mp" means “make platform". This function is never called by our algorithm; it is only

used in proofs.

7Later in the paper, we will solve LPs and MILPs and unfortunately, solvers for these problems typically do not
allow coefficients to be ∞. This can be dealt with, however, by assigning utilization of a task on a certain processor to
max(

∣∣P1(π)
∣∣ , ∣∣P2(π)

∣∣). We will see, later in the paper, that this gives the same result as assigning ∞.

132 Non-migrative Scheduling on Two-type Heterogeneous Multiprocessors

Minimize ZMILP subject to the following constraints:
I1. ∀p ∈ P1 (pl) : ∑τi∈ts xvi,p×ui,1 ≤ ZMILP
I2. ∀p ∈ P2 (pl) : ∑τi∈ts xvi,p×ui,2 ≤ ZMILP
I3. ∀τi ∈ ts : ∑p∈P1(pl) xvi,p +∑p∈P2(pl) xvi,p = 1
I4. ∀τi ∈ ts and ∀p ∈ P1 (pl) : xvi,p is an integer ∈ {0,1}
I5. ∀τi ∈ ts and ∀p ∈ P2 (pl) : xvi,p is an integer ∈ {0,1}

Figure 4.13: MILPOPT(ts,pl)– MILP formulation for assigning tasks in task set ts to processors in
computing platform pl.

Let sched(A,τ,π) denote a predicate to signify that the task-to-processor assignment returned

by algorithm A for tasks in task set τ onto processors in platform π meets all the deadlines when the

tasks assigned to each processor are scheduled by an optimal uniprocessor scheduling algorithm

(such as EDF [LL73]). The term meets all the deadlines in this predicate means ‘meets deadlines

for every possible arrival of tasks that is valid as per the given parameters of τ’. The predicates

with A = OPT imply that there exists a feasible task-to-processor assignment of tasks in τ onto

processors in π .

4.5.3 Task assignment, MILP, LP and cutting planes

In this section, we describe how the task assignment problem under consideration can be for-

mulated as MILP. Recall that, we mentioned in Section 4.5.1 that, given a task set and a com-

puting platform, the problem of deciding if a feasible non-migrative task assignment exists is

NP-complete in the strong sense. Then it clearly follows that, for any MILP formulation of this

problem, deciding if the MILP is feasible is NP-complete in the strong sense as well. Since de-

ciding if our MILP formulation of task assignment is NP-complete, we also discuss how it can be

relaxed to LP (because LP can be solved in polynomial time).

Recall that, once the tasks are assigned to processors, we assume that an optimal scheduling

algorithm (such as EDF [LL73]) is used on each processor to schedule the respective tasks. From

the uniprocessor feasibility test, the following necessary and sufficient condition must hold ∀t ∈
{1,2} in order for the non-migrative task assignment to be feasible:

∀πp ∈ Pt(π) : ∑
τi∈τ[πp]

ui,t ≤ 1 (4.83)

where τ[πp] denotes the set of tasks assigned to processor πp ∈ π .

The problem of assigning tasks in τ to processors in π can be formulated as MILP using the

function MILPOPT(τ,π) which returns an MILP formulation as defined by Figure 4.13. In this

MILP formulation, every indicator variable, xvi,p, indicates the assignment of task τi to processor

πp, i.e., xvi,p = 1 implies that τi is entirely assigned to processor πp, xvi,p = 0 implies that τi is

not assigned to processor πp. The variable ZMILP denotes the maximum capacity of any processor

that is used and is set as the objective function (to be minimized). If ZMILP ≤ 1 then it implies

that the sum of utilization of tasks assigned to any processor is less than or equal to the available

4.5 Cutting plane algorithm 133

Type-1 (π1,π2) Type-2 (π3)
Task ui,1 ui,2

τ1 0.51 1.1
τ2 0.51 1.1
τ3 0.51 1.1
τ4 1.1 0.5
Table 4.11: An example task set.

capacity on that processor and hence the assignment is feasible. If ZMILP > 1 then it implies that

the condition in Expression (4.83) is violated and hence the task set is non-migrative infeasible,

i.e., no algorithm will be able to assign the given tasks on the given processors such that all the

deadlines are met.

We now illustrate this with an example. Consider a task set τ = {τ1,τ2,τ3,τ4} comprising four

tasks and a two-type platform π = {π1,π2,π3} comprising three processors of which π1 and π2 are

of type-1 and π3 is of type-2. The utilizations of these tasks on type-1 and type-2 processors are

shown in Table 4.11. Observe that this task set is non-migrative infeasible on the given platform.

Solving the MILP formulation, MILPOPT(τ,π), for this example outputs ZMILP = 1.02 (corre-

sponding to the assignment in which τ1 and τ2 are assigned to π1 of type-1, τ3 is assigned to π2 of

type-1 and τ4 is assigned to π3 of type-2). Since ZMILP > 1, it rightly indicates that the task set is

non-migrative infeasible on the given platform.

As stated earlier (in Section 4.5.1), the problem of finding a feasible task-to-processor as-

signment on two-type heterogeneous multiprocessors is NP-Complete in the strong sense. Since

MILPOPT(ts,pl), shown in Figure 4.13, is the MILP formulation for this problem, it holds that

MILPOPT(ts,pl) is NP-Complete in the strong sense as well. It has been shown in the past that, via

relaxation of (M)ILP formulation to LP (by allowing a certain number of tasks to be fractionally

assigned to processors initially) and certain rounding tricks [Pot85] (for integrally assigning the

fractionally assigned tasks), polynomial time-complexity can be attained [Bar04b, Bar04c, LST90]

at the expense of potentially non-optimal value for the objective function. In another recent devel-

opment (SA-P algorithm discussed in Section 4.4), it was shown that assigning tasks to processor

types first and then assigning them to individual processors lead to a better performance [RABN12]

than [Bar04b, Bar04c, LST90]. Hence, in addition to using cutting planes in this work, we also

use the above mentioned two tricks, i.e., (i) assigning tasks to processor types first and then as-

signing them to individual processors and (ii) relaxing MILP to LP and then integrally assigning

the fractional tasks.

As discussed in Chapter 3, in intra-migrative task assignment, once tasks are assigned to

processor types, we can use an optimal identical multiprocessor scheduling algorithm (e.g., ER-

fair [AS00], DP-Fair [LFS+10], U-EDF [NBN+12]) to schedule them on processors of each type.

From the feasibility tests of identical multiprocessor scheduling, the following conditions must

134 Non-migrative Scheduling on Two-type Heterogeneous Multiprocessors

hold ∀t ∈ {1,2} in order for intra-migrative task assignment to be feasible:

∀τi ∈ τ
t : ui,t ≤ 1 (4.84)

∑
τi∈τ t

ui,t ≤
∣∣Pt(π)

∣∣ (4.85)

where τ t denotes the tasks assigned to processors of type-t. Given these necessary and sufficient

feasibility conditions, we now describe how to obtain a task-to-processor-type assignment of τ on

π .

We partition the task set τ into four subsets H12(τ,1), H1(τ,1), H2(τ,1) and L(τ,1) as defined

below.

H12(ts,θ) = {τi ∈ ts : ui,1 > θ ∧ ui,2 > θ} (4.86)

H1(ts,θ) = {τi ∈ ts : ui,1 ≤ θ ∧ ui,2 > θ} (4.87)

H2(ts,θ) = {τi ∈ ts : ui,1 > θ ∧ ui,2 ≤ θ} (4.88)

L(ts,θ) = {τi ∈ ts : ui,1 ≤ θ ∧ ui,2 ≤ θ} (4.89)

H12(τ,1) is the set of tasks whose utilization exceeds one on both processor types. These tasks

cannot be assigned to any of the processor types as assigning them in such a manner violates the

condition in Expression (4.84). Hence, these tasks make the task set infeasible and thus we assume

this set to be empty in the rest of this section. H1(τ,1) is the set of tasks that must be assigned to

type-1 processors as their utilization on type-2 processors exceeds one and hence assigning them

to type-2 processors violates the condition in Expression (4.84). Analogously, H2(τ,1) is the set of

tasks that must be assigned to type-2 processors as their utilization on type-1 processors exceeds

one and hence assigning them to type-1 processors violates the condition in Expression (4.84).

Finally, L(τ,1) is the set of tasks that can be assigned on either processor type as their utilizations

on both processor types do not exceed one. In these definitions, we can intuitively understand

the meaning of “H" as “heavy" and “L" as “light" tasks. Now, to obtain an intra-migrative task

assignment, do the following.

First, assign the tasks in H1(τ,1) to type-1 (respectively, H2(τ,1) to type-2) processors. Let

U1 refer to the capacity used on type-1 processors after assigning H1(τ,1) tasks, i.e., U1 =

∑τi∈H1(τ,1) ui,1. Analogously, let U2 = ∑τi∈H2(τ,1) ui,2. If U1 >
∣∣P1(π)

∣∣ or U2 >
∣∣P2(π)

∣∣ then

the task set is intra-migrative infeasible as this violates the condition in Expression (4.85).

Second, solve the formulation, MILPTYPE(L(τ,1),π,U1,U2), of Figure 4.14 for assigning

tasks in L(τ,1). In this formulation, each indicator variable, yvi,t (t ∈ {1,2}), indicates the as-

signment of task τi to type-t processors. The variable Z denotes the average used capacity of

either type-1 or type-2 processors, whichever is greater, and is set as the objective function to be

minimized. If Z ≤ 1 then a successful intra-migrative assignment is obtained else the task set is

intra-migrative infeasible as it violates Expression (4.85).

Recall that, our end goal is to obtain a non-migrative (i.e., task-to-processor) assignment.

However, this two-step algorithm where the “Heavy” tasks are assigned first and then the “Light”

4.5 Cutting plane algorithm 135

Minimize Z subject to the following constraints:
I1. U1 +∑τi∈ts yvi,1×ui,1 ≤ Z×|P1(pl)|
I2. U2 +∑τi∈ts yvi,2×ui,2 ≤ Z×|P2(pl)|
I3. ∀τi ∈ ts: yvi,1 + yvi,2 = 1
I4. ∀τi ∈ ts: yvi,1 is an integer ∈ {0,1}
I5. ∀τi ∈ ts: yvi,2 is an integer ∈ {0,1}

Figure 4.14: MILPTYPE(ts,pl,U1,U2) — MILP formulation for assigning tasks in ts to processor
types in pl.

tasks are assigned by solving the MILP formulation (of Figure 4.14) gives us intra-migrative (i.e.,

task-to-processor-type) assignment. Hence, we need to convert this task-to-processor-type assign-

ment into a task-to-processor assignment. However, for some task sets, it may be the case that a

feasible task-to-processor-type assignment exists but not a feasible task-to-processor assignment.

As a result of this, the two-step algorithm can sometimes indicate that a feasible task-to-processor-

type assignment exist for those task sets which do not have a feasible task-to-processor assignment.

To illustrate this, let us apply this two-step algorithm on our earlier example (see Table 4.11). It

first partitions the tasks as follows: H1(τ,1) = {τ1,τ2,τ3} and H2(τ,1) = {τ4}. Then, it assigns

all the H1(τ,1) tasks to type-1 processors and H2(τ,1) tasks to type-2 processors. As a result,

we obtain: Z = 0.765 indicating that a feasible task-to-processor-type assignment exists. But, we

cannot convert this assignment into a feasible task-to-processor assignment (since for this task set

there is no feasible task-to-processor assignment as illustrated earlier). To avoid such undesirable

scenarios, we use cuts.

Observe that, for the example under consideration, the problem with the returned task-to-

processor-type assignment (considering the fact that this must be converted to a task-to-processor

assignment) is that three tasks with utilization 0.51 on type-1 processors are assigned to two type-1

processors. We know that such an assignment is task-to-processor infeasible as the number of tasks

assigned on type-1 processors with their utilizations greater than 0.5 cannot exceed the number

of processors of type-1. Analogous property holds for type-2 processors. Hence, we add these

two observations as two separate constraints in the MILP formulation (of Figure 4.14) — these

constraints cut the feasible region of the optimization problem without losing any solution that is

of interest to us (which is a feasible task-to-processor assignment).

Also, as described earlier, solving an MILP formulation is time consuming. However, an LP

formulation can be solved in polynomial time though [Kar84]. So, the MILP formulation for

assigning tasks in L is relaxed to an LP formulation to be able to solve it in polynomial-time. This

relaxed LP formulation along with the two cuts is obtained by the function TLPCUT
(
L(τ,1), π ,

H1(τ,1), H2(τ,1), ah
)

as shown in Figure 4.15. In this LP formulation, variables zv and yvi,t

have the same meaning as the corresponding variables, Z and yvi,t , in the MILP formulation (of

Figure 4.14) and the first three constraints are the same as well. The fourth and fifth constraints

represent the cuts that we have added and the sixth and seventh constraints (are relaxed versions of

fourth and fifth constraints in Figure 4.14) assert that a task can either be integrally or fractionally

136 Non-migrative Scheduling on Two-type Heterogeneous Multiprocessors

Minimize zv subject to the following constraints:
C1. ∑τi∈ts yvi,1×ui,1 +∑τi∈pa1 ui,1 ≤

∣∣P1 (pl)
∣∣× zv

C2. ∑τi∈ts yvi,2×ui,2 +∑τi∈pa2 ui,2 ≤
∣∣P2 (pl)

∣∣× zv
C3. ∀τi ∈ ts : yvi,1 + yvi,2 = 1
C4. ∑τi∈fun(ts∪pa1, 1) yvi,1 ≤

∣∣P1 (pl)
∣∣

C5. ∑τi∈fun(ts∪pa2, 2) yvi,2 ≤
∣∣P2 (pl)

∣∣
C6. ∀τi ∈ ts: yvi,1 is a real number ≥ 0
C7. ∀τi ∈ ts: yvi,2 is a real number ≥ 0

Figure 4.15: TLPCUT(ts,pl,pa1,pa2, fun) — LP formulation with cuts for assigning tasks in ts to
processor types in pl.

assigned to processor types.

The proposed algorithm which is discussed in the next section uses this Linear Program for-

mulation (which is based on cuts).

4.5.4 The new algorithm: LPC

The pseudo-code for the proposed algorithm, LPC, is listed in Algorithm 8. LPC uses a variant of

First-Fit bin-packing scheme where heavy tasks are assigned first — pseudo-code for this First-Fit

bin-packing variant, FFhf, is shown in Algorithm 9.

The algorithm, LPC, for assigning tasks in τ to processors in π works as follows.

1. Partition the task set τ into H12(τ,2/3), H1(τ,2/3), H2(τ,2/3) and L(τ,2/3) as shown in

Expression (4.86)–(4.89).

2. Set aside three processors of type-1 and let rp denote this set of three processors. Then solve

the LP formulation, TLPCUT
(
L(τ,2/3), π ′, H1(τ,2/3), H2(τ,2/3), aot

)
, for assigning tasks

in L(τ,2/3) to processor types, where π ′ = π \ rp. In the solution returned by the LP solver,

let (i) L1 and L2 denote the subset of tasks in L(τ,2/3) that are integrally assigned to type-1

and type-2 processors, respectively and (ii) τF denote the subset of tasks in L(τ,2/3) that are

fractionally assigned between processors of type-1 and type-2 (we later show that |τF | ≤ 3).

3. Assign the tasks in H1(τ,2/3)∪L1 to type-1 processors and H2(τ,2/3)∪L2 to type-2 pro-

cessors using the First-Fit bin-packing variant, FFhf.

4. Assign each of the (at most three) tasks in τF to a unique processor in rp.

Informally, choosing θ = 2/3 for partitioning the task set τ into four subsets (Step 1) and

then assigning the tasks in H1(τ,2/3) and H2(τ,2/3) to type-1 and type-2 processors, respectively

(Step 3), facilitates in creating an algorithm with the desired speed competitive ratio. Since we will

compare the performance of our new algorithm versus every other algorithm that uses processors

of at most 2/3 the speed, it ensures that each of the tasks in H1(τ,2/3) and H2(τ,2/3) is assigned

to the same corresponding processor type as under every other successful assignment algorithm.

4.5 Cutting plane algorithm 137

Algorithm 8: LPC: The non-migrative task assignment algorithm for two-type heteroge-
neous multiprocessors based on linear program with cuts.

Input : A task set τ and a two-type platform π

Output: An assignment of tasks to processors indicated by matrix X
// Let Y denote a matrix in which the algorithm stores the information about

the assignment of tasks to processor types
1 Set each element in X and Y to zero
2 Select any subset of three processors of type-1 from π and let rp denote this set of processors
3 Let π ′ denote a platform π \ rp
4 Partition the task set τ into subsets H12(τ,2/3), H1(τ,2/3), H2(τ,2/3) and L(τ,2/3) as shown in

Expressions (4.86)–(4.89).
5 if (H12(τ,2/3) = /0) then
6 foreach (τi ∈ H1(τ,2/3)) do yi,1 := 1 ;
7 foreach (τi ∈ H2(τ,2/3)) do yi,2 := 1 ;
8 〈YV,zv, f 〉 := solve(TLPCUT(L(τ,2/3),π ′,H1(τ,2/3),H2(τ,2/3),aot))
9 if (f = feasible) then

10 foreach (τi ∈ L(τ,2/3)) do yi,1 := yvi,1 end ;
11 foreach (τi ∈ L(τ,2/3)) do yi,2 := yvi,2 end ;
12 z := zv
13 if (z≤ 2/3) then
14 τF := {τi ∈ L(τ,2/3) : yi,1 > 0 ∧ yi,2 > 0}
15 τA := FFhf(τF, π , rp, 1)
16 if (τA = τF) then
17 L1 := {τi ∈ L(τ,2/3) : yi,1 = 1}; L2 := {τi ∈ L(τ,2/3) : yi,2 = 1}
18 τ1 := L1∪H1(τ,2/3); τ2 := L2∪H2(τ,2/3)
19 if (aot(τ1,1)≤

∣∣P1 (π)
∣∣−| rp |) then

20 if (aot(τ2,2)≤
∣∣P2 (π)

∣∣) then
21 τA1 := FFhf(τ1, π , P1 (π)\ rp, 1)
22 τA2 := FFhf(τ2, π , P2 (π), 2)
23 if (τA1 = τ1) then
24 if (τA2 = τ2) then
25 declare SUCCESS
26 else
27 declare FAILURE
28 end
29 else
30 declare FAILURE
31 end
32 else
33 declare FAILURE
34 end
35 else
36 declare FAILURE
37 end
38 else
39 declare FAILURE
40 end
41 else
42 declare FAILURE
43 end
44 else
45 declare FAILURE
46 end
47 else
48 declare FAILURE
49 end

138 Non-migrative Scheduling on Two-type Heterogeneous Multiprocessors

Algorithm 9: FFhf: A variant of First-Fit bin-packing (in which heavy utilization tasks are
assigned first)

Input : ts : a set of tasks, pl : a two-type platform, ps : a set of processors to assign the
tasks in ts to, t : type-id

Output: A task-to-processor assignment of tasks in ts to processors in ps of type t of
platform pl

// Assumption: |aot(ts, t)| ≤ |ps|
// This algorithm modifies the variable X in the task assignment

algorithm, LPC.
// pso is a local variable, a tuple that stores the set of

processors in ps in a certain order. The function first(pso)
returns the first processor in pso and the function
next(pso,p) returns NULL if p is the last processor in pso,
otherwise it returns the processor after p in pso. tso is a
local variable, a tuple that stores the set of tasks in ts in
a certain order.

1 at := /0 // set ‘assigned tasks’ to empty
2 Order the processors in the set ps in some order and assign it to the tuple pso
3 p := first(pso)
4 Order the tasks in the set aot(ts, t) in some order and assign it to the tuple tso
5 foreach (τi ∈ tso), in order do
6 xi,p := 1
7 at := at∪{τi}
8 p := next(pso,p)

// We will not run out of processors here because of the
assumption |aot(ts, t)| ≤ |ps|. Also, note that the main
algorithm checks to ensure that when we call this
algorithm, this assumption is true

9 end
10 Order the tasks in the set ts\aot(ts, t) in some order and assign it to the tuple tso
11 foreach (τi ∈ tso), in order do
12 p := first(pso)
13 while (τi is not in at) do
14 if

(
∑τ j∈at x j,p×u j,t +ui,t ≤ 1

)
then

15 xi,p := 1
16 at := at∪{τi}
17 else
18 if (next(pso,p)=NULL) then
19 return at
20 else
21 p := next(pso,p)
22 end
23 end
24 end
25 end
26 return at

4.5 Cutting plane algorithm 139

Also, using the function aot while formulating the LP formulation (Step 2) serves the same purpose

of achieving the desired speed competitive ratio — details are provided later in the proofs.

4.5.5 The speed competitive ratio of LPC algorithm

In this section, we show that if there exists a feasible non-migrative assignment of a task set τ

on a two-type platform π , then LPC succeeds in finding such a feasible non-migrative assignment

as well for τ but on a platform π(1.5x+3p) in which each processor is 1.5 times faster than the

corresponding processor in π and in addition it has 3 extra processors than π . We prove this via a

series of intermediate results.

Let ZTLPCUT(L(τ,2/3),π,H1(τ,2/3),H2(τ,2/3),aot) denote the value of the objective function obtained by

solving the LP formulation, TLPCUT(L(τ,2/3),π,H1(τ,2/3),H2(τ,2/3),aot).

Lemma 20. Consider a task set τ and a two-type platform π . Let τ ′ be defined as:

∀τ ′i ∈ τ
′ : u′i,1 = ui,1×3/2 ∧ u′i,2 = ui,2×3/2

It then holds that:

sched(OPT,τ ′,π)⇒ ZTLPCUT(L(τ,2/3),π,H1(τ,2/3),H2(τ,2/3),aot) ≤ 2/3

Proof. We assume that the left-hand side predicate is true and show that the right-hand side pred-

icate is true as well. Since the predicate sched(OPT,τ ′,π) is true, it holds that:

The value of the objective function for an optimal solution of the following optimization problem

is ≤ 1:

Minimize zv subject to the following constraints:

I1. ∀p ∈ P1 (π) : ∑τ ′i∈τ ′ xvi,p×u′i,1 ≤ zv

I2. ∀p ∈ P2 (π) : ∑τ ′i∈τ ′ xvi,p×u′i,2 ≤ zv

I3. ∀τ ′i ∈ τ ′ : ∑p∈P1(π) xvi,p +∑p∈P2(π) xvi,p = 1

I4. ∀τ ′i ∈ τ ′ and ∀p ∈ P1 (π) : xvi,p is an integer ∈ {0,1}
I5. ∀τ ′i ∈ τ ′ and ∀p ∈ P2 (π) : xvi,p is an integer ∈ {0,1}

We can observe that there can be at most
∣∣P1 (π)

∣∣ tasks (respectively, at most
∣∣P2 (π)

∣∣ tasks),

τ ′i ∈ τ ′, with u′i,1 > 1/2 (respectively, u′i,2 > 1/2) that are assigned to type-1 processors (respec-

tively, type-2 processors). This gives us:

The value of the objective function for an optimal solution of the following optimization problem

is ≤ 1:

140 Non-migrative Scheduling on Two-type Heterogeneous Multiprocessors

Minimize zv subject to the following constraints:

I1. ∀p ∈ P1 (π) : ∑τ ′i∈τ ′ xvi,p×u′i,1 ≤ zv

I2. ∀p ∈ P2 (π) : ∑τ ′i∈τ ′ xvi,p×u′i,2 ≤ zv

I3. ∀τ ′i ∈ τ ′ : ∑p∈P1(π) xvi,p +∑p∈P2(π) xvi,p = 1

I4. ∀τ ′i ∈ τ ′ and ∀p ∈ P1 (π) : xvi,p is an integer ∈ {0,1}
I5. ∀τ ′i ∈ τ ′ and ∀p ∈ P2 (π) : xvi,p is an integer ∈ {0,1}
I6. ∑p∈P1(π) ∑τ ′i∈τ ′:u′i,1>1/2 xvi,p ≤

∣∣P1 (π)
∣∣

I7. ∑p∈P2(π) ∑τ ′i∈τ ′:u′i,2>1/2 xvi,p ≤
∣∣P2 (π)

∣∣
Let us rewrite the two last constraints by changing the order of summation on the left-hand

side. Also, for each of the first two constraints, let us add up the constraints. This may change

the feasible region but the feasible region increases in the sense that each point that was feasible

before is still feasible. This gives us:

The value of the objective function for an optimal solution of the following optimization problem

is ≤ 1:

Minimize zv subject to the following constraints:

I1. ∑p∈P1(π) ∑τ ′i∈τ ′ xvi,p×u′i,1 ≤ zv×
∣∣P1 (π)

∣∣
I2. ∑p∈P2(π) ∑τ ′i∈τ ′ xvi,p×u′i,2 ≤ zv×

∣∣P2 (π)
∣∣

I3. ∀τ ′i ∈ τ ′ : ∑p∈P1(π) xvi,p +∑p∈P2(π) xvi,p = 1

I4. ∀τ ′i ∈ τ ′ and ∀p ∈ P1 (π) : xvi,p is an integer ∈ {0,1}
I5. ∀τ ′i ∈ τ ′ and ∀p ∈ P2 (π) : xvi,p is an integer ∈ {0,1}
I6. ∑τ ′i∈τ ′:u′i,1>1/2 ∑p∈P1(π) xvi,p ≤

∣∣P1 (π)
∣∣

I7. ∑τ ′i∈τ ′:u′i,2>1/2 ∑p∈P2(π) xvi,p ≤
∣∣P2 (π)

∣∣
Once again, let us reorder the summation on the left-hand side of the first two constraints.

Also, extracting the utilization terms outside one of the summations in the first two constraints and

then replacing (i) ∑p∈P1(π) xvi,p with yvi,1 and (ii) ∑p∈P2(π) xvi,p with yvi,2 gives us:

The value of the objective function for an optimal solution of the following optimization problem

is ≤ 1:

Minimize zv subject to the following constraints:

I1. ∑τ ′i∈τ ′ u′i,1× yvi,1 ≤ zv×
∣∣P1 (π)

∣∣
I2. ∑τ ′i∈τ ′ u′i,2× yvi,2 ≤ zv×

∣∣P2 (π)
∣∣

I3. ∀τ ′i ∈ τ ′ : yvi,1 + yvi,2 = 1

I4. ∀τ ′i ∈ τ ′: yvi,1 is an integer ∈ {0,1}
I5. ∀τ ′i ∈ τ ′: yvi,2 is an integer ∈ {0,1}
I6. ∑τ ′i∈τ ′:u′i,1>1/2 yvi,1 ≤

∣∣P1 (π)
∣∣

I7. ∑τ ′i∈τ ′:u′i,2>1/2 yvi,2 ≤
∣∣P2 (π)

∣∣
We partition the task set τ ′ into H12(τ’,1), H1(τ’,1), H2(τ’,1) and L(τ’,1) as shown in

Expressions (4.86)–(4.89). Rewriting the previous formulation based on these partitions gives us:

4.5 Cutting plane algorithm 141

The value of the objective function for an optimal solution of the following optimization problem

is ≤ 1:

Minimize zv subject to the following constraints:

I1. ∑τ ′i∈τ ′ u′i,1× yvi,1 ≤ zv×
∣∣P1 (π)

∣∣
I2. ∑τ ′i∈τ ′ u′i,2× yvi,2 ≤ zv×

∣∣P2 (π)
∣∣

I3. ∀τ ′i ∈ H12(τ’,1) : yvi,1 + yvi,2 = 1

I4. ∀τ ′i ∈ H1(τ’,1) : yvi,1 + yvi,2 = 1

I5. ∀τ ′i ∈ H2(τ’,1) : yvi,1 + yvi,2 = 1

I6. ∀τ ′i ∈ L(τ’,1) : yvi,1 + yvi,2 = 1

I7. ∀τ ′i ∈ H12(τ’,1) : yvi,1,yvi,2 are integers ∈ {0,1}
I8. ∀τ ′i ∈ H1(τ’,1) : yvi,1,yvi,2 are integers ∈ {0,1}
I9. ∀τ ′i ∈ H2(τ’,1) : yvi,1,yvi,2 are integers ∈ {0,1}
I10. ∀τ ′i ∈ L(τ’,1) : yvi,1,yvi,2 are integers ∈ {0,1}
I11. ∑τ ′i∈τ ′:u′i,1>1/2 yvi,1 ≤

∣∣P1 (π)
∣∣

I12. ∑τ ′i∈τ ′:u′i,2>1/2 yvi,2 ≤
∣∣P2 (π)

∣∣
Since zv ≤ 1, it follows that, ∀τi ∈ H1(τ’,1): yvi,1 = 1. Analogously, it follows that, ∀τi ∈

H2(τ’,1): yvi,2 = 1. Also, because zv ≤ 1, the set H12(τ’,1) must be empty. These observations

and rearrangement of the terms in the first two constraints gives us:

The value of the objective function for an optimal solution of the following optimization problem

is ≤ 1:

Minimize zv subject to the following constraints:

I1. ∑τ ′i∈L(τ’,1) u′i,1× yvi,1 +∑τ ′i∈H1(τ’,1) u′i,1 ≤ zv×
∣∣P1 (π)

∣∣
I2. ∑τ ′i∈L(τ’,1) u′i,2× yvi,2 +∑τ ′i∈H2(τ’,1) u′i,2 ≤ zv×

∣∣P2 (π)
∣∣

I3. ∀τ ′i ∈ L(τ’,1) : yvi,1 + yvi,2 = 1

I4. ∀τ ′i ∈ L(τ’,1): yvi,1 is an integer ∈ {0,1}
I5. ∀τ ′i ∈ L(τ’,1): yvi,2 is an integer ∈ {0,1}
I6. ∑τ ′i∈H1(τ’,1)∪L(τ’,1):u′i,1>1/2 yvi,1 ≤

∣∣P1 (π)
∣∣

I7. ∑τ ′i∈H2(τ’,1)∪L(τ’,1):u′i,2>1/2 yvi,2 ≤
∣∣P2 (π)

∣∣
We can observe that if a task τ ′i ∈ H1(τ’,1) then it follows that the corresponding task τi ∈

H1(τ,2/3). Analogously for tasks in H2(τ,2/3), H12(τ,2/3) and L(τ,2/3). Also, doing the fol-

lowing substitution: u′i,1 = ui,1× 3
2 and u′i,2 = ui,2× 3

2 and then rewriting the objective function and

the first two and the last two constraints gives us:

The value of the objective function for an optimal solution of the following optimization problem

is ≤ 1:

142 Non-migrative Scheduling on Two-type Heterogeneous Multiprocessors

Minimize (2
3 × zv)× 3

2 subject to the following constraints:

I1. ∑τi∈L(τ,2/3) ui,1× yvi,1 +∑τi∈H1(τ,2/3) ui,1 ≤ 2
3 × zv×

∣∣P1 (π)
∣∣

I2. ∑τi∈L(τ,2/3) ui,2× yvi,2 +∑τi∈H2(τ,2/3) ui,2 ≤ 2
3 × zv×

∣∣P2 (π)
∣∣

I3. ∀τi ∈ L(τ,2/3) : yvi,1 + yvi,2 = 1

I4. ∀τi ∈ L(τ,2/3): yvi,1 is an integer ∈ {0,1}
I5. ∀τi ∈ L(τ,2/3): yvi,2 is an integer ∈ {0,1}
I6. ∑τi∈H1(τ,2/3)∪L(τ,2/3):ui,1>1/3 yvi,1 ≤

∣∣P1 (π)
∣∣

I7. ∑τi∈H2(τ,2/3)∪L(τ,2/3):ui,2>1/3 yvi,2 ≤
∣∣P2 (π)

∣∣
Substituting 2

3 × zv by zt and since zt× 3
2 ≤ 1 is same as zt ≤ 2

3 , we obtain:

The value of the objective function for an optimal solution of the following optimization problem

is ≤ 2/3:

Minimize zt subject to the following constraints:

I1. ∑τi∈L(τ,2/3) ui,1× yvi,1 +∑τi∈H1(τ,2/3) ui,1 ≤ zt×
∣∣P1 (π)

∣∣
I2. ∑τi∈L(τ,2/3) ui,2× yvi,2 +∑τi∈H2(τ,2/3) ui,2 ≤ zt×

∣∣P2 (π)
∣∣

I3. ∀τi ∈ L(τ,2/3) : yvi,1 + yvi,2 = 1

I4. ∀τi ∈ L(τ,2/3): yvi,1 is an integer ∈ {0,1}
I5. ∀τi ∈ L(τ,2/3): yvi,2 is an integer ∈ {0,1}
I6. ∑τi∈H1(τ,2/3)∪L(τ,2/3):ui,1>1/3 yvi,1 ≤

∣∣P1 (π)
∣∣

I7. ∑τi∈H2(τ,2/3)∪L(τ,2/3):ui,2>1/3 yvi,2 ≤
∣∣P2 (π)

∣∣
Substituting zt by zv gives us:

The value of the objective function for an optimal solution of the following optimization problem

is ≤ 2/3:

Minimize zv subject to the following constraints:

I1. ∑τi∈L(τ,2/3) ui,1× yvi,1 +∑τi∈H1(τ,2/3) ui,1 ≤ zv×
∣∣P1 (π)

∣∣
I2. ∑τi∈L(τ,2/3) ui,2× yvi,2 +∑τi∈H2(τ,2/3) ui,2 ≤ zv×

∣∣P2 (π)
∣∣

I3. ∀τi ∈ L(τ,2/3) : yvi,1 + yvi,2 = 1

I4. ∀τi ∈ L(τ,2/3): yvi,1 is an integer ∈ {0,1}
I5. ∀τi ∈ L(τ,2/3): yvi,2 is an integer ∈ {0,1}
I6. ∑τi∈H1(τ,2/3)∪L(τ,2/3):ui,1>1/3 yvi,1 ≤

∣∣P1 (π)
∣∣

I7. ∑τi∈H2(τ,2/3)∪L(τ,2/3):ui,2>1/3 yvi,2 ≤
∣∣P2 (π)

∣∣
Note that the optimization problem above is an MILP. We can relax the constraint on integral-

ity of yvi,1 and yvi,2. This gives us a non-decreasing feasible region and hence the value of the

objective function at an optimal solution is non-increasing. This gives us:

The value of the objective function for an optimal solution of the following optimization problem

is ≤ 2/3:

4.5 Cutting plane algorithm 143

Minimize zv subject to the following constraints:

C1. ∑τi∈L(τ,2/3) ui,1× yvi,1 +∑τi∈H1(τ,2/3) ui,1 ≤ zv×
∣∣P1 (π)

∣∣
C2. ∑τi∈L(τ,2/3) ui,2× yvi,2 +∑τi∈H2(τ,2/3) ui,2 ≤ zv×

∣∣P2 (π)
∣∣

C3. ∀τi ∈ L(τ,2/3) : yvi,1 + yvi,2 = 1

C4. ∀τi ∈ L(τ,2/3): yvi,1 is a real number in [0,1]

C5. ∀τi ∈ L(τ,2/3): yvi,2 is a real number in [0,1]

C6. ∑τi∈H1(τ,2/3)∪L(τ,2/3):ui,1>1/3 yvi,1 ≤
∣∣P1 (π)

∣∣
C7. ∑τi∈H2(τ,2/3)∪L(τ,2/3):ui,2>1/3 yvi,2 ≤

∣∣P2 (π)
∣∣

Because of yvi,1 + yvi,2 = 1, it follows that, yvi,1 ≤ 1 and yvi,2 ≤ 1. Hence, it is unnecessary to

state that yvi,1 and yvi,2 are real numbers in the range [0,1]. Therefore, instead of mentioning this

range in the constraint, only mentioning that these variables have to be greater than or equal to

zero, does not impact the feasible region of the above problem and also does not impact the value

of the objective function at an optimal solution. This gives us:

The value of the objective function for an optimal solution of the following optimization problem

is ≤ 2/3:

Minimize zv subject to the following constraints:

C1. ∑τi∈L(τ,2/3) ui,1× yvi,1 +∑τi∈H1(τ,2/3) ui,1 ≤ zv×
∣∣P1 (π)

∣∣
C2. ∑τi∈L(τ,2/3) ui,2× yvi,2 +∑τi∈H2(τ,2/3) ui,2 ≤ zv×

∣∣P2 (π)
∣∣

C3. ∀τi ∈ L(τ,2/3) : yvi,1 + yvi,2 = 1

C4. ∀τi ∈ L(τ,2/3): yvi,1 is a real number ≥ 0

C5. ∀τi ∈ L(τ,2/3): yvi,2 is a real number ≥ 0

C6. ∑τi∈H1(τ,2/3)∪L(τ,2/3):ui,1>1/3 yvi,1 ≤
∣∣P1 (π)

∣∣
C7. ∑τi∈H2(τ,2/3)∪L(τ,2/3):ui,2>1/3 yvi,2 ≤

∣∣P2 (π)
∣∣

Consider the following call to the TLPCUT function, i.e., TLPCUT
(
L(τ,2/3), π , H1(τ,2/3),

H2(τ,2/3), aot
)
. This gives:

TLPCUT(L(τ,2/3),π,H1(τ,2/3),H2(τ,2/3),aot) =

Minimize zv subject to the following constraints:

C1. ∑τi∈L(τ,2/3) yvi,1×ui,1 +∑τi∈H1(τ,2/3) ui,1 ≤
∣∣P1 (π)

∣∣× zv

C2. ∑τi∈L(τ,2/3) yvi,2×ui,2 +∑τi∈H2(τ,2/3) ui,2 ≤ |P2 (π) |× zv

C3. ∀τi ∈ L(τ,2/3) : yvi,1 + yvi,2 = 1

C4. ∑τi∈aot(H1(τ,2/3)∪L(τ,2/3)) yvi,1 ≤
∣∣P1 (π)

∣∣
C5. ∑τi∈aot(H2(τ,2/3)∪L(τ,2/3)) yvi,2 ≤

∣∣P2 (π)
∣∣

C6. ∀τi ∈ L(τ,2/3): yvi,1 is a real number ≥ 0

C7. ∀τi ∈ L(τ,2/3): yvi,2 is a real number ≥ 0

Note that the earlier optimization problem is same as TLPCUT(L(τ), π, H1(τ), H2(τ), aot).

This gives us:

The value of the objective function for an optimal solution of the following optimization problem

144 Non-migrative Scheduling on Two-type Heterogeneous Multiprocessors

is ≤ 2/3:

TLPCUT(L(τ,2/3),π,H1(τ,2/3),H2(τ,2/3),aot).

This gives us: ZTLPCUT(L(τ,2/3),π,H1(τ,2/3),H2(τ,2/3),aot) ≤ 2/3.

Hence, we have shown that:

sched(OPT,τ ′,π)⇒ ZTLPCUT(L(τ,2/3),π,H1(τ,2/3),H2(τ,2/3),aot) ≤ 2/3

This states the lemma.

Corollary 6. Consider a task set τ and a two-type platform π . Let τ ′ be defined as:

∀τ ′i ∈ τ
′ : u′i,1 = ui,1×3/2 ∧ u′i,2 = ui,2×3/2

It then holds that:

sched(OPT,τ ′,π)⇒ TLPCUT(L(τ,2/3),π,H1(τ,2/3),H2(τ,2/3),aot) is feasible.

Proof. This follows from Lemma 20.

The following lemma follows from a well-known result about vertex solutions in Linear Pro-

gramming [Bar04c].

Lemma 21. For each input τ and π to Algorithm 8 it holds that: When line 9 has finished execu-

tion, if the optimization problem is feasible then it holds that there are at most three tasks in τ that

are fractionally assigned between processor types (referred to as fractionally type-assigned).

Proof. Suppose that the claim is false. Then it holds that there is a τ and π such that if they are

input to the function solve(TLPCUT) then solve(TLPCUT) outputs a solution in which four

or more tasks are fractionally type-assigned. Then it must have been that in the solution output

by solve(TLPCUT), there were four or more tasks τi for which it holds that 0 < yvi,1 < 1 and

0 < yvi,2 < 1. Considering TLPCUT, we can observe that it has 2|L |+ 1 variables and 2L non-

negativity constraints and |L |+4 other constraints. Hence, in the vertex solution, there are at most

|L |+4 non-zero variables [Bar04c]. Let us explore two cases:

Case 1: zv = 0. If this is the case then the vertex optimal solution produced by solve(TLPCUT)

has all type-integral assignments and hence this contradicts the claim that there were four of more

fractionally type-assigned tasks.

Case 2: zv > 0. Since zv > 0, it follows that, there are at most |L |+3 non-zero yvi,t values. Let

Q denote the number of tasks that are fractionally type-assigned. From our assumption that the

lemma is false, it follows that Q ≥ 4. The number of non-zero values of Y is exactly Q× 2+

(|L |−Q) because each fractionally type-assigned task provides us with two non-zero variables in

Y and each integrally type-assigned task provides us with one non-zero variable in Y . Hence, we

4.5 Cutting plane algorithm 145

have:

Q≥ 4 (4.90)

and

Q×2+(L−Q)≤ L+3 (4.91)

Rewriting Expression (4.91) gives us:

Q≤ 3 (4.92)

Expression (4.92) contradicts Expression (4.90). Thus it is impossible for the claim of the

lemma to be false and hence the lemma holds.

Lemma 22. Consider FFhf(ts, pl, ps, t) and assume that |aot(ts, t)| ≤ |ps|. If ∑τi∈ts ui,t ≤ (2/3)×
|ps| then it holds that the execution of FFhf returns at = ts

Proof. We prove the claim by contradiction. Suppose that the lemma was incorrect. Then there is

a set of tasks (ts), a two-type platform (pl), a set of processors (ps) and a type-id (t) for which it

holds that:

∑
τi∈ts

ui,t ≤ (2/3)×|ps| (4.93)

and

FFhf returns a set ‘at’ that is a strict subset of ‘ts’ (4.94)

Let us explore two cases:

Case (i): aot(at, t) 6= aot(ts, t). Considering the execution of lines 1-9 and our assumption that

|aot(ts, t)| ≤ |ps|, we can see that this cannot happen.

Case (ii): aot(at, t) = aot(ts, t). If this case would have happened then there must have been a task

τi ∈ ts\aot(ts, t) such that when executing line 14, it was the case that:

∀p ∈ ps, it holds that ∑
τ j∈at

(x j,p×u j,t)+ui,t > 1 (4.95)

Because of Case (ii), it holds that when this line executed, τi has ui,t ≤ 1/3. Applying it on

Expression (4.95) yields:

∀p ∈ ps, it holds that ∑
τ j∈at

(x j,p×u j,t)+1/3 > 1 (4.96)

Rewriting Expression (4.96) and adding them yields:

∑
p∈ps

∑
τ j∈at

(x j,p×u j,t)> 2/3×|ps|

146 Non-migrative Scheduling on Two-type Heterogeneous Multiprocessors

Further rewriting of the above expression yields:

∑
τ j∈at

u j,t ∑
p∈ps

x j,p > 2/3×|ps| (4.97)

Observe that, for each task, τ j ∈ at, it holds that, there is exactly one p ∈ ps such that x j,p = 1.

Hence, for each task, τ j ∈ ts, it holds that: ∑p∈ps x j,p = 1. Applying this on Expression (4.97)

yields:

∑
τ j∈at

u j,t > 2/3×|ps| (4.98)

Combining Expression (4.94) and Expression (4.98) yields:

∑
τ j∈ts

u j,t > 2/3×|ps|

This contradicts Expression (4.93).

Therefore, regardless of which case is true, it holds that, we obtain a contradiction. Hence, the

statement of the lemma is true.

Lemma 23. There is no π and τ and τ ′ such that

∀τ ′i ∈ τ
′ : u′i,1 = ui,1×3/2 and u′i,2 = ui,2×3/2

and

sched
(
OPT,τ ′,mp

(∣∣P1 (π)
∣∣−3,

∣∣P2 (π)
∣∣ ,1,π))

and

LPC declares FAILURE for inputs τ and π

Proof. If the lemma would be incorrect then it holds that there is a π and τ and τ ′ such that

∀τ ′i ∈ τ
′ : u′i,1 = ui,1×3/2 and u′i,2 = ui,2×3/2 (4.99)

and

sched
(
OPT,τ ′,mp

(∣∣P1 (π)
∣∣−3,

∣∣P2 (π)
∣∣ ,1,π)) (4.100)

and

LPC declares FAILURE for inputs τ and π (4.101)

Because of Expression (4.101), it must have been that one of the lines where the algorithm

declares FAILURE has been executed. We will first make a general remark about a class of

these failures and then explore each failure individually. For the case that a failure happened at

line 27,30,33,36,39,42 (Cases (1)-(6) below), we can reason as follows:

4.5 Cutting plane algorithm 147

LPC must have executed line 9; so, it must hold that, f=‘feasible’. Hence, TLPCUT
(

L(τ,2/3),

π ′, H1(τ,2/3), H2(τ,2/3), aot
)

has a feasible solution. (Recall that π ′ = π \ rp, where rp is a set

of three type-1 processors of π .)

Since the optimization problem is feasible, let us discuss the value of its objective function.

Recall that Lemma 20 states that: Consider a task set τ and a two-type platform π . Let τ ′ be

defined as:

∀τ ′i ∈ τ
′ : u′i,1 = ui,1×3/2 ∧ u′i,2 = ui,2×3/2

It then holds that:

sched(OPT,τ ′,π)⇒ ZTLPCUT(L(τ,2/3),π,H1(τ,2/3),H2(τ,2/3),aot) ≤ 2/3

Applying Lemma 20 on a platform with three fewer processors of type-1 gives us: Consider a

task set τ and a two-type platform π . Let τ ′ be defined as:

∀τ ′i ∈ τ
′ : u′i,1 = ui,1×3/2 ∧ u′i,2 = ui,2×3/2

It then holds that:

sched
(
OPT,τ ′,mp

(∣∣P1 (π)
∣∣−3,

∣∣P2 (π)
∣∣ ,1,π))⇒

ZTLPCUT(L(τ,2/3),mp(|P1(π)|−3,|P2(π)|,1,π),H1(τ,2/3),H2(τ,2/3),aot) ≤ 2/3

We know that Expression (4.100) is true and since the left-hand side predicate of the above

implication is Expression (4.100), it follows that the right-hand side predicate of the implication

is true. This gives us:

ZTLPCUT(L(τ,2/3),mp(|P1(π)|−3,|P2(π)|,1,π),H1(τ,2/3),H2(τ,2/3),aot) ≤ 2/3

Hence, we have: z≤ 2/3.

Therefore, for the case of failure on any of the lines 27, 30, 33, 36, 39 and 42, we have:

If the algorithm declares failure on line 27, 30, 33, 36, 39, 42

then it holds that: z≤ 2/3 (4.102)

Let us now explore the individual cases:

Case (1): The algorithm declares failure on line 27. If this case would have happened then τA2

is a strict subset of τ2. Let us explore two cases:

Case (1a): ∑τi∈τ2 ui,2 > (2/3)×
∣∣P2 (π)

∣∣. Since we experienced Case (1), it holds that we have

executed line 13 and evaluated its condition to true. Hence, we have:

z≤ 2/3 (4.103)

148 Non-migrative Scheduling on Two-type Heterogeneous Multiprocessors

Inspecting TLPCUT and knowing that z≤ 2/3 gives us:

∑
τi∈L(τ,2/3)∪H2(τ,2/3)

yi,2×ui,2 ≤ (2/3)×
∣∣P2 (π)

∣∣ (4.104)

Let us partition L(τ,2/3) into L1 and L2 and applying it on Expression (4.104) gives us:

∑
τi∈L1∪L2∪H2(τ,2/3)

yi,2×ui,2 ≤ (2/3)×
∣∣P2 (π)

∣∣ (4.105)

Recall that the definition of L1 and L2 it holds that:

∀τi ∈ L1 : yi,1 = 1 (4.106)

∀τi ∈ L2 : yi,2 = 1 (4.107)

Recall in TLPCUT we have a constraint yi,1 + yi,2 = 1 and clearly our values of Y satisfies that

constraint. Applying this on Expression (4.106) gives us:

∀τi ∈ L1 : yi,2 = 0 (4.108)

Using Expression (4.108) on Expression (4.105) gives us:

∑
τi∈L2∪H2(τ,2/3)

yi,2×ui,2 ≤ (2/3)×
∣∣P2 (π)

∣∣ (4.109)

Because of Expression (4.107) and because of line 7 in our algorithm we obtain:

∑
τi∈L2∪H2(τ,2/3)

ui,2 ≤ (2/3)×
∣∣P2 (π)

∣∣ (4.110)

Since τ2 = H2(τ,2/3)∪L2, we get:

∑
τi∈τ2

ui,2 ≤ (2/3)×
∣∣P2 (π)

∣∣ (4.111)

This contradicts the assumption of Case (1a).

Case (1b): ∑τi∈τ2 ui,2≤ (2/3)×
∣∣P2 (π)

∣∣. From Lemma 22, we obtain that the bin-packing scheme

in FFhf algorithm would succeed to assign all the tasks and then we would have τA2 = τ2. This

contradicts the Case (1).

Case (2): The algorithm declares failure on line 30. If this case would have happened then

τA1 is a strict subset of τ1. The reasoning for this case is similar to the above case (replace
∣∣P2 (π)

∣∣
with

∣∣P1 (π)
∣∣−3).

Case (3): The algorithm declares failure on line 33. If this case would have happened

then |aot(τ2,2)| >
∣∣P2 (π)

∣∣. But then TLPCUT would be infeasible. And this contradicts Expres-

sion (4.102).

4.5 Cutting plane algorithm 149

Case (4): The algorithm declares failure on line 36. If this case would have happened

then |aot(τ1,1)| >
∣∣P1 (π)

∣∣ \ rp. But then TLPCUT would be infeasible. And this contradicts

Expression (4.102).

Case (5): The algorithm declares failure on line 39. If this case would have happened then

τ
A is a strict subset of τ

F (4.112)

We know from Lemma 21 that in TLPCUT there are at most three fractionally type-assigned

tasks from L(τ,2/3). And we know that the set rp has three processors of type-1. Hence, it is

possible to assign each task in τF to a unique processor in rp. And indeed the execution of line 15,

would therefore succeed and hence we would have:

τ
A = τ

F (4.113)

This contradicts Expression (4.112).

Case (6): The algorithm declares failure on line 42. From this case we obtain z > 2/3.

From Expression (4.102), we have, z≤ 2/3. This contradicts the case.

Case (7): The algorithm declares failure on line 45. If this case would have happened then

f 6= ‘feasible’ and hence the optimization problem

TLPCUT(L(τ,2/3),π ′,H1(τ,2/3),H2(τ,2/3),aot) is infeasible (4.114)

Recall from Expression (4.100) that the following predicate holds true:

sched
(
OPT,τ ′,mp

(∣∣P1 (π)
∣∣−3,

∣∣P2 (π)
∣∣ ,1,π))

Applying this on Lemma 6 gives us:

sched
(
OPT,τ ′,mp

(∣∣P1 (π)
∣∣−3,

∣∣P2 (π)
∣∣ ,1,π))⇒

TLPCUT
(

L(τ,2/3),mp
(∣∣P1 (π)

∣∣−3,
∣∣P2 (π)

∣∣ ,1,π) ,H1(τ,2/3),H2(τ,2/3),aot
)

is feasible.

This gives us that:

TLPCUT
(

L(τ,2/3),mp
(∣∣P1 (π)

∣∣−3,
∣∣P2 (π)

∣∣ ,1,π) ,H1(τ,2/3),H2(τ,2/3),aot
)

is feasible.

Note that mp
(∣∣P1 (π)

∣∣−3,
∣∣P2 (π)

∣∣ ,1,π) and π ′ have the same number of processors of each

type and these processors are from π . Applying this on the above expression gives us:

TLPCUT
(
L(τ,2/3),π ′,H1(τ,2/3),H2(τ,2/3),aot

)
is feasible.

150 Non-migrative Scheduling on Two-type Heterogeneous Multiprocessors

This contradicts Expression (4.114).

Case (8): The algorithm declares failure on line 48. If this case would have happened then

there was a task in H12 and this would contradict Expression (4.100).

We see that all cases where LPC declares FAILURE lead to contradiction. Hence the lemma

holds.

Lemma 24. There is no π and τ such that

sched(OPT,τ,π)

and

LPC declares FAILURE with inputsτ and mp
(∣∣P1 (π)

∣∣+3,
∣∣P2 (π)

∣∣ ,3/2,π
)

Proof. This follows from the previous lemma obtained after a series of algebraic manipulations.

Recall that Lemma 23 states that:

“There is no π and τ and τ ′ such that

∀τ ′i ∈ τ
′ : u′i,1 = ui,1×3/2 and u′i,2 = ui,2×3/2

and

sched
(
OPT,τ ′,mp

(∣∣P1 (π)
∣∣−3,

∣∣P2 (π)
∣∣ ,1,π))

and

the algorithm LPC declares FAILURE for inputs τ and π”

Rewriting this so that it makes a statement about the same task set rather than two different

(but related) task sets gives us that:

“There is no π and τ such that

sched
(
OPT,τ,mp

(∣∣P1 (π)
∣∣−3,

∣∣P2 (π)
∣∣ ,2/3,π

))
and

the algorithm LPC declares FAILURE for inputs τ and π”

Scaling the processor speeds of the two platforms that are compared gives us that:

“There is no π and τ such that

sched
(
OPT,τ,mp

(∣∣P1 (π)
∣∣−3,

∣∣P2 (π)
∣∣ ,1,π))

and

the algorithm LPC declares FAILURE for inputs τ and mp
(∣∣P1 (π)

∣∣ , ∣∣P2 (π)
∣∣ ,3/2,π

)
”

4.5 Cutting plane algorithm 151

Consider the statements above with π being replaced by mp
(∣∣P1 (π)

∣∣+3,
∣∣P2 (π)

∣∣ ,1,π). This

gives us:

“There is no π and τ such that

sched
(

OPT,τ,mp(|P1(mp(
∣∣P1 (π)

∣∣+3,
∣∣P2 (π)

∣∣ ,1,π))|−3,

|P2(mp(
∣∣P1 (π)

∣∣+3,
∣∣P2 (π)

∣∣ ,1,π))|,1,mp(
∣∣P1 (π)

∣∣+3,
∣∣P2 (π)

∣∣ ,1,π)))
and

the algorithm LPC declares FAILURE for inputs τ and

mp(|P1(mp(
∣∣P1 (π)

∣∣+3,
∣∣P2 (π)

∣∣ ,1,π))|, |P2(mp(
∣∣P1 (π)

∣∣+3,
∣∣P2 (π)

∣∣ ,1,π))|,
3/2,mp(

∣∣P1 (π)
∣∣+3,

∣∣P2 (π)
∣∣ ,1,π))”

Note that the last parameter indicates the platform from which we get processors to form a

new platform. Hence the actual number of processors in the platform of the last parameter does

not matter. This gives us:

“There is no π and τ such that

sched
(

OPT,τ,mp(|P1(mp(
∣∣P1 (π)

∣∣+3,
∣∣P2 (π)

∣∣ ,1,π))|−3,

|P2(mp(
∣∣P1 (π)

∣∣+3,
∣∣P2 (π)

∣∣ ,1,π))|,1,mp(
∣∣P1 (π)

∣∣ , ∣∣P2 (π)
∣∣ ,1,π)))

and

the algorithm LPC declares FAILURE for inputs τ and

mp(|P1(mp(
∣∣P1 (π)

∣∣+3,
∣∣P2 (π)

∣∣ ,1,π))|, |P2(mp(
∣∣P1 (π)

∣∣+3,
∣∣P2 (π)

∣∣ ,1,π))|,
3/2,mp(

∣∣P1 (π)
∣∣ , ∣∣P2 (π)

∣∣ ,1,π))”
Observe that mp

(∣∣P1 (π)
∣∣ , ∣∣P2 (π)

∣∣ ,1,π)= π . Applying that on the last parameter yields:

“There is no π and τ such that

sched
(

OPT,τ,mp(|P1(mp(
∣∣P1 (π)

∣∣+3,
∣∣P2 (π)

∣∣ ,1,π))|−3,

|P2(mp(
∣∣P1 (π)

∣∣+3,
∣∣P2 (π)

∣∣ ,1,π))|,1,π))
and

the algorithm LPC declares FAILURE for inputs τ and

mp(|P1(mp(
∣∣P1 (π)

∣∣+3,
∣∣P2 (π)

∣∣ ,1,π))|, |P2(mp(
∣∣P1 (π)

∣∣+3,
∣∣P2 (π)

∣∣ ,1,π))|,3/2,π)”

Observe that
∣∣P2
(
mp
(∣∣P1 (π)

∣∣+3,
∣∣P2 (π)

∣∣ ,1,π))∣∣=∣∣P2 (π)
∣∣. Applying that yields:

152 Non-migrative Scheduling on Two-type Heterogeneous Multiprocessors

“There is no π and τ such that

sched
(

OPT,τ,mp(|P1(mp(
∣∣P1 (π)

∣∣+3,
∣∣P2 (π)

∣∣ ,1,π))|−3,
∣∣P2 (π)

∣∣ ,1,π))
and

the algorithm LPC declares FAILURE for inputs τ and

mp(|P1(mp(
∣∣P1 (π)

∣∣+3,
∣∣P2 (π)

∣∣ ,1,π))|, ∣∣P2 (π)
∣∣ ,3/2,π)”

Analogously, observe that,
∣∣P1
(
mp
(∣∣P1 (π)

∣∣+3,
∣∣P2 (π)

∣∣ ,1,π))∣∣ = ∣∣P1 (π)
∣∣+ 3. Applying this

yields:

“There is no π and τ such that

sched
(
OPT,τ,mp

(∣∣P1 (π)
∣∣+3−3,

∣∣P2 (π)
∣∣ ,1,π))

and

the algorithm LPC declares FAILURE for inputs τ andmp
(∣∣P1 (π)

∣∣+3,
∣∣P2 (π)

∣∣ ,3/2,π
)

”

Clearly,
∣∣P1 (π)

∣∣+3−3 =
∣∣P1 (π)

∣∣. Using it yields:

“There is no π and τ such that

sched
(
OPT,τ,mp

(∣∣P1 (π)
∣∣ , ∣∣P2 (π)

∣∣ ,1,π))
and

the algorithm LPC declares FAILURE for inputs τ andmp
(∣∣P1 (π)

∣∣+3,
∣∣P2 (π)

∣∣ ,3/2,π
)

”

Observe that mp
(∣∣P1 (π)

∣∣ , ∣∣P2 (π)
∣∣ ,1,π)= π . Using it yields:

“There is no π and τ such that

sched(OPT,τ,π)

and

the algorithm LPC declares FAILURE for inputs τ andmp
(∣∣P1 (π)

∣∣+3,
∣∣P2 (π)

∣∣ ,3/2,π
)

”

This states the lemma.

Theorem 17.

sched(OPT,τ,π)⇒ sched
(
LPC,τ,mp

(∣∣P1 (π)
∣∣+3,

∣∣P2 (π)
∣∣ ,3/2,π

))

4.5 Cutting plane algorithm 153

Proof. Follows from Lemma 24 and the fact that when the algorithm declares success, each pro-

cessor is utilized to at most 100% and each task is integrally assigned to processors.

Note: The additional three processors in the platform that the algorithm, LPC, uses can either

be of type-1 or type-2 or a combination of these two types. We have chosen all the additional pro-

cessors to be of type-1, for ease of explanation. The result continues to hold for any combination

of three additional processors as long as this information is input to the algorithm (so that it can

form the remaining set of processors, rp, accordingly — Step 2 in Algorithm 8).

4.5.6 Summary

In this section, for the problem of non-migrative task assignment on two-type heterogeneous mul-

tiprocessors, we presented a polynomial time-complexity algorithm, LPC. This algorithm relies

on solving a linear program formulation and offers the following guarantee. If a task set has a

feasible non-migrative assignment on a two-type platform then, LPC succeeds in finding such a

feasible non-migrative assignment as well but on a platform in which each processor is 1.5 times

faster and has 3 additional processors. The proposed algorithm, LPC, is shown to be better than

the state-of-the-art either in terms of the speed competitive ratio (for systems with large number

of processors) or time-complexity or both. To the best of our knowledge, this is the first work

to show how cutting planes can be used to improve the speed competitive ratio of algorithms for

assigning real-time tasks to heterogeneous processors.

In the next section, we present a polynomial time approximation scheme (PTAS) for the prob-

lem of non-migrative task assignment on two-type platforms.

154 Non-migrative Scheduling on Two-type Heterogeneous Multiprocessors

4.6 A polynomial time approximation scheme

4.6.1 Introduction

We now present our fourth and final non-migrative task assignment algorithm, PTASNF. It is

a dynamic programming based algorithm with polynomial time-complexity, for assigning tasks

in τ to individual processors on a two-type platform π . We also prove its speed competitive

ratio against equally powerful non-migrative adversary; its speed competitive ratio depends on a

parameter, ε > 0, which is input to the algorithm. Such an algorithm (whose speed competitive

ratio is quantified in terms of an input parameter, ε , and whose time-complexity is polynomial) is

referred to as a polynomial-time approximation scheme (PTAS).

Definition 19 (PTAS). A PTAS takes an instance of an optimization problem (for which exact

solutions are intractable) and a parameter ε > 0 and, in polynomial time, produces a solution

that is within a factor f (ε) of being optimal, where function f () is independent of the problem

instance.

Related work. As discussed in Section 4.1, the problem of non-migrative task assignment on

heterogeneous multiprocessors has been studied in the past [Bar04c, Bar04b, LST90, HS76, JP99,

WBB13, CSV12, RAB13, RABN12]. However, as can be seen from Table 4.12 (on page 74),

most of these approaches have a speed competitive ratio of at least 1.5 [RA13] or higher [Bar04c,

Bar04b, LST90, RAB13, RABN12, CSV12]. The previously proposed PTASs [HS76, JP99,

WBB13] have a better speed competitive ratio than these algorithms [Bar04c, Bar04b, LST90,

RAB13, RABN12, RA13], in the sense that, these algorithms partition the task set in polyno-

mial time, to any desired degree of accuracy thereby making them theoretically significant results.

However, their practical significance is severely limited as these algorithms have a very high run-

time complexity — the constants in the run-time expression of these algorithms are prohibitively

large. In particular, the PTAS proposed in [WBB13] for assigning tasks to processors on a t-type

heterogeneous multiprocessor, has a very high run-time complexity since it “heavily” relies on

solving many linear programming formulations. Even on a two-type platform, it has a high run-

time complexity which makes its implementation highly inefficient (which is confirmed by our

simulations in Section 4.6.9).

Contributions and Significance of the work discussed in this section. We present a poly-

nomial time approximation scheme, PTASNF, for the problem of non-migrative task assignment

on two-type heterogeneous multiprocessors which offers the following guarantee. If there exists a

feasible non-migrative assignment of tasks in τ to processors on a two-type platform π then given

an ε > 0, PTASNF succeeds as well, in polynomial time, in finding such a feasible non-migrative

task assignment of τ but on a platform π(1+3ε) in which every processor is 1+3ε times faster than

the corresponding processor in π .

We believe the significance of this work is as follows. For the problem under consideration,

our algorithm, PTASNF, has superior performance compared to prior state-of-the-art. This can

be seen from Table 4.12 since (i) compared to algorithms proposed in [Bar04c, Bar04b, LST90,

4.6 A polynomial time approximation scheme 155

Computing Adversary Task Assignment Algorithms
Platform Task migration Algorithm Task migration Speed competitive ratio Complexity

t-typea non-migrative [Bar04b] non-migrative 2 O(P)c

t-type non-migrative [Bar04c] non-migrative 2 O(P)
t-type non-migrative [LST90] non-migrative 2 O(P)
t-type fully-migrative [CSV12] non-migrative 4 O(P)

t-type non-migrative [HS76] non-migrative PTASd exponential
in procs

t-type non-migrative [JP99] non-migrative PTAS exponential in
procs and O(P)

t-type non-migrative [WBB13] non-migrative PTAS exponential
in 1/ε and O(P)

2-typeb intra-migrative SA intra-migrative 1+ α

2
e≤ 1.5 low-degree

(Chapter 3) polynomial

2-type non-migrative FF-3C non-migrative 1+α ≤ 2 low-degree
(Section 4.3) polynomial

2-type intra-migrative SA-P non-migrative 1+α ≤ 2 low-degree
(Section 4.4) polynomial

2-type non-migrative LPC non-migrative 1.5 and 3 O(P)(Section 4.5) extra processors

2-type non-migrative PTASNF non-migrative PTAS exponential
in 1/ε

a A heterogeneous multiprocessor platform having two or more processor types.
b A heterogeneous multiprocessor platform having only two processor types.
c The time-complexity O(P) indicates that the algorithm relies on solving a Linear Program (LP) formulation — note that

though a linear program can be solved in polynomial time, the polynomial generally has a higher degree.
d A PTAS takes an instance of an optimization problem and a parameter ε > 0 as inputs and, in time polynomial in the

problem size (although not necessarily in the value of ε), produces a solution that is within a factor 1+ ε of being
optimal.

e The parameter 0 < α ≤ 1 is a property of the task set — it is the maximum of all the task utilizations that are no greater
than one.

Table 4.12: Summary of state-of-the-art task assignment algorithms along with the PTASNF algo-
rithm proposed in this section.

RAB13, RABN12, RA13] (including FF-3C [RAB13], SA-P [RABN12] and LPC [RA13] pro-

posed in previous sections), it has a better speed competitive ratio and (ii) compared to previous

PTASs [HS76, JP99, WBB13], it has a better time-complexity. Specifically, compared to PTAS

of [WBB13], referred to as PTASLP from now on, our PTAS has a much better run-time complex-

ity, in the sense that, it is efficient enough to be usable in practice. We evaluate the average-case

performance of PTASNF and PTASLP with randomly generated task sets. The evaluation is based

on (i) the processor speedup the algorithms need, for a given task set, so as to succeed, compared

to an optimal algorithm (i.e., the necessary multiplication factor) and (ii) the average running

time. Overall, our algorithm outperforms PTASLP by requiring much smaller processor speedup

and running faster by orders of magnitude. Also, for the vast majority of task sets, it requires

significantly smaller necessary multiplication factor than its upper bound of 1+3ε .

A global view. The context of the new algorithm, PTASNF, can be visualized as shown in

Figure 4.16.

Organization of Section 4.6. The rest of the section is organized as follows. Section 4.6.2

briefs the system model. Section 4.6.3 gives an overview of our algorithm which categorizes the

tasks into heavy, medium and light tasks and makes different provisions for assigning these tasks.

Section 4.6.4 discusses the assignment of strictly heavy tasks to processors and presents the corre-

156 Non-migrative Scheduling on Two-type Heterogeneous Multiprocessors

Fully
migrative

Intra
migrative

Non
migrative

Fully
migrative

Intra
migrative

Non
migrative

Algorithm Adversary

PTASNF

2-type

SCR=1+3ε

Figure 4.16: A global view of the new algorithm, PTASNF, proposed in this section. Here, SCR
denotes the “speed competitive ratio” and ε > 0 is an input parameter to the algorithm.

sponding analysis. Section 4.6.5 discusses the fractional assignment of medium tasks to processors

and presents the corresponding analysis. Analogously, Section 4.6.7 discusses the fractional as-

signment of light tasks to processors and presents the corresponding analysis. Then, Section 4.6.8

describes the (integral) assignment of both medium and light tasks to processors (which were pre-

viously assigned fractionally) and provides analysis for such an assignment. Section 4.6.9 presents

the average-case performance evaluation of the proposed algorithm and compares it with the prior

state-of-the-art algorithm [WBB13]. Finally, Section 4.6.10 concludes.

4.6.2 System model

We consider the problem of non-migrative assignment of a task set τ = {τ1,τ2, . . . ,τn} of n

implicit-deadline sporadic tasks on a two-type heterogeneous multiprocessor platform π com-

prising m processors, of which m1 are of type-1 and m2 are of type-2. We assume that an optimal

scheduling algorithm such as EDF is used to schedule the tasks on each processor.

On a two-type platform, the WCET of a task depends on the processor type on which it ex-

ecutes. We denote by C1
i and C2

i the WCET of a task τi on processors of type-1 and type-2,

respectively. The minimum inter-arrival time of task τi is denoted by Ti. We denote by ui
def
= C1

i /Ti

and vi
def
= C2

i /Ti its utilizations on type-1 and type-2 processors, respectively. A task τi that can-

not be executed on processors of type-1 (respectively, type-2) is modeled by setting its ui = ∞

(respectively, vi = ∞).

4.6 A polynomial time approximation scheme 157

4.6.3 An overview of our approach

We now give an overview of our algorithm (referred to as PTASNF since it uses “Next-Fit”). Our

PTAS takes ε > 0 as an input parameter and outputs a feasible non-migrative assignment. Let us

partition the given task set τ into two subsets as follows:

τhvy = {τi | ui ≥ ε or vi ≥ ε} (4.115)

τlgt = τ \ τhvy = {τi | ui < ε and vi < ε} (4.116)

Intuitively, τhvy refers to “heavy” tasks and τlgt refers to “light” tasks. Our PTAS, has the following

steps:

Step 1. We first approximate the utilizations of every task in τhvy to some finite number of

pre-computed values. The motivation for doing this is twofold: (i) by restricting the number

of pre-computed values to a constant, we ensure polynomial complexity for the algorithm and

(ii) by choosing these values cleverly, we ensure the speed competitive ratio of the algorithm is

bounded. Then, we assign the tasks in τhvy to processors using the algorithm Ahvy described in

Section 4.6.4.1. In Section 4.6.4.5, we show that after using Ahvy, the sum of the utilizations of

the tasks assigned on processors of type-1 (respectively, type-2) does not exceed (1+ ε)×m1

(respectively, (1+ ε)×m2).

Step 2. Some tasks from τhvy, i.e., some tasks with ui ≥ ε ∧ vi < ε or ui < ε ∧ vi ≥ ε

may remain unassigned after using Ahvy. These unassigned tasks form the set, τint (“intermediate”

tasks). Now, Aint fractionally assigns the tasks (i.e., tasks can be split between processors) with

ui < ε ∧ vi ≥ ε (respectively, ui ≥ ε ∧ vi < ε) to type-1 (respectively, type-2) processors as

described in Section 4.6.6. In Section 4.6.6.1, we show that after using Aint, the sum of the

utilizations of all the tasks assigned so far on processors of type-1 (respectively, type-2) still does

not exceed (1+ ε)×m1 (respectively, (1+ ε)×m2).

Step 3. Fractionally assign the tasks in τlgt to processors using the algorithm Algt (which

makes use of a fractional knapsack property) described in Section 4.6.7.1. In Section 4.6.7.2, we

show that after using Algt, the sum of the utilizations of all the tasks assigned so far on processors

of type-1 (respectively, type-2) does not exceed (1+2ε)×m1 (respectively, (1+2ε)×m2).

Step 4. Finally, those tasks from τint and τlgt that were assigned fractionally by Aint and Algt are

assigned integrally using the algorithm, Afract, described in Section 4.6.8.1. In Section 4.6.8.2, we

show that after using Afract, the sum of the utilizations of all the tasks assigned so far on processors

of type-1 (respectively, type-2) does not exceed (1+3ε)×m1 (respectively, (1+3ε)×m2). Hence,

we conclude that if there exists a feasible non-migrative assignment of the task set τ on the two-

type platform π then PTASNF succeeds as well in finding such a feasible non-migrative assignment

of τ but on the platform, π(1+3ε), in which every processor is 1+3ε times faster.

158 Non-migrative Scheduling on Two-type Heterogeneous Multiprocessors

4.6.4 Assigning the tasks in τhvy (Step 1)

In this section, we describe the algorithm, Ahvy, for integrally assigning (a subset of) the tasks in

τhvy to processors and also analyze its returned assignment.

4.6.4.1 Description of Ahvy algorithm

It consists of three steps listed below which are in turn discussed next in detail:

Step 1.1. It defines a finite set, S(ε), of utilization values, based on the value of the input

parameter, ε . Then, it computes the “rounded-down utilizations” urd
i and vrd

i of every task, τi ∈ τ ,

by rounding down ui and vi to one of the quantized values in S(ε). We will denote by τ rd
hvy the set

of tasks obtained by rounding down the utilizations of the tasks of τhvy.

Step 1.2. It uses dynamic programming to determine, in polynomial time, (i) all the subsets

of τ rd
hvy that can be non-migratively assigned to m1 processors of type-1 and (ii) all the subsets that

can be non-migratively assigned to m2 processors of type-2.

Step 1.3. It exhaustively considers each pair of subsets such that one subset can be assigned

to m1 processors of type-1 and the other subset can be assigned to m2 processors of type-2. Using

the ordered pair of subsets under consideration, it integrally assigns (a subset of) the tasks from

τhvy to processors (at least all the tasks with ui ≥ ε ∧ vi ≥ ε).

4.6.4.2 Step 1.1: Rounding-down the utilizations of the tasks

We compute the set S(ε) of all real numbers ≤ 1 that are of the form ε(1+ ε)k, for all integers

k ≥ 0. Then, we compute the rounded-down utilizations urd
i and vrd

i of every task, τi ∈ τ , by

rounding down each of its utilizations (ui and vi) to the nearest value present in the set S(ε). For

tasks with ui < ε (respectively, vi < ε), we set urd
i = 0 (respectively, vrd

i = 0) and for tasks with

ui = ∞ (respectively, vi <= ∞), we set urd
i = ∞ (respectively, vrd

i = ∞). The definition of S(ε) leads

to the following property.

Property 2. For a task τi, if it holds that ε ≤ ui ≤ 1 then there exists k such that ε(1+ ε)k ≤ ui <

ε(1+ ε)k+1 and thus
ui

urd
i
=

ui

ε(1+ ε)k <
ε(1+ ε)k+1

ε(1+ ε)k = (1+ ε) (4.117)

The same holds for vi.

Therefore, if the utilizations of each task is reduced by this maximal factor, it follows that

any collection of tasks with their reduced utilizations summing to ≤ 1 would have their original

utilizations summing to ≤ (1+ ε).

Let us now determine the number L of distinct values in S(ε). Since only values with ε(1+

ε)k ≤ 1 are included in S(ε), it holds that, k log(1+ε)≤ log(1/ε) and thus, k≤ log(1/ε)
log(1+ε) . Then we

conclude that:

L =

⌊
log(1/ε)

log(1+ ε)

⌋
+1

4.6 A polynomial time approximation scheme 159

For each `, 0 ≤ ` < L, we denote by X` (respectively, Y`) the number of tasks in τ rd
hvy with urd

i

(respectively, vrd
i) equal to ε(1+ ε)` ∈ S(ε). The task set, τ rd

hvy, can thus be represented by 2×L

non-negative integers X0,X1, . . . ,XL−1,Y0,Y1,YL−1. Note that each X` and each Y` is no greater than∣∣τhvy
∣∣.

4.6.4.3 Step 1.2: Generating the feasible configurations

The rounding down of the utilizations described in the previous section ensures that the utilizations

of the tasks in τhvy may only take one of the values in S(ε), resulting in the set τ rd
hvy. In this section,

using dynamic programming, we determine, in polynomial time, all the subsets of τ rd
hvy that can

be non-migratively assigned to m1 processors of type-1 (respectively, m2 processors of type-2).

Once all the feasible subsets (also referred to as feasible configurations) are determined, we use

this information to assign a subset of tasks from τhvy on type-1 and type-2 processors (described

in Section 4.6.4.4).

Definition 20 (feasible configurations). Consider any L-tuple, T = (x0, x1, . . ., xL−1), where

x` ≥ 0,∀` ∈ [0,L− 1], and let τ(T) denote a task set containing exactly x` tasks τi of utilization

ui = ε(1+ ε)` for each `. The L-tuple T is said to be a feasible configuration on m1 processors

of type-1 if and only if there exists a feasible non-migrative assignment for the corresponding task

set τ(T) on m1 processors of type-1. Analogously, we define an L-tuple, (y0,y1, . . . ,yL−1), with vi

values that is a feasible configuration on m2 processors of type-2.

The algorithm, Ahvy, uses the same approach as the one presented in [Bar11] to determine all

the configurations, (x0,x1, . . . ,xL−1), of tasks in τ rd
hvy (respectively, (y0,y1, . . . ,yL−1)) that are fea-

sible on m1 processors of type-1 (respectively, m2 processors of type-2), in which x` ≤ X` ≤
∣∣τhvy

∣∣
(respectively, y` ≤Y` ≤

∣∣τhvy
∣∣) for each `, 0≤ ` < L. This approach [Bar11] is summarized below.

As there are no more than Π
L−1
`=0 (1+X`)≤Π

L−1
`=0 (1+

∣∣τhvy
∣∣) = O(nL) such feasible configurations

on type-1 processors (and the same holds for type-2 processors) and since L is a constant for a

given value of ε , the time to determine all the feasible configurations is polynomial in n.

Summary of the approach in [Bar11]: It constructs two separate tables: one table each for

storing the information about all the configurations on processors of each type. The table for

type-1 processors has m1 rows and Π
L−1
`=0 (1+X`) columns. Each column corresponds to a different

configuration and each cell has a value ∈ {yes,no}. A cell in the i’th row and the j’th column is

an “yes” if the corresponding configuration is feasible on i processors of type-1. This table is

filled row-wise starting with the first row. Filling in the first row is straightforward for all the

configurations: it is an “yes” if the corresponding configuration, say (x0,x1, . . . ,xL−1), is feasible

on a single processor, i.e., if ∑
L−1
`=0 x`× ε(1+ ε)` ≤ 1, it is a “no” otherwise. The i’th row is filled

in by using the entries of the (i− 1)’th row. Specifically, for the configuration corresponding to

the j’th column, say (x0,x1, . . . ,xL−1), the cell at the i’th row is a “yes” if and only if there exists

two configurations (x′0,x
′
1, . . . ,x

′
L−1) and (x′′0 ,x

′′
1 , . . . ,x

′′
L−1) such that

1. (x′0,x
′
1, . . . ,x

′
L−1) is a feasible configuration on (i−1) processors of type-1;

160 Non-migrative Scheduling on Two-type Heterogeneous Multiprocessors

2. (x′′0 ,x
′′
1 , . . . ,x

′′
L−1) is a feasible configuration on one processor of type-1; and

3. x` = x′`+ x′′` , for all 0≤ ` < L.

For each cell in the i’th row, there are polynomially many possible candidates for the role of

(x′0,x
′
1, . . . ,x

′
L−1); hence, each cell in the i’th row can be filled in polynomial time. Similarly, the

second table for type-2 processors is constructed.

Note: By using standard dynamic programming tricks which require storing additional informa-

tion [Bar11], we can obtain a non-migrative assignment from the feasible configurations.

4.6.4.4 Step 1.3: Determining the partitioning

Using the two configuration tables that were constructed in the previous step, we now determine

a non-migrative task assignment for (a subset of) the heavy tasks. The main idea is as follows.

Suppose that the task set τ can indeed be non-migratively assigned so as to meet all deadlines

on the given platform and let Hfeas denote one such feasible non-migrative assignment. For each

`, 0 ≤ ` < L, let xfeas
` denote the number of tasks τi satisfying ε(1+ ε)` ≤ ui < ε(1+ ε)`+1 that

are assigned to type-1 processors in Hfeas. Since Hfeas is a feasible non-migrative assignment,

the configuration (xfeas
0 ,xfeas

1 , . . . ,xfeas
L−1) must appear in the table constructed in the previous step

for type-1 processors and the cell at the m1’th row of the corresponding column must contain

“yes”. Analogously, the configuration (yfeas
0 ,yfeas

1 , . . . ,yfeas
L−1) must appear in the table constructed

for type-2 processors and the cell at the m2’th row of the corresponding column must contain “yes”.

However, since we do not know which of the feasible configurations in our tables correspond to

Hfeas, we consider every ordered pair of configurations that are feasible on m1 and m2 processors

of type-1 and type-2 respectively. Since there are only polynomially (i.e., O(nL)) many distinct

feasible configurations in each table, it follows that there are at most polynomially many such

ordered pairs of feasible configurations to consider.

For each considered ordered pair of configurations, by assuming that they are the ones cor-

responding to Hfeas, we attempt to construct a similar non-migrative assignment for the tasks in

τhvy as that of Hfeas. The assignment obtained will be similar to Hfeas in the following sense:

although the tasks assigned in both the assignments may not be the same, it holds that (as we show

later), the sum of utilizations of the tasks assigned by our algorithm on each processor type does

not exceed that of Hfeas by a factor of 1+ ε .

Let {(x0,x1, . . . ,xL−1),(y0,y1, . . . ,yL−1)} denote the currently considered ordered pair of fea-

sible configurations on m1 and m2 processors of type-1 and type-2, respectively. The algorithm,

Ahvy, to determine the corresponding task-to-processor assignment of tasks from τhvy is as follows.

Step 1.3.1. For each `, 0≤ `≤ L−1, Ahvy assigns exactly x` tasks τi satisfying urd
i = ε(1+ ε)` to

type-1 processors. Specifically, for each `,

1.3.1.1 If there are fewer than x` such tasks in τhvy, then Ahvy declares failure with respect to this

particular ordered pair of feasible configurations, and moves on to the next ordered pair of

feasible configurations.

4.6 A polynomial time approximation scheme 161

1.3.1.2 If there are exactly x` such tasks then Ahvy assigns all of them to type-1 processors.

1.3.1.3 If there are more than x` such tasks, it assigns x` of them to type-1 processors by favoring

those with larger vi.

Step 1.3.2. After assigning tasks to processors of type-1, Ahvy assigns the remaining tasks to

processors of type-2 as follows. For each `, starting with `= L−1 and repeatedly decreasing ` by

one until ` equals 0,

1.3.2.1 If there are less than y` unassigned tasks τi satisfying vrd
i = ε(1 + ε)` (say, n1 tasks),

then Ahvy assigns these n1 tasks to type-2 processors. Then, Ahvy assigns y`− n1 other

(unassigned) tasks τ j with smaller utilization on type-2 processors (i.e., vrd
j < ε(1+ε)`), by

favoring those with larger v j and within these tasks that are favored, those with larger ui are

favored.

1.3.2.2 If there are exactly y` unassigned tasks τi satisfying vrd
i = ε(1+ ε)` then all of them are

assigned to type-2 processors.

1.3.2.3 If there are more than y` unassigned tasks τi satisfying both (i) vrd
i = ε(1+ ε)` and (ii)

urd
i > 0, then Ahvy declares failure with respect to this particular ordered pair of feasible

configurations and moves on to the next ordered pair of feasible configurations.

1.3.2.4 If there are more than y` unassigned tasks τi satisfying vrd
i = ε(1+ ε)` but not more than

y` of these tasks have urd
i > 0, then Ahvy assigns y` of these tasks by favoring those with

larger ui.

Step 1.3.3. If any task τi remains unassigned with both urd
i > 0 and vrd

i > 0, Ahvy declares failure

with respect to this particular ordered pair of feasible configurations, and moves on to the next

ordered pair of feasible configurations.

If Ahvy did not declare failure in any of the above steps, implying that all the tasks with

ui ≥ ε ∧ vi ≥ ε are assigned (and may be few other tasks from τhvy with ui ≥ ε ∧ vi < ε or

ui < ε ∧ vi ≥ ε) then algorithm Aint is called with the ordered pair of feasible configurations

under consideration. This algorithm, Aint, is presented in Section 4.6.5.

4.6.4.5 Assignment analysis

Let Hhvy denote the assignment of the heavy tasks returned by Ahvy. In this section, we show

that in Hhvy, the subset of tasks assigned to each processor consumes no more than 1+ ε of the

capacity of that processor.

Definition 21 (The subsets Γ1
hvy and Γ2

hvy). We denote by Γ1
hvy,Γ

2
hvy ⊆ τhvy the subsets of tasks

assigned to the processors of type-1 (respectively, type-2) in the assignment Hhvy returned by the

algorithm, Ahvy.

162 Non-migrative Scheduling on Two-type Heterogeneous Multiprocessors

Remark about notation. Hereafter, we use the notation τ for the subsets of tasks that we

explicitly define (τhvy and τlgt, for example), Γ for the subsets of tasks returned by the different

steps of our PTAS and Φ for the subsets of tasks assigned in Hfeas.

We know that the ordered pair of feasible configurations {(xfeas
0 ,xfeas

1 , . . . ,xfeas
L−1), (y

feas
0 , yfeas

1 , . . .,

yfeas
L−1)} corresponding to the feasible partitioning Hfeas must be present in the tables constructed

in Step 1.2 (in Section 4.6.4.3). Therefore, this particular ordered pair of feasible configurations

(denoted by Pfeas hereafter) will come to be considered by Ahvy.

Lemma 25. If Pfeas is the ordered pair of feasible configurations currently under consideration

by Ahvy, then Ahvy successfully terminates (i.e., without declaring failure) and it holds that every

task, τi ∈ Γ1
hvy, can be 1:1 mapped to exactly one task, τk, that is assigned to a type-1 processor

in Hfeas such that ui ≤ (1+ ε)uk. An analogous property holds for the tasks in Γ2
hvy (such that

vi ≤ (1+ ε)vk).

Proof. First, let us focus on the tasks in Γ1
hvy. In Step 1.3.1, for each ` ∈ [0,L−1], it is straightfor-

ward (from the fact that we consider the ordered pair Pfeas) to see that Ahvy successfully assigns

exactly xfeas
` tasks τi satisfying ε(1+ ε)` ≤ ui < ε(1+ ε)`+1 to type-1 processors (through either

case 1.3.1.2 or 1.3.1.3). While these may not be the same tasks as those that are assigned to these

processors in Hfeas, the utilization of each task does not exceed that of the corresponding task

assigned in Hfeas by more than a factor of (1+ ε). Hence the lemma holds for the heavy tasks in

Γ1
hvy.

Now, let us focus on Step 1.3.2, i.e., on the tasks in Γ2
hvy. If Ahvy terminates without declaring

failure then it means that for each ` ∈ [0,L−1], Ahvy went through either case 1.3.2.1, 1.3.2.2 or

1.3.2.4 and it is trivial to see that the lemma holds for all these cases. Indeed, for each task τi with

ε(1+ ε)` ≤ vi < ε(1+ ε)`+1 that is assigned to processors of type-2 through one of these cases,

there is a task, say τk, also with ε(1+ ε)` ≤ vk < ε(1+ ε)`+1 which is also assigned to processors

of type-2 in Hfeas (since we consider the ordered pair Pfeas).

Since we have shown that the lemma holds as long as Ahvy does not declare failure, we now

show that Ahvy cannot fail while considering the ordered pair Pfeas of feasible configurations. For

a failure to occur, it is necessary for Ahvy to go through case 1.3.2.3, i.e., there must be some

` ∈ [0,L− 1] such that there are strictly more than yfeas
` tasks τi yet unassigned, that satisfy both

vrd
i = ε(1+ε)` and urd

i > 0. Let us consider the largest such ` and denote by n1 > yfeas
` the number

of tasks satisfying both the aforementioned conditions. Recall that in Hfeas, yfeas
` tasks τi with

vrd
i = ε(1+ε)` are assigned to type-2 processors. Therefore, it must be the case that in Hfeas, some

of the n1− yfeas
` “additional” tasks were assigned to type-1 processors. Let τ j denote one of these

additional tasks, thus satisfying vrd
j = ε(1+ ε)` and urd

j = ε(1+ ε)x > 0, for some x ∈ [0,L− 1].

Since this task τ j has not been assigned yet by Ahvy, we know that at the time Ahvy was assigning

tasks in Step 1.3.1 with `= x, it went through case 1.3.1.3 and instead of choosing to assign τ j, it

chose to assign another task τk 6= τ j, also with urd
k = ε(1+ε)x, that is assigned to type-2 processors

in Hfeas. Furthermore, according to case 1.3.1.3, it must hold that vrd
k ≥ vrd

j = ε(1+ε)`. Now, two

cases may arise.

4.6 A polynomial time approximation scheme 163

Case 1. If vrd
k = vrd

j = ε(1+ ε)` then τk is one of the yfeas
` tasks assigned to type-2 processors

in Hfeas and, since Ahvy assigned τk to type-1 processors, there is a free “slot” on type-2

processors in which τ j can fit. This contradicts our assumption that τ j is unassigned at this

time instant.

Case 2. If vrd
k > vrd

j = ε(1+ ε)` then τk is one of the yfeas
r tasks (with r > `) assigned to type-2

processors in Hfeas and, since Ahvy assigned τk to type-1 processors, there was a free slot

on type-2 processors in Step 1.3.2, when ` was equal to r. At this moment, when ` = r,

Ahvy necessarily went through case 1.3.2.1 and since this case allows tasks with smaller

utilization on type-2 processors to be accommodated in unused slots that were reserved for

tasks with larger utilization, τ j must have been assigned at that moment. This contradicts our

assumption that τ j is unassigned at this time instant.

Hence, we can conclude that Ahvy does not declare failure for the ordered pair Pfeas of feasible

configurations and the lemma holds for every task in Γ1
hvy∪Γ2

hvy.

Definition 22 (The corresponding sets Φ1
hvy and Φ2

hvy). We define by Φ1
hvy the set of tasks as-

signed to type-1 processors in Hfeas such that each task τk ∈ Φ1
hvy can be mapped to exactly one

task τi ∈ Γ1
hvy (bijective relation, implying

∣∣∣Φ1
hvy

∣∣∣= ∣∣∣Γ1
hvy

∣∣∣) and for which ui ≤ (1+ ε)uk. The set

Φ2
hvy is defined analogously (for which vi ≤ (1+ ε)vk)8.

Lemma 26. After assigning the tasks in τhvy, we have

∑τi∈Γ1
hvy

ui ≤ (1+ ε)m1 (4.118)

and ∑τi∈Γ2
hvy

vi ≤ (1+ ε)m2 (4.119)

Proof. We show only the proof of Expression (4.118), as the proof of Expression (4.119) is quite

similar. The proof is a direct consequence of Lemma 25. We know from Lemma 25 and Defini-

tion 22 that, there exists a 1 : 1 mapping between every task τi ∈ Γ1
hvy and every task τk ∈ Φ1

hvy

such that, ui ≤ (1+ε)uk. Therefore, since |Φ1
hvy|= |Γ1

hvy| (from the bijective relation between the

two sets), we have:

∑
τi ∈ Γ1

hvy

ui ≤ (1+ ε) ∑
τk ∈Φ1

hvy

uk (4.120)

Finally, we know from the feasibility of Hfeas that, ∑k∈Φ1
hvy

uk ≤ m1, and hence it holds that:

∑τi ∈ Γ1
hvy

ui ≤ (1+ ε)m1.

8Note that, Lemma 25 showed that, such task sets Φ1
hvy and Φ2

hvy exist.

164 Non-migrative Scheduling on Two-type Heterogeneous Multiprocessors

4.6.5 Assigning the tasks in τint (Step 2)

The tasks from τhvy that were not assigned by algorithm, Ahvy, form the set, τint, i.e., τint = τhvy \
{Γ1

hvy∪Γ2
hvy}. Let us partition τint into two subsets τ1

int and τ2
int as follows:

τ
1
int = {τi ∈ τint | ui < ε and vi ≥ ε} (4.121)

τ
2
int = {τi ∈ τint | ui ≥ ε and vi < ε} (4.122)

4.6.6 The description of the algorithm Aint

The algorithm, Aint, to assign the tasks in τint is as follows:

1. Assign all the tasks in τ1
int to type-1 processors using the wrap-around technique. This tech-

nique works as follows. Take the first processor of type-1 and assign as many of the tasks

as possible from τ1
int “integrally” onto that processor. When a task fails to be assigned inte-

grally, assign that task “fractionally” such that the current processor is filled completely and

the remaining fraction is assigned to the next processor of type-1, continue this procedure

until all the tasks from τ1
int are assigned to type-1 processors.

2. Analogously, assign all the tasks in τ2
int to type-2 processors using the wrap-around tech-

nique.

4.6.6.1 Assignment analysis

We now show that for a task set, τ , that is feasible on a platform, π , Aint always succeeds in

assigning all the tasks in τ1
int to type-1 processors on a platform π(1+ε). That is, if Γ1

int and Γ2
int

denote the set of tasks assigned to type-1 and type-2 processors by Aint, we have Γ1
int = τ1

int and

Γ2
int = τ2

int.

In the following lemma, we make use of the fact that the two sets of tasks, Γ1
hvy and Γ2

hvy, have

been obtained by algorithm Ahvy, using the ordered pair Pfeas of feasible configurations.

Lemma 27. After assigning all the tasks in τint using the ordered pair of feasible configuration ,

we have:

∑τi∈Γ1
hvy

ui +∑τi∈τ1
int

ui ≤ (1+ ε)m1 (4.123)

and ∑τi∈Γ2
hvy

vi +∑τi∈τ2
int

vi ≤ (1+ ε)m2 (4.124)

Proof. In the feasible assignment, Hfeas,
∣∣τ1

int

∣∣ number of tasks with ui < ε ∧ vi ≥ ε must have

been assigned to type-1 processors. This is a consequence of the fact that, Pfeas contains exactly

the same number of tasks with utilization ≥ ε on the processor that they are assigned to, as in

Hfeas. Let Φ1
int denote the set of tasks with ui < ε ∧ vi ≥ ε that are assigned to type-1 processors

in Hfeas. Since Hfeas is a feasible assignment, it holds that,

∑
τi ∈Φ1

hvy

ui + ∑
τi ∈Φ1

int

ui ≤ m1 (4.125)

4.6 A polynomial time approximation scheme 165

Since the number of tasks with ui < ε ∧ vi ≥ ε that have been assigned to type-1 processors is

same in both Hfeas and the assignment computed by our algorithm, we have
∣∣τ1

int

∣∣= ∣∣Φ1
int

∣∣= ∣∣Γ1
int

∣∣.
Here, it is worth recalling Step 1.3.1.3 and Step 1.3.2.4 of algorithm Ahvy. In these steps, while

assigning the tasks to processors of type-1 (respectively, type-2), when Ahvy has to choose few

tasks to assign from the available set of tasks, it always chooses those tasks that have a larger

utilization on type-2 (respectively, type-1) processors (leaving “easier” tasks for Aint to assign).

Now coming back to Aint algorithm, although the tasks (with ui < ε ∧ vi ≥ ε) assigned by Aint to

type-1 processors may not be the same as those assigned by Hfeas, we can infer that:

∑
τi ∈ τ1

int

ui ≤ ∑
τi ∈Φ1

int

ui (4.126)

Applying Inequality (4.120) and (4.126) on Inequality (4.125), we get:

∑i∈Γ1
hvy

ui

1+ ε
+ ∑

τi ∈ τ1
int

ui ≤ m1 (4.127)

Multiplying Inequality (4.127) by 1+ ε and from trivial arithmetic ∑i∈τ1
int

ui ≤ (1+ ε)×∑i∈τ1
int

ui,

we obtain:

∑
τi ∈ Γ1

hvy

ui + ∑
τi ∈ τ1

int

ui ≤ (1+ ε)×m1

Using similar reasoning as above, we can show that Expression (4.124) holds as well. Hence the

proof.

Corollary 7. After assigning the tasks in τint, we have:

∑
τi ∈ Γ1

hvy ∪Γ1
int

ui ≤ (1+ ε) ∑
τi ∈Φ1

hvy ∪Φ1
int

ui (4.128)

and ∑
τi ∈ Γ2

hvy ∪Γ2
int

vi ≤ (1+ ε) ∑
τi ∈Φ2

hvy ∪Φ2
int

vi (4.129)

Proof. Expression (4.128) follows from Expression (4.120) and Expression (4.126) (since Γ1
int =

τ1
int) and Expression (4.129) can be inferred from analogous expressions for type-2 processors.

4.6.7 Assigning the tasks in τlgt (Step 3)

Let us partition τlgt into τ1
lgt and τ2

lgt as follows:

τ
1
lgt = {τi ∈ τlgt | ui ≤ vi} (4.130)

τ
2
lgt = {τi ∈ τlgt | ui > vi} (4.131)

166 Non-migrative Scheduling on Two-type Heterogeneous Multiprocessors

Algorithm 10: Algt: An algorithm to assign τlgt tasks
1 Γ1

lgt1
:= fract-next-fit(τ1

lgt,m1)

2 Γ2
lgt2

:= fract-next-fit(τ2
lgt,m2)

3 if (Γ1
lgt1

= τ1
lgt∧Γ2

lgt2
= τ2

lgt) then declare SUCCESS;

4 if (Γ1
lgt1
6= τ1

lgt∧Γ2
lgt2
6= τ2

lgt) then declare FAILURE;

5 if (Γ1
lgt1
6= τ1

lgt∧Γ2
lgt2

= τ2
lgt) then

6 Γ2
lgt1

:= τ1
lgt \Γ1

lgt1

7 if (fract-next-fit(Γ2
lgt1

,m2) = Γ2
lgt1

) then
8 declare SUCCESS
9 else

10 declare FAILURE
11 end
12 end
13 if (Γ1

lgt1
= τ1

lgt∧Γ2
lgt2
6= τ2

lgt) then
14 Γ1

lgt2
:= τ2

lgt \Γ2
lgt2

15 if (fract-next-fit(Γ1
lgt2

,m1) = Γ1
lgt2

) then
16 declare SUCCESS
17 else
18 declare FAILURE
19 end
20 end

4.6.7.1 The description of the Algt algorithm

The pseudo-code for assigning tasks in τlgt is shown in Algorithm 10 (which in turn uses the

fract-next-fit subroutine, shown in Algorithm 11). The intuition behind the design of this

algorithm is that, assuming a platform, π(1+2ε), first we assign tasks to processors on which they

have a smaller utilization (line 1 and line 2 in Algorithm 10). Then, if there are remaining tasks,

these are assigned to processors on which they have a larger utilizations (line 7 and line 15 in

Algorithm 10).

4.6.7.2 Assignment analysis

First, we present some useful result in Lemma 28, obtained by relating the problem under con-

sideration to the fractional knapsack problem (see Chapter 16.2 in [CLRS01]). This result will

be used in Lemma 29. The fractional knapsack problem, an algorithm for this problem and the

relation between the fractional knapsack problem and the problem under consideration was briefly

discussed earlier in Section 4.3.3 (see page 87) in the context of FF-3C algorithm.

Informally, the relation between fractional knapsack problem and the task assignment problem

on two-type platform can be described as follows. For a given problem instance in our scheduling

problem, we can create an instance of a fractional knapsack problem as follows: (i) for each task

9While assigning tasks to type-1 processors, if a task cannot be assigned integrally on m1’th processor (the last
processor of type-1), then assign a fraction of that task such that m1’th processor is fully utilized and assign the rest
of the fraction to m2’th processor (the last processor of type-2). This task is denoted by τ f later in the proofs — in
Section 4.6.8. This is not shown in the pseudo-code explicitly for ease of representation.

4.6 A polynomial time approximation scheme 167

Algorithm 11: fract-next-fit(ts, ps): Next-fit bin-packing with fractional assignment of tasks
Input : ts: set of tasks; ps: set of processors
Output: set of tasks that were assigned successfully

1 If ps consists of type-1 (respectively, type-2) processors, then sort ts by decreasing vi/ui (respectively,
increasing vi/ui). Use any order for processors ps, but maintain it during the execution of fract-next-fit.

2 Assign tasks using wrap-around technique9.
3 Return the set of successfully assigned tasks.

in our scheduling problem, create a corresponding item in the fractional knapsack problem, (ii)

the weight of an item in the fractional knapsack problem is the utilization of the corresponding

task where the utilization here is taken for the processor on which the task executes fast and (iii)

the value of an item in the fractional knapsack problem is how much lower the utilization of

its corresponding task is when the task is assigned to the processor on which it executes fast as

compared to its utilization if assigned to the processor on which it executes slowly. Informally

speaking, we can see that if tasks could be split, then solving the fractional knapsack problem is

equivalent to assigning tasks to processors so that the cumulative utilization of tasks is minimized.

Again, informally speaking, we can then show that a task assignment minimizes the cumulative

utilization of tasks assuming that (i) the cumulative utilization of tasks that are assigned to the

processors on which they execute fast is sufficiently high and (ii) the tasks that are assigned to the

processors where they execute fast has a higher ratio (vi/ui) than the ones that are not. We now

express this formally in Lemma 28 and provide the proof (Lemma 12 is an adaptation of Lemma 5

in [ARB10]); the proof relies on the fractional knapsack algorithm whose pseudo-code is listed on

page 87 as part of Lemma 11. Lemma 28 is a straight-forward adaptation of Lemma 12 presented

in Section 4.3.3 (see page 12); however, for the sake of readability, we present the claim and the

proof of the adapted version in detail now.

For the purpose of this lemma, let us define the following notations. Let the task set τ be

partitioned into two disjoint subsets, τ1 and τ2. The set τ1 consists of those tasks which run at

least as fast on a type-1 processor as on a type-2 processor; τ2 consists of all other tasks. In

notation:

τ = τ
1∪ τ

2 (4.132)

∀τi ∈ τ
1 : ui ≤ vi (4.133)

∀τi ∈ τ
2 : ui > vi (4.134)

We now state the lemma and prove it.

Lemma 28. Consider n tasks and a two-type platform conforming to the system model (and nota-

tion) of Section 2. Let x denote a number such that 0≤ x≤ m1.

Let A1 denote a subset of τ1 such that

∑
τi ∈ A1

ui > m1− x (4.135)

168 Non-migrative Scheduling on Two-type Heterogeneous Multiprocessors

and for every pair of tasks τi ∈ A1 and τ j ∈ τ1 \A1 it holds that vi
ui
− 1 ≥ v j

u j
− 1. Let A2 denote

τ1\A1.

Let B1 denote a subset of τ1 such that

∑
τi ∈ B1

ui ≤ m1− x (4.136)

Let B2 denote τ\B1. It then holds that:

∑
τi ∈ A1

ui + ∑
τi ∈ A2

vi + ∑
τi ∈ τ2

vi ≤ ∑
τi ∈ B1

ui + ∑
τi ∈ B2

vi (4.137)

Proof. Let us arbitrarily choose A1, B1 as defined. We will prove that this implies Inequal-

ity (4.137). Using Inequalities (4.135) and (4.136) we clearly get:

∑
τi ∈ A1

ui > ∑
τi ∈ B1

ui (4.138)

With this choice of A1 and B1, let us consider different instances of the fractional knapsack prob-

lem:

Instance1:
CAP = left-hand side of Inequality (4.138).

For each τi ∈ τ , create an item i with

pi = vi−ui and wi = ui

SUMVALUE1=value of variable SUMVALUE when the algorithm in Lemma 11 (on page 86)

terminates with Instance1 as input.

Instance2:
CAP = left-hand side of Inequality (4.138).

For each τi ∈ A1, create an item i with

pi = vi−ui and wi = ui

SUMVALUE2=value of variable SUMVALUE when the algorithm in Lemma 11 (on page 86)

terminates with Instance2 as input.

Instance3:
CAP = right-hand side of Inequality (4.138).

For each τi ∈ B1, create an item i with

pi = vi−ui and wi = ui

SUMVALUE3=value of variable SUMVALUE when the algorithm in Lemma 11 (on page 86)

terminates with Instance3 as input.

Instance4:
CAP = right-hand side of Inequality (4.138).

For each τi ∈ τ , create an item i with

pi = vi−ui and wi = ui

4.6 A polynomial time approximation scheme 169

SUMVALUE4=value of variable SUMVALUE when the algorithm in Lemma 11 (on page 86)

terminates with Instance4 as input.

Observe that:

O1: In all four instances, it holds for each element that pi
wi

= vi
ui
−1.

O2: Instance1 and Instance2 have the same capacity.

O3: Although Instance2 has a subset of the elements of Instance1, this subset is the subset of those

elements with the largest pi/wi. (Follows from the definition of A1.)

O4: CAP in Instance2 is exactly the sum of the weights of the elements in A1.

O5: From O1-O4: SUMVALUE2=SUMVALUE1.

O6: Instance3 and Instance4 have the same capacity.

O7: Instance3 has a subset of the elements of Instance4.

O8: From O6 and O7: SUMVALUE3≤SUMVALUE4.

O9: Instance4 has smaller capacity than Instance1.

O10: Instance4 has the same elements as Instance1.

O11: From O9 and O10: SUMVALUE4≤SUMVALUE1.

O12: From O8 and O11: SUMVALUE3≤SUMVALUE1.

O13: From O12 and O5: SUMVALUE3≤SUMVALUE2.

Using O13 and the definitions of the instances and of A1 and B1 and observing that the capacity

of Instance2 and Instance3 are set such that all elements in either instance will fit into the respective

“knapsack", we obtain:

∑
τi ∈ B1

(vi−ui)≤ ∑
τi ∈ A1

(vi−ui) (4.139)

Now, observing that τ = τ1∪ τ2 = B1∪B2 gives us:

∑
τi ∈ τ1

vi + ∑
τi ∈ τ2

vi = ∑
τi ∈ B1

vi + ∑
τi ∈ B2

vi

Substituting the value of ∑i∈B1 vi in Inequality (4.139) yields:

∑
τi ∈ τ1

vi + ∑
τi ∈ τ2

vi− ∑
τi ∈ B2

vi− ∑
τi ∈ B1

ui ≤ ∑
τi ∈ A1

vi− ∑
τi ∈ A1

ui

Rearranging terms, we get:

∑
τi ∈ A1

ui + ∑
τi ∈ τ1

vi− ∑
τi ∈ A1

vi + ∑
τi ∈ τ2

vi ≤ ∑
τi ∈ B1

ui + ∑
τi ∈ B2

vi

Exploiting A2 = τ1\A1 yields:

∑
τi ∈ A1

ui + ∑
τi ∈ A2

vi + ∑
τi ∈ τ2

vi ≤ ∑
τi ∈ B1

ui + ∑
τi ∈ B2

vi

170 Non-migrative Scheduling on Two-type Heterogeneous Multiprocessors

This is the statement of the lemma. Hence the proof.

We now use the result of the previous lemma in the lemma presented below.

Lemma 29. Let Γ1
lgt and Γ2

lgt be the subset of tasks from τlgt that are assigned by Algt to type-1 and

type-2 processors, respectively. After assigning all the tasks from τlgt, we have:

∑τi∈Γ1
hvy

ui +∑τi∈Γ1
int

ui +∑τi∈Γ1
lgt

ui ≤ (1+2ε)m1 (4.140)

and ∑τi∈Γ2
hvy

vi +∑τi∈Γ2
int

vi +∑τi∈Γ2
lgt

vi ≤ (1+2ε)m2 (4.141)

where

1. all the tasks in τhvy \ τint are assigned integrally

2. some tasks in τint are assigned fractionally and the rest are assigned integrally

3. some tasks in τlgt are assigned fractionally and the rest are assigned integrally

Proof. Informally, the claim can be written as follows: if there exists a feasible non-migrative

assignment for a task set τ on a two-type platform π then algorithms Ahvy, Aint and Algt succeed

in assigning the tasks in τ as well but on a platform π(1+2ε) and with some tasks assigned fraction-

ally. We already know from Lemma 27 that, after assigning the tasks in τhvy \ τint and τint using

algorithms Ahvy and Aint, respectively, the sum of the utilizations of the tasks assigned on type-1

(respectively, type-2) processors does not exceed (1+ ε)m1 (respectively, (1+ ε)m2).

Therefore, we need to show that after assigning the tasks in τlgt using algorithm Algt, the sum

of the utilizations of the tasks assigned on processors of type-1 (respectively, type-2) does not

exceed (1+ 2ε)m1 (respectively, (1+ 2ε)m2). An equivalent claim is that, after assigning tasks

in τhvy \ τint and τint using algorithms Ahvy and Aint respectively, if Algt fails to assign the tasks of

τlgt (with fractional assignment of tasks allowed) on platform π(1+2ε) then there does not exist a

feasible non-migrative assignment of the tasks in τ on platform π . Here, we prove this equivalent

claim by contradiction. Assume that, there exists a feasible assignment, Hfeas, of τ on π but Algt

fails to assign the tasks in τlgt on π(1+2ε) (after Ahvy and Aint successfully assigned the tasks of

τhvy \ τint and τint). Since Algt failed to assign these tasks, it must have declared FAILURE and we

explore all possibilities for this to occur:

Failure on line 4 in Algorithm 10: From the case, we have Γ1
lgt1
⊂ τ1

lgt and Γ2
lgt2
⊂ τ2

lgt. Therefore,

when executing line 1 in Algt there was a task τ f1 ∈ τ1
lgt \Γ1

lgt1
which could not be assigned to type-

1 processors and similarly, when executing line 2 in Algt there was a task τ f2 ∈ τ2
lgt \Γ2

lgt2
which

could not be assigned to type-2 processors. Hence, we have:

∑p∈P1 U [p]+u f1 > m1(1+2ε) = m1 +2m1ε (4.142)

and ∑p∈P2 U [p]+ v f2 > m2(1+2ε) = m2 +2m2ε (4.143)

where P1 and P2 denote the set of type-1 and type-2 processors respectively and U [p] denotes the

sum of the utilization of the tasks assigned on processor p.

4.6 A polynomial time approximation scheme 171

Since τ f1 ∈ τ1
lgt

(4.130)⇒ τ f1 ∈ τlgt
(4.116)⇒ u f1 < ε ≤m1ε and analogously since τ f2 ∈ τ2

lgt, we know

that v f2 < ε ≤ m2ε . Using these on Expressions (4.142) and (4.143), we get

∑p∈P1 U [p]> m1(1+ ε) (4.144)

and ∑p∈P2 U [p]> m2(1+ ε) (4.145)

Observe that (i) the set of tasks that has been assigned on type-1 processors so far is Γ1
hvy ∪Γ1

int

and a strict subset of τ1
lgt, and (ii) the set of tasks assigned on type-2 processors is Γ2

hvy∪Γ2
int and

a strict subset of τ2
lgt. Therefore, it holds from Expression (4.144) and (4.145) that:

∑
τi∈Γ1

hvy∪Γ1
int

ui + ∑
τi∈τ1

lgt

ui > m1(1+ ε) (4.146)

∑
τi∈Γ2

hvy∪Γ2
int

vi + ∑
τi∈τ2

lgt

vi > m2(1+ ε) (4.147)

Applying Expression (4.128) and (4.129) on Expression (4.146) and (4.147) respectively, yields:

(1+ ε)× ∑
τi∈Φ1

hvy∪Φ1
int

ui + ∑
τi∈τ1

lgt

ui > m1(1+ ε) (4.148)

(1+ ε)× ∑
τi∈Φ2

hvy∪Φ2
int

vi + ∑
τi∈τ2

lgt

vi > m2(1+ ε) (4.149)

Dividing Expression (4.148) by 1+ ε and from trivial arithmetic ∑τi∈τ1
lgt

ui >
1

1+ε
×∑τi∈τ1

lgt
ui, we

obtain:

∑
τi∈Φ1

hvy∪Φ1
int

ui + ∑
τi∈τ1

lgt

ui > m1 (4.150)

Analogously, Expression (4.149) yields:

∑
τi∈Φ2

hvy∪Φ2
int

vi + ∑
τi∈τ2

lgt

vi > m2 (4.151)

Summing Expressions (4.150) and (4.151) yields:

∑
τi∈Φ1

hvy∪Φ1
int∪τ1

lgt

ui + ∑
τi∈Φ2

hvy∪Φ2
int∪τ2

lgt

vi > m1 +m2 (4.152)

It is trivial to see that assigning all the tasks of τ1
lgt and τ2

lgt to type-1 and type-2 processors,

respectively (as in the above expression), requires the minimum processing capacity. Hence, Ex-

pression (4.152) continues to hold for any other assignment of these tasks, implying that Hfeas

cannot be a feasible assignment, which leads to a contradiction.

Failure on line 10 in Algorithm 10: From the case, we have Γ1
lgt1
⊂ τ1

lgt and Γ2
lgt2

= τ2
lgt. There-

fore, when executing line 7 in Algt there was a task τ f ∈ τ1
lgt \Γ1

lgt1
which was attempted on type-2

172 Non-migrative Scheduling on Two-type Heterogeneous Multiprocessors

processors but failed. Hence, we have:

∑
p∈P2

U [p]+ v f > m2(1+2ε) (4.153)

We know that the tasks assigned to type-2 processors at this stage are Γ2
hvy∪Γ2

int∪Γ2
lgt2

and a strict

subset of tasks from Γ2
lgt1

(line 7). Therefore, we can rewrite Expression (4.153) as:

∑
τi∈Γ2

hvy∪Γ2
int∪Γ2

lgt2
∪Γ2

lgt1

vi > m2(1+2ε)− v f (4.154)

Since τ f ∈ τ1
lgt \Γ1

lgt1
, we know that v f < ε ≤ m2ε . Using this on Expression (4.154) gives us:

∑
τi∈Γ2

hvy∪Γ2
int

vi + ∑
τi∈Γ2

lgt2
∪Γ2

lgt1

vi > m2(1+ ε) (4.155)

Applying Expression (4.129) on Expression (4.155), we get:

(1+ ε)× ∑
τi∈Φ2

hvy∪Φ2
int

vi + ∑
τi∈Γ2

lgt2
∪Γ2

lgt1

vi > m2(1+ ε) (4.156)

Dividing Expression (4.156) by 1+ε and since from trivial arithmetic we know that ∑τi∈Γ2
lgt2
∪Γ2

lgt1
vi >

1
1+ε
×∑τi∈Γ2

lgt2
∪Γ2

lgt1
vi, we obtain:

∑
τi∈Φ2

hvy∪Φ2
int

vi + ∑
τi∈Γ2

lgt2
∪Γ2

lgt1

vi > m2 (4.157)

We also know that, when Algt executed line 1 (where it performed fract-next-fit), there must

have been a task τ f1 ∈ τ1
lgt \Γ1

lgt1
which was attempted on type-1 processors but failed to be as-

signed. Note that this task τ f1 may be the same as τ f mentioned above or it may be different.

Because it was not possible to assign τ f1 on type-1 processors, we know that:

∑
p∈P1

U [p]+u f1 > m1(1+2ε) (4.158)

We know that the tasks assigned to type-1 processors are Γ1
hvy ∪Γ1

int ∪Γ1
lgt1

and thus, we rewrite

Expression (4.158) as:

∑
τi∈Γ1

hvy∪Γ1
int∪Γ1

lgt1

ui > m1(1+2ε)−u f1 (4.159)

Since τ f1 ∈ τ1
lgt \Γ1

lgt1
, we have u f1 < ε ≤ 2ε . Hence, we can rewrite Expression (4.159) as:

∑
τi∈Γ1

hvy∪Γ1
int

ui + ∑
τi∈Γ1

lgt1

ui > m1(1+ ε) (4.160)

4.6 A polynomial time approximation scheme 173

Applying Expression (4.128) on Expression (4.160), we get:

(1+ ε)× ∑
τi∈Φ1

hvy∪Φ1
int

ui + ∑
τi∈Γ1

lgt1

ui > m1(1+ ε) (4.161)

Dividing Expression (4.161) by 1+ε and since (from trivial arithmetic we know that) ∑τi∈Γ1
lgt1

ui >

1
1+ε

∑τi∈Γ1
lgt1

ui, we get:

∑
τi∈Φ1

hvy∪Φ1
int

ui + ∑
τi∈Γ1

lgt1

ui > m1 (4.162)

Finally, Expression (4.162) can be rewritten as:

∑
τi∈Γ1

lgt1

ui > m1−

 ∑
τi∈Φ1

hvy

ui + ∑
τi∈Φ1

int

ui

 (4.163)

Let us now discuss the feasible assignment, Hfeas. Let Φ1
lgt denote the set of tasks assigned to

type-1 processors in Hfeas, excluding those in Φ1
hvy ∪Φ1

int. Similarly, let Φ2
lgt denote the set of

tasks assigned to type-2 processors in Hfeas, excluding those in Φ2
hvy∪Φ2

int. Since, by assumption,

Hfeas succeeds in assigning all the tasks in τ to the processors, it holds that:

∑
τi∈Φ1

hvy

ui + ∑
τi∈Φ1

int

ui + ∑
τi∈Φ1

lgt

ui ≤ m1 (4.164)

and ∑
τi∈Φ2

hvy

vi + ∑
τi∈Φ2

int

vi + ∑
τi∈Φ2

lgt

vi ≤ m2 (4.165)

Expression (4.164) can be rewritten as:

∑
τi∈Φ1

lgt

ui ≤ m1−

 ∑
τi∈Φ1

hvy

ui + ∑
τi∈Φ1

int

ui

 (4.166)

We can now reason about the inequalities we obtained about the assignment, Hfeas, and the

one constructed by Algt. We can see that Expressions (4.163) and (4.166), with x = ∑τi∈Φ1
hvy

ui +

∑τi∈Φ1
int

ui, ensure that the assumptions of Lemma 28 are true, given the ordering of tasks in τ1
lgt

during assignment over type-1 processors (line 1 in Algorithm 11), which ensures that ∀τi ∈
Γ1

lgt1
,∀τ j ∈ Γ2

lgt1
: vi

ui
≥ v j

u j
. By applying Lemma 28 with the following input:

• T = τ \ (Φ1
hvy∪Φ2

hvy∪Φ1
int∪Φ2

int),

• T 1 = τ1
lgt, T 2 = τ2

lgt = Γ2
lgt2

,

• x = ∑τi∈Φ1
hvy

ui +∑τi∈Φ1
int

ui,

• A1 is Γ1
lgt1

;
(4.163)⇒ ∑τi∈A1 ui > m1− x,

174 Non-migrative Scheduling on Two-type Heterogeneous Multiprocessors

• A2 is Γ2
lgt1

; Note that, for every pair of tasks, τi ∈ A1 and τ j ∈ A2, it holds that, vi
ui
−1≥ v j

u j
−1,

• B1 is Φ1
lgt;

(4.166)⇒ ∑τi∈B1 ui ≤ m1− x,

• B2 is Φ2
lgt.

we get:

∑
τi∈Γ1

lgt1

ui + ∑
τi∈Γ2

lgt1

vi + ∑
τi∈Γ2

lgt2

vi ≤ ∑
τi∈Φ1

lgt

ui + ∑
τi∈Φ2

lgt

vi

Adding ∑
τi∈Φ1

hvy∪Φ1
int

ui + ∑
τi∈Φ2

hvy∪Φ2
int

vi to both the sides in the above inequality yields

∑
τi∈Φ1

hvy∪Φ1
int∪Γ1

lgt1

ui + ∑
τi∈Φ2

hvy∪Φ2
int∪Γ2

lgt1
∪Γ2

lgt2

vi ≤ ∑
τi∈Φ1

hvy∪Φ1
int∪Φ1

lgt

ui + ∑
τi∈Φ2

hvy∪Φ2
int∪Φ2

lgt

vi

Applying Expressions (4.164) and (4.165), we get:

∑
τi∈Φ1

hvy∪Φ1
int∪Γ1

lgt1

ui + ∑
τi∈Φ2

hvy∪Φ2
int∪Γ2

lgt1
∪Γ2

lgt2

vi ≤ m1 +m2 (4.167)

Applying Expressions (4.157) and (4.162) to Expression (4.167) yields:

m1 +m2 < m1 +m2

This is a contradiction.

Failure on line 18 in Algorithm 10: A contradiction results — proof analogous to the previ-

ous case.

We showed that all the cases where Algt declares FAILURE lead to a contradiction. Hence,

the lemma holds.

4.6.8 Integral assignment of τint and τlgt (Step 4)

We now discuss how to integrally assign the tasks from τint and τlgt that were fractionally assigned

by algorithms Aint and Algt, respectively. We also show that, if there is a feasible non-migrative

assignment of the given task set on a given two-type platform then our PTAS succeeds in finding

such a feasible non-migrative assignment of τ as well but on a platform in which every processor

is 1+3ε times faster.

4.6.8.1 The description of Afract algorithm

The algorithm, Afract, works as follows:

1. Copy the assignment (made by Ahvy, Aint and Algt on π(1+2ε)) onto a faster platform, π(1+3ε).

4.6 A polynomial time approximation scheme 175

2. On this platform, π(1+3ε), assign the task split between any two processors p1 and p1 + 1

of type-1 entirely on to processor p1, where 1 ≤ p1 < m1; similarly, assign the task split

between any two processors p2 and p2 + 1 of type-2 entirely on to processor p2, where

1≤ p2 < m2.

3. Assign the task split between m1’th processor of type-1 and m2’th processor of type-2 (i.e,

task τ f) to any of these processors.

4.6.8.2 Assignment analysis

Theorem 18. If there exists a feasible non-migrative assignment of a task set τ on a two-type

platform π then our PTAS algorithm, PTASNF, (which uses Ahvy, Aint, Algt and Afract, in sequence)

succeeds as well in finding a feasible non-migrative assignment of τ but on a platform π(1+3ε).

Proof. We know from Lemma 29 that, if there exists a feasible non-migrative assignment of τ on

π then the three algorithms Ahvy, Aint and Algt described in Section 4.6.4 to Section 4.6.7 succeed

in assigning tasks in τ (with a subset of tasks from τint and τlgt fractionally assigned) on π(1+2ε).

As a consequence, we have:

∀p ∈ π
(1+2ε) : U [p]≤ 1+2ε (4.168)

We also know that, in such an assignment, as a consequence of using the wrap-around tech-

nique in Aint and Algt, it holds that:

• at most m1−1 tasks are split between processors of type-1 with one task split between each

pair of consecutive processors; let the set Γ1
split denote these fractional tasks.

• at most m2−1 tasks are split between processors of type-2 with one task split between each

pair of consecutive processors; let the set Γ2
split denote these fractional tasks.

• at most one task (from τlgt) is split between processors of type-1 and type-2; let τ f ∈ τlgt

denote this task that must be split between the m1’th processor of type-1 and the m2’th

processor of type-2.

• the rest of the tasks are integrally assigned to either type-1 or type-2 processors.

Let τ1
p1,p1+1 ∈ Γ1

split denote the task split between the p1’th and the (p1+1)’th processors of type-1

where 1≤ p1 < m1. Analogously, let τ2
p2,p2+1 ∈ Γ2

split denote the task split between the p2’th and

the (p2 +1)’th processors of type-2 where 1≤ p2 < m2.

To prove the theorem, we need to show that Afract succeeds in integrally assigning all the

fractional tasks on π(1+3ε).

On Step 1, Afract copies the assignment from π(1+2ε) onto a faster platform π(1+3ε). After this

step,

∀p ∈ π
(1+3ε) : U [p]≤ 1+2ε (4.169)

176 Non-migrative Scheduling on Two-type Heterogeneous Multiprocessors

Since Γ1
split ⊆

{
τ1

int∪ τlgt
}

, Γ2
split ⊆

{
τ2

int∪ τlgt
}

, we have:

(4.116),(4.121)⇒∀τi ∈ Γ
1
split : ui < ε (4.170)

(4.116),(4.122)⇒∀τi ∈ Γ
2
split : vi < ε (4.171)

On Step 2, Afract assigns the split tasks integrally. So, ∀p1 ∈ type-1 of π(1+3ε), it moves the

fraction of the task, τ1
p1,p1+1, that is assigned to (p1 +1)’th processor of type-1 to p1’th processor

of type-1. After this re-assignment, it follows from Expression (4.169) and Expression (4.170)

that:

∀p1 ∈ type-1 of π
(1+3ε) ∧ p1 6= m1 : U [p1]≤ 1+3ε (4.172)

if p1 ∈ type-1 of π
(1+3ε) ∧ p1 = m1 : U [p1]≤ 1+2ε (4.173)

Analogously, ∀p2 ∈ type-2 of π(1+3ε), it moves the fraction of the task, τ2
p2,p2+1, that is as-

signed to (p2 +1)’th processor of type-2 to p2’th processor of type-2. After this re-assignment, it

follows from Expression (4.169) and Expression (4.171) that:

∀p2 ∈ type-2 of π
(1+3ε) ∧ p2 6= m2 : U [p2]≤ 1+3ε (4.174)

if p2 ∈ type-2 of π
(1+3ε) ∧ p2 = m2 : U [p2]≤ 1+2ε (4.175)

Finally, the task, τ f , that is split between the m1’th processor of type-1 and the m2’th processor

of type-2 remains to be integrally assigned. Since τ f ∈ τlgt, it holds that, u f < ε and v f < ε . From

Expression (4.173) and (4.175), it follows that, task τ f can be integrally assigned to either m1’th

or m2’th processor. Hence, after integrally assigning this task, we obtain:

∀p ∈ π
(1+3ε) : U [p]≤ 1+3ε (4.176)

Since Expression (4.176) is a necessary and sufficient schedulability condition for EDF on

a uniprocessor of capacity 1 + 3ε , the assignment of τ on π(1+3ε) returned by our algorithm,

PTASNF, is a feasible assignment. Hence, the proof.

4.6.9 Average-case performance evaluations

After studying the theoretical bound, i.e., the speed competitive ratio of our algorithm, PTASNF,

we evaluate its average-case performance and compare it with prior state-of-the-art algorithm,

PTASLP. For this purpose, we look at the following aspects: (i) how much faster processors our

algorithm needs in practice in order to obtain a feasible non-migrative assignment of a task set

compared to PTASLP? (i.e., comparison of the necessary multiplication factors) and (ii) how fast

our algorithm runs compared to PTASLP? Also, we look at (iii) how much pessimism is there in

the theoretically derived performance bound of our algorithm, PTASNF?

In order to answer these questions, we performed two sets of experiments. In the first set of ex-

periments, we compared the average-case performance of our algorithm, PTASNF, with PTASLP.

4.6 A polynomial time approximation scheme 177

Recall that the speed competitive ratio of both these algorithms depend on the value of the input pa-

rameter, ε . Hence, we evaluated the average-case performance of both the algorithms for different

values of ε . We observed that, in our evaluations with randomly generated task sets, our algorithm

requires significantly smaller necessary multiplication factor than PTASLP. We also observed that

our algorithm runs faster by orders of magnitude compared to PTASLP. Overall, PTASNF exhibits

a better average-case performance by outperforming the prior state-of-the-art algorithm, PTASLP.

In the second set of evaluations, in order to see how much pessimism our theoretical analysis has,

we evaluated only PTASNF for different values of ε . We observed that, it performs significantly

better in simulations by requiring much smaller processor speedup than indicated by its theoretical

bound of 1+3ε . We now discuss both the cases in detail.

4.6.9.1 First set of evaluations: Comparison with the state-of-the-art

We implemented both the algorithms, PTASNF and PTASLP, using C on Windows XP on an Intel

Core2 (2.80 GHz) machine. For PTASLP, which relies on solving linear programming formula-

tions, we used one of the state-of-the-art LP/ILP solvers, IBM ILOG CPLEX [IBM12].

The algorithm, PTASLP, proposed in [WBB13], for partitioning the task set on heterogeneous

multiprocessors, can be summarized as follows:

• The given task set is transformed into another task set by “rounding up” the utilizations to

some specific values that are determined based on the value of ε .

• The tasks in the transformed task set are grouped into big and small tasks based on their

utilizations. For big tasks, different feasible patterns are generated using dynamic program-

ming.

• For a feasible pattern, the task assignment problem (for both big and small tasks) is formu-

lated as an ILP and then relaxed to LP. The LP formulation is solved using an LP solver. If

a feasible solution is returned by the LP solver then go to next step else consider the next

feasible pattern and repeat this step.

• Using the values of the indicator variables from the solution returned by the LP solver,

construct a bipartite graph and define a fractional matching. In the bipartite graph, one

set of nodes represent the tasks and another set of nodes represent the processors. The

fractional matching represents how much fraction of a task (indicated by the value of the

indicator variable) is assigned to the processor to which it is connected in the graph.

• Using any maximum cardinality bipartite matching algorithm (e.g., Ford-Fulkerson algo-

rithm — see pp. 714 in [CLRS01]), find an integral matching from the fractional matching.

This integer matching gives the non-migrative assignment of the tasks to the processors.

We denote the necessary multiplication factor of PTASNF and PTASLP by NMFNF and NMFLP,

respectively. For different values of ε , for many task sets, we assess the average-case performance

178 Non-migrative Scheduling on Two-type Heterogeneous Multiprocessors

of both the algorithms by measuring their (i) necessary multiplication factors and (ii) average

running times.

The problem instances (number of tasks, their utilizations and the number of processors of

each type) are generated randomly. Each problem instance had at most 10 tasks and at most 2

processors of each type. We generated 5000 task sets10, denoted as {τ(1),τ(2), . . . ,τ(5000)}, which

we transformed into “critically feasible non-migrative task sets”. Recall that, a critically feasible

task set is a task set which is non-migrative feasible on a given two-type platform but rendered

non-migrative infeasible if all the task utilizations (i.e., both ui and vi of each task) are increased

by an arbitrarily small factor.

To obtain a critically feasible non-migrative task set, τ
(k)
crit, from a randomly generated task

set, τ(k), k ∈ [1,5000], we perform the assignment of tasks in τ(k) by formulating the problem as

an MILP as shown in Figure 4.17 and feeding it to a solver (such as IBM ILOG CPLEX) which

outputs Z, the utilization of the most utilized processor. Then, we multiply all the task utilizations

by 1/Z (which is equivalent to multiplying the speeds of every processor by Z) and repeatedly

feed it back to the solver until 0.99 < Z ≤ 1, which gives us τ
(k)
crit.

Minimize Z subject to the following constraints:
I1. ∑

m
j=1 xi j = 1 (i = 1,2, · · · ,n)

I2. ∑
n
i=1 (xi j ·ui j)≤ Z (j = 1,2, · · · ,m)

I3. xi j are non-negative integers (i = 1,2, · · · ,n)
(j = 1,2, · · · ,m)

Figure 4.17: Mixed Integer Linear Programming formulation to find a
feasible partitioning of τ(k) on π — xi j are indicator variables and ui j are utilizations.

For a given ε , for each critically feasible non-migrative task set, τ
(k)
crit, and algorithm, A (where

A is either PTASNF or PTASLP), we measure the necessary multiplication factor, denoted by

NMF(k)
A (ε). The procedure to obtain the necessary multiplication factor of an algorithm for a given

set of critically feasible non-migrative task sets was discussed (along with the pseudo-code — see

Algorithm 1 on page 70 for the pseudo-code) earlier in Section 3.8 (see page 68) in Chapter 3.

This procedure is repeated for 5000 critically feasible task sets. Algorithm 1 is repeatedly called

with different values of ε , specifically, we used ε = 0.1,0.2,0.25 and 0.3.

With this procedure, we obtain the histograms of NMFs for both the algorithms for different

values of ε . Figure 4.18 shows the histograms. As can be seen from Figure 4.18b, in the evalu-

ations with ε = 0.2, the NMFNF never exceeded 1.12 which is only 20% away from the optimal

value of 1.0 compared to its upper bound of 1+ 3ε = 1.60, i.e., 1.12−1.0
1.6−1.0 × 100 = 20%, whereas

NMFLP is as high as 1.30 which is 60% away from the optimal value of 1.0 compared to its up-

per bound of 1+ε

1+ε
= 1.50, i.e., 1.3−1.0

1.5−1.0 × 100 = 60%. Overall, in simulations, PTASNF requires

10Since PTASLP has a huge run-time complexity as it heavily relies on solving LP formulation (i.e., it solves LP
formulation for every feasible pattern generated by the dynamic programming till it succeeds), the number of problem
instances and the size of each problem instance were set to relatively smaller values. For example, in the simulations
with ε = 0.3, PTASLP took 48h to determine the NMF of 5000 critically feasible task sets.

4.6 A polynomial time approximation scheme 179

1

10

100

1000

10000

1.02 1.04 1.06 1.08 1.10 1.12 1.14 1.16 1.18 1.20 1.22 1.24 1.26 1.28 1.30

N
u

m
b

e
r

o
f

ta
sk

 s
e

ts
 (

lo
g

1
0
 s

ca
le

)

Necessary multiplication factor

PTAS-NF

PTAS-LP

(a) Comparison with ε = 0.1

1

10

100

1000

10000

1.04 1.08 1.12 1.16 1.20 1.24 1.28 1.32 1.36 1.40 1.44 1.48 1.52 1.56 1.60

N
u

m
b

e
r

o
f

ta
sk

 s
e

ts
 (

lo
g

1
0
 s

ca
le

)

Necessary multiplication factor

PTAS-NF

PTAS-LP

(b) Comparison with ε = 0.2

1

10

100

1000

10000

1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50 1.55 1.60 1.65 1.70 1.75

N
u

m
b

e
r

o
f

ta
sk

 s
e

ts
 (

lo
g

1
0
 s

ca
e

l)

Necessary multiplication factor

PTAS-NF

PTAS-LP

(c) Comparison with ε = 0.25

1

10

100

1000

10000

1.06 1.12 1.18 1.24 1.30 1.36 1.42 1.48 1.54 1.60 1.66 1.72 1.78 1.84 1.90

N
u

m
b

e
r

o
f

ta
sk

 s
e

ts
 (

lo
g

1
0
 s

ca
le

)

Necessary multiplication factor

PTAS-NF

PTAS-LP

(d) Comparison with ε = 0.3

Figure 4.18: Comparison of necessary multiplication factors of PTASNF and PTASLP for different
values of ε (if an algorithm has low NMF for many task sets then the algorithm is said to perform
well).

much smaller necessary multiplication factor compared to PTASLP in order to find a feasible non-

migrative assignment. As can be seen from Figure 4.18, the observations for other values of ε

follow the same trend.

We also measure the average running times of both the algorithms for different values of ε . In

these evaluations, the necessary multiplication factor is set to 1+ 3ε for PTASNF and to 1+ε

1+ε
for

PTASLP. This ensures that both the algorithms always succeed in finding a feasible non-migrative

assignment for a given task set in a single run and hence the evaluations are not biased to give

advantage to any of the algorithms. In our evaluations with 5000 task sets, as can be seen in

Table 4.13, for ε = 0.1, for each task set, PTASNF, has an average running time of 128 µs whereas

the PTASLP has an average running time of 6583384 µs ≈ 6.6 s. Hence, for ε = 0.1, for each

task set, PTASNF runs approximately 50000 times faster compared to PTASLP. This factor is even

higher for other values of ε as illustrated in Table 4.13.

To summarize, in our evaluations, PTASNF exhibits a better average-case performance by re-

quiring significantly smaller processor speedup for finding a feasible non-migrative assignment

and by running orders of magnitude faster compared to PTASLP. Overall, PTASNF outperforms

prior state-of-the-art algorithm, PTASLP.

180 Non-migrative Scheduling on Two-type Heterogeneous Multiprocessors

Measured average running times Ratio of average running times
Value of ε PTASNF PTASLP [WBB13]

0.10 128.57 6583384.71 51204
0.15 45.43 6914127.72 152192
0.20 18.40 4449061.29 241796
0.25 10.48 1564060.39 149242
0.30 7.17 465894.09 64978

Table 4.13: Comparison of average running times of PTASNF and PTASLP (in µs) for different
values of ε .

4.6.9.2 Second set of evaluations: Performance of PTASNF for different values of ε

In order to understand how much pessimism is there in the analysis of PTASNF, we evaluated its

average-case performance for different values of ε . In this set of evaluations, we chose larger

number of problem instances with each problem instance being more complex. We generated

10000 critically feasible non-migrative task sets where each task set had at most 25 tasks and

at most 3 processors of each type. Since we do not run PTASLP (which takes much longer to

output a solution as it relies on solving several linear programming formulations) in this batch

of evaluations, we could increase the problem instances and size of each problem compared to

the previous set of evaluations. Then, for different values of ε , we ran PTASNF on these 10000

critically feasible non-migrative task sets and obtained histograms of NMFNF. Figure 4.19 shows

these histograms. As can be seen from Figure 4.19c, for example, in the experiments with ε = 0.3,

for almost 98% of the task sets, the NMFNF did not exceed 1.06 which is approximately 7% of

its theoretical bound (i.e., 1+3ε = 1.90), for the remaining 2% of the task sets, the factor did not

exceed 1.12 which is approximately 13% of its theoretical bound. Thus, in the evaluations, for the

vast majority of task sets, our algorithm requires much smaller processor speedup than indicated

by its speed competitive ratio. As can be seen from Figure 4.19, the observations for other values

of ε follow the same trend.

Hence, PTASNF performs significantly better in simulations than indicated by its theoretical

bound.

4.6.10 Summary

In this section, for the problem of non-migrative task assignment on two-type heterogeneous mul-

tiprocessors, we presented a polynomial-time approximation scheme, PTASNF. This algorithm

uses a combination of dynamic programming technique and bin-packing heuristic to output the

task assignment. We showed that the speed competitive ratio of PTASNF is 1+ 3ε against an

equally powerful non-migrative adversary. The PTASNF algorithm is shown to outperform the

prior state-of-the-art PTAS (referred to as PTASLP) in terms of the time-complexity. We also eval-

uated and compared the average-case performance of our PTASNF algorithm with PTASLP. This

is done by generating random task sets and converting them into critically feasible non-migrative

4.6 A polynomial time approximation scheme 181

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1.04 1.08 1.12 1.16 1.20 1.24 1.28 1.32 1.36 1.40 1.44 1.48 1.52 1.56 1.60

N
u

m
b

e
r

o
f

ta
sk

 s
e

ts

Necessary multiplication factor

PTAS-NF

(a) Performance with ε = 0.2

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50 1.55 1.60 1.65 1.70 1.75

N
u

m
b

e
r

o
f

ta
sk

 s
e

ts

Necessary multiplication factor

PTAS-NF

(b) Performance with ε = 0.25

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1.06 1.12 1.18 1.24 1.30 1.36 1.42 1.48 1.54 1.60 1.66 1.72 1.78 1.84 1.90

N
u

m
b

e
r

o
f

ta
sk

 s
e

ts

Necessary multiplication factor

PTAS-NF

(c) Performance with ε = 0.3

Figure 4.19: Performance evaluation of PTASNF for different values of ε in terms of the necessary
multiplication factor.

task sets and then measuring the necessary multiplication factor of the algorithm for each of those

critically feasible task sets. In our evaluations, we observed that, for the vast majority of task

sets, (i) our PTASNF algorithm outperforms PTASLP by requiring significantly smaller proces-

sor speedup for finding a feasible non-migrative assignment and by running orders of magnitude

faster and (ii) PTASNF algorithm performed significantly better by succeeding in finding a feasi-

ble non-migrative assignment with necessary multiplication factor much smaller than the speed

competitive ratio.

For the problem of non-migrative task assignment on heterogeneous multiprocessors, although

many PTAS existed before this work, all of them had prohibitively large constants in their respec-

tive run-time expressions which limited their practical significance severely. This work designed

a polynomial time approximation scheme which is efficient to be usable in practice.

182 Non-migrative Scheduling on Two-type Heterogeneous Multiprocessors

4.7 Conclusions and Discussions

We first summarize the four non-migrative algorithms presented in this chapter and then discuss

the advantages and disadvantages of each of these algorithms.

4.7.1 Summary

In this chapter, we considered the problem of non-migrative scheduling of implicit-deadline spo-

radic tasks on two-type heterogeneous multiprocessors. This problem consists of two sub-problems:

(i) assigning tasks to processors and (ii) scheduling the tasks on each processor. The second sub-

problem is well-understood and even optimal scheduling algorithms (for example, EDF) exist to

schedule the tasks assigned to a processor. Hence, assuming that such an optimal scheduling algo-

rithm is used to schedule the tasks on each processor, the challenge is to find a feasible assignment

of tasks to processors. Thus, the problem of non-migrative task scheduling under consideration

translates to the problem of non-migrative task assignment. This problem is shown to be NP-

Complete in the strong sense. For this problem, we proposed four polynomial time-complexity

algorithms with different speed competitive ratio and time-complexity.

The first algorithm, FF-3C, has a low-degree polynomial time-complexity and has provably

good performance. Specifically, FF-3C (i) has a time-complexity of O(n ·max(m, logn)), where n

denotes the number of tasks and m denotes the number of processors, (ii) has a speed competitive

ratio of 1+α ≤ 2 against equally powerful non-migrative adversary, where the parameter 0 < α ≤
1 is a property of the task set; it is the maximum of all the task utilizations that are no greater than

1. Note that, the speed competitive ratio of FF-3C reaches 2 when α = 1. FF-3C has a superior

performance to state-of-the-art. This is because (i) FF-3C has the same speed competitive ratio

as algorithms in [Bar04b, Bar04c, LST90] (whose performances have been proven against a non-

migrative adversary) but with a better time-complexity and (ii) among the algorithms with speed

competitive ratio proven against a more powerful fully-migrative adversary [CSV12], FF-3C offers

the best speed competitive ratio and (iii) compared to PTAS algorithms [HS76, JP99, WBB13]

that offer better speed competitive ratios (for lower values of ε) but whose practical significance is

severely limited as they incur a very high time-complexity (i.e., exponential in number processors

or exponential in 1/ε), FF-3C offers a significantly lower (i.e., low-degree polynomial) time-

complexity.

Several extensions to FF-3C algorithms were also presented; these offer the same speed com-

petitive ratio and time-complexity but in addition, they offer improved average-case performance.

Via experiments with randomly generated task sets, we compare the average-case performance of

FF-3C algorithm (and its variants) and two established state-of-the-art algorithms (and variations

of the latter) [Bar04b, Bar04c]. We evaluate algorithms based on (i) the average running time and

(ii) the necessary multiplication factor. Overall FF-3C and its variants compare favorably to the

state-of-the-art. In particular, in our evaluations, one of the variants of FF-3C, namely FF-4C-

COMB, runs 12000 to 160000 times faster and has significantly smaller necessary multiplication

factor than the state-of-the-art [Bar04b, Bar04c] for the vast majority of the task sets.

4.7 Conclusions and Discussions 183

Further, FF-3C and its variants rely on bin-packing heuristics (such as first-fit) to output the

task assignment. To the best of our knowledge, no previous algorithm exists to assign real-time

tasks on heterogeneous multiprocessors that makes use of bin-packing heuristics and that has a

provably good performance. Therefore, this is the first work to show how bin-packing heuristics

can be used to design a task assignment algorithm for two-type heterogeneous multiprocessors

with a finite speed competitive ratio.

The second algorithm, SA-P, is an extension of (the intra-migrative) SA algorithm. SA-P also

has a low-degree polynomial time-complexity and has a provably good performance. Specifically,

SA-P (i) has a time-complexity of O(n logn), where n denotes the number of tasks and (ii) has a

speed competitive ratio of 1+α ≤ 2 against a more powerful intra-migrative adversary, where the

parameter 0 < α ≤ 1 is a property of the task set; it is the maximum of all the task utilizations that

are no greater than 1. Note that, in the worst-case (i.e., when α = 1), the speed competitive ratio of

SA-P is 2. SA-P has superior performance compared to state-of-the-art since SA-P has (i) the same

speed competitive ratio as FF-3C [ARB10, RAB13] and other algorithms in [Bar04b, Bar04c,

LST90] but with a stronger adversary and also a better time-complexity, (ii) compared to the

algorithms whose speed competitive ratio have been proven against an adversary with a migration

model of intra-migrative or greater power [CSV12], SA-P offers the best speed competitive ratio

and (iii) compared to PTAS algorithms [HS76, JP99, WBB13] that offer better speed competitive

ratios (for lower values of ε) but whose practical significance is severely limited as they incur a

very high time-complexity (i.e., exponential in number processors or exponential in 1/ε), SA-P

offers a significantly lower (i.e., low-degree polynomial) time-complexity.

Further, in the average-case performance evaluations, SA-P performed well. The average-case

performance evaluations were done by generating random task sets, converting them to critically

feasible intra-migrative task sets and then running SA-P for each of them in order to compute

the necessary multiplication factor of SA-P. In these evaluations, we observed that, for the vast

majority of task sets, SA-P algorithm performed significantly better by succeeding in finding a

feasible non-migrative assignment with a necessary multiplication factor much smaller than its

speed competitive ratio.

The third algorithm, LPC, has a polynomial time-complexity and offers the following guar-

antee. If there exists a feasible non-migrative assignment of a task set on a two-type platform

then, LPC succeeds as well in finding such a feasible non-migrative assignment for the same

task set but on a platform in which each processor is 1.5 times faster and there are 3 additional

processors, compared to the platform used by the adversary. LPC has superior performance com-

pared to state-of-the-art for systems with large number of processors, since LPC offers a bet-

ter (i.e., smaller) speed competitive ratio than all the previous algorithms. This is because (i)

for systems with large number of processors, the additional 3 processors that LPC requires be-

come negligible and hence its speed competitive ratio tends to 1.5 which is better than the al-

gorithms in [Bar04b, Bar04c, LST90, CSV12, RAB13, RABN12] and (ii) compared to PTAS

algorithms [HS76, JP99, WBB13] which incur a very high time-complexity, LPC offers a lower

(i.e., polynomial) time-complexity.

184 Non-migrative Scheduling on Two-type Heterogeneous Multiprocessors

Further, LPC relies on solving linear program formulation with cutting planes. Although task

assignment schemes with provably good performance have previously been developed by relax-

ing an Mixed Integer-Linear Program (MILP) to a Linear Program (LP) (e.g., [Bar04c, Bar04b,

LST90]) and cutting planes have been used to solve (M)ILP in different efforts, no work in the

past has shown how cutting planes can be used to improve the speed competitive ratio of provably

good algorithms for assigning real-time tasks to processors. Hence, to the best of our knowledge,

this work is the first one to show how cutting planes can be used to improve the speed competitive

ratio of algorithms for assigning real-time tasks to two-type heterogeneous multiprocessors.

The fourth and final non-migrative algorithm that we presented, namely PTASNF, has a poly-

nomial time-complexity and has a speed competitive ratio of 1+3ε against equally powerful non-

migrative adversary. This algorithm relies on dynamic programming techniques and bin-packing

heuristics to output the feasible non-migrative task assignment. PTASNF has superior performance

compared to prior state-of-the-art since (i) compared to algorithms proposed in [Bar04c, Bar04b,

LST90, RAB13, RABN12, RA13], it has a better speed competitive ratio and (ii) compared to

previous PTASs [HS76, JP99, WBB13], it has a better time-complexity. Specifically, compared

to PTASLP of [WBB13], our PTAS has a much better run-time complexity, in the sense that, it is

efficient enough to be usable in practice, whereas the practical significance of PTASLP is severely

limited as it has a very high run-time complexity since the constants in the run-time expression of

PTASLP are prohibitively large.

Further, in the average-case performance evaluations, PTASNF performed better as well. The

average-case performance evaluations were done by generated random task sets, converting them

to critically feasible non-migrative task sets and then running PTASNF and PTASLP for each of

them in order to compute their respective necessary multiplication factors. In our evaluations,

PTASNF exhibits a better average-case performance than PTASLP by succeeding to find a feasible

non-migrative assignment with a significantly smaller necessary multiplication factor for a large

number of task sets and by running orders of magnitude faster compared to PTASLP. Overall,

PTASNF outperforms PTASLP. Also, in evaluations with different values of ε , for the vast majority

of task sets, PTASNF succeeds to obtain a feasible non-migrative assignment with a much smaller

necessary multiplication factor compared to its speed competitive ratio.

4.7.2 Discussion

We now briefly discuss the advantages and disadvantages of each of these algorithms when com-

pared against each other. The four algorithms can be summarized as shown in Figure 4.20.

As can be seen from Figure 4.20, SA-P algorithm completely dominates FF-3C algorithm.

This is because although SA-P has approximately the same time-complexity as FF-3C, it has a

speed competitive ratio which is better than that of FF-3C. This is due to the fact that although the

speed competitive ratio of both FF-3C and SA-P is given by 1+α ≤ 2, the speed competitive ratio

of FF-3C is quantified against an equally powerful non-migrative adversary whereas the speed

competitive ratio of SA-P is quantified against a more powerful intra-migrative adversary. As

illustrated in Table 2.2 on page 32 in Chapter 2, it can be concluded that, the speed competitive

4.7 Conclusions and Discussions 185

Fully
migrative

Intra
migrative

Non
migrative

Algorithm Adversary

FF-3C

SCR=1+α
O(n max(m, log n)

Fully
migrative

Intra
migrative

Non
migrative

LPC

SCR=1.5 (+ 3 extra procs)
O(P)

PTASNF

SCR=PTAS (1 + 3ε)
O(exp. in 1/ε)

Figure 4.20: Summary of the four non-migrative algorithms presented in this chapter. Here, SCR
denotes the “speed competitive ratio”, n denotes the number of tasks, m denotes the number of
processors, ε > 0 is an input parameter to the algorithm and α is a property of the task set — it is
the maximum of all the task utilizations that are no greater than one.

ratio of SA-P is better than that of FF-3C. Hence, SA-P dominates FF-3C and therefore we ignore

FF-3C algorithm in the rest of the discussion.

For the other three algorithms, i.e., SA-P, LPC and PTASNF, it is difficult to establish such a

clear dominance relationship (mainly because their respective speed competitive ratios are quan-

tified in different ways). Hence, we only highlight some of the advantages and disadvantages of

these algorithms when compared to each other.

SA-P. This algorithm has the following advantages compared to LPC and PTASNF algorithms.

It is easy to implement and it has a low-degree polynomial time-complexity. However, its speed

competitive ratio is generally higher than that of the LPC and the PTASNF algorithms. Specifically,

its speed competitive ratio (i) is higher than that of the LPC for systems with large processors and

(ii) is higher than that of the PTASNF for small values of ε .

LPC. Its advantage is in the speed competitive ratio that it offers when compared to SA-P

and PTASNF algorithms. For systems with a large number of processors, the speed competitive

ratio of LPC tends to 1.5. Hence, (i) compared to algorithms whose speed competitive ratios have

been proven against an adversary with a migration model of intra-migrative or greater power (i.e.,

SA-P), LPC offers the best speed competitive ratio and (ii) compared to PTASNF, it has a better

speed competitive ratio for any value of ε greater than about 0.17. Its disadvantage is that it has a

186 Non-migrative Scheduling on Two-type Heterogeneous Multiprocessors

higher time-complexity than SA-P since it relies on solving an LP formulation.

PTASNF. It has the advantage of being able to partition the task set in polynomial time, to any

desired degree of accuracy (which can be tuned using the input parameter ε) which the other two

algorithms are not capable of. However, its disadvantage is that, for smaller values of ε , it may

take significantly longer time to finish execution when compared to the other two algorithms (as

its time-complexity depends exponentially on 1/ε).

Chapter 5

Shared Resource Scheduling on
Two-type Heterogeneous
Multiprocessors

5.1 Introduction

In this chapter, we consider the problem of scheduling a set of tasks to meet all deadlines on a

two-type heterogeneous multiprocessor platform where tasks may access shared resources — we

refer to this problem as shared resource scheduling problem. Tasks typically share a processor but

in many computer systems, tasks also share other resources such as data structures, sensors, etc.

Tasks must operate on such shared resources in a mutually exclusive manner while accessing the

resource, that is, at all times, when a job of a task holds a resource, no other job of any task can hold

that resource. Even on a single processor, the sharing of such resources can have a profound effect

on timing behavior as witnessed by the near failure of the NASA mission, Mars Pathfinder, because

the resource-sharing protocol in the operating system was not enabled [Jon97]. Scheduling real-

time tasks that share resources on a multiprocessor platform is even more complex. Our goal in

this work is to design an algorithm for scheduling real-time tasks that share resources (apart from

processors) on two-type heterogeneous multiprocessors so as to meet all the deadlines.

Despite the trend of increase in the usage of chips having two different types of processors

(for example, see [AMD13a, Int13c, Nvi12]), the state-of-art in real-time scheduling theory for

heterogeneous multiprocessors is under-developed. The reasons include (i) processors typically

sharing low-level hardware resources (e.g., caches, interconnects), which makes task execution

times interdependent and (ii) dispatching limitations, for example, some processors depend on

another processor for dispatching [GHF+06]. Such idiosyncratic challenges must be addressed

on a case-by-case basis, accounting for the particularities of the architecture. The state-of-the-

art does offer some general ideas on analyzing shared low-level hardware resources [DAN+11,

LSL+09, LYGY10, PSC+10, RAEP07, SNE10] and scheduling co-processors [Ble07, GAB02,

LR10]. Ultimately though, the dependency of the task execution time on the processor-type is

187

188 Shared Resource Scheduling on Two-type Heterogeneous Multiprocessors

what inherently complicates the design of scheduling algorithms for heterogeneous platforms.

Therefore, designers using heterogeneous multiprocessors today and in the future can benefit from

scheduling theories that consider this inherent property. And for this reason, in this work, we

design an algorithm (considering this property) to schedule tasks that share resources (in addition

to processors) on two-type heterogeneous multiprocessors and prove its speed competitive ratio.

Problem Statement. We consider the problem of scheduling a task set of implicit-deadline

sporadic tasks to meet all deadlines on a two-type heterogeneous multiprocessor platform where

each task may access at most one resource from the set of given shared resources. The multi-

processor platform has m1 processors of type-1 and m2 processors of type-2. The set of shared

resources is denoted by R. For each task τi, there is a resource in R such that for each job of task

τi, during one phase of its execution, the job requests to hold this resource exclusively, with the

interpretation that, (i) the job makes a single request to hold this resource and (ii) at all times,

when a job of task τi holds the resource, no other job holds this resource. Each job of task τi

may request this resource at most once during its execution. A job is allowed to migrate when it

requests a resource and when it releases the resource but a job is not allowed to migrate at other

times. One can show that the problem under consideration is NP-Complete in the strong sense (by

mapping an instance of the 3-PARTITION problem to an instance of the problem under consider-

ation). Hence, in this work, we aim to design a scheduling algorithm for this problem with a finite

speed competitive ratio.

Related Work. The problem of scheduling independent sporadic tasks on heterogeneous mul-

tiprocessors has been studied in the past [HS76, JP99, LST90, Bar04c, Bar04b, WBB13, RAB13,

RABN12, RN12a, CSV12] but without considering the case in which tasks share resources. One

might assign tasks to processors and apply a resource-sharing protocol conceived for identical

multiprocessors (e.g. D-PCP [RSL88]). However, protocols such as D-PCP are less effective in

minimizing priority inversion when used in heterogeneous multiprocessors as they are in minimiz-

ing priority inversion when used in identical multiprocessors. For example, a task holding a shared

resource may be executing on a processor where it runs slowly — causing large priority inversion

to other tasks and poor schedulability. Therefore, a resource-sharing protocol for heterogeneous

platforms ought to be cognizant of the execution speed of each task on each processor. It should

also provide a finite bound on how much worse it performs, compared to an optimal scheme.

Contributions and Significance of the work discussed in this chapter. This paper presents

an algorithm, FF-3C-vpr, for scheduling tasks that share resources on a two-type heterogeneous

multiprocessor. It has a low-degree time complexity and offers the following guarantee. If a task

set can be scheduled on a two-type platform to meet all deadlines by an optimal scheme that allows

a task to migrate only when requesting or releasing a resource then FF-3C-vpr succeeds to meet

all deadlines as well with the same restriction on the migration but given a platform in which every

processors is 4+6 ·
⌈

|R|
min(m1,m2)

⌉
times faster.

We believe the significance of this work is as follows. To the best of our knowledge, for the

problem of scheduling task sets that share resources on two-type heterogeneous multiprocessors,

no previous algorithm is known to exist with a provably good performance and hence this is the

5.2 System model and assumptions 189

first result in this direction.

Organization of the chapter. The rest of the chapter is organized as follows. Section 5.2

describes the system model and states the assumptions. Section 5.3 discusses the hardness of the

shared resource scheduling problem. Section 5.4 gives the main idea of our new algorithm, FF-3C-

vpr. Section 5.5 lists notations and a few results used later to prove the speed competitive ratio of

FF-3C-vpr and also discusses virtual processors which are integral in designing FF-3C-vpr. The

algorithm, FF-3C-vpr, is presented in Section 5.6 along with the proof of its speed competitive

ratio. Finally, Section 5.7 presents some concluding remarks.

5.2 System model and assumptions

We consider the problem of scheduling implicit-deadline sporadic tasks that share resources on

a two-type heterogeneous multiprocessor platform with restricted migration (defined later). The

system is specified as follows:

• Platform (Π): The two-type platform consists of m processors of which m1 ≥ 1 processors

are of type-1 and m2 ≥ 1 processors are of type-2.

• Shared Resources (R): A set R of |R| resources that tasks share in addition to processors.

• Task set (τ): The task set consists of n implicit-deadline sporadic tasks.

• Minimum inter-arrival time, WCET and Utilization: The minimum inter-arrival time of

a task τi is denoted by Ti. Its worst-case execution time on a processor of type-t (where

t ∈ {1,2}) is denoted by Ct
i , and its utilization by U t

i .

We make the following assumptions:

• Sharing the resources: Each task may request at most one resource from R (known at

design time) and at most once by each job of that task.

• Virtual processors: Virtual processors are logical constructs, used as task assignment tar-

gets by our algorithm. A virtual processor vpi acts equivalent to a (physical) processor of the

same type with (scaled) speed 1
f — and we assume that it can be “emulated" on a physical

processor of the same type (of speed 1), using no more than 1
f of its processing capacity1.

• Restricted migration: A job of a task may migrate to another processor during execution

only when it requests a resource; it must then migrate back to the original processor upon

1One intuitive way of achieving this is by dividing time to short slots of length S and using 1
f ·S time units in each

slot to serve the workload of vpi. By selecting S, we can then make the speed of the emulated processor arbitrarily close
to 1

f (and in practice, S need rarely be impractically short) [BA09]. In strict terms, a sufficient condition for emulating
m1 type-1 virtual processors from VPAC onto m1 type-1 physical processors is: ∑

vpi∈V PAC

vpi is type−1

Vi < m1, where Vi is the

speed of virtual processor vpi (and similarly for type-2 processors in VPAC and for VPB processors). For more details
(including how to tradeoff spare processing capacity for longer S), see [BA09].

190 Shared Resource Scheduling on Two-type Heterogeneous Multiprocessors

releasing the resource. A task cannot migrate at any other instant. We call this model

restricted migration. Migration between processors of any type is allowed.

Because of the restricted migration model, we can categorize the execution of a task into dif-

ferent phases described next. For a job of a task τi that accesses a resource, we categorize the

execution into three phases as follows. Let phase-A execution of a job of task τi denote the exe-

cution the job performs from when it arrives until it requests the resource. Let phase-B execution

of a job of task τi denote the execution the job performs from when it requests the resource until

it releases that resource. Let phase-C execution of a job of task τi denote the execution the job

performs from when it releases the resource until it finishes execution. For a job of a task that does

not accesses a resource, we categorize its execution into a single phase, phase-A, which denotes

the entire execution of the job, i.e., the execution the job performs from when it arrives until it

finishes execution.

5.3 The hardness of the shared resource scheduling problem

In this section, we show that the problem under consideration, i.e., the problem of shared resource

scheduling with “restricted migration” (i.e., a job can only migrate when it requests or releases

a resource) on a two-type heterogeneous multiprocessor is NP-Complete in the strong sense. We

denote this problem as HET2-RES-MIG-REQ-REL and is stated in Figure 5.1.

In order to show this, we will first consider a special case of this problem which is denoted

as HET2-RES-MIG-REQ-REL-PHASE-A-EXEC — see Figure 5.2. We will show that this prob-

lem is NP-complete in the strong sense. It then follows that HET2-RES-MIG-REQ-REL is NP-

complete in the strong sense as well.

For showing that the HET2-RES-MIG-REQ-REL-PHASE-A-EXEC problem is NP-Complete

in the strong sense, we make use of the 3-PARTITION problem. The 3-PARTITION problem

is shown in Figure 5.3 and it is well-known that this problem is NP-Complete in the strong

sense [GJ78].

Lemma 30. The HET2-RES-MIG-REQ-REL-PHASE-A-EXEC problem described in Figure 5.2 is

NP-Complete in the strong sense.

Proof. Note that, in this problem, since (i) there is only execution in phase-A (that is, phase-B

and phase-C do not exist) and (ii) the execution time of phase-A is independent of the type of

the processor to which it is assigned, the problem is equivalent to finding a mapping of tasks

to processors so that on each processor, the cumulative utilization of all tasks assigned to the

processor is at most 100%, where it is assumed that the utilization of a task is given by ut
i

def
= CAt

i/Ti

(where t ∈ {1,2}).
In order to show that a problem is NP-Complete in the strong sense, we need to: (1) show

that the problem is in NP, (2) transform a problem which is NP-Complete in the strong sense

to the problem under consideration and (3) show that the transformation (of Step (2)) can be

5.3 The hardness of the shared resource scheduling problem 191

HET2-RES-MIG-REQ-REL
Instance A task set τ of n implicit-deadline sporadic tasks and a two-type heterogeneous

multiprocessor platform π of m processors of which m1 processors are of type-
1 and m2 processors are of type-2. There is a set R of resources. Each job of
task τi requests a resource in set R during one phase of its execution and each
job may request this resource at most once during its execution. The resource
accessed by the jobs of a task is determined by the task. The execution of a
job of task τi has three phases: phase-A, phase-B and phase-C. Phase-A is the
execution of a job from when it arrives until it requests the resource. Phase-B
is the execution of a job from when it requests the resource until it has released
the resource. Phase-C is the execution of a job from when it has released the
resource until it has finished execution.
Let CAt

i denote an upper bound on the execution time of phase-A of a job of
task τi if this phase-A execution is assigned to a processor of type-t (where
t ∈ {1,2}). Analogously, let CBt

i (resp., CCt
i) denote an upper bound on the

execution time of phase-B (resp., phase-C) of a job of task τi if this phase-
B (resp., phase-C) execution is assigned to a processor of type-t (where t ∈
{1,2}).

Problem Find an assignment of
phase-A: f : {1,2, . . . ,n}→ {1,2, . . . ,m}
phase-B: g : {1,2, . . . ,n}→ {1,2, . . . ,m}
phase-C: h : {1,2, . . . ,n}→ {1,2, . . . ,m}

such that with this assignment the task set is schedulable.

Figure 5.1: The shared resource scheduling problem considered in this work.

done in polynomial time. We now show these for HET2-RES-MIG-REQ-REL-PHASE-A-EXEC

problem.

1. It is straightforward to see that the problem belongs to NP. As a certificate, we take the

task assignment on each processor. To check whether the given assignment in fact satisfies

∑i: f (i)= j ut
i ≤ 1 for every processor j ∈ type-t of π (where t ∈ {1,2}) is obviously possible

in polynomial time.

2. We now transform the 3-PARTITON problem (which is NP-Complete in the strong sense) to

the above decision problem. Given an instance c1,c2, . . . ,c3m of the 3-PARTITION problem,

we transform it into an instance of HET2-RES-MIG-REQ-REL-PHASE-A-EXEC problem

by computing utilizations of tasks as follows:

∀τi ∈ τ,∀t ∈ {1,2} : ut
i =

ci

B
(5.1)

It can be seen that the assignment of these 3m tasks on m processors is possible if and only

if I can be partitioned into m subsets I1, I2, . . . , Im such that ∀ j : ∑i∈I j ci = B.

3. Finally, it can be easily seen that the transformation from 3-PARTITION to HET2-RES-

MIG-REQ-REL-PHASE-A-EXEC using Expression 5.1 is possible in polynomial time.

192 Shared Resource Scheduling on Two-type Heterogeneous Multiprocessors

HET2-RES-MIG-REQ-REL-PHASE-A-EXEC
Instance A task set τ of n implicit-deadline sporadic tasks and a two-type heterogeneous

multiprocessor platform π of m processors of which m1 processors are of type-
1 and m2 processors are of type-2. There is a set R of resources. Each job of
task τi requests a resource in set R during one phase of its execution and each
job may request this resource at most once during its execution. The resource
accessed by the jobs of a task is determined by the task. The execution of a
job of task τi has three phases: phase-A, phase-B and phase-C. Phase-A is the
execution of a job from when it arrives until it requests the resource. Phase-B
is the execution of a job from when it requests the resource until it has released
the resource. Phase-C is the execution of a job from when it has released the
resource until it has finished execution.
Let CAt

i denote an upper bound on the execution time of phase-A of a job of
task τi if this phase-A execution is assigned to a processor of type-t (where
t ∈ {1,2}). Analogously, let CBt

i (resp., CCt
i) denote an upper bound on the

execution time of phase-B (resp., phase-C) of a job of task τi if this phase-
B (resp., phase-C) execution is assigned to a processor of type-t (where t ∈
{1,2}).
Assume that: (i) no task accesses any resource in R, i.e., ∀τi ∈ τ,∀t ∈ {1,2} :
CBt

i =CCt
i = 0 and (ii) ∀τi ∈ τ : CA1

i =CA2
i

Problem Find an assignment of
phase-A: f : {1,2, . . . ,n}→ {1,2, . . . ,m}

such that with this assignment the task set is schedulable.

Figure 5.2: A restricted version of the shared resource scheduling problem considered in this work
(which is shown in Figure 5.1).

Hence the proof.

Theorem 19. The HET2-RES-MIG-REQ-REL problem described in Figure 5.1 is NP-Complete

in the strong sense.

Proof. Follows from Lemma 30 and the fact that the HET2-RES-MIG-REQ-REL-PHASE-A-

EXEC problem is a restricted version of the HET2-RES-MIG-REQ-REL problem.

5.4 Overview of our approach

The key to our approach is to distinguish between three phases in the execution of a task and make

different scheduling provisions for each of them (Figure 5.4):

• Phase-A of a task spans from its arrival until it requests a shared resource.

• In its Phase-B, the task is holding (or waiting for) the shared resource.

• In its Phase-C, the task has released the resource and executes till its completion.

The main structure of our approach is as follows:

5.5 Few notations and useful results 193

3-PARTITION PROBLEM
Instance A list of 3m integers I = {c1,c2, . . . ,c3m} where ∀i : ci ≥ 2 and a bound B such

that ∑
3m
i=1 ci = mB and ∀i : B/4 < ci < B/2.

Question Can I be partitioned into m subsets I1, I2, . . . , Im such that ∀ j : ∑i∈I j ci = B.

Figure 5.3: The 3-partitioning problem which is known to be NP-Complete in the strong
sense [GJ78].

1. Split the task execution into phases A, B and C — in essence create three subtasks out of it.

The phase-B and phase-C subtasks of a task “arrive" (i.e. first become ready to execute) at

a (respective) fixed time offset to the arrival of the respective phase-A subtask. This ensures

that subtasks “inherit” the inter-arrival time of the original task and exhibit no arrival jitter.

2. Use m physical processors to create a set VP of virtual processors, formed by disjoint sets,

VPAC and VPB (i.e., VPAC
⋃

VPB = VP and VPAC
⋂

VPB = /0).

3. Both Phase-A and phase-C of a task are assigned to a single virtual processor, vp j ∈ VPAC.

Phase-B of the same task is assigned to a virtual processor, vpk ∈ VPB.

4. The phase-A and phase-C subtasks of a task are scheduled using preemptive EDF on their

assigned virtual processor in VPAC along with the other subtasks that are assigned on that

virtual processor; the phase-B subtask is scheduled using non-preemptive EDF on its as-

signed virtual processor in VPB along with the other phase-B tasks that are assigned on that

virtual processor — as a way of serializing accesses to shared resources2.

Steps 1-3 are performed at design time; step 4 is carried out at run time. Despite using virtual

processors, our algorithm by-construction ensures that the “restricted migration” assumption is

not violated — discussed in Section 5.5.2 and Section 5.6. Subtasks corresponding to task phases

are assigned constrained deadlines, i.e., not exceeding their inter-arrival time (inherited from the

original task).

We use some notations and well-known results while proving the speed competitive ratio for

our algorithm. We present those notations and results in the next section.

5.5 Few notations and useful results

5.5.1 Notations

Let Π(m1,m2) denote a two-type heterogeneous multiprocessor platform having m1 processors of

type-1 and m2 processors of type-2. Let Π(m1,m2) · 〈s1,s2〉 denote a platform in which the speed

2Observe that implementing multiple virtual processors on the same physical processor might in practice involve
frequent “context-switching" between those. Yet, whenever a physical processor “context-switches" between a phase-B
virtual processor and some other virtual processor mapped to it, this does not violate the semantics of non-preemptive
scheduling on the phase-B virtual processor because we are only interested (for the purposes of resource access serial-
ization) in ensuring that phase-B subtasks never preempt each other – and this property is not violated.

194 Shared Resource Scheduling on Two-type Heterogeneous Multiprocessors

D
e

si
g

n
T

im
e

T
im

e
R

u
n

D
is

p
a

tc
h

{ using preemptive−EDF using non−preemptive−EDF using preemptive−EDF

Phase−C

Deadline of the job

Phase−A Phase−B

t

The phase−A of a task is{ The phase−B of a task accessing a The phase−C of a task is

Job of τi arrives

t+ Ti

assigned to vpj ∈ V PAC resource is assigned to vpk ∈ V PB assigned to vpj ∈ V PAC

Figure 5.4: Three execution phases of a job along with the design time (task assignment) and run
time (task dispatching) decisions of FF-3C-vpr.

of a type-1 and type-2 processor is respectively, s1 and s2 times the speed of a type-1 and type-2

processor in platform Π(m1,m2), where s1 and s2 are positive real-numbers.

Let the predicate sched(A,τ,Π(m1,m2) · 〈s1,s2〉) signify that a task set τ that do not share

resources meets all its deadlines if scheduled by an algorithm A on a platform Π(m1,m2) · 〈s1,s2〉.
The term meets all its deadlines in this and other predicates means ‘meets deadlines for every

possible valid arrival of jobs of tasks in τ’.

We use sched(nmo,τ,Π(m1,m2) · 〈s1,s2〉) to signify that there exists a non-migrative-offline

preemptive schedule which meets all deadlines for the specified system. Here, non-migrative

schedule refers to a schedule in which all the jobs of a task execute on the same processor to

which the task is assigned. In this predicate (and others), the term offline means that the schedule

(i) can contain inserted idle times and (ii) can be generated using knowledge of future task arrival

times (irrespective of whether such knowledge is available in practice).

We use sched(rmo,τ,R,Π(m1,m2) · 〈s1,s2〉) to denote a predicate to signify that there exists a

restricted-migration-offline preemptive schedule which meets all deadlines for the specified sys-

tem when tasks in τ share resources in R. As mentioned in Section 5.2, each task requests at most

one resource from R and each job of that task may request that resource at most once during its

execution. The term “restricted migration” has the same meaning as discussed in Section 5.2.

Similarly, sched(A,τ,R,Π(m1,m2) · 〈s1,s2〉) signifies that the task set τ in which tasks are

“sharing the resources” (see Section 5.2) in R meets all its deadlines when scheduled by an algo-

rithm A with “restricted migration” (see Section 5.2) on platform Π(m1,m2)·〈s1,s2〉.
Finally, in the above predicates, the suffix -δ (where applicable) to a non-migrative scheduling

algorithm (or algorithm class) implies that the schedulability of τ (other than just being established

via some exact test) must additionally be ascertainable via a (potentially pessimistic) density-based

uniprocessor schedulability test. This means that for the subset τ
′

of subtasks assigned on every

type-t processor of speed V , it has to hold that ∑i∈τ
′ δ t

i ≤ V , where δ t
i =

Ct
i

Dt
i

is the density, Ct
i is

the execution time (w.r.t. a processor of speed 1) and Dt
i is the deadline of a task τi on a type-t

processor.

5.5 Few notations and useful results 195

On a type-t processor: Let Ct
i,1 denote the execution time of a task τi before requesting a

resource, i.e. in its phase-A. Let Ct
i,2(k) denote the execution time of τi while holding resource

Rk (where k is the index of the resource used by τi), i.e. in its phase-B. Let Ct
i,3 denote the

execution time of a task τi after releasing the resource, i.e. in its phase-C. Note that ∀τi∈τ:

Ct
i,1+Ct

i,2(k)+Ct
i,3=Ct

i .

We derive three new constrained-deadline (denoted by Dt
i) sporadic task sets (i.e., for each

task, its deadline is less than or equal to its minimum inter-arrival time) namely, T DA(τ), T DB,Rk(τ)

and T DC(τ) from the given implicit-deadline sporadic task set τ by modifying the parameters of

the tasks in τ . Intuitively, (i) a task τi(A) ∈ T DA(τ) represents phase-A execution of τi ∈ τ , (ii) a

task τi(B) ∈ T DB,Rk(τ) represents phase-B execution of τi ∈ τ , accessing the resource Rk and (iii) a

task τi(C) ∈ T DC(τ) represents phase-C execution of τi ∈ τ .

T DA(τ), T DB,Rk(τ) and T DC(τ) are defined as follows – for each task τi ∈ τ:

τi(A) = {Ti(A) = Ti, Dt
i(A) =

Ct
i,1

Ct
i
· Ti

2
, Ct

i(A) =Ct
i,1}

τi(B) = {Ti(B) = Ti, Dt
i(B) =

Ti

2
, Ct

i(B) =Ct
i,2(k)}

τi(C) = {Ti(C) = Ti, Dt
i(C) =

Ct
i,3

Ct
i
· Ti

2
, Ct

i(C) =Ct
i,3}

Note that DA
i +DB

i +DC
i ≤ Ti. This is essential as it ensures that if the subtasks τi(A),τi(B) and τi(C)

derived from the task τi meet their deadlines then τi meets its deadline as well. Also, observe that

T DA(τ) and T DC(τ) are derived such that the densities of τi(A) and τi(C) are twice the utilization

of τi∈τ . For example,

∀τi(A)∈T DA(τ): δ
t
i(A) =

Ct
i(A)

Dt
i(A)

=
Ct

i,1
Ct

i,1
Ct

i
· Ti

2

=
2Ct

i
Ti

= 2U t
i of τi∈τ (5.2)

Analogous expression holds for tasks in T DC(τ).

5.5.2 Useful results

Lemma 31 and Lemma 32 (re-)state the speed competitive ratios of FF-3C (which is 2 – see Th.

1 in [ARB10]) and of uniprocessor non-preemptive EDF. Recall from the discussion of FF-3C

algorithm in Section 4.3 of Chapter 4 that, the speed competitive ratio of the FF-3C algorithm

is 2 (see Theorem 9 on page 100). It is shown in [AE10] that the speed competitive ratio of

uniprocessor non-preemptive EDF algorithm is 3 (see Lemma 1 in [AE10]). Recall that FF-3C

is a non-migrative algorithm for assigning implicit-deadline sporadic tasks (that do not share re-

sources) on two-type heterogeneous multiprocessors.

Lemma 31. (From Theorem 9 in Section 4.3 of Chapter 4)

sched(nmo,τ,Π(m1,m2))⇒ sched(FF-3C, τ,Π(m1,m2) · 〈2,2〉)

196 Shared Resource Scheduling on Two-type Heterogeneous Multiprocessors

Lemma 32. (From Lemma 1 in [AE10])

sched(nmo-np,τ,Π(1,0))⇒ sched(nm-np-EDF,τ,Π(1,0) · 〈3,3〉)

Note that (i) the heterogeneous multiprocessor platform Π(1,0) with one processor of type-1

in Lemma 32 is trivially a uniprocessor platform and (ii) Lemma 32 also holds for platform Π(0,1)

with one processor of type-2.

Lemma 33 states that if a task is non-preemptive EDF-schedulable on a uniprocessor, it is also

non-preemptive non-migrative EDF-schedulable on a platform that has an additional processor.

Lemma 33. sched(nm-np-EDF,τ,Π(1,0)·〈3,3〉)⇒sched(nm-np-EDF,τ,Π(1,1)·〈3,3〉)

The intuition behind Lemma 33 is that if the additional (type-2) processor is kept idle during

the scheduling then τ is schedulable on the original (type-1) processor. It is trivial to see that

the lemma also holds if the computing platform in the left-hand side predicate is replaced with

Π(0,1) · 〈3,3〉.

Lemma 34. (Combining Lemma 32 and Lemma 33)

sched(nmo-np,τ,Π(1,0))⇒ sched(nm-np-EDF,τ,Π(1,1) · 〈3,3〉)

The following lemma states that if implicit-deadline task set τ is non-migrative offline schedu-

lable on platform Π(m1,m2) then constrained-deadline sporadic task set T DA(τ) derived from τ

(as described in Section 5.5.1) is also non-migrative schedulable (e.g., using preemptive-EDF) on

platform Π(m1,m2) · 〈2,2〉 and additionally this can be established via use of a (potentially pes-

simistic) density-based schedulability test. It is easy to see that the claim holds since the density

of a task τi(A) in T DA(τ) is always twice the utilization of the corresponding task τi in τ .

Lemma 35. sched(nmo,τ,Π(m1,m2))⇒ sched(nmo-δ ,T DA(τ),Π(m1,m2) · 〈2,2〉)

Proof. Let us assume that a non-migrative-offline feasible schedule exists for task set τ on plat-

form Π(m1,m2). So, there must exist a schedule in which the following holds ∀t ∈ 1,2:

∀p of type-t ∈Π(m1,m2) : ∑
τi∈τ[p]

U t
i ≤ 1 (5.3)

where τ[p] denotes the set of tasks assigned to processor p of type-t. Now, we show that there also

exists a non-migrative-offline feasible schedule for task set T DA(τ) on platform Π(m1,m2) · 〈2,2〉.
We know that, for every task τi ∈ τ , there exists a task, τi(A) ∈ T DA(τ). We also know from

Expression (5.2) that, ∀t ∈ 1,2, it holds that: ∀τi(A) ∈ T DA(τ) : δ t
i(A) = 2U t

i of τi ∈ τ . Let us assign

the tasks in T DA(τ) to processors in Π(m1,m2) ·〈2,2〉 as follows: if the task, τi ∈ τ , is assigned to a

processor, p∈Π(m1,m2), then assign the corresponding task, τi(A) ∈ T DA(τ), to the corresponding

processor, p ∈Π(m1,m2) · 〈2,2〉. From the fact that this assignment of T DA(τ) (which is identical

to the assignment of τ) is made on a platform twice faster (on which the densities of tasks will be

halved) and from Expressions (5.2) and (5.3), we obtain: ∀t ∈ 1,2 :

∀p of type-t ∈Π(m1,m2) · 〈2,2〉 : ∑
τi(A)∈T DA(τ)[p]

δ
t
i(A) ≤ 1 (5.4)

5.5 Few notations and useful results 197

The above inequality corresponds to the density-based schedulability test, on every processor

p of type-t ∈ Π(m1,m2) · 〈2,2〉, for non-migrative preemptive EDF scheduling policy. Thus, the

task set T DA(τ) is also non-migrative-offline schedulable on platform Π(m1,m2) · 〈2,2〉.

The following lemma largely follows from Lemma 31 — obtained by applying density-based

schedulability test, using faster platforms and using the reasoning provided in Lemma 35.

Lemma 36. (From Lemma 31 and Lemma 35)

sched(nmo-δ ,T DA(τ),Π(m1,m2) · 〈2,2〉)⇒ sched(FF-3C-δ ,T DA(τ),Π(m1,m2) · 〈4,4〉)

Proof. Assume that the left-hand side predicate sched(nmo-δ ,T DA(τ),Π(m1,m2) · 〈2,2〉) of the

claim holds true. Then, since the density of every subtask in T DA(τ) is twice the utilization of the

corresponding task in τ , for reason similar to the one provided in the previous lemma, the predicate

sched(nmo,τ,Π(m1,m2)) holds true as well. In that case, we know from Lemma 31 that the

predicate sched(FF-3C,τ,Π(m1,m2) · 〈2,2〉) holds true also. But then, since the density of every

subtask in T DA(τ) is twice the utilization of the corresponding task in τ , it follows from similar

reasoning provided in previous lemma that, the predicate sched(FF-3C-δ ,T DA(τ),Π(m1,m2) ·
〈4,4〉) holds true as well. Hence the proof.

Finally, a lemma that will be relied upon for assigning phase-C subtasks:

Lemma 37. If, for a set T DA(τ)[p] of phase-A subtasks,

δT DA(τ)[p]
de f
= ∑

τi(A)∈T DA(τ)[p]

Ct
i(A)

Dt
i(A)
≤V

then T DA(τ)[p]∪T DC(τ)[p] (where T DC(τ)[p] is the set of the respective phase-C subtasks) is

preemptive-EDF schedulable on a type-t (virtual) processor vpp of speed V .

Proof. That δT DA(τ)[p]≤V means that the task set T DA(τ)[p] is schedulable under preemptive

EDF on processor vpp. We now show that the demand-bound function3, dbf(τ
′
, t), of a task

set τ
′
= T DA(τ)[p]∪ T DC(τ)[p] is upper bounded at every instant t by δT DA(τ)[p] · t and hence

is also schedulable on processor vpp under preemptive EDF. Note that, for every phase-A subtask

τi(A)∈T DA(τ) (and respective phase-C subtask τi(C)∈T DC(τ)), it holds ∀t ∈ 1,2 that:

dbf({τi(A),τi(C)}, t)≤ δ
t
i(A) · t =

Ct
i(A) · t
Dt

i(A)
(5.5)

This is easy to verify because, the maximum “slope” to any point in the graph of Figure 5.5 of

dbf
({

τi(A),τi(C)

}
, t
)

from the origin is δ t
i(A)=

Ct
i(A)

Dt
i(A)

(which is equal to 2U t
i of task τi ∈ τ , as per our

3The demand bound function of a task τi, db f (τi, t), is the maximum possible computation demand by jobs of τi,
that have both release and deadline within any interval of length t. The demand bound function of a task set τ is defined
as: db f (τ, t) = ∑τi∈τ db f (τi, t) [BMR90].

198 Shared Resource Scheduling on Two-type Heterogeneous Multiprocessors

Cz
i(A)

Cz
i(A)+Cz

i(C)

2(Cz
i(A)+ Cz

i(B) +Cz
i(C))

Ti ≥Dz
i(A)+ Dz

i(B) +Dz
i(C) Dz

i(A)

t

Figure 5.5: Assigning phase-C subtasks to the same virtual processor as the respective phase-A
subtasks (earlier assigned using a density-based test) preserves schedulability.

choice of Dt
i(A)), at abscissa t = Dt

i(A). Summation of Equation (5.5) over all τi(A) ∈ T DA(τ)[p]

(and respective τi(C) ∈ T DC(τ)[p]) yields:

dbf(T DA(τ)[p]∪T DC(τ)[p], t)≤ t · ∑
τi(A)∈T DA(τ)[p]

δ
t
i(A) = t ·δT DA(τ)[p]

Hence the proof.

5.5.3 Creating virtual processors

We create m+ 2 |R| virtual processors from m physical processors of a two-type heterogeneous

multiprocessor platform as shown in Figure 5.6. The main idea is as follows. We treat physi-

cal processors of each type as an identical multiprocessor platform and create a certain number

of virtual processors of the corresponding type from this platform. To be precise, m1 physical

processors of type-1 are treated as an identical multiprocessor platform and m1 + |R| virtual pro-

cessors (of type-1) are created from them and ordered as shown in the left half of Figure 5.6 (i.e.,

left side of the vertical solid line). Analogously, m2 physical processors of type-2 are treated as

an identical multiprocessor platform and m2 + |R| virtual processors (of type-2) are created from

them and ordered as shown in the right half of Figure 5.6 (i.e., right side of the vertical solid

line). Now, if we look at each row in Figure 5.6 (separated by horizontal lines), it represents a

two-type heterogeneous multiprocessor platform (for example, the second row represents a two-

type heterogeneous multiprocessor platform with m1 virtual processors of type-1 and m2 virtual

processors of type-2). Thus, m+2 |R| virtual processors are formed from m physical processors on

a two-type heterogeneous platform. Precisely, we create the virtual processors with the following

specifications:

• m virtual processors (denoted as VPAC): m1 virtual processors of type-1 each of speed
2

2+3
⌈
|R|
m1

⌉ times the speed of a physical processor of type-1 and m2 virtual processors of type-

2 each of speed 2
2+3

⌈
|R|
m2

⌉ times the speed of a physical processor of type-2. They are used to

schedule phase-A and phase-C of a task execution and are referred to as ‘virtual processors

in VPAC’.

5.5 Few notations and useful results 199

Figure 5.6: m+2 |R| virtual processors created from m physical processors on a two-type hetero-
geneous multiprocessor platform (m = m1 +m2).

• 2 |R| virtual processors (denoted as VPB): |R| virtual processors of type-1 each of speed
3

2+3
⌈
|R|
m1

⌉ times the speed of a physical processor of type-1 and |R| virtual processors of type-

2 each of speed 3
2+3

⌈
|R|
m2

⌉ times the speed of a physical processor of type-2. They are used to

schedule phase-B of task execution and are referred to as ‘virtual processors in VPB’.

We ensure that no virtual processor is created using two or more physical processors, i.e.,

the capacity of a virtual processor comes from a single physical processor alone. The process of

creating virtual processors along with the pseudo-code is discussed in the next subsection.

5.5.4 Algorithm for creating virtual processors

In our notation, PP denotes the set of physical processors, ppi denotes the ith physical proces-

sor and vpi denotes the ith virtual processor. The VP_Create pseudo-code for creating the pre-

viously specified virtual processors is listed in Algorithm 12. It, in turn, uses the subroutine

VPABC_Create, which in turn is listed in Algorithm 13.

The VP_Create algorithm on line 2 calls the subroutine, VPABC_Create, to create m1 + |R|
virtual processors of type-1 from m1 physical processors of type-1. The subroutine first creates

m1 virtual processors (see lines 1-5 in Algorithm 13) from m1 physical processors and then cre-

ates |R| virtual processors (see lines 6-20 in Algorithm 13) from the remaining capacity of type-1

Algorithm 12: VP_Create(PP, |R|): for creating virtual processors from a two-type hetero-
geneous computing platform

Input : PP, |R|
Output: VPAC, VPB
// PP denotes the set of physical processors
// |R| denotes the number of shared resources

1 VPAC[1, · · · ,m] := {0, · · · ,0} VPB[1, · · · ,2 |R|] := {0, · · · ,0}
2 VPABC_Create(PP,VPAC,VPB,0,0,1)
3 VPABC_Create(PP,VPAC,VPB,m1, |R| ,2)
4 returnVPAC,VPB

200 Shared Resource Scheduling on Two-type Heterogeneous Multiprocessors

processors. Observe that no virtual processor is created using two physical processors, i.e., the ca-

pacity of a virtual processor comes from a single physical processor alone. Similarly, VP_Create()

on line 3 creates m2 + |R| virtual processors of type-2 from m2 physical processors of type-2.

Algorithm 13: VPABC_Create(PP,VPAC,VPB, lb,si, t): for creating phase-AC and phase-B
virtual processors

Input : PP,VPAC,VPB, lb,si, t
Output: VPAC, VPB
// lb denotes the starting index for array VPAC
// si denotes the starting index for array V PB

// t denotes the processor type
1 VPAC[lb+1, · · · , lb+mt] := {0, · · · ,0} // initialize the relevant elements

in VPAC to zero
2 for i = 1 to mt do
3 Create a virtual processor, vpACt

i , from ppi of speed 2
2+3

⌈
|R|
mt

⌉ times the speed of ppi

4 VPAC[lb+ i] := vpACt
i

5 end
6 cnt := 1, f lag := 0
7 for i = 1 to mt do
8 for j = 1 to

⌈
|R|
mt

⌉
do

9 Create a virtual processor, vpBt
cnt , from ppi of speed 3

2+3
⌈
|R|
mt

⌉ times the speed of ppi

10 VPB[si+ cnt] := vpBt
cnt

11 if (cnt = |R|) then
12 f lag := 1
13 break
14 end
15 cnt := cnt +1
16 end
17 if (f lag = 1) then
18 break
19 end
20 end

Since VPABC_Create creates a virtual processor out of the processing capacity of a single

respective physical processor, within each of its phases, every job executes on only one physical

processor (i.e., a job does not migrate between different physical processors). However, a job can

migrate to a different physical processor at the boundaries separating (i) its phase-A and phase-

B and (ii) its phase-B and phase-C. FF-3C-vpr adheres to the “restricted migration” model by

assigning phase-A and phase-C of a task to the same physical processor.

The following observations can be made regarding our specification and creation of virtual

processors. After creating one VPAC virtual processor (for phase-A and phase-C) from every

physical processor (lines 1-5 in the subroutine shown in Algorithm 13), let us see (i) how much

capacity remains in each of the physical processors and (ii) how many phase-B virtual processors

5.6 FF-3C-vpr algorithm and its speed competitive ratio 201

(i.e. virtual processors in VPB) can be created from that capacity. For ease of explanation, consider

the case of type-1 processors. After creating one VPAC virtual processor (for phase-A and phase-C)

of speed 2
2+3

⌈
|R|
m1

⌉ (times the speed of a physical processor of type-1) from each physical processor,

every physical processor is left with a capacity: 1− 2
2+3

⌈
|R|
m1

⌉ = 3
⌈
|R|
m1

⌉
2+3

⌈
|R|
m1

⌉ . As per our specification

(in Section 5.5.2), the phase-B virtual processor must have 3
2+3

⌈
|R|
m1

⌉ times the speed of a physical

processor of type-1. Hence, it is possible to create:
3
⌈
|R|
m1

⌉
2+3

⌈
|R|
m1

⌉
3

2+3
⌈
|R|
m1

⌉

=

⌊⌈ |R|
m1

⌉⌋
=

⌈ |R|
m1

⌉
≥ 1

phase-B virtual processors from the remaining capacity of every physical processor of type-1. This

allows us to successfully create |R| phase-B virtual processors from the remaining capacity of m1

processors of type-1. Analogous reasoning holds for type-2 processors as well.

5.6 FF-3C-vpr algorithm and its speed competitive ratio

5.6.1 The FF-3C-vpr algorithm

The pseudo-code of our new algorithm, FF-3C-vpr, is listed in Algorithm 14 and it works as

follows. On line 1, it creates T DA(τ), T DB,Rk(τ) and T DC(τ) subsets of tasks from the given

task set τ . On line 2, it creates m+ 2 |R| virtual processors specified in Section 5.5.2 from the

given m physical processors. On lines 3-5, it groups 2 |R| phase-B virtual processors into |R| pairs

of virtual processors, each pair containing one virtual processor of each type, i.e., one virtual

processor of type-1 and one virtual processor of type-2. Each pair PairB[k] of virtual processors,

where k = {1, · · · , |R|}, is used for scheduling phase-B of tasks that access the resource, Rk. At

any time instant, only one virtual processor from each pair is used for executing the tasks: this is,

in each case, the virtual processor of the type on which the given task executes fastest (termed the

favorite processor type for that task); the other virtual processor is kept idle during the execution

of the task. This technique ensures mutual exclusion for accessing each resource. Moreover,

it effectively creates, out of each pair, the equivalent of a hypothetical single virtual processor

whereupon every task would execute as fast as on its (respective) favorite processor type. This

design choice aims at minimizing blocking times4 related to resource sharing. On line 6, the

algorithm assigns phase-A of the tasks (i.e., subtasks in T DA(τ)) to virtual processors in VPAC

using FF-3C [ARB10]. On lines 7-16, it assigns phase-B of the tasks (i.e., subtasks in T DB,Rk(τ))

accessing resource Rk to that virtual processor in PairB[k] which is of its favorite processor type in

phase-B. On line 17, it assigns phase-C of the tasks (i.e., subtasks in T DC(τ)) to a virtual processor

4The blocking time of a task that requests to access a resource is defined as the time duration during which it is
blocked by a lower priority task holding that resource.

202 Shared Resource Scheduling on Two-type Heterogeneous Multiprocessors

Algorithm 14: FF-3C-vpr(τ,Π2(m1,m2),R): for scheduling tasks that share resources on a
two-type heterogeneous multiprocessor platform

// Lines 1-17 execute offline; line 18 executes at run-time.
1 Create T DA(τ), T DB,Rk(τ) and T DC(τ) from τ as described in Section 5.5.1
2 {V PAC,V PB} :=V P_Create(Π2(m1,m2),R) // Create V PAC and V PB virtual

processors and store them in arrays of structures
3 for i = 1 to |R| do //Form |R| pairs from 2 |R| virtual processors in V PB

4 PairB[i] := 〈VPB[i],VPB[|R|+ i]〉
5 end
6 Assign T DA(τ) to virtual processors in VPAC using FF-3C
7 for i = 1 to n do
8 if τi requests a resource then
9 let k denote the resource that task τi requests

10 if (C1
i(B) ≤C2

i(B)) then
11 assign τi(B) to VPB[k]
12 else
13 assign τi(B) to VPB[|R|+ k]
14 end
15 end
16 end
17 Assign T DC(τ) to virtual processors in VPAC using the assignment made by FF-3C for

phase-A of tasks on line 6, i.e. if τi(A) of T DA(τ) was assigned to VPAC[j] processor then
assign τi(C) of T DC(τ) to VPAC[j] processor

18 Dispatch tasks in (i) T DA(τ) with preemptive EDF on VPAC, (ii) T DB(τ) with
non-preemptive EDF on V PB and (iii) T DC(τ) with preemptive EDF on V PAC

in VPAC in the same manner as that of assignment of a task in T DA(τ) to a virtual processor in

VPAC by FF-3C (on line 6). Instead of running FF-3C again on T DC(τ) task set, the algorithm

makes use of the output of FF-3C (that was run on line 6 to assign tasks in T DA(τ) on VPAC) to

assign tasks in T DC(τ). Thus, line 17 ensures that phase-C of a task is assigned to that virtual

processor in VPAC to which phase-A of the same task has been assigned. Assigning phase-C

subtasks on the same virtual processor as its corresponding phase-A subtask (i) does not endanger

the schedulability of a previously schedulable virtual processor; intuitively, this is because these

two subtasks have precedence constraints – Lemma 37 provides formal proof and (ii) ensures

that the “restricted migration” assumption is not violated. On line 18, FF-3C-vpr schedules the

tasks executing in their phase-A onto VPAC virtual processors using preemptive EDF, the tasks

in their phase-B onto VPB virtual processors using non-preemptive EDF and the tasks in their

phase-C onto VPAC virtual processors using preemptive EDF. Lines 1-17 can be performed before

run-time and only line 18 has to be performed at run-time.

5.6 FF-3C-vpr algorithm and its speed competitive ratio 203

5.6.2 Time complexity of FF-3C-vpr algorithm

We now show that the time-complexity of FF-3C-vpr is a polynomial function of the number

of tasks (n) and the number of processors (m). From the pseudo-code of FF-3C-vpr, listed in

Algorithm 14, we can observe that the time-complexity for:

• creating the subsets of tasks T DA(τ), T DB,Rk(τ) and T DC(τ), on line 1 is: O(n).

• creating the virtual processor subsets, VPAC and VPB, on line 2 is: O(m).

• forming the virtual processor pairs, on lines 3-5 is: O(|R|).

• assigning the tasks in T DA(τ) to VPAC virtual processors using FF-3C (on line 6) is: O(n ·
max(m, logn)) — see Section 4.3.7 on page 100 in Chapter 4.

• assigning the tasks in T DB,Rk(τ) to VPB virtual processors, on lines 7-16 is: O(n).

• assigning the tasks in T DC(τ) to VPAC virtual processors, on line 17 is: O(n).

Thus, the time-complexity of FF-3C-vpr algorithm is at most:(
O(n)︸︷︷︸
create

subtasks

+ O(m)︸︷︷︸
create virtual

processors

+ O(|R|)︸ ︷︷ ︸
form virtual

processor pairs

+O(n ·max(m, logn)︸ ︷︷ ︸
assign tasks
in T DA(τ)

+ O(n)︸︷︷︸
assign tasks

in T DB,Rk (τ)

+ O(n)︸︷︷︸
assign tasks
in T DC(τ)

)

= O(max(n ·max(m, logn)), |R|)
= O(n ·max(m, logn))

5.6.3 Speed competitive ratio of FF-3C-vpr algorithm

We now prove the speed competitive ratio of FF-3C-vpr algorithm.

Theorem 20. The speed competitive ratio of FF-3C-vpr is 4+6 ·
⌈

|R|
min(m1,m2)

⌉
.

Proof. The proof considers separately the scheduling of each of the three phases and then com-

bines the results. Let us look at phase-A first. Combining Lemma 35 and Lemma 36 and applying

the result to virtual processors in VPAC yields:

sched(nmo,τ,Π(m1,m2))⇒ sched(FF-3C-δ ,T DA(τ),Π(m1,m2) · 〈4,4〉) (5.6)

Now consider phase-C. Since a task in its phase-A cannot be in its phase-C simultaneously (and

vice versa), the respective subtasks are not independent. Treating them as such would be poten-

tially pessimistic; conversely, accounting for these precedence constraints during subtask assign-

ment could improve performance. Indeed, our algorithm assigns each phase-C subtask to the same

virtual processor as its respective phase-A subtask (see line 17 in Algorithm 14).

For convenience, let us introduce a notation, FF-3C-δ+cp, for this subtask assignment strategy

(using FF-3C-δ to assign phase-A subtasks and “copying” the assignment for respective phase-C

204 Shared Resource Scheduling on Two-type Heterogeneous Multiprocessors

subtasks, as done by FF-3C-vpr algorithm on line 6). Then, applying Lemma 37 to Equation (5.6)

yields:

sched(nmo,τ,Π(m1,m2))⇒
sched(FF-3C-δ+cp,T DA(τ)∪T DC(τ),Π(m1,m2) · 〈4,4〉) (5.7)

Now, let us consider phase-B. If tasks in τ that share a resource, Rk, are non-migrative-offline, non-

preemptive schedulable on platform Π(m1,m2) then the task set T DB,Rk(τ) is also non-migrative-

offline, non-preemptive schedulable on platform Π(m1,m2) ·〈2,2〉. This speedup factor of 2 comes

from the fact that we have halved the deadlines of tasks in T DB,Rk(τ) compared to the deadlines

of corresponding tasks in τ . Hence, we can write: ∀Rk ∈ R:

sched(nmo-np,τ,Π(m1,m2))⇒ sched(nmo-np,T DB,Rk(τ),Π(m1,m2) · 〈2,2〉) (5.8)

For each resource Rk, since Rk is accessed in a mutually exclusive way, all the tasks that access Rk

must execute sequentially. So, if the task set T DB,Rk(τ) in which tasks share a single resource, Rk,

is non-migrative-offline non-preemptive schedulable on platform Π(m1,m2) · 〈2,2〉 then the same

task set is also non-migrative-offline non-preemptive schedulable on platform Π(1,1) · 〈2,2〉. The

intuition is that the tasks are always executed on their ‘favorite’ processor type and in a sequential

manner as they are accessing a mutually exclusive resource. ∀Rk ∈ R:

sched(nmo-np,T DB,Rk(τ),Π(m1,m2) · 〈2,2〉)⇒
sched(nmo-np,T DB,Rk(τ),Π(1,1) · 〈2,2〉) (5.9)

Hence, combining Equations (5.8) and (5.9) gives: ∀Rk ∈ R:

sched(nmo-np,τ,Π(m1,m2))⇒ sched(nmo-np,T DB,Rk(τ),Π(1,1) · 〈2,2〉) (5.10)

Without loss of generality, Lemma 34 can be rewritten as:

sched(nmo-np,τ,Π(1,1))⇒ sched(nm-np-EDF,τ,Π(1,1) · 〈3,3〉) (5.11)

The intuition behind this generalization of Lemma 34 to Expression (5.11) is that the extra proces-

sor added to the left-hand side predicate (of Lemma 34 to obtain the Expression (5.11)) is ignored

while scheduling.

Applying Equation (5.11) to a task set T DB,Rk(τ) and multiplying the processor speeds by 2

on both left-hand and right-hand side platforms gives: ∀Rk ∈ R:

sched(nmo-np,T DB,Rk(τ),Π(1,1) · 〈2,2〉)⇒
sched(nm-np-EDF,T DB,Rk(τ),Π(1,1) · 〈6,6〉) (5.12)

5.6 FF-3C-vpr algorithm and its speed competitive ratio 205

Combining Equation (5.10) and (5.12) and applying the result to VPB virtual processors, we ob-

tain: ∀Rk ∈ R,

sched(nmo-np,τ,Π(m1,m2))⇒ sched(nm-np-EDF,T DB,Rk(τ),Π(1,1) · 〈6,6〉) (5.13)

Combining the above intermediate results: dividing type-1 and type-2 processor speeds by, re-

spectively, 4+6
⌈
|R|
m1

⌉
and 4+6

⌈
|R|
m2

⌉
in Equations (5.7) and (5.13) gives us:

sched

nmo,τ,Π(m1,m2) ·
〈

1

4+6
⌈
|R|
m1

⌉ , 1

4+6
⌈
|R|
m2

⌉〉
⇒

sched

FF-3C-δ+cp,T DA(τ)∪T DC(τ),Π(m1,m2) ·
〈

2

2+3
⌈
|R|
m1

⌉ , 2

2+3
⌈
|R|
m2

⌉〉
 (5.14)

and

∀Rk ∈ R : sched

nmo-np,τ,Π(m1,m2) ·
〈

1

4+6
⌈
|R|
m1

⌉ , 1

4+6
⌈
|R|
m2

⌉〉
⇒

sched

nm-np-EDF,T DB,Rk(τ),Π(1,1) ·
〈

3

2+3
⌈
|R|
m1

⌉ , 3

2+3
⌈
|R|
m2

⌉〉
 (5.15)

In the right-hand sides of Equation (5.14) and Equation (5.15), the processor specifications match

those created by FF-3C-vpr algorithm. Note also that, under FF-3C-vpr algorithm (which only

allows “restricted migration”), phase-A and phase-C subtasks are assigned to virtual processors in

V PAC and phase-B subtasks are assigned to virtual processors in V PB (and V PAC∩V PB = /0). Hence

by combining Equation (5.14) and Equation (5.15), we get:

sched

rmo,τ,R,Π(m1,m2) ·
〈

1

4+6
⌈
|R|
m1

⌉ , 1

4+6
⌈
|R|
m2

⌉〉
⇒

sched
(

FF-3C-vpr,τ,R,Π(m1,m2)
)

(5.16)

We know that higher speed processors do not jeopardize the schedulability of a task set. Hence,

we can write:

sched(rmo,τ,R,Π(m1,m2) · 〈min(s1,s2),min(s1,s2)〉) ⇒ sched(rmo,τ,R,Π(m1,m2) · 〈s1,s2〉)

206 Shared Resource Scheduling on Two-type Heterogeneous Multiprocessors

Substituting s1 = 1
4+6

⌈
|R|
m1

⌉ and s2 = 1
4+6

⌈
|R|
m2

⌉ in the previous equation, combining it with Equa-

tion (5.16) and rewriting gives:

sched

(
rmo,τ,R,Π(m1,m2) ·

〈
1

4+6 ·max
(⌈
|R|
m1

⌉
,
⌈
|R|
m2

⌉) , 1

4+6 ·max
(⌈
|R|
m1

⌉
,
⌈
|R|
m2

⌉)〉)⇒
sched

(
FF-3C-vpr,τ,R,Π(m1,m2)

)
(5.17)

Multiplying processor speeds in Equation (5.17) by 4+6 ·max
(⌈
|R|
m1

⌉
,
⌈
|R|
m2

⌉)
, yields:

sched
(

rmo,τ,R,Π(m1,m2)
)
⇒

sched

(
FF-3C-vpr,τ,R,Π(m1,m2) ·

〈
4+6 ·max

(⌈ |R|
m1

⌉
,

⌈ |R|
m2

⌉)
,

4+6 ·max
(⌈ |R|

m1

⌉
,

⌈ |R|
m2

⌉)〉)
(5.18)

By rewriting the right-hand side of Equation (5.18), we get:

sched
(

rmo,τ,R,Π(m1,m2)
)
⇒

sched

(
FF-3C-vpr,τ,R,Π(m1,m2) ·

〈
4+6 ·

⌈ |R|
min(m1,m2)

⌉
,4+6 ·

⌈ |R|
min(m1,m2)

⌉〉)

Hence the proof.

5.7 Conclusions

In many computer systems, apart from processors, tasks also share resources such as data struc-

tures, sensors, etc in a mutually exclusive manner. Scheduling such tasks to meet all deadlines on

two-type heterogeneous multiprocessors is a complex problem. In this chapter, we took the first

step to solve the issue by studying a restricted version of this problem and proposing an algorithm

with a finite speed competitive ratio. Specifically, we considered the problem of scheduling a set

of implicit-deadline sporadic tasks to meet all deadlines on two-type heterogeneous multiproces-

sors where tasks may share resources. The tasks must operate on such resources in a mutually

exclusive manner while accessing the resources, that is, at all times, when a job of a task holds

a resource, no other job of any task can hold that resource. Each task may request at most one

resource and each job of this task can request that resource at most once during its execution. A

job is allowed to migrate when it requests/releases the resource but a job is not allowed to migrate

at other times.

5.7 Conclusions 207

For this problem, we proposed a new algorithm, FF-3C-vpr, with a low-degree polynomial

time-complexity. We also showed that FF-3C-vpr has a speed competitive ratio 4+6 ·
⌈

|R|
min(m1,m2)

⌉
against equally powerful adversary (which also allows a job to migrate only when it requests or

releases a resource). To the best of our knowledge, for the problem of shared resource scheduling

on two-type heterogeneous multiprocessors, no previous algorithm is known to exist and hence

this is the first result with provably good performance.

208 Shared Resource Scheduling on Two-type Heterogeneous Multiprocessors

Part III

T-type Heterogeneous Multiprocessors

209

Chapter 6

Intra-migrative Scheduling on T-type
Heterogeneous Multiprocessors

6.1 Introduction

In this chapter, we consider the problem of intra-migrative scheduling of tasks on t-type (where

t ≥ 2) heterogeneous multiprocessors. Recall that we discussed the intra-migrative task assignment

problem earlier in Chapter 3 but for two-type heterogeneous multiprocessors. Hence, the algorithm

presented in that chapter is only applicable to two-type platforms and unfortunately, cannot be

generalized to t-type (t ≥ 2) heterogeneous multiprocessors. Therefore, in this chapter, we aim to

design an intra-migrative task assignment algorithm for t-type heterogeneous multiprocessors.

Recall that, in the intra-migrative model, every task is statically assigned to a processor type

before run-time; the jobs of each task can migrate at run-time from one processor to another

as long as these processors are of the same type. Once tasks are assigned to processor types,

scheduling them to meet all deadlines under the intra-migrative model is well-understood, e.g.,

one may use an optimal identical multiprocessor scheduling algorithm, such as, ERfair [AS00],

DP-Fair [LFS+10] or U-EDF [NBN+12]. So, assuming that an optimal algorithm is used for

scheduling tasks on processors of each type, the challenging part is to find a task-to-processor-

type assignment such that, there exists a schedule that meets all deadlines — such an assignment

is referred to as a feasible assignment hereafter. It can be shown that the problem of intra-migrative

task assignment on t-type heterogeneous multiprocessors is NP-Complete in the strong sense (by

reducing an instance of the 3-PARTITION problem, which is known to be NP-Complete in the

strong sense [Joh73], to an instance of our problem). Therefore, for this problem, we propose a

polynomial time-complexity algorithm, LPGIM, with a finite speed competitive ratio.

Problem Statement. In this chapter, we consider the problem of intra-migrative scheduling

of implicit-deadline sporadic tasks on t-type heterogeneous multiprocessors. That is, assuming

that an optimal identical multiprocessor scheduling algorithm is used on processors of each type

to schedule the tasks, we design an algorithm for determining a feasible task-to-processor-type

assignment.

211

212 Intra-migrative Scheduling on T-type Heterogeneous Multiprocessors

Hardness of the Problem. It is trivial to see that the problem of intra-migrative task as-

signment on t-type heterogeneous multiprocessors is NP-Complete in the strong sense. This is

because, even in the simpler case, in which each processor type has only one processor, the prob-

lem of intra-migrative task assignment is NP-Complete in the strong sense (since in this case, the

problem is equivalent to finding a non-migrative task assignment on heterogeneous multiproces-

sors with one processor of each type; this problem is shown to be NP-Complete in the strong sense

even in the simpler case of two-type heterogeneous multiprocessors — see Section 4.2 in Chapter 4

on page 76). Hence, this result continues to hold for t-type (t ≥ 2) heterogeneous multiprocessors

as well.

Related Work. The scheduling problem on heterogeneous multiprocessors has been studied

in the past [Bar04c, Bar04b, RAB13, RN12b, WBB13, HS76, LST90, JP99, CSV12, Bar04a].

However, all of them consider the problem of non-migrative scheduling (except the work by

Baruah [Bar04a], which studied fully-migrative scheduling) and none of them consider the prob-

lem of intra-migrative scheduling in which tasks need to be assigned to processor types and not to

individual processors. Although some of these non-migrative algorithms can be “adapted” to the

intra-migrative model, these “adapted” algorithms will be inefficient either in terms of the speed

competitive ratio or in terms of the time-complexity. An intra-migrative algorithm, namely SA,

that was presented earlier in Chapter 3 exists but it is only applicable to two-type heterogeneous

multiprocessors and unfortunately cannot be extended to t-type (t ≥ 2) heterogeneous multiproces-

sors. The state-of-the-art (along with the contributions of this chapter) is summarized in Table 6.1.

Contributions and Significance of the work discussed in this chapter. Consider a t-type

platform π and an implicit-deadline sporadic task set τ , in which it holds that: ∀k ∈ {1,2, . . . , t},
for every task in τ , utilization of each task on a type-k processor is either no greater than α or

is equal to ∞, where 0 < α ≤ 1. For this setting, we present an intra-migrative task assignment

algorithm, called LPGIM, which has a polynomial time-complexity and offers the following guar-

antee. If there exists a feasible intra-migrative assignment of the task set τ on the t-type platform

π then LPGIM succeeds as well in finding such a feasible intra-migrative assignment of τ but on

a platform, π ′, in which only one processor of each type is 1+α× t−1
t times faster than the cor-

responding processor in π . For defining its speed competitive ratio, we say that, LPGIM needs a

platform, π(1+α× t−1
t), in which every processor is 1+α × t−1

t times faster). For the special case

in which t = 2, i.e., for two-type heterogeneous multiprocessors, the speed competitive ratio of

LPGIM becomes 1+ α

2 ≤ 1.5. Hence, this result can be seen as a generalization of the result ob-

tained for SA algorithm in Chapter 3; however, LPGIM algorithm itself is not a generalization of

SA algorithm as it is designed using entirely different concepts.

We believe that the significance of this work is as follows. For the problem of intra-migrative

task assignment on t-type heterogeneous multiprocessors, no previous algorithm exists1 and hence

1Some of the non-migrative algorithms from state-of-the-art (for example, the algorithms presented in [HS76,
LST90]) can be “adapted” to intra-migrative scenario, however, these “adapted” algorithms will be inefficient com-
pared to the LPGIM algorithm, either in terms of the speed competitive ratio or in terms of the time-complexity. For
example, the adapted version of the algorithm in [LST90] will have inferior speed competitive ratio and the adapted

6.1 Introduction 213

Computing Adversary Task Assignment Algorithms
Platform Task migration Algorithm Task migration Speed competitive ratio Complexity

t-typea non-migrative [Bar04b] non-migrative 2 O(P)c

t-type non-migrative [Bar04c] non-migrative 2 O(P)
t-type non-migrative [LST90] non-migrative 2 O(P)
t-type fully-migrative [CSV12] non-migrative 4 O(P)

t-type non-migrative [HS76] non-migrative PTASd exponential
in procs

t-type non-migrative [JP99] non-migrative PTAS exponential in
procs and O(P)

t-type non-migrative [WBB13] non-migrative PTAS exponential
in 1/ε and O(P)

2-type
b

non-migrative FF-3C non-migrative 1+α ≤ 2 low-degree
(Chap. 4, Sec. 4.3) polynomial

2-type intra-migrative SA intra-migrative 1+ α

2
e≤ 1.5 low-degree

(Chapter 3) polynomial

2-type intra-migrative SA-P non-migrative 1+α ≤ 2 low-degree
(Chap. 4, Sec. 4.4) polynomial

2-type non-migrative LPC non-migrative 1.5 O(P)(Chap. 4, Sec. 4.5) (and 3 extra processors)

2-type non-migrative PTASNF non-migrative PTAS exponential
(Chap. 4, Sec. 4.6) in 1/ε

t-type intra-migrative LPGIM intra-migrative 1+α× t−1
t O(P)

a A heterogeneous multiprocessor platform having two or more processor types.
b A heterogeneous multiprocessor platform having only two processor types.
c The time-complexity O(P) indicates that the algorithm relies on solving a Linear Program (LP) formulation — note that

though a linear program can be solved in polynomial time, the polynomial generally has a higher degree.
d A PTAS takes an instance of an optimization problem and a parameter ε > 0 as inputs and, in time polynomial in the problem

size (although not necessarily in the value of ε), produces a solution that is within a factor 1+ ε of being optimal.
e The parameter 0 < α ≤ 1 is a property of the task set — it is the maximum of all the task utilizations that are no greater than

one.

Table 6.1: Summary of state-of-the-art task assignment algorithms along with the LPGIM algo-
rithm proposed in this chapter.

our algorithm, LPGIM, is the first for this problem.

A global view. The context of the new algorithm LPGIM can be visualized as shown in Fig-

ure 6.1.

Organization of the chapter. The rest of the chapter is organized as follows. Section 6.2

briefs the system model. Section 6.3 presents an optimal intra-migrative task assignment al-

gorithm, MILP-Algo, that uses Mixed Integer Linear Programming (MILP) formulation. Since

solving the MILP formulation for this problem is NP-Complete in the strong sense, a polyno-

mial time-complexity algorithm, LPGIM, is presented by relaxing the MILP formulation to Linear

Programming (LP) formulation and using graph theory techniques. Section 6.4 gives a four step

overview of LPGIM. Section 6.5–Section 6.8 discuss each of the four steps of LPGIM algorithm in

detail and also prove its speed competitive ratio. Finally, Section 6.9 concludes.

version of the algorithm in [HS76] will continue to have a significantly higher time-complexity (which will severely
limit the practicality of this algorithm).

214 Intra-migrative Scheduling on T-type Heterogeneous Multiprocessors

Fully
migrative

Intra
migrative

Non
migrative

Fully
migrative

Intra
migrative

Non
migrative

Algorithm Adversary

LPGIM

t-type

SCR=1+α*(t-1)/t

O(P)

Figure 6.1: A global view of the new algorithm, LPGIM, proposed in this chapter. Here, SCR
denotes the “speed competitive ratio”, α is a property of the task set — it is the maximum of all
the task utilizations that are no greater than one (and hence can take a value in the range (0,1]),
t denotes the number of processor types and O(P) indicates that the algorithm relies on solving a
Linear Program formulation.

6.2 System model

We consider the problem of scheduling a task set τ = {τ1,τ2, . . . ,τn} of n implicit-deadline spo-

radic tasks on a t-type heterogeneous multiprocessor platform π comprising m processors of which

mk processors are of type-k, where k∈ {1,2, . . . , t}. In platform π , the set of mk processors of type-

k is denoted by πk = {p1, p2 . . . , pmk}, where p j denotes a processor of type-k, where 1≤ j ≤mk.

It then holds that:
⋃t

k=1 πk = π and
⋂t

k=1 πk = /0 and finally ∑
t
k=1 mk = m.

The minimum inter-arrival time of task a τi is denoted by Ti. On a t-type platform, the WCET

of every task depends on the type of the processor on which the task executes. We denote by Ck
i

the WCET of task τi when executed on a type-k processor, where k ∈ {1,2, . . . , t}. We denote by

uk
i

def
= Ck

i /Ti the utilization of task τi on a type-k processor and uk
i is a real number in [0,1]∪{∞}—

if τi cannot be executed on a type-k processor then uk
i is set to ∞. Let α be a real number defined

as follows:

α
def
= max

τi∈τ,k∈{1,2,...,t}

{
uk

i : uk
i ≤ 1

}
(6.1)

Then it holds that, the utilization of any task on any processor type is either no greater than α or

is equal to ∞, formally,

∀k ∈ {1,2, . . . , t} ,∀τi ∈ τ : (uk
i ≤ α) ∨ (uk

i = ∞) (6.2)

6.3 MILP-Algo: An optimal intra-migrative algorithm 215

Minimize Z subject to the following constraints:
I1. ∀τi ∈ τ : ∑k∈{1,2,...,t} xk

i = 1
I2. ∀k ∈ {1,2, . . . , t} : ∑τi∈τ xk

i ×uk
i ≤ Z×mk

I3. ∀τi ∈ τ,∀k ∈ {1,2, . . . , t} : xk
i ∈ {0,1} are integers

Figure 6.2: MILP-Feas(τ,π) — MILP formulation for assigning tasks in implicit-deadline sporadic task
set τ to processor types in t-type heterogeneous platform π .

6.3 MILP-Algo: An optimal intra-migrative algorithm

In this section, an optimal intra-migrative algorithm is presented for assigning tasks in a task set τ

to processor types in a t-type platform π . The algorithm is optimal in the sense that, if there exists

a feasible intra-migrative assignment of τ on π then this algorithm succeeds as well in finding

such a feasible intra-migrative assignment. The proposed algorithm is based on solving a Mixed

Integer Linear Programming (MILP) formulation. As described in Section 6.1, once the tasks

are assigned to processor types, we assume that, an optimal identical multiprocessor scheduling

policy (such as, ERfair [AS00], DP-Fair [LFS+10], U-EDF [NBN+12]) is used to schedule the

tasks on processors of each type. From the feasibility tests of identical multiprocessor scheduling,

the following necessary and sufficient set of conditions must hold for intra-migrative assignment

to be feasible:

∀k ∈ {1,2, . . . , t} : ∀τi ∈ τk : uk
i ≤ 1 (6.3)

∀k ∈ {1,2, . . . , t} : ∑τi∈τk uk
i ≤ mk (6.4)

where τk denotes the set of tasks that are assigned to processors of type-k. The first condition is

essential since the system model does not allow a job to execute simultaneously on more than one

processor. The second condition is essential as it ensures that the computing workload does not

exceed the processing capacity [Hor74].

Given these necessary and sufficient feasibility conditions, we now propose an optimal intra-

migrative task assignment algorithm, MILP-Algo, which works as follows.

First, solve the MILP formulation, MILP-Feas(τ,π), shown in Figure 6.2. In this formulation,

variable Z is the objective function to be minimized and it denotes the maximum capacity that is

used on any processor type. Each variable xk
i indicates whether a task τi is assigned to processors

of type-k or not (i.e., to a processor type and not to an individual processor). The first set of

constraints specifies that every task must be assigned. The second set of constraints asserts that

at most Z×mk capacity of type-k processors can be used. The third set of constraints asserts that

each task must be integrally assigned to one of the t processor types.

Second, using the solution provided by the MILP solver to our MILP formulation, assign the

tasks to processor types as follows. If Z > 1 then declare failure as this indicates that the feasibility

condition shown in Equation (6.4) is violated (implying that the task set is not intra-migrative

feasible). Otherwise, for each task τi ∈ τ , assign τi to type-k processors only if xk
i = 1.

216 Intra-migrative Scheduling on T-type Heterogeneous Multiprocessors

We now show that the MILP-Algo is an optimal intra-migrative task assignment algorithm.

Lemma 38 (MILP-Algo is optimal). If there exists a feasible intra-migrative assignment of

implicit-deadline sporadic task τ on t-type heterogeneous multiprocessor platform π then MILP-

Algo succeeds as well in finding such a feasible intra-migrative assignment of τ on π .

Proof. Suppose that, the task set τ is intra-migrative feasible on platform π and let X denote

a feasible assignment. It can be seen that, ∀τi ∈ τ , by assigning values to xk
i variables of MILP

formulation, MILP-Feas(τ,π), of Figure 6.2 as:

if X (i) = k then xk
i ← 1 and

x j
i ← 0,∀ j ∈ {1,2, . . . , t}∧ j 6= k

gives a (feasible) solution to the MILP formulation in which Z ≤ 1.

Now, suppose that, there is a (feasible) solution with Z ≤ 1 to the MILP formulation, MILP-

Feas(τ , π), of Figure 6.2. Using this solution, define the assignment of tasks to processor types as

follows:

∀τi ∈ τ : if xk
i = 1 then set X (i)← k

By constraint I1 of the MILP formulation, each task is entirely assigned in the assignment X ob-

tained as shown above. By constraint I2 of the MILP formulation, the capacity of type-k processors

is not exceeded in the assignment X (since Z ≤ 1 in the feasible solution to MILP formulation).

By constraint I3, each task is integrally assigned to one of the processor types. Thus, X is a

feasible intra-migrative assignment. Hence the proof.

In general, solving an MILP formulation has high computational complexity. In particular,

the decision problem MILP is NP-complete and even with knowledge of the structure of the con-

straints in the modeling of heterogeneous multiprocessor scheduling, no polynomial-time algo-

rithm is known (p. 245 in [GJ79]). Hence, we now propose a polynomial time-complexity (but

non-optimal) intra-migrative algorithm, LPGIM, by relaxing the MILP formulation to LP (which

can be solved in polynomial time [Kar84]) and using graph theory techniques.

6.4 An overview of our intra-migrative task assignment algorithm,
LPGIM

We now give an overview of our new intra-migrative task assignment algorithm, LPGIM. It has

the following four steps:

Step 1. We first relax the MILP formulation of Figure 6.2 to an LP formulation by allowing

all the xk
i variables to take real values in the range [0,1] instead of binary values {0,1} and then

solve this relaxed LP formulation. In the solution returned by the LP solver, some tasks will be

integrally assigned to a processor type and the rest will be fractionally assigned to more than one

6.5 Step 1 of LPGIM: Solving the LP formulation 217

Minimize Z subject to the following constraints:
R1. ∀τi ∈ τ : ∑k∈{1,2,...,t} xk

i = 1
R2. ∀k ∈ {1,2, . . . , t} : ∑τi∈τ xk

i ×uk
i ≤ Z×mk

R3. ∀τi ∈ τ,∀k ∈ {1,2, . . . , t} : xk
i ≥ 0 are real numbers

Figure 6.3: LP-Feas(τ,π) — Relaxed LP formulation for assigning tasks in an implicit-deadline sporadic
task set τ to processor types in a t-type heterogeneous platform π .

processor type. We show that, for this LP formulation, there exists a (vertex) solution in which at

most t−1 tasks are fractionally assigned and such a solution can be obtained and is of interest to

us. This step is discussed in Section 6.5.

Step 2. From such a solution, we construct a bi-partite graph with (i) a set of nodes corre-

sponding to fractional tasks, (ii) another set of nodes corresponding to only those processor types

to which these fractional tasks are assigned (note that, there is no processor type node for a proces-

sor type to which no fractional task is assigned) and (iii) a set of edges which connect these task

nodes and processor type nodes depending on the values of the xk
i variables (which also represent

the weights of these edges). The solution (returned by the LP solver) might be such that, upon

representing it as a bi-partite graph, the graph may contain a few circuits. This step is discussed in

detail in Section 6.6 along with the relevant graph theory terminology.

Step 3. The circuits in the graph, if any, are detected and broken, one by one. A circuit is

broken by re-adjusting the weights of the edges such that the weight of at least one edge in the

circuit becomes zero which is then deleted. While re-adjusting the weights, it is ensured that,

for each processor type, its used capacity after re-adjusting the weights does not exceed its used

capacity before re-adjusting. This step (discussed in Section 6.7) reduces the complexity of the

problem when assigning the at most t−1 fractional tasks integrally to processor types, in the final

step.

Step 4. The at most t−1 fractional tasks are assigned integrally to processor types. We show

that, in order to do this, the algorithm needs a platform in which only one processor of each type is

1+α× t−1
t times faster. Thus, we conclude that the speed competitive ratio of LPGIM algorithm

is 1+α × t−1
t . This step is discussed in Section 6.8 along with the proof of speed competitive

ratio of this four step intra-migrative algorithm, LPGIM.

6.5 Step 1 of LPGIM: Solving the LP formulation

First, we relax the MILP formulation, MILP-Feas(τ,π), to an LP formulation, LP-Feas(τ,π), as

shown in Figure 6.3. In this LP formulation, all the variables have the same meaning as in the

MILP formulation and the first two sets of constraints are the same as well. Only the third set of

constraints is different (i.e., relaxed) and it now asserts that a task can either be integrally assigned

or fractionally assigned to processor types. We then solve the LP formulation using standard

218 Intra-migrative Scheduling on T-type Heterogeneous Multiprocessors

LP solvers (such as, IBM ILOG CPLEX [IBM12], Gurobi optimizer [Gur13]). Since the LP

formulation is less constrained than the MILP, the following lemma trivially holds.

Lemma 39. Let ZMILP and ZLP be the values of the objective functions that any MILP solver and

LP solver would return by solving MILP-Feas(τ,π) and LP-Feas(τ,π), respectively. It then holds

that, ZLP ≤ ZMILP.

Among all the optimal solutions to an LP formulation, at least one solution lies at a vertex of

the feasible region2 (see, pp. 117 in [LY08]). We are interested in such a solution, as it reflects a

task assignment in which at most t−1 tasks are fractionally assigned between different processor

types (referred to as fractional tasks, hereafter) — see Lemma 40 below. We would like to mention

that, if the solution returned by the solver is not a vertex solution then it can always be converted

into a vertex solution [Bar04c].

Lemma 40. Consider an optimal solution for LP-Feas(τ,π), that lies at the vertex of the feasible

region. For such a solution, it holds that, at most t−1 tasks are fractionally assigned.

Proof. The proof is based on Fact 2 in [Bar04c]: “consider a linear program on n variables, in

which each variable xi is subject to the non-negativity constraint, i.e., xi ≥ 0. Suppose that there

are further m linear constraints. If m < n, then at each vertex of the feasible region (including the

basic solution), at most m of the variables have non-zero values”. Clearly, the LP formulation of

Figure 6.3 is a linear program on n′= n×t+1 variables (i.e., n×t xk
i variables and one Z variable),

all subject to non-negativity constraint, and m′ = n+ t further linear constraints (n constraints due

to R1 plus t constraints due to R2). As m′ < n′ (we assume n ≥ 2∧ t ≥ 2; otherwise the problem

becomes trivial), we know from the above fact that, in every optimal solution at the vertex of the

feasible region, it holds that, at most m′ = n+ t variables take non-zero values. Since Z is certain

to be non-zero, it holds that:

the number of non-zero xk
i variables is at most n+ t−1 (6.5)

We know that, for each task τi ∈ τ , there exists at least one k∈ {1,2, . . . , t} such that xk
i > 0. Let

num denote the number of tasks for which there exists at least two k such that, xk
i > 0. It follows

from the definition of num that, the total number of non-zero variables is at least num×2+(n−
num) which can be rewritten as at least n+num. If num≥ t then:

the number of non-zero xk
i variables is at least n+ t (6.6)

This contradicts Equation (6.5). Hence, it must be that, num < t, which implies that the number

of tasks fractionally assigned between different processor types is at most t−1.

The remaining three steps focus on assigning these (at most) t−1 fractional tasks integrally to

processor types.
2The feasible region of an LP in n-dimensional space is the region over which all the constraints are satisfied.

Further, in general, LP solvers (such as CPLEX [IBM12]) always return optimal vertex solution.

6.6 Step 2 of LPGIM: Forming the bi-partite graph 219

6.6 Step 2 of LPGIM: Forming the bi-partite graph

In this step, using the vertex solution, in which at most t − 1 tasks are fractionally assigned,

we construct a bi-partite graph3. The graph is constructed with only (i) fractional tasks and

(ii) those processor types to which at least one fractional task is assigned (sometimes referred

to as fractional processor types). Hence, while forming the graph, we ignore all the tasks that

are integrally assigned and all the processor types to which no fractional task is assigned. Let

G = (A,B,E) denote such a bi-partite graph and it is formed as follows:

• each fractional task, τi ∈ τ , is represented by a task node τi ∈ A defined by a one-to-one

mapping.

• each fractional processor type-k, k ∈ {1,2, . . . , t}, is represented by a processor type node

πk ∈ B defined by a one-to-one mapping.

• a task node τi ∈ A is connected by an edge, ek
i ∈ E, to a processor type node πk ∈ B if and

only if 0 < xk
i < 1. Each edge, ek

i ∈ E, has a weight set to xk
i .

Observe that, since the bi-partite graph is constructed only with fractional tasks and fractional

processor types, the graph may contain a few circuits (defined below).

Definition 23 (Circuit). A circuit C = {n1 → n2 → ··· → ns → n1} in a graph G = (A,B,E)

is a path in which each node is visited exactly once except one node which is visited twice, i.e.,

both at the start and at the end. Each circuit C can also be denoted by a corresponding subgraph,

GC =
(
AC,BC,EC

)
⊆ G, containing only those nodes and edges that are in C.

For convenience, we use C and GC interchangeably, in the rest of the chapter. The following

lemma shows that a circuit in a bi-partite graph is always an even circuit.

Lemma 41 (From Theorem 1.2.18 in [Wes00]). Any circuit C = {n1 → n2 → ··· → ns=2Nc →
n1}, where Nc > 0 is a positive integer, in a bi-partite graph G = (A,B,E), always has an even

number of distinct nodes, with half the number of nodes from the set A and the other half from the

set B.

Proof. In cycle, C = {n1→ n2→ . . .→ ns→ n1}, let the node n1 be in set A (abbreviated n1 ∈A).

If n1 ∈ A then by definition of bi-partite graph, it must be that n2 ∈ B, n3 ∈ A, n4 ∈ B and so on.

In general, it holds that, n2 j+1 ∈ A and n2 j ∈ B. Since C is a cycle, ns must be in set B such that

s = 2Nc for some positive integer Nc. Therefore, cycle C has even number of nodes (and half the

nodes in circuit C are from set A and the other half are from set B). Hence the proof.

Property 3 (Follows from Lemma 41). In a circuit GC =
(
AC,BC,EC

)
, it holds that,

∣∣AC
∣∣ =∣∣BC

∣∣= Nc, where Nc > 0 is a positive integer.

We now illustrate these concepts with an example.

3A bi-partite graph is a graph with two disjoint sets of vertices such that every edge connects a vertex in one set to
a vertex in the other set.

220 Intra-migrative Scheduling on T-type Heterogeneous Multiprocessors

Tasks Values of indicator variables
x1

i x2
i x3

i x4
i x5

i
τ1 1 0 0 0 0
τ2 0 0 0 1 0
τ3 0.7 0 0 0 0.3
τ4 0.5 0 0.5 0 0
τ5 0 0 0 1 0
τ6 0 0.1 0.5 0 0.4
τ7 0 0 0 0 1

Table 6.2: Values of xk
i variables output by the LP solver.

Example 10. Consider a task set τ of 7 tasks and a t-type platform π with t = 5. Let the

solution output by the LP solver be as shown in Table 6.2. The bi-partite graph constructed

from this solution using the fractional tasks (τ3, τ4 and τ6) and the fractional processor types

(type-1, type-2, type-3 and type-5), is shown in Figure 6.4a. As can be seen, there is a cir-

cuit C =
{

τ3→ π1→ τ4→ π3→ τ6→ π5→ τ3
}

in the graph, with 6 distinct nodes in which

Nc = 3 nodes are from the set A and Nc = 3 nodes are from the set B. The graph correspond-

ing to this circuit is given by GC =
(
AC,BC,EC

)
where AC = {τ3,τ4,τ6}, BC =

{
π1,π3,π5

}
and

EC =
{

e1
3,e

1
4,e

3
4,e

3
6,e

5
6,e

5
3

}
.

Definition 24 (shared processor type node). A fractional processor type node πk ∈ B in a graph

G = (A,B,E) is said to be shared only if it is connected to at least two task nodes τi1 ∈ A and

τi2 ∈ A. Otherwise, it is said to be non-shared.

For example, in Figure 6.4a, although all the four nodes, π1, π2, π3 and π5, are fractional proces-

sor type nodes, only π1, π3 and π5, are shared processor type nodes.

Lemma 42. If there is no circuit in a graph G = (A,B,E) then there exists at least one task node

in A that is connected to at most one shared processor type node in B. Further, since this task is

fractional, we know that, it is also connected to at least one non-shared processor type node in B.

Proof. From Definition 23 and Definition 24, it holds that, in a circuit, each task node is connected

to exactly two shared processor type nodes. Thus, it can be easily proven that, if every task node in

a graph, G = (A,B,E), is connected to at least two shared processor type nodes then there exists at

least one circuit in G. Hence, by contraposition, it holds that, if there is no circuit in graph G then

it holds that, not every task node is connected to at least two shared processor type nodes. This

implies that, if there is no circuit in graph G then there exists at least one task node, τi ∈ A, that is

connected to at most one shared processor type node. Since all the task nodes in G are fractional,

the task node τi must be connected to at least two processor type nodes and hence to at least one

non-shared processor type node. Hence the proof.

6.7 Step 3 of LPGIM: Detecting and removing the circuits in the graph 221

τ3 τ6 τ4

e5
6

π5 π1 π3 π2

e1
3

(a) The bi-partite graph constructed from Ta-
ble 6.2; circuit is indicated by black edges.

τ1= τ4 τ2= τ6 τ3= τ3

xl1 xr1 xl2 xr2 xl3 xr3

π1=π1
 π2=π3

 π3=π5

(b) The circuit of Figure 6.4a (with Nc = 3
task and Nc = 3 processor type nodes) after re-
arranging and re-indexing.

Figure 6.4: An example to illustrate the concept of a bi-partite graph (formed from fractional tasks and
fractional processor types) and the concept of a circuit.

The circuit shown in Figure 6.4a can be re-arranged as shown in Figure 6.4b. Note in Fig-

ure 6.4b that, the nodes are re-indexed. For ease of explanation, we use this notion of re-arranged

graph in the next step.

Finally, we define the capacity used on a processor type in a circuit C by the tasks in that circuit

as follows.

Definition 25 (Capacity used on a processor type in a circuit). Consider a circuit, GC =(
AC,BC,EC

)
, in a graph G. The capacity C j

C used on a processor type-j node, π j ∈ BC, by the

task nodes ∀τi ∈ AC, is given by:

C j
C

def
= ∑

τi∈AC: xj
i>0

xj
i×uj

i (6.7)

Remark about notation. In Equation (6.7), index j is used for processor type instead of (the

earlier notation) k. This is to avoid any confusion since the processor type nodes are re-indexed in

the circuit (as shown in Figure 6.4b).

6.7 Step 3 of LPGIM: Detecting and removing the circuits in the
graph

In the graph constructed as described in the previous section, if there are any circuits then we

break all such circuits, in this step. Each circuit is broken by re-adjusting the weights of the edges

(x j
i) within the circuit such that the weight of at least one edge becomes zero, which breaks the

circuit. The edge whose weight becomes zero is removed from the graph. While manipulating

the weights of edges in a circuit GC =
(
AC,BC,EC

)
, it is ensured that, for each (shared) processor

type π j ∈ BC, its capacity used by the tasks in the circuit after re-adjusting the weights (denoted

by C j′
C) does not exceed its original used capacity, i.e., the used capacity before re-adjusting the

weights (denoted by C j
C). Breaking all the circuits reduces the complexity of the problem when

222 Intra-migrative Scheduling on T-type Heterogeneous Multiprocessors

assigning the (at most) t− 1 fractional tasks integrally to processor types, which is discussed in

Section 6.8. We now discuss, in detail, how to detect and remove circuits from the graph.

A circuit in a graph can be detected in polynomial time using Depth First Search (DFS) algo-

rithm, generally found in textbooks (e.g., see Chap. 22.3 in [CLRS01]). Hence, we mainly focus

on removing the detected circuits in our graph. The following lemma shows how to remove at least

one edge in the given circuit without increasing the capacity used on any of the shared processor

types that are in the circuit.

Lemma 43. Consider a circuit GC =
(
AC,BC,EC

)
(with Nc task and Nc processor type nodes —

see Property 3) arranged as shown in Figure 6.4b. Let x`i and xr
i denote the fraction of task τi

(∀i ∈ {1,2, . . . ,Nc}) that is assigned to the shared processor type which is on τi’s “left” and τi’s

“right”, respectively. From Figure 6.4b and Definition 3, C j
C,∀ j ∈ {1,2, . . . ,Nc}, can be re-defined

as:

C j
C =

{
(xr

Nc
×ur

Nc
)+(x`1×u`1) if j = 1

(xr
j−1×ur

j−1)+(x`j×u`j) if j ∈ {2, . . . ,Nc}
(6.8)

If it holds that
Nc

∏
g=1

ur
g

u`g
≥ 1 (6.9)

then after updating the fractional assignments as follows:

xr′
i = xr

i−
ε

u`i
×

i−1

∏
g=1

ur
g

u`g
(6.10)

x`
′

i = x`i +
ε

u`i
×

i−1

∏
g=1

ur
g

u`g
(6.11)

where ∏
i−1
g=1

ur
g

u`g
is assumed to be 1 for i = 1 and where ε > 0 denotes a real number such that

ε = min
z∈[1,2,...,Nc]

 xr
z×u`z

∏
z−1
g=1

ur
g

u`g

 (6.12)

the following properties are satisfied:

P1. ∀ j ∈ {1,2, . . . ,Nc} : C j′
C ≤ C j

C, where C j′
C denotes the capacity used on shared processor type

j, after updating the fractional assignments.

P2. ∀i ∈ {1,2, . . . ,Nc} : x`
′

i + xr′
i = x`i + xr

i .

P3. ∀i ∈ {1,2, . . . ,Nc} : x`
′

i ≥ 0 and xr′
i ≥ 0.

P4. ∃i ∈ {1,2, . . . ,Nc} : xr′
i = 0.

Proof. We now prove each of these four properties.

Proof of P1. This will be shown separately for processor type j = 1 and ∀ j ∈ {2,3, . . . ,Nc}.

6.7 Step 3 of LPGIM: Detecting and removing the circuits in the graph 223

Case 1: j = 1. From Equation (6.8) and Equation (6.10), we have:

from Equation (6.8): C 1′
C = (xr′

Nc
×ur

Nc
)+(x`

′
1 ×u`1) (6.13)

from Equation (6.10): xr′
Nc

= xr
Nc
− ε

u`Nc
×∏

Nc−1
g=1

ur
g

u`g
(6.14)

From Equation (6.11) and from the assumption that ∏
i−1
g=1

ur
g

u`g
= 1 for i = 1, we have:

x`
′

1 = x`1 +
ε

u`1
(6.15)

Thus, by substituting Equation (6.14) and Equation (6.15) in Equation (6.13) yields:

C 1′
C =

(
xr

Nc
− ε

u`Nc

×
Nc−1

∏
g=1

ur
g

u`g

)
×ur

Nc
+

(
x`1 +

ε

u`1

)
×u`1

= (xr
Nc
×ur

Nc
)− ε×

Nc

∏
g=1

ur
g

u`g
+
(

x`1×u`1
)
+ ε

from (6.8)
= C 1

C + ε×
(

1−
Nc

∏
g=1

ur
g

u`g

)
from (6.9)
≤ C 1

C (6.16)

Case 2: j ∈ {2, . . . ,Nc} . From Equation (6.8), Equation (6.10) and Equation (6.11), we have:

C j′
C = (xr′

j−1×ur
j−1)+(x`

′
j ×u`j) (6.17)

xr′
j−1 = xr

j−1−
ε

u`j−1
×

j−2

∏
g=1

ur
g

u`g
(6.18)

x`
′

j = x`j +
ε

u`j
×

j−1

∏
g=1

ur
g

u`g
(6.19)

Thus, by substituting Equation (6.18) and Equation (6.19) in Equation (6.17) yields:

C j′
C =

(
xr

j−1−
ε

u`j−1
×

j−2

∏
g=1

ur
g

u`g

)
×ur

j−1 +

(
x`j +

ε

u`j
×

j−1

∏
g=1

ur
g

u`g

)
×u`j

= (xr
j−1×ur

j−1)+(x`j×u`j)−
(

ε×
ur

j−1

u`j−1
×

j−2

∏
g=1

ur
g

u`g

)
+

(
ε×

j−1

∏
g=1

ur
g

u`g

)

= (xr
j−1×ur

j−1)+(x`j×u`j)−
(

ε×
j−1

∏
g=1

ur
g

u`g

)
+

(
ε×

j−1

∏
g=1

ur
g

u`g

)
= (xr

j−1×ur
j−1)+(x`j×u`j)

from (6.9)
= C j

C (6.20)

From Equation (6.16) and Equation (6.20), it can be seen that, performing operations shown

in Equation (6.10) and Equation (6.11) satisfies property P1.

224 Intra-migrative Scheduling on T-type Heterogeneous Multiprocessors

Proof of P2. For every i ∈ {1, . . . ,Nc}, it can be seen that adding Equation (6.10) and Equa-

tion (6.11) results in x`
′

i + xr′
i = x`i + xr

i , and hence the property immediately follows.

Proof of P3. Since ε > 0, it is trivial from Equation (6.11) that, ∀i ∈ {1, . . . ,Nc}: x`
′

i > x`i > 0.

Then, from Equation (6.10), any xr′
i will be negative if and only if

xr
i <

ε

u`i
×

i−1

∏
g=1

ur
g

u`g

from (6.12)
< min

z∈{1,2,...,Nc}

 xr
z×u`z

∏
z−1
g=1

ur
g

u`g

× 1
u`i
×

i−1

∏
g=1

ur
g

u`g

Since the min term evaluates to ≤ xr
i×u`i

∏
i−1
g=1

urg
u`g

, we have:

xr
i <

xr
i×u`i

∏
i−1
g=1

ur
g

u`g

× 1
u`i
×

i−1

∏
g=1

ur
g

u`g
<

xr
i×u`i
u`i

< xr
i

which is impossible. Hence xr′
i ≥ 0.

Proof of P4. From Equation (6.12), it holds that:

∃i ∈ {1,2, . . . ,Nc} : ε =
xr

i×u`i
∏

i−1
g=1

ur
g

u`g

(6.21)

For such i, Equation (6.10) can be re-written as:

xr′
i = xr

i−
ε

u`i
×

i−1

∏
g=1

ur
g

u`g
(6.22)

Substituting the value of ε , we obtain, ∃i ∈ {1,2, . . . ,Nc} : xr′
i = 0. Hence the property holds.

As a conclusion, we showed that modifying the fractional assignments of the tasks according

to Equation (6.10) and Equation (6.11) ensures that all the four properties P1, P2, P3 and P4 are

satisfied. Hence the proof.

Lemma 43 showed that, in a circuit with Nc task nodes, if ∏
Nc
g=1

ur
g

u`g
≥ 1 then transferring the

fractions from “right to left” within the circuit will (i) delete an edge (as its weight becomes

zero, by P4) so that the circuit breaks and (ii) ensures that, ∀ j ∈ {1,2, . . . ,Nc} : C j′
C ≤ C j

C. Since

no fraction was moved to/from those processor types that are in set B but not in circuit C, their

capacities remain unaffected. Hence, ∀π j ∈ B : C j′
C ≤ C j

C. Analogously, it can be shown that if

∏
Nc
g=1

ur
g

u`g
< 1 then transferring the fractions from “left to right” within the circuit will also yield the

same result. The claim is presented formally below in Lemma 44 but the formal proof is omitted

since it is very similar to the proof of Lemma 43.

6.7 Step 3 of LPGIM: Detecting and removing the circuits in the graph 225

Lemma 44. Consider a circuit GC =
(
AC,BC,EC

)
(with Nc task and Nc processor type nodes —

see Property 3) arranged as shown in Figure 6.4b. Let x`i and xr
i denote the fraction of task τi

(∀i ∈ {1,2, . . . ,Nc}) that is assigned to the shared processor type which is on τi’s “left” and τi’s

“right”, respectively. From Figure 6.4b and Definition 3, C j
C,∀ j ∈ {1,2, . . . ,Nc}, can be re-defined

as:

C j
C =

{
(xr

Nc
×ur

Nc
)+(x`1×u`1) if j = 1

(xr
j−1×ur

j−1)+(x`j×u`j) if j ∈ {2, . . . ,Nc}

If it holds that
Nc

∏
g=1

ur
g

u`g
< 1

then after updating the fractional assignments as follows:

xr′
i = xr

i +
ε

u`i
×

i−1

∏
g=1

ur
g

u`g
and x`

′
i = x`i −

ε

u`i
×

i−1

∏
g=1

ur
g

u`g

where ∏
i−1
g=1

ur
g

u`g
is assumed to be 1 for i = 1 and where ε > 0 denotes a real number such that

ε = min
z∈[1,2,...,Nc]

 xr
z×u`z

∏
z−1
g=1

ur
g

u`g


the following properties are satisfied:

P1. ∀ j ∈ {1,2, . . . ,Nc} : C j′
C ≤ C j

C, where C j′
C denotes the capacity used on shared processor type

j, after updating the fractional assignments.

P2. ∀i ∈ {1,2, . . . ,Nc} : x`
′

i + xr′
i = x`i + xr

i .

P3. ∀i ∈ {1,2, . . . ,Nc} : x`
′

i ≥ 0 and xr′
i ≥ 0.

P4. ∃i ∈ {1,2, . . . ,Nc} : x`
′

i = 0.

Proof. The proof is analogous to the proof of Lemma 43.

Thus, each circuit identified in the graph (for example, using DFS [CLRS01]) can be broken

using the procedure described above (i.e., either using Lemma 43 or Lemma 44). Observe that,

while removing the circuits, zero or more fractional tasks may get integrally assigned to processor

types but for all practical purposes, it is sufficient for us to know that, at the end of this step, (i)

there are at most t− 1 fractional tasks (by Lemma 40) and (ii) there are no circuits in the graph

anymore (by repeatedly applying Lemma 43 and/or Lemma 44). In the final step, we integrally

assign these (at most) t−1 fractional tasks to processor types.

226 Intra-migrative Scheduling on T-type Heterogeneous Multiprocessors

6.8 Step 4 of LPGIM: Integrally assigning the fractional tasks

In this section, we describe how to assign the fractional tasks integrally to processor types. This

fourth step takes as input the output of the previous step, i.e, a graph G = (A,B,E) with no circuits

and with at most t−1 fractional tasks, and works iteratively on this input graph. In each iteration

y, our algorithm chooses one fractional task τi ∈A and assigns it integrally to one of the processor

types in B. Then, it removes that fractional task node from A, deletes all the edges incident on τi

and removes from B all the non-shared processor type nodes to which τi was fractionally assigned.

This procedure of integrally assigning a task and then deleting a few nodes and edges is repeated

until the graph becomes empty, which implies that all the fractional tasks have been integrally

assigned to processor types.

We now introduce two additional sets of notations that we will use extensively in the rest of

the section while describing the working of this fourth step and proving its correctness. The first

set of notations can be seen as “global” with respect to the input graph G while the second set of

notations can be seen as “local” with respect to each task in the graph.

Global notations w.r.t. the graph. Recall that, in this step, we use the circuit-free graph,

G = (A,B,E), output by the previous step. Since this graph contains only fractional tasks and

fractional processor types (see Section 6.6), this step deals with only these tasks and processor

types. For the purpose of this section, we re-index the fractional tasks in A and the fractional

processor types in B as follows. In graph G = (A,B,E), let τi denote the i’th task (node) in A

and let π j denote the j’th processor type (node) in B. Since this step works iteratively, let y

denote the current iteration. During this step, assigning a fractional task integrally to one of the

processor types comes at the cost of additional computing capacity required on the processor type

for accommodating this task entirely. We denote by C j
+[y] the cumulative extra capacity required

on processor type π j ∈ B from iteration 1 until the beginning of iteration y. Since some of the

processor type nodes are deleted from the graph at the end of each iteration, let Pin[y] denote the

set of processor type nodes that are still in the graph at the beginning of iteration y and let Pout[y]

denote the set of all the processor types that have been removed from the graph from iteration 1

till the beginning of iteration y. It holds by definition that, Pin[1] = B and Pout[1] = φ .

For example, let the circuit in the graph shown in Figure 6.4a (in the previous section), be

broken by removing the edge e5
3. In that case, the graph output by the previous step (i.e., Step 3

of LPGIM), after re-indexing the task and processor types, is shown in Figure 6.5. In Figure 6.5,

the re-indexed task nodes τ1, τ2 and τ3 denote the original task nodes τ3, τ4 and τ6 of Figure 6.4a,

respectively. Analogously, the re-indexed processor type nodes π1, π2, π3 and π4 denote the

original processor type nodes π1, π2, π3 and π5 of Figure 6.4a, respectively.

Local notations w.r.t. a task in the graph. Since this fourth step of LPGIM considers one

fractional task, τi ∈ A, in each iteration and assigns it integrally to one of the processor types to

which it is fractionally assigned, we also define some notations with respect to task τi. Let π(i) ={
π1(i),π2(i), . . . ,π |π(i)|(i)

}
denote the set of fractional processor types to which task, τi ∈ A, is

fractionally assigned in G, where ∀ j ∈ {1,2, . . . , |π(i)|}, π j(i) ∈ π(i) denote the j’th processor

6.8 Step 4 of LPGIM: Integrally assigning the fractional tasks 227

τ1

x1(1)

τ2 τ3

π1 π2 π3 π4

π1(1) π1(3)

π1(2)

π2(3)

π2(2)

π3(3)

x1(2)
x1(3)

x2(2) x2(3) x3(3)

Figure 6.5: The graph of Figure 6.4a after breaking the circuit (as described in Section 6.7) and
re-indexing the nodes.

type to which task τi is assigned. Let X(i) =
{

x1(i),x2(i), . . . ,x|π(i)|(i)
}

denote the set of fractional

assignments of task, τi ∈ A, where ∀ j ∈ {1,2, . . . , |π(i)|}, x j(i) ∈ X(i) denotes the fraction of task

τi that is assigned to its j’th processor type, i.e., the fraction that is assigned to π j(i). Let C j
+(i)[y]

denote the cumulative extra capacity required on processor type π j(i) from iteration 1 to iteration

y.

Note that these two sets of notations, i.e., global and local, can be used to refer to the same pro-

cessor type node. For example, in Figure 6.5, we can observe the following: π(1)=
{

π1(1) = π1
}

,

π(2) =
{

π1(2) = π1, π2(2) = π3
}

and π(3) =
{

π1(3) = π2, π2(3) = π3, π3(3) = π4
}

. Hence,

for example, processor π1 is referred to as π1(1) in the context of task τ1 and is also referred to as

π1(2) in the context of task τ2.

Finally, since G is formed using only fractional tasks and fractional processor types (see Sec-

tion 6.6), observe that:

∀τi ∈ A :
|π(i)|
∑
j=1

x j(i) = 1 (6.23)

With these new notations, we now describe the working of this fourth step of LPGIM algorithm.

The pseudo-code of the fourth step is provided in Algorithm 15 and it can be summarized as

follows. As long as there are task nodes in the graph, Algorithm 15 chooses a task τi from the

graph which is connected to only non-shared processor type nodes (line 3–4). If there is no such

task then it chooses a task which is connected to exactly one shared processor type node (line 5–6)

— we will prove in Lemma 46 that there always exists such a task. Then, Algorithm 15 tries to

integrally assign the chosen task τi to one of its non-shared processor types. We say that it fails to

assign τi to a processor type π`(i) ∈ π(i) if the (cumulative) extra capacity required on π`(i), after

assigning τi to it, exceeds α× t−1
t . If the extra capacity does not exceed that threshold on any one

of the non-shared processor types then τi is integrally assigned to that processor type (lines 8–15).

Otherwise, τi is assigned to its (sole) shared processor type (lines 16–19); we show in Lemma 46

that this assignment cannot fail. Finally, the algorithm removes τi from the graph, as well as all its

non-shared processor type nodes and all the edges connected to τi (lines 21–26), and iterates with

another task until the graph becomes empty.

Now, we prove the speed competitive ratio of the intra-migrative algorithm, LPGIM, with the

help of Property 4 and an intermediate lemma, Lemma 45.

228 Intra-migrative Scheduling on T-type Heterogeneous Multiprocessors

Algorithm 15: Step 4 of LPGIM algorithm for assigning the fractional tasks integrally to
processor types.

Input : G = (A,B,E): A graph output by Step 3 of LPGIM representing task assignment
with no circuits and at most t−1 fractional tasks

1 y← 1, Pin[y]← B, Pout[y]← φ ;
2 while A is not empty do
3 if ∃τ` ∈ A connected to only non-shared processor types then
4 τi← τ` ;
5 else
6 τi← a task in A that is connected to exactly one shared processor type ;
7 end
8 foreach non-shared processor type π`(i) ∈ π(i) do
9 newCap← C `

+(i)[y]+∑
|π(i)|
j=1, j 6=` x j(i)×u j

i ;
10 if newCap≤ α× t−1

t then
11 assign τi to π`(i) ;
12 C `

+(i)[y]← newCap ;
13 break the foreach loop ;
14 end
15 end
16 if τi is not assigned then
17 assign τi to the only shared processor type, say πz(i), to which it is connected ;

18 C z
+(i)[y]← C z

+(i)[y]+∑
|π(i)|
j=1, j 6=z x j(i)×u j

i ;
19 end

// remove (i) the task τi from A and (ii) all the non-shared
processor types that are connected to τi from B (and the
edges connecting τi to these processor types

20 y← y+1;
21 A← A\{τi};
22 delpt←{πk ∈ B | ∃xk

i > 0 and πk is non-shared};
23 B← B\delpt;
24 Pin[y]← Pin[y]\delpt;
25 Pout[y]← Pout[y]∪delpt;
26 E← E\{ek

i | πk ∈ π(i) and πk is non-shared};
27 end

Property 4. It holds, from lines 21–26 of Algorithm 15, that at each iteration y:

Pin[y]∪Pout[y] = B and Pin[y]∩Pout[y] = /0 (6.24)

Lemma 45. ∀τi ∈ A, ∃π j(i) ∈ π(i) such that x j(i)≥ 1
|π(i)| .

Proof. The proof is by contradiction. If ∀π j(i) ∈ π(i), if x j(i)< 1
|π(i)| then ∑

|π(i)|
j=1 x j(i)< |π(i)|×

1
|π(i)| < 1, which contradicts Equation (6.23). Hence the proof.

Lemma 46. Consider a task set τ which is intra-migrative feasible on a platform π . After running

steps 1 to 3 of LPGIM, if the graph G=(A,B,E) (with no circuits and at most t−1 fractional tasks)

6.8 Step 4 of LPGIM: Integrally assigning the fractional tasks 229

that was output by step 3, is given as input to Algorithm 15 (step 4 of LPGIM) then Algorithm 15

succeeds to integrally assign the at most t−1 fractional tasks in A to the processor types in B and

in order to succeed it only requires that each processor type in B are provided with an additional

capacity of α× t−1
t .

Proof. The proof is split into three parts where we show:

Part 1. At lines 3–7, there always exists, at the beginning of each iteration y, a task τi assigned to

at most one shared processor type.

Part 2. At the beginning of the first iteration (y = 1), it holds that ∑π j∈Pin[1]C
j
+[1]≤ α× |Pout[1]|

t .

Part 3. At the beginning of each iteration y≥ 1, if it holds that

∑
π j∈Pin[y]

C j
+[y]≤

|Pout[y]|
t

×α (6.25)

then the task τi chosen on line 4 (or line 6) can be assigned integrally to one of its non-shared

processor types on lines 8–15 (or, to its (sole) shared processor type on lines 16–19). Then, after

assigning τi integrally, Equation (6.25) remains satisfied at the beginning of the next iteration y+1.

Proof of Part 1. Here we show that, at the beginning of each iteration y, there always exists a task

τi which is assigned to at most one shared processor type. Since the input graph, G = (A,B,E),

does not contain any circuit, we know from Lemma 42 that, at the first iteration of Algorithm 15,

there is a task, τi ∈ A, which is assigned to at most one shared processor type. Then, at the end of

each iteration, y≥ 1, one task is deleted from the graph (line 21) and all the non-shared processor

types connected to that task are also deleted (lines 22–25). Since removing nodes and edges from

the graph cannot create a new circuit, the graph will always be circuit-free in all the subsequent

iterations of Algorithm 15. Hence, from Lemma 42, at every iteration, y ≥ 1, there is always a

task, τi ∈ A, assigned to at most one shared processor type.

Proof of Part 2. Here we show that at the beginning of the first iteration (y = 1), it holds

that, ∑π j∈Pin[1]C
j
+[1] ≤ |Pout[1]|

t ×α . At the beginning of the first iteration, no fractional task in

G has been integrally assigned to a processor type yet. Hence, the extra capacity needed on

each processor type to accommodate the tasks in G that have been already integrally assigned

is trivially zero, i.e., C j
+[1] = 0, ∀π j ∈ B. Besides, we have Pout[1] = φ and thus it holds that,

∑π j∈Pin[1]C
j
+[1] = 0≤ |Pout[1]|

t ×α = 0.

Proof of Part 3. Here we show that, at each iteration y, as long as Equation (6.25) holds (and we

have shown above that, it holds for y = 1), the fractional task, τi, chosen at line 4 (or line 6), can be

integrally assigned to one of the processor types connected to it. For this, we need to investigate

three cases:

Case 3.1. Task τi is not assigned to a shared processor type (chosen on line 4). In this case, we

need to show that τi can be integrally assigned to at least one of its non-shared processor type (on

lines 8–15) and Equation (6.25) holds true at the beginning of the next iteration, y+1.

Case 3.2. Task τi is assigned to exactly one shared processor type (chosen on line 6) and is

integrally assigned to (one of) its non-shared processor types on line 8–15. In this case, we only

230 Intra-migrative Scheduling on T-type Heterogeneous Multiprocessors

have to show that Equation (6.25) holds true at the beginning of the next iteration, y+1.

Case 3.3. Task τi is assigned to exactly one shared processor type (chosen on line 6) and fails to be

assigned to any of its non-shared processor types. In this case, we need to show that Algorithm 15

succeeds in integrally assigning τi to its shared processor type on lines 16–19 and Equation (6.25)

holds true at the beginning of the next iteration, y+1.

In the three cases proven below, we assume that Equation (6.25) holds true at the beginning of

iteration, y, and then show that it also holds at the beginning of iteration, y+1.

Proof of Case 3.1. We prove this case by contradiction, i.e., we assume that Algorithm 15 tried to

integrally assign the task τi to every non-shared processor type (to which τi is fractionally assigned)

but failed to do so and then we show that it is impossible for this to happen. From the case, task

τi failed to be integrally assigned to its non-shared processor types, which means that for every

processor type node π j(i) ∈ π(i), migrating all the fractional assignments of task τi to processor

type π j(i) requires an extra capacity on that processor type, j, which is greater than α× t−1
t , i.e.,

the following |π(i)| inequalities hold:

∀` ∈ [1, |π(i)|] : ∑
|π(i)|
j=1
j 6=`

(
x j(i)×u`i

)
+C `

+(i)[y] > α× t−1
t

re-writing⇔ ∀` ∈ [1, |π(i)|] : ∑
|π(i)|
j=1
j 6=`

(
x j(i)×u`i

)
> α× t−1

t −C `
+(i)[y]

By summing these |π(i)| inequalities, we get

|π(i)|
∑
`=1

|π(i)|
∑
j=1
j 6=`

(
x j(i)×u`i

)
>

(
|π(i)|×α× t−1

t

)
−
|π(i)|
∑
`=1

C `
+[y] (6.26)

In the left-hand side of Equation (6.26), each x j(i) appears (|π(i)|−1) times and since ∀`, u`i ≤ α

(from Equation (6.2)), for the left-hand side of Equation (6.26), we have:

|π(i)|
∑
`=1

|π(i)|
∑
j=1
j 6=`

x j(i)×u`i ≤ α× (|π(i)|−1)×
|π(i)|
∑
j=1

x j(i)

from (6.23)
= α× (|π(i)|−1) (6.27)

Regarding the right-hand side of Equation (6.26), since we know that π(i)⊆ Pin[y], we have

|π(i)|
∑
`=1

C `
+(i)[y] ≤ ∑

π j∈Pin[y]

C j
+[y]

from (6.25)
≤ α× |P

out[y]|
t

Therefore, for the right-hand side of Equation (6.26), we have:

(
|π(i)|×α× t−1

t

)
−
(|π(i)|

∑
`=1

C `
+(i)[y]

)
≥
(
|π(i)|×α× t−1

t

)
−
(

α× |P
out[y]|

t

)
(6.28)

6.8 Step 4 of LPGIM: Integrally assigning the fractional tasks 231

By combining Equation (6.26), (6.27) and (6.28), we obtain:

α× (|π(i)|−1) >

(
|π(i)|×α× t−1

t

)
−
(

α× |P
out[y]|

t

)
(6.29)

Then, since π(i) ⊆ Pin[y], we have
∣∣Pin[y]

∣∣ ≥ |π(i)| and thus |Pout[y]| ≤ t − |π(i)|. Using this,

Equation (6.29) is re-written as:

α× (|π(i)|−1) >

(
|π(i)|×α× t−1

t

)
−
(

α× t−|π(i)|
t

)
⇔ |π(i)|−

(
|π(i)|× t−1

t

)
>
|π(i)|

t

⇔ 1
t

>
1
t

which is impossible. Hence, this contradicts the assumption that the task τi could not be integrally

assigned to any of its non-shared processor types and hence Algorithm 15 succeeds in doing so.

This concludes Case 3.1.

Proof of Case 3.2. Task τi is assigned to exactly one shared processor type and is successfully

assigned integrally on lines 8–15 to (one of) its non-shared processor types in π(i). Here, we only

need to show that Equation (6.25) holds true at the beginning of the next iteration, y+1. The proof

is somewhat similar to that of Case 3.1. Let us assume, without loss of generality that, π1(i) is the

shared processor type in π(i). After assigning τi to (one of) its non-shared processor type, we get:

| Pout[y+1] | = | Pout[y] |+ |π(i)|−1 (6.30)

| Pin[y+1] | = | Pin[y] | −|π(i)|+1 (6.31)

The “-1” and “+1” is the shared processor type node, π1(i) ∈ π(i), which is not removed from the

graph. Hence, the processor type node, π1(i), remains in Pin[y+1] and is not added to Pout[y+1].

As explained in Case 3.1, since the task τi is integrally assigned to (one of) its non-shared processor

type, say π`(i), and since π`(i) 6∈ Pin[y+1] as π`(i) is removed from graph, we have

∑
π j∈Pin[y+1]

C j
+[y+1] = ∑

π j∈Pin[y+1]

C j
+[y] (6.32)

and since Pin[y+1]⊂ Pin[y], we can rewrite Equation (6.32) as:

∑
π j∈Pin[y+1]

C j
+[y+1] ≤ ∑

π j∈Pin[y]

C j
+[y]

from (6.25)
≤ α× |P

out[y]|
t

from (6.30)
= α×

(|Pout[y+1]|
t

− |π(i)|−1
t

)
< α× |P

out[y+1]|
t

(since |π(i)| ≥ 2)

This concludes Case 3.2.

232 Intra-migrative Scheduling on T-type Heterogeneous Multiprocessors

Proof of Case 3.3. Task τi is assigned to exactly one shared processor type and fails to be integrally

assigned on lines 8–15 to any of its non-shared processor types in π(i). In this case, we need to

show that, Algorithm 15 succeeds in integrally assigning τi to its (sole) shared processor type on

lines 16–19 and Equation (6.25) holds true at the beginning of the next iteration, y+1. As in the

previous case, let us assume, without loss of generality that, π1(i) ∈ π(i) is the shared processor

type connected to τi. We prove by contradiction that the integral assignment of task τi to processor

type π1(i) cannot fail, i.e., by contradiction, we assume that it does fail and then show that it is

impossible for this to happen.

From the case, task τi also failed to be assigned to all its non-shared processor types, π j(i) ∈
π(i) ∧ j 6= 1 (on lines 8–15), which means that, for every processor type node, π j(i) ∈ π(i),

migrating all the fractional assignments of task τi to that node π j(i) requires an extra capacity on

that processor type j exceeding α × t−1
t . This scenario is same as Case 3.1 and thus it leads to

a contradiction. Hence, the assumption that, Algorithm 15 fails to integrally assign τi to its only

shared processor type π1(i) is not true and therefore, Algorithm 15 must succeed in doing so.

Now, we assume that τi is integrally assigned to π1(i) ∈ π(i) in iteration y and show that,

Equation (6.25) still holds at the beginning of the next iteration, y+1. Assigning task τi integrally

to processor type π1(i) gives us:

C 1
+(i)[y+1] = C 1

+(i)[y]+
|π(i)|
∑
j=2

(
x j(i)×u1

i
)

(6.33)

As explained earlier, since the algorithm failed to assign the task, τi, integrally to each of the

non-shared processor types, it holds ∀π`(i) ∈ π(i), π`(i) 6= π1(i) that:

|π(i)|
∑
j=1
j 6=`

(
x j(i)×u`i

)
>

(
α× t−1

t

)
−C `

+(i)[y] (6.34)

Since we know from Equation (6.23) that, ∑
|π(i)|
j=1 x j(i) = 1, we obtain ∀`∈ [1, |π(i)|]: ∑

|π(i)|
j=1
j 6=`

x j(i) =

1− x`(i). Using this, Equation (6.34) can be re-written as: ∀π`(i) ∈ π(i), π`(i) 6= π1(i), it holds

that:

(1− x`(i))×u`i >

(
α× t−1

t

)
−C `

+(i)[y]

from (6.2)⇔ α×
(
1− x`(i)

)
>

(
α× t−1

t

)
−C `

+(i)[y]

re-writing⇔ α× x`(i) < α−
(

α× t−1
t

)
+C `

+(i)[y]

re-writing⇔ x`(i) <
α

t +C `
+(i)[y]
α

(6.35)

6.8 Step 4 of LPGIM: Integrally assigning the fractional tasks 233

By using Equation (6.35) in Equation (6.33), we get

C 1
+(i)[y+1] ≤ C 1

+(i)[y]+
|π(i)|
∑
j=2

(
α

t +C `
+(i)[y]
α

)
×u1

i

from (6.2)
≤ C 1

+(i)[y]+
|π(i)|
∑
j=2

(
α

t
+C `

+(i)[y]
)

≤ C 1
+(i)[y]+

(
α× |π(i)|−1

t

)
+
|π(i)|
∑
j=2

C `
+(i)[y] (6.36)

Now, let us focus on the term, ∑
|π(i)|
j=2 C j

+(i)[y], from the right-hand side of the above inequality.

Since we know that:

π(i)\{π1(i)}= Pin[y]\(Pin[y]\π(i))\π1(i), we can write:

|π(i)|
∑
j=2

C j
+(i)[y] = ∑

π j∈Pin[y]

C j
+[y]−

(
∑

π j∈Pin[y]\π(i)
C j
+[y]

)
−C 1

+(i)[y]

from (6.25)
≤ α× |P

out[y]|
t

−
(

∑
π j∈Pin[y]\π(i)

C j
+(i)[y]

)
−C 1

+(i)[y] (6.37)

By using Equation (6.36) and Equation (6.37) together, we get

C 1
+(i)[y+1] ≤ C 1

+(i)[y]+
(

α× |π(i)|−1
t

)
+

(
α× |P

out[y]|
t

)
−
(

∑
π j∈Pin[y]\π(i)

C j
+[y]

)
−C 1

+(i)[y]

≤
(

α× |π(i)|−1
t

)
+

(
α× |P

out[y]|
t

)
− ∑

π j∈Pin[y]\π(i)
C j
+[y]

Here, we can re-use Equation (6.30) since all the processor type nodes that are connected to task

τi, except π1(i) ∈ π(i), are deleted from the graph on line 21 (this case is similar to Case 3.2 in

that regard). So, the above equation can be re-written as:

C 1
+(i)[y+1] ≤

(
α× |π(i)|−1

t

)
+

(
α× |P

out[y+1]|− (|π(i)|−1)
t

)
− ∑

π j∈Pin[y]\π(i)
C j
+[y]

≤
(

α× |P
out[y+1]|

t

)
− ∑

π j∈Pin[y]\π(i)
C j
+[y] (6.38)

234 Intra-migrative Scheduling on T-type Heterogeneous Multiprocessors

Now, let us look at the term ∑π j∈Pin[y+1]C
j
+[y+1]:

∑
π j∈Pin[y+1]

C j
+[y+1] =

 ∑
π j∈Pin [y+1]
π j 6=π1(i)

C j
+[y+1]

+C 1
+(i)[y+1]

from (6.38)
≤

 ∑
π j∈Pin [y+1]
π j 6=π1(i)

C j
+[y+1]

+

(
α× |P

out[y+1]|
t

)

− ∑
π j∈Pin[y]\π(i)

C j
+[y] (6.39)

From the case, we have, Pin[y+1] =Pin[y]\π(i)∪{π1(i)}, and thus Pin[y+1]\{π1(i)}=Pin[y]\π(i).
Hence,

∑
π j∈Pin[y+1]
π j 6=π1(i)

C j
+[y+1] = ∑

π j∈Pin[y]\π(i)
C j
+[y]

Using this on Equation (6.39) leads to:

∑
π j∈Pin[y+1]

C j
+[y+1]≤ α× |P

out[y+1]|
t

This concludes Case 3.3.

Hence the proof.

Corollary 8. If there exists a feasible intra-migrative assignment of a task set τ on a platform π

then LPGIM succeeds as well, in finding such a feasible intra-migrative assignment of τ but on a

platform π ′ in which only one processor of each type is 1+α× t−1
t times faster.

Proof. This follows from Lemma 46. From Lemma 46, we have, if there exists a feasible intra-

migrative assignment of τ on π then LPGIM succeeds as well, in finding such a feasible intra-

migrative assignment of τ but on a platform π ′′ in which each fractional processor type (i.e.,

processor type in the graph to which a fractional task is assigned after step 3 of LPGIM) has an

additional capacity α× t−1
t than the corresponding processor type in π . Also, for those processor

types that are not in the graph, LPGIM does not require any additional capacity on those processor

types. However, increasing the capacity of those processor types by the same factor does not affect

the performance guarantee (shown in Lemma 46) of LPGIM. Further, since there was no restriction

placed by step 4 of LPGIM algorithm on how to distribute this additional required capacity among

the processors of each type, adding the entire α× t−1
t capacity to only one processor of each type

satisfies Lemma 46. Hence the proof.

Theorem 21 (Speed competitive ratio of LPGIM). If there exists a feasible intra-migrative as-

signment of an implicit-deadline sporadic task τ on a t-type heterogeneous multiprocessor plat-

form π then LPGIM succeeds as well, in finding such a feasible intra-migrative assignment of

6.9 Conclusions 235

τ but on a platform, π(1+α× t−1
t), in which every processor is 1+α × t−1

t times faster than the

corresponding processor in π .

Proof. This trivially follows from Corollary 8.

6.9 Conclusions

In this chapter, we considered the problem of intra-migrative scheduling of implicit-deadline spo-

radic tasks on t-type heterogeneous multiprocessors. Recall that, this problem can be solved in two

steps: first, assign tasks to processor types and then globally schedule the tasks that are assigned

to each processor type (since all the processors of a type can be seen an identical multiproces-

sor platform) using a global scheduling algorithm, such as ERFair [AS00], DP-Fair [LFS+10],

U-EDF [NBN+12], that is designed for identical multiprocessors. So, assuming that such an opti-

mal scheduling algorithm is used to schedule the tasks on each processor type, the challenge is to

assign all the tasks to the processor types.

We showed that, this problem of intra-migrative task assignment on t-type heterogeneous mul-

tiprocessors is NP-Complete in the strong sense. We then proposed an algorithm, LPGIM for this

problem that relies on solving a linear programming formulation and that uses graph theory tech-

niques to output the feasible intra-migrative task assignment if there exists one. LPGIM algorithm

has a polynomial time-complexity and has a speed competitive ratio of 1+α × t−1
t against an

equally powerful intra-migrative adversary. The parameter 0 < α ≤ 1 is a property of the task set;

it is the maximum of all the task utilizations that are no greater than one and the parameter t ≥ 2

denotes the number of distinct processor types in the platform. For the special case in which t = 2,

i.e., for two-type heterogeneous multiprocessors, the speed competitive ratio becomes 1+ α

2 ≤ 1.5.

Hence, this result can be seen as a generalization of the result obtained for SA algorithm in Chap-

ter 3; however, LPGIM algorithm itself is not a generalization of SA algorithm as it is designed in

an entirely different manner.

To the best of our knowledge, for the problem of intra-migrative task assignment on t-type

heterogeneous multiprocessors, no previous algorithm exists and hence our algorithm, LPGIM, is

the first of its kind. It can be further justified as follows. Although some of the non-migrative algo-

rithms from state-of-the-art (such as the algorithms presented in [HS76, LST90]) can be “adapted”

to the intra-migrative model, these “adapted” algorithms will be inefficient compared to the LPGIM

algorithm, either in terms of the speed competitive ratio or in terms of the time-complexity. For

example, the adapted version of the algorithm in [LST90] will have inferior speed competitive ra-

tio and the adapted version of the algorithm in [HS76] will continue to have a significantly higher

time-complexity (which will severely limit the practicality of this algorithm).

236 Intra-migrative Scheduling on T-type Heterogeneous Multiprocessors

Chapter 7

Non-migrative Scheduling on T-type
Heterogeneous Multiprocessors

7.1 Introduction

In this chapter, we consider the problem of non-migrative scheduling of tasks on t-type (where

t ≥ 2) heterogeneous multiprocessors. Recall that, we studied the non-migrative task assignment

problem earlier in Chapter 4 but for two-type heterogeneous multiprocessors. Hence, several

algorithms discussed in that chapter (i.e., FF-3C, SA-P, LPC and PTASNF) are only applicable

to two-type heterogeneous multiprocessors and unfortunately cannot be generalized for t-type

(t ≥ 2) heterogeneous multiprocessors. Hence, in this chapter, we aim to design a non-migrative

task assignment algorithm for t-type heterogeneous multiprocessors.

Recall that, in the non-migrative model, every task is statically assigned to a processor before

run-time and all its jobs must execute only on that processor at run-time. The challenge is to find,

before run-time, a task-to-processor assignment such that, at run-time, on each processor, the given

scheduling algorithm meets all deadlines of the tasks assigned on that processor. Scheduling tasks

to meet deadlines is a well-understood problem in the non-migrative model. One may use Earliest

Deadline First (EDF) [LL73] on each processor, for example. EDF is an optimal scheduling

algorithm on a uniprocessor system [LL73, Der74], with the interpretation that, for every valid

arrival pattern, if a schedule exists that meets all deadlines then EDF succeeds as well to construct

such a schedule in which all deadlines are met. Therefore, assuming that an optimal scheduling

algorithm is used on every processor to schedule the tasks, the challenging part is to find a task-

to-processor assignment such that, there exists a schedule that meets all deadlines — such an

assignment is said to be feasible assignment hereafter. It can be shown that the problem of non-

migrative task assignment on t-type heterogeneous multiprocessors is NP-Complete in the strong

sense (by reducing an instance of the 3-PARTITION problem to an instance of our problem).

Therefore, for this problem, we propose a polynomial time-complexity algorithm, LPGNM, with a

finite speed competitive ratio. This algorithm is an extended version of LPGIM algorithm discussed

in Chapter 6.

237

238 Non-migrative Scheduling on T-type Heterogeneous Multiprocessors

Computing Adversary Task Assignment Algorithms
Platform Task migration Algorithm Task migration Speed competitive ratio Complexity

t-typea non-migrative [Bar04b] non-migrative 2 O(P)c

t-type non-migrative [Bar04c] non-migrative 2 O(P)
t-type non-migrative [LST90] non-migrative 2 O(P)
t-type fully-migrative [CSV12] non-migrative 4 O(P)

t-type non-migrative [HS76] non-migrative PTASd exponential
in procs

t-type non-migrative [JP99] non-migrative PTAS exponential in
procs and O(P)

t-type non-migrative [WBB13] non-migrative PTAS exponential
in 1/ε and O(P)

2-type
b

non-migrative FF-3C non-migrative 1+α ≤ 2 low-degree
(Chap. 4, Sec. 4.3) polynomial

2-type intra-migrative SA intra-migrative 1+ α

2
e≤ 1.5 low-degree

(Chapter 3) polynomial

2-type intra-migrative SA-P non-migrative 1+α ≤ 2 low-degree
(Chap. 4, Sec. 4.4) polynomial

2-type non-migrative LPC non-migrative 1.5 O(P)(Chap. 4, Sec. 4.5) (and 3 extra processors)

2-type non-migrative PTASNF non-migrative PTAS exponential
(Chap. 4, Sec. 4.6) in 1/ε

t-type intra-migrative LPGIM intra-migrative 1+α× t−1
t O(P)(Chapter 6)

t-type intra-migrative LPGNM non-migrative 1+α ≤ 2 O(P)
a A heterogeneous multiprocessor platform having two or more processor types.
b A heterogeneous multiprocessor platform having only two processor types.
c The time-complexity O(P) indicates that the algorithm relies on solving a Linear Program (LP) formulation — note that

though a linear program can be solved in polynomial time, the polynomial generally has a higher degree.
d A PTAS takes an instance of an optimization problem and a parameter ε > 0 as inputs and, in time polynomial in the problem

size (although not necessarily in the value of ε), produces a solution that is within a factor 1+ ε of being optimal.
e The parameter 0 < α ≤ 1 is a property of the task set — it is the maximum of all the task utilizations that are no greater than

one.

Table 7.1: Summary of state-of-the-art task assignment algorithms along with the LPGNM algo-
rithm proposed in this chapter.

Problem Statement. In this chapter, we consider the problem of non-migrative scheduling

of implicit-deadline sporadic tasks on t-type heterogeneous multiprocessors. That is, assuming

that an optimal uniprocessor scheduling algorithm (such as EDF) is used on every processor of

each type to schedule the tasks, we design a task assignment algorithm for determining a feasible

task-to-processor assignment.

Hardness of the Problem. It is trivial to see that the problem of non-migrative task assignment

on t-type heterogeneous multiprocessors is NP-Complete in the strong sense. This is because, even

in the simpler case of two-type heterogeneous multiprocessors, the problem of non-migrative task

assignment is NP-Complete in the strong sense — this was shown in Section 4.2 in Chapter 4

on page 76 (by reducing an instance of the 3-PARTITION problem, which is known to be NP-

Complete in the strong sense [Joh73], to an instance of our problem). Hence, this result continues

to hold for t-type (t ≥ 2) heterogeneous multiprocessors as well.

Related work. The non-migrative task assignment problem on heterogeneous multiprocessors

has been studied in the past [Bar04c, Bar04b, RABN12, RAB13, RN12b, WBB13, HS76, LST90,

JP99, CSV12]1. In [Bar04c, Bar04b, LST90], a couple of non-migrative algorithms are proposed

1It is a well-known fact that the non-migrative task assignment problem is equivalent to the problem of scheduling

7.1 Introduction 239

each with a speed competitive ratio of 2 against an equally powerful non-migrative adversary. The

approach discussed in [LST90] comes closest to our work since it formulates the task assignment

problem as a Mixed Integer Linear Program (MILP) and then relaxes it to a Linear Program (LP)

and finally uses a rounding technique to obtain the non-migrative task assignment. We also follow

the same approach in this work; however, by formulating MILP in a different way and using dif-

ferent techniques while rounding, we obtain a better speed competitive ratio for our non-migrative

task assignment algorithm than the one in [LST90].

The non-migrative algorithms discussed earlier in Chapter 4, such as, FF-3C, SA-P, LPC and

PTASNF, are applicable only on two-type heterogeneous multiprocessors (a special case of t-type

in which t = 2) and unfortunately cannot be extended for generic t-type (t ≥ 2) heterogeneous

multiprocessors.

Moving to algorithms whose speed competitive ratios have been proven against a more pow-

erful adversary, recently, in [CSV12], authors propose a non-migrative algorithm with a speed

competitive ratio of 4 against the fully-migrative adversary. Further, it is also shown that, this

bound is exact, i.e., it is impossible to design a non-migrative algorithm with a speed competitive

ratio smaller than 4 against the fully-migrative adversary [CSV12].

In [HS76, JP99, RN12b, WBB13], polynomial-time approximation schemes (PTASs) have

been proposed for the problem of non-migrative task assignment. Recall that, a PTAS takes an

instance of an optimization problem and a parameter ε > 0 as inputs and, in time polynomial in

the problem size (although not necessarily in the value of ε), produces a solution that is within

a factor 1+ ε of being optimal. PTAS is theoretically a significant result since such algorithms

partition the task set in polynomial time, to any desired degree of accuracy. However, most often,

their practical significance is severely limited due to a very high run-time complexity that they

incur.

The state-of-the-art along with the contributions of this chapter are summarized in Table 7.1.

Contributions and Significance of the work discussed in this chapter. Consider a t-type

heterogeneous multiprocessor platform π and an implicit-deadline sporadic task set τ in which, it

holds that: ∀k ∈ {1,2, . . . , t}, for every task in τ , utilization of each task on a type-k processor is

either no greater than α or is equal to ∞, where 0 < α ≤ 1. We present a non-migrative algorithm,

LPGNM, which offers the following guarantee. If there exists a feasible intra-migrative assignment

of the task set τ on the platform π then LPGNM succeeds as well, in finding a feasible non-

migrative assignment of τ but on a platform π(1+α), in which every processor is 1+α times faster

than the corresponding processor in π .

We believe that the significance of this work is as follows. For the problem of non-migrative

task assignment on t-type heterogeneous multiprocessors, our algorithm, LPGNM, has a superior

performance compared to state-of-the-art. This can be seen from Table 7.1 since (i) LPGNM has

a better speed competitive ratio compared to algorithms in [Bar04b, Bar04c, LST90]. This is

because its speed competitive ratio is 1+α ≤ 2 against a more powerful intra-migrative adversary

a set of non-real-time jobs, arriving at time zero, on unrelated parallel machine, so that they all finish before a specified
time. This equivalent problem has been studied in [HS76, LST90, JP99, CSV12].

240 Non-migrative Scheduling on T-type Heterogeneous Multiprocessors

and as can be seen, it is quantified using the parameter, 0 < α ≤ 1, which is a characteristic of the

task set. However, the speed competitive ratio of all the algorithms in [Bar04b, Bar04c, LST90] is

2 against equally powerful non-migrative adversary and as can bee seen, it is a constant (the speed

competitive ratio of LPGNM reaches this constant 2 only when α = 1 and for all other values

of α , it is smaller than 2), (ii) among algorithms with speed competitive ratio proven against an

adversary with a migration model of intra-migrative or greater power [CSV12], LPGNM offers the

best speed competitive ratio and (iii) compared to PTAS algorithms [HS76, JP99, WBB13] whose

practical significance is severely limited as they incur a very high time-complexity (exponential in

processors or exponential in 1/ε), our algorithm offers a significantly lower time-complexity.

A global view. The context of the new algorithm, LPGNM, can be visualized as shown in

Figure 7.1.

Fully
migrative

Intra
migrative

Non
migrative

Fully
migrative

Intra
migrative

Non
migrative

Algorithm Adversary

Figure 7.1: A global view of the new algorithm, LPGNM, proposed in this chapter. Here, SCR
denotes the “speed competitive ratio”, α is a property of the task set — it is the maximum of all
the task utilizations that are no greater than one (and hence can take a value in the range (0,1])
and O(P) indicates that the algorithm relies on solving a Linear Program formulation.

Organization of the chapter. The rest of the chapter is organized as follows. Section 7.2

briefs the system model. Section 7.3 presents our new non-migrative algorithm, LPGNM, and

proves its speed competitive ratio. Finally, Section 7.4 concludes.

7.2 System model

We consider the problem of scheduling a task set τ = {τ1,τ2, . . . ,τn} of n independent implicit-

deadline sporadic tasks on a t-type heterogeneous multiprocessor platform π comprising m proces-

sors. In platform π , the set of mk processors of type-k is denoted by πk = {p1, p2 . . . , pmk}, where

7.3 LPGNM: The non-migrative task assignment algorithm 241

1≤ k≤ t and p j denotes a processor of type-k, where 1≤ j ≤mk. It then holds that:
⋃t

k=1 πk = π

and
⋂t

k=1 πk = /0 and finally ∑
t
k=1 mk = m.

The minimum inter-arrival time of a task τi is denoted by Ti. On a t-type platform, the WCET

of every task depends on the type of the processor on which the task executes. We denote by Ck
i

the WCET of task τi when executed on a type-k processor, where k ∈ {1,2, . . . , t}. We denote by

uk
i

def
= Ck

i /Ti the utilization of task τi on a type-k processor and uk
i is a real number in [0,1]∪{∞}—

if τi cannot be executed on a type-k processor then uk
i is set to ∞. Let α be a real number defined

as follows:

α
def
= max

τi∈τ,k∈{1,2,...,t}

{
uk

i : uk
i ≤ 1

}
Then it holds that the utilization of any task on any processor type is either no greater than α or is

equal to ∞, i.e.,

∀k ∈ {1,2, . . . , t} ,∀τi ∈ τ : (uk
i ≤ α) ∨ (uk

i = ∞) (7.1)

7.3 LPGNM: The non-migrative task assignment algorithm

We now present a non-migrative task assignment algorithm, LPGNM, for assigning tasks to individ-

ual processors on a t-type platform. This algorithm is an enhanced version of the intra-migrative

algorithm, LPGIM, discussed in Chapter 6. We also prove the speed competitive ratio of LPGNM,

against a more powerful intra-migrative adversary.

7.3.1 The description of LPGNM algorithm

The non-migrative algorithm, LPGNM, works as follows.

Step 1. Assign tasks in the given task set τ to processor types in platform π ′ using LPGIM

algorithm (described in the previous chapter); in platform π ′, only one processor of each type is

1+α × t−1
t times faster compared to π . Recall that LPGIM assigns tasks to processor types and

not to processors.

Step 2. Assign the tasks, that are assigned to processor type-k (i.e., to processor type), to

individual processors of type-k (∀k ∈ {1,2, . . . , t}), using next-fit but allowing splitting of tasks

between consecutive processors. Such an assignment ensures that [LFS+10]: at most mk−1 tasks

are split between processors of type-k with at most one task split between each pair of consecutive

processors.

Step 3. Copy the assignment obtained in Step 2 onto a faster platform, π(1+α), in which every

processor is 1+α times faster than the corresponding processor in π .

Step 4. On platform π(1+α), ∀k ∈ {1,2, . . . , t}, assign a task split between consecutive proces-

sors, say p and p+1, of type-k, to processor p, where p1 ≤ p < pmk .

With this description of LPGNM algorithm, we now derive its speed competitive ratio.

242 Non-migrative Scheduling on T-type Heterogeneous Multiprocessors

7.3.2 The speed competitive ratio of LPGNM algorithm

In this section, we prove the speed competitive ratio of the non-migrative task assignment algo-

rithm, LPGNM, against a more powerful intra-migrative adversary.

Theorem 22 (Speed competitive ratio of LPGNM.). If there exists a feasible intra-migrative

assignment of an implicit-deadline sporadic task set τ on a t-type heterogeneous multiprocessor

platform π then LPGNM succeeds as well, in finding a feasible non-migrative assignment of τ

but on a platform π(1+α) in which every processor is 1+α times faster than the corresponding

processor in π .

Proof. Recall from Corollary 8 in Chapter 6 (page 234) that, if a task set τ is intra-migrative

feasible on a platform π then the intra-migrative algorithm, LPGIM, succeeds to output such a

feasible intra-migrative assignment of τ but on a platform π ′, in which only one processor of

each type is 1+α × t−1
t times faster and the remaining processors are of the same speed as the

corresponding processors in π . Let pmk denote the processor of type-k (∀k ∈ {1,2, . . . , t}) whose

speed is 1 +α × t−1
t times faster. So, in platform π ′, before assigning any tasks, it holds by

definition that, ∀k ∈ {1,2, . . . , t} of π ′:

∀p ∈ type-k ∧ p 6= pmk : FC [p] = 1 and (7.2)

p ∈ type-k ∧ p = pmk : FC [p] = 1+α× t−1
t

(7.3)

where FC [p] denotes the current free/available capacity on processor p. Since τ is intra-migrative

feasible on π , after Step 1 of LPGNM, it holds (by Corollary 8) that, ∀k ∈ {1,2, . . . , t} of π ′:

∑
τi∈τk

uk
i ≤ mk +

(
α× t−1

t

)
(7.4)

where τk denotes the set of tasks assigned to type-k processors (i.e., to processor types and not to

individual processors). We also know from Equation (7.1) and Equation (6.3) that:

∀k ∈ {1,2, . . . , t} : τi ∈ τ
k : uk

i ≤ α (7.5)

In Step 2, LPGNM assigns tasks to individual processors using “wrap-around” technique,

which allows splitting of tasks between processors of same type. Combining such an assign-

ment with Equations (7.2)–(7.4), it holds that,

7.3 LPGNM: The non-migrative task assignment algorithm 243

∀k ∈ {1,2, . . . , t} of π ′:

∀p ∈ type-k ∧ p 6= pmk : U C [p] = ∑
τi∈τ[p]

uk
i ≤ 1 (7.6)

p ∈ type-k ∧ p = pmk : U C [p] = ∑
τi∈τ[p]

uk
i ≤ 1+

(
α× t−1

t

)
(7.7)

∀p ∈ type-k : FC [p]≥ 0 and (7.8)

at most mk−1 tasks are fractionally assigned between type-k

processors with each task split between consecutive processors (7.9)

where τ[p] and U C [p] denote the set of tasks assigned on processor p and the capacity currently

used on processor p, respectively.

On step 3, LPGNM copies this assignment onto the faster platform, π(1+α). In platform π(1+α),

before assigning any tasks, it holds by definition that, ∀k ∈ {1,2, . . . , t} of π(1+α):

∀p ∈ type-k : FC [p] = 1+α (7.10)

From Equation (7.6)–(7.10) and since the assignment is “copied” on π(1+α), we have, ∀k ∈
{1,2, . . . , t} of π(1+α):

∀p ∈ type-k ∧ p 6= pmk : U C [p] = ∑
τi∈τ[p]

uk
i ≤ 1 (7.11)

p ∈ type-k ∧ p = pmk : U C [p] = ∑
τi∈τ[p]

uk
i ≤ 1+

(
α× t−1

t

)
(7.12)

∀p ∈ type-k ∧ p 6= pmk : FC [p]≥ α (7.13)

p ∈ type-k ∧ p = pmk : FC [p]≥ α/t and (7.14)

at most mk−1 tasks are fractionally assigned between type-k

processors with each task split between consecutive processors (7.15)

From Equation (7.13), Equation (7.15) and Equation (7.5), it can be seen that, each of the at most

mk−1 fractional tasks can be integrally assigned to each of the mk−1 processors of type-k (i.e.,

∀p ∈ type-k ∧ p 6= pmk) in platform, π(1+α), in their respective free capacities. Combining this

with Equation (7.12) yields: ∀k ∈ {1,2, . . . , t} of π(1+α):

∀p ∈ type-k : U C [p] = ∑
τi∈τ[p]

uk
i ≤ 1+α (7.16)

Observe that uk
i is the utilization of a task, τi, on a processor of type-k on platform π . Let uk′

i

denote the utilization of task τi on a processor of type-k on platform π(1+α). Then it holds (by

definition of these platforms) that: ∀τi ∈ τ : uk′
i

uk
i
= 1

1+α
. Applying this on Equation (7.16) yields:

244 Non-migrative Scheduling on T-type Heterogeneous Multiprocessors

∀k ∈ {1,2, . . . , t} of π(1+α):

∀p ∈ type-k : U C [p] = ∑
τi∈τ[p]

uk′
i ≤ 1 (7.17)

Since Equation (7.17) is a necessary and sufficient feasibility condition for task assignment

on a uniprocessor [LL73], the non-migrative assignment of τ on π(1+α) returned by LPGNM is

feasible. Hence the proof.

7.4 Conclusions

In this chapter, we considered the problem of non-migrative scheduling of implicit-deadline spo-

radic tasks on t-type heterogeneous multiprocessors. Recall that, this problem can be solved in

two steps: first, assign tasks to individual processors and then schedule the tasks that are assigned

to each processor using an optimal uniprocessor scheduling algorithm, such as EDF. So, assuming

that such an optimal scheduling algorithm is used to schedule the tasks on each processor, the

challenge is to assign tasks to individual processors.

This problem is known to be NP-Complete in the strong sense. Hence, for this problem,

we proposed an algorithm, LPGNM, with a finite speed competitive ratio. This algorithm is an

extension of the (intra-migrative) algorithm, LPGIM (which is discussed in Chapter 6), and hence

also relies on solving linear programming formulation and uses graph theory techniques to output

the task assignment. LPGNM has polynomial time-complexity and has a speed competitive ratio

of 1+α against a more powerful intra-migrative adversary, where the parameter 0 < α ≤ 1 is a

property of the task set; it is the maximum of all the task utilizations that are no greater than one.

For the problem of non-migrative task assignment on t-type platforms, our algorithm, LPGNM,

has a superior performance compared to state-of-the-art since (i) LPGNM has a tighter bound

compared to algorithms in [Bar04b, Bar04c, LST90], i.e., its speed competitive ratio is 1+α (a

parametrized value) against a more powerful intra-migrative adversary whereas the speed com-

petitive ratio of all the algorithms in [Bar04b, Bar04c, LST90] is 2 (a constant) but against an

equally powerful non-migrative adversary, (ii) among algorithms with speed competitive ratio

proven against an adversary with a migration model of intra-migrative or greater power [CSV12],

LPGNM offers the best speed competitive ratio and (iii) compared to PTAS algorithms [HS76,

JP99, WBB13] whose practical significance is severely limited as they incur a very high time-

complexity (exponential in processors or exponential in 1/ε), our algorithm offers a lower (i.e.,

polynomial) time-complexity.

Chapter 8

Shared Resource Scheduling on T-type
Heterogeneous Multiprocessors

8.1 Introduction

In many computing systems, apart from sharing processors, tasks also share other resources such

as data structures, sensors, etc. and tasks must operate on such resources in a mutually exclusive

manner. Recall from Chapter 5 that, even on a single processor, the sharing of such resources

can have a profound effect on timing behavior as witnessed by the near failure of the NASA

mission, Mars Pathfinder, because the resource-sharing protocol in the operating system was not

enabled [Jon97]. Scheduling real-time tasks that share resources on a heterogeneous multiproces-

sor platform is even more complex. Therefore, in this chapter, we aim to address this problem

(partially) by designing an algorithm with a finite speed competitive ratio.

Problem Statement. We consider the problem of scheduling a task set τ of implicit-deadline spo-

radic tasks to meet all deadlines on a t-type heterogeneous multiprocessor platform where a task

may access multiple shared resources. There are mk processors of type-k, where k ∈ {1,2, . . . , t}.
The execution time of a task depends on the processor type on which it executes. There is a set R

of resources. For each task τi, there is a resource set Ri ⊆ R such that, for each job of τi, during one

phase of its execution, the job requests to hold the resource set Ri exclusively with the interpreta-

tion that (i) the job makes a single request to hold all the resources in the resource set Ri and (ii)

at all times, when a job of τi holds the resource set Ri, no other job holds any resource in Ri. We

assume that each job of task τi may request the resource set Ri at most once during its execution.

We also assume (like the previous work on D-PCP [RSL88]) that a job is allowed to migrate when

it requests a resource set and when it releases a resource set but a job is not allowed to migrate at

other times.

Hardness of the Problem. The problem under consideration can be shown to be NP-Complete

in the strong sense by reducing an instance of the 3-PARTITION problem to an instance of our

problem. Intuitively, it can be reasoned as follows: (i) it is trivial to see that the resource sharing

problem (on two-type heterogeneous multiprocessors) that we studied earlier in Chapter 5 is a

245

246 Shared Resource Scheduling on T-type Heterogeneous Multiprocessors

restricted version of the problem under consideration and (ii) it was shown in Chapter 5 (see

Section 5.3 on page 190) that this restricted version of the problem is NP-Complete in the strong

sense. From (i) and (ii), it can be concluded that the problem under consideration in this chapter

is NP-Complete in the strong sense as well. Hence, our goal is to design a polynomial time-

complexity algorithm for this problem and prove its speed competitive ratio.

Related Work. Scheduling a collection of jobs that share resources is well-studied in operations

research (see [BLK83], for example) but unfortunately these algorithms deal with jobs which make

them less suited for real-time systems because real-time systems tend to be implemented with tasks

that generate a (potentially infinite) sequence of jobs. The problem of scheduling a set of implicit-

deadline sporadic tasks on heterogeneous multiprocessors has been studied in the past [Bar04a,

Bar04b, Bar04c, CSV12, LST90, ARB10, RAB13, RABN12, RN12a, WBB13, HS76, JP99] but

without considering the case when tasks share resources. The resource sharing algorithm, FF-

3C-vpr, discussed in Chapter 5 is only applicable for two-type heterogeneous multiprocessors and

unfortunately, cannot be extended for the generic t-type heterogeneous multiprocessors. Recently,

a run-time synchronization protocol, PSRP, is proposed in [HBL12] for the problem of scheduling

parallel tasks on a platform comprising multiple heterogeneous resources. It considers a parallel

task model in which a task may execute on several processors at the same time whereas we con-

sider a sequential task model in which a task can execute on at most one processor at any time.

In this respect, the task model considered in [HBL12] is more generic than the one considered in

this chapter. However, the PSRP algorithm of [HBL12] does not have a proven speed competitive

ratio whereas we prove the speed competitive ratio for our algorithm. More importantly, the work

in [HBL12] proposes a “run-time synchronization mechanism” and thus assumes that an assign-

ment of tasks to processors is given; however, in this work, we propose an algorithm which assigns

tasks to processors before run-time and handles synchronization at run-time. So, the problem ad-

dressed and the goals of [HBL12] are different than this work although both are related to sharing

multiple resources on multiprocessors.

For the problem of scheduling tasks that share resources on heterogeneous multiprocessors,

one might also consider an obvious solution of assigning tasks to processors and then applying a

resource-sharing protocol conceived for identical multiprocessors, for example, D-PCP [RSL88].

However, protocols for resource sharing on an identical multiprocessor (such as D-PCP) are less

effective in minimizing priority inversion when used in heterogeneous multiprocessors as they

are in minimizing priority inversion when used in identical multiprocessors. The reason for this

is that, a task holding a shared resource may be executing on a processor where it runs slowly

— causing large priority inversion to other tasks and poor schedulability. Therefore, a resource-

sharing protocol for heterogeneous platforms ought to be cognizant of the execution rate of each

task on each processor type. It should also provide a bound on how much worse it performs,

compared to an optimal scheme.

This work. In this chapter, we propose an algorithm, LP-EE-vpr, for the problem of scheduling

implicit-deadline sporadic tasks that share resources on a t-type heterogeneous multiprocessor

platform, which is formally defined earlier in the section. We also prove the speed competitive

8.2 System model 247

ratio of LP-EE-vpr algorithm.

A key idea of our new algorithm is to organize the resource sets into resource request partitions

so that for every pair of tasks, τi and τi′ , if there is a resource shared between these two tasks (that

is, if Ri
⋂

Ri′ 6= /0) then the resource sets (Ri and Ri′) belong to the same resource request partition.

Hence, if two resource sets of different tasks belong to different resource set partitions then we

know that, these tasks do not share resources. We will create a procedure for forming the resource

request partitions and then we let P denote the set of resource request partitions and MAXP denote

the number of elements in the resource request partition with the largest number of elements. (P

and MAXP will be defined formally in Section 8.2.)

The algorithm, LP-EE-vpr, offers the guarantee that if a task set is schedulable on a t-type

heterogeneous multiprocessor platform to meet all deadlines by an optimal scheduling algorithm

that allows a job to migrate only when it requests or releases the resources, then our algorithm

succeeds to meet all deadlines as well with the same restriction on the job migration but given

processors 4×
(

1+MAXP×
⌈

|P|×MAXP
min{m1,m2,...,mt}

⌉)
times faster. In order to prove this bound, we

create a new algorithm, ra-np-pEDF-fav, which is used by LP-EE-vpr and prove a lemma which

compares the feasibility of tasks on a multiprocessor with the schedulability of tasks scheduled

by ra-np-pEDF-fav and as a corollary of this lemma, we obtain a new, tighter, speed competi-

tive ratio of uniprocessor non-preemptive EDF scheduling — we improve the (previously known

[AE10]) bound from three to two. This is an interesting result in its own right. For the spe-

cial case in which each task requests at most one resource, the bound of LP-EE-vpr collapses to

4×
(

1+
⌈

|R|
min{m1,m2,...,mt}

⌉)
.

Contributions and Significance of the work discussed in this chapter. This chapter makes two

contributions. First, for the problem of scheduling implicit-deadline sporadic tasks that share mul-

tiple resources on t-type heterogeneous multiprocessors, no previous algorithm exists and hence

our algorithm, LP-EE-vpr, is the first for this problem with a proven speed competitive ratio. Sec-

ond, for the problem of non-preemptive scheduling of tasks on a uniprocessor, this work improves

the previously known [AE10] speed competitive ratio of uniprocessor non-preemptive EDF algo-

rithm from three to two. This improvement is presented because it is a natural by-product of our

proof of the speed competitive ratio of LP-EE-vpr.

Organization of the chapter. The rest of the chapter is organized as follows. Section 8.2 briefs

the system model. Section 8.3 gives an overview of our algorithm and Section 8.4 describes the

algorithm in detail. Section 8.5 proves the speed competitive ratio of ra-np-pEDF-fav (an inter-

mediate result) as well as the speed competitive ratio of LP-EE-vpr (the main result). Section 8.6

discusses useful properties of the proposed algorithm and finally, Section 8.7 concludes.

8.2 System model

We consider the problem of scheduling a task set τ = {τ1,τ2, . . . ,τn} of n implicit-deadline spo-

radic tasks that share a set R = {r1,r2, . . . ,rρ} of ρ resources on a t-type heterogeneous multi-

processor platform π = {π1,π2, . . . ,πm} comprising m processors, of which mk processors are of

248 Shared Resource Scheduling on T-type Heterogeneous Multiprocessors

A job of task
τi arrives Job finishes

Phase-A Phase-B Phase-C
Time

Job requests
resource set Ri

Job releases
resource set Ri

Figure 8.1: Categorization of the execution of a task that requests a resource set into three phases.

type-k, where k ∈ {1,2, . . . , t}.
In the task set, each implicit-deadline sporadic task τi generates a (potentially infinite) se-

quence of jobs, with the first job arriving at any time and subsequent jobs arriving at least Ti time

units apart (referred to as the minimum inter-arrival time). Each job of a task τi has to complete

its execution within Di = Ti time units from its arrival (referred to as the deadline).

In the computing platform, a processor πp ∈ π , belongs to one of the t different types of

processors. The computing platform consists of mk processors of type-k, where k ∈ {1,2, . . . , t},
i.e., it consists of m1 processors of type-1, m2 processors of type-2, . . ., mt processors of type-t;

hence, m1 +m2 + · · ·+mt = m.

The tasks share resources from the set R = {r1,r2, . . . ,rρ} of ρ resources. Specifically, for

each task, τi ∈ τ , there is a resource set Ri ⊆ R such that, for each job of τi, during one phase of

its execution, the job requests to hold the resource set Ri exclusively, that is, at all times, when a

job of τi holds the resource set Ri, no other job holds any resource in Ri. We assume that each

job of task τi may request the corresponding resource set Ri at most once during its execution and

further each job must request all the resources in this set together. We also assume that a job of

a task can execute on at most one processor at any given time; in other words, it cannot execute

simultaneously on more than one processor.

For a job of a task τi such that Ri 6= /0, we categorize the execution into three phases as follows.

Let phase-A execution of a job of task τi denote the execution the job performs from when it

arrives until it requests the resource set Ri. Let phase-B execution of a job of task τi denote the

execution the job performs from when it requests the resource set Ri until it releases Ri. Let phase-

C execution of a job of task τi denote the execution the job performs from when it releases the

resource set Ri until it finishes execution. This is illustrated in Figure 8.1. For a job of a task

τi such that Ri = /0, we categorize its execution into a single phase, phase-A, which denotes the

entire execution of the job, i.e., the execution the job performs from when it arrives until it finishes

execution.

In our model, we allow a job of task τi to migrate at the time when it requests the resource

set Ri and when it releases the resource set Ri but the job is not allowed to migrate at other times.

(This assumption is similar to previous work on D-PCP [RSL88].) We assume that the processors

a job migrates to/from is determined by the task that generated the job and consequently, all jobs

of the same task migrate between the same processors. Specifically, phase-A executions of all jobs

8.2 System model 249

of task τi are assigned to the same processor (let pi,a denote this processor). Analogously, phase-B

executions of all jobs of task τi are assigned to the same processor (let pi,b denote this processor).

Phase-C executions of all jobs of task τi are assigned to the same processor (let pi,c denote this

processor). Thus, all jobs of task τi only migrate between these (at most three1) processors. Note

that for a given task τi, it can happen that the processors pi,a, pi,b and pi,c are of different types.

We refer to such assumption of migration as restricted migration.

Since a job executing within a phase cannot migrate, we can speak about the execution time

of a job in a phase for a given processor type. Let CAk
i denote an upper bound on the execution

time of phase-A of a job of task τi if this phase-A execution is assigned to a processor of type-k.

Analogously, let CBk
i denote an upper bound on the execution time of phase-B of a job of task τi if

this phase-B execution is assigned to a processor of type-k. Let CCk
i denote an upper bound on the

execution time of phase-C of a job of task τi if this phase-C execution is assigned to a processor of

type-k. For convenience, we introduce the symbol Ck
i as follows: For a task τi whose jobs access

a resource set, Ck
i

def
= CAk

i +CBk
i +CCk

i . For a task τi whose jobs do not access a resource set,

Ck
i

def
= CAk

i . Intuitively, Ck
i denotes an upper bound on the execution time of a job of task τi if all

its phases would be assigned to a processor of type-k. For convenience, we also use the following

notation. The utilization of a task τi on a type-k processor (assuming that all phases of the task are

assigned to processors of type-k) is denoted by uk
i and is defined as uk

i
de f
=

Ck
i

Ti
.

As mentioned earlier, in this work, we consider implicit-deadline sporadic tasks, that is, for

each task τi : Di = Ti. In some parts of our discussion, however, we discuss constrained-deadline

sporadic tasks, that is, for each task τi : Di ≤ Ti. For a constrained-deadline sporadic task τi, its

density on a type-k processor is denoted as δ k
i and is defined as δ k

i
de f
=

Ck
i

min(Di,Ti)
=

Ck
i

Di
.

Recall that, tasks request resources from set R of resources. This is illustrated in Figure 8.2a.

It is helpful to introduce auxiliary variables and form a graph describing the potential conflicts of

resource requests. Let UNER denote the set of unique non-empty resource sets that tasks request.

Formally, UNER is defined as, UNER def
=
⋃

τi∈τ∧Ri 6= /0{Ri}. The graph, (V ,E), with the set V of

vertices and the set E of edges is then formed as follows: (i) there is a function fun that maps an

element in UNER to an element in V , and this is a one-to-one correspondence, and (ii) there is an

edge between vertex, Vk1, and vertex, Vk2, if and only if, (fun−1(Vk1))
⋂
(fun−1(Vk2)) 6= /0. Such a

graph is shown in Figure 8.2b. Let PV =
{

PV1,PV2, . . . ,PV|PV |
}

denote the set of |PV | connected

components of this graph. The connected components in a graph can be found in linear time using

a standard technique [HT73]. For a connected component and the set of connected components, we

introduce symbols that describe potential conflicts between resource sets. Let Pj denote the set of

unique non-empty resource sets that correspond to the vertices in PVj. We refer to Pj as a resource

request partition. Formally, Pj
def
=
{

UNERk : (UNERk ∈ UNER)∧ (fun(UNERk) ∈ PVj)
}

. Let P

be defined as follows: P def
=
{

Pj : PVj ∈ PV
}

and let MAXP be defined as follows: MAXP def
=

maxPj∈P |Pj|. These concepts are illustrated in Figure 8.2c. Let R(Pj) be defined as follows:

1Later in the chapter, it will be shown that all jobs of task τi only migrate between two processors as Phase-A and
Phase-C of task τi will be assigned to the same processor.

250 Shared Resource Scheduling on T-type Heterogeneous Multiprocessors

τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8 τ9 τ10

r1 r2 r3 r4 r5 r6 r7

R1 = {r1}
R2 = {r1, r2}
R3 = {r4, r5}

R4 = {r6}
R5 = {r2, r3}
R6 = ф
R7 = {r7}

R8 = {r4, r5}
R9 = {r6}
R10 = {r4}

τ = {τ1, τ2, τ3, τ4, τ5, τ6, τ7, τ8, τ9, τ10} R = {r1, r2, r3, r4, r5, r6, r7}

(a) A visualization of the resources requested by tasks. An arrow from a
task to a resource indicates that the task requests the resource.

R1 R2

R5

R3

R10

R4

R7

UNER = {R1, R2, R3, R4, R5, R7, R10}

(b) Construction of the graph from resource sets requested. Each
vertex has an associated resource set.

R1 R2

R5

R3

R10

R4

R7

PV1 PV2 PV3

PV4

(c) The set PV = {PV1,PV2,PV3,PV4} of connected components. From PV ,
we obtain set P = {P1,P2,P3,P4} of resource request partitions where P1 =
{R1,R2,R5}, P2 = {R3,R10}, P3 = {R4}, P4 = {R7} and MAXP = 3.

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

r1 r2 r3 r4 r5 r6 r7

R(P1) = {r1, r2, r3} R(P2) = {r4, r5} R(P3) = {r6} R(P4) = {r7}

(d) The resource partition R(Pj) for each resource request partition Pj.

Figure 8.2: An example to illustrate the resource request information of tasks and how to construct
the graph and connected components using this information.

8.3 Overview of our algorithm 251

R(Pj)
def
=
{

r` : ∃τi ∈ τ such that Ri ∈ Pj and r` ∈ Ri
}

. Informally, R(Pj) denotes all the resources

in resource request partition Pj. We refer to R(Pj) as a resource partition.

Note that, for each Pj ∈ P and Pj′ ∈ P such that Pj 6= Pj′ , the following statements are true:

1. R(Pj)∩R(Pj′) = /0 and

2. ∀Ri ∈ Pj,∀Ri′ ∈ Pj′ , it holds that, Ri∩Ri′ = /0

Also, note that for each task, τi, it holds that, there is at most one element, Pk ∈P, such that: Ri ∈Pk.

Hence, the tasks in the given task set can be partitioned based on the resources they request. With

this partitioning, it holds that, for two tasks in different partitions, there is no resource that they

share. This is illustrated in Figure 8.2d.

Figure 8.3 and Figure 8.4 show two algorithms, ra-np-pEDF and ra-np-pEDF-fav, which we

will use as building blocks in the design of our new algorithm. The ra-np-pEDF algorithm runs on

an identical multiprocessor whereas the ra-np-pEDF-fav algorithm runs on a t-type heterogeneous

multiprocessor. The ra-np-pEDF algorithm executes a task on a processor specific for its resource

set and hence the execution of a task can only be delayed because of execution of another task

whose resource set intersects with it. The ra-np-pEDF-fav algorithm works like ra-np-pEDF but it

assumes that each task is assigned to a processor that is its favorite type (a type such that there is

no other type for which the task has smaller execution time).

8.3 Overview of our algorithm

The algorithm, LP-EE-vpr, can be summarized in four steps as shown in Figure 8.5. Steps 1-3

are executed before run-time and only step 4 is executed at run-time. Step 1 produces subtasks

from each task so that if the deadlines are met for these subtasks then the original task meets

its deadline as well. Step 2 creates virtual processors from physical processors. Step 3 assigns

subtasks to virtual processors. Finally, in Step 4, jobs are dispatched at run-time. We now provide

more details about each of these steps.

Step 1 – Creation of subtasks. Categorize the execution of a task that requests a resource set

into three phases as shown in Figure 8.6. The three phases of execution are phase-A, phase-B and

phase-C, as mentioned in Section 8.2. Then create three constrained-deadline sporadic subtasks

(one corresponding to each phase) out of each implicit-deadline sporadic task that requests a re-

source set and make different scheduling provisions for each of these subtasks. A task that does

not request a resource set is categorized into phase-A alone and only one subtask is created for

such a task.

For a task that requests a resource set, the “arrival” of both phase-B and phase-C subtasks have

fixed offsets from the arrival of the respective phase-A subtask. This guarantees that the subtasks

have the same inter-arrival time as the original task thereby exhibiting no jitter in their arrival times.

Section 8.4.1 shows how these constrained-deadline subtasks are created and their parameters

(worst-case execution times, minimum inter-arrival times and deadlines) are determined.

252 Shared Resource Scheduling on T-type Heterogeneous Multiprocessors

ra-np-pEDF (Resource-Aware-Non-Preemptive-Partitioned-EDF)
Assumptions: Consider a set R of resources and a task set such that whenever a task

performs execution it must be holding its resource set. Consider a com-
puter platform with |UNER| or more identical processors.

Before run-time: Select |UNER| processors and call them ACT-processors and call the
other processors NACT-processors. For ACT-processors, associate a re-
source set to each ACT-processor so that the following holds: (i) no two
ACT-processors are associated with the same resource set in UNER and
(ii) no two resource sets in UNER are associated with the same ACT
processor and (iii) every ACT processor is associated with exactly one
resource set in UNER and (iv) every resource set in UNER is associ-
ated with exactly one ACT processor. For NACT-processors, do not
associate any resource set to these processors. A task is assigned to an
ACT-processor whose associated resource set is equal to the resource
set of the task.

At run-time: A job is said to be active at time t if the arrival time of the job is ≤ t and
the finishing time of the job is ≥ t. A job J is said to be eligible at time
t if it is active and no currently executing job holds a resource set that
intersects with the resource set of job J. At each instant t, consider the
set of active jobs in earliest-deadline-first order. If the current job is eli-
gible then start its execution on the processor to which its corresponding
task is assigned. If the current job is not eligible then do not execute it;
consider the next job in the set of active jobs.

Figure 8.3: The behavior of ra-np-pEDF algorithm.

Step 2 – Creation of virtual processors. Virtual processors are logical constructs, used as

task assignment targets by our algorithm2. Create two sets of virtual processors, namely, VPAC

and VPB virtual processors, from the given physical processors. The VPB virtual processors are

then grouped together so as to create |P| virtual processor groups, one group for every resource

request partition in P. The virtual processor group corresponding to the resource request partition

Pj is denoted as GroupB[j]. The specification of the virtual processors (i.e., number of virtual

processors and their speeds), their creation and grouping technique is discussed in Section 8.4.2.

Step 3 – Task assignment. The phase-A and phase-C subtasks created from a task τi are as-

signed to the same virtual processor in VPAC. The phase-B subtask created from task τi requesting

the resource set, Ri, which is in a resource request partition, say Pj, i.e., Ri ⊆ R(Pj), is assigned to

GroupB[j]. This step is discussed in detail in Section 8.4.3.

Step 4 – Task scheduling. All phase-A and phase-C subtasks are scheduled using preemptive

Earliest-Deadline-First (EDF) algorithm [LL73] on their assigned virtual processors in VPAC. All

2A virtual processor acts equivalent to a physical processor with speed 1
f and we assume that it can be “emulated”

on a physical processor of speed 1, using no more than 1
f of its processing capacity. One intuitive way of achieving this

is by dividing time into short slots of length S and using 1
f ×S time units in each slot to serve the workload of virtual

processor. By selecting S, we can then make the speed of the emulated processor arbitrarily close to 1
f (and in practice,

S need rarely be impractically short) [BA09].

8.4 The new algorithm, LP-EE-vpr 253

ra-np-pEDF-fav (Resource-Aware-Non-Preemptive-Partitioned-EDF-Favorite-Processor)
Assumptions: Consider a set R of resources and a task set such that whenever a task

performs execution it must be holding its resource set. Consider a t-type
heterogeneous multiprocessor platform with |UNER| or more identical
processors of each type.

Before run-time: For each type k ∈ {1,2, . . . , t}, select |UNER| processors and call them
ACT-processors and call the other processors NACT-processors. For
ACT-processors, associate a resource set to each ACT-processor so that
for each type k ∈ {1,2, . . . , t} the following holds: (i) no two ACT-
processors of type-k are associated with the same resource set in UNER
and (ii) no two resource sets in UNER are associated with the same
ACT processor of type-k and (iii) every ACT processor of type-k is as-
sociated with exactly one resource set in UNER and (iv) every resource
set in UNER is associated with exactly one ACT processor of type-k.
For NACT-processors, do not associate any resource set to these proces-
sors. A task is assigned to an ACT-processor whose associated resource
set is equal to the resource set of the task and whose type is such that
there is no other type where the task has smaller execution time.

At run-time: A job is said to be active at time t if the arrival time of the job is ≤ t and
the finishing time of the job is≥ t. A job J is said to be eligible at time t
if it is active and no currently executing job holds a resource set that in-
tersects with the resource set of job J. At each instant t, consider the set
of active jobs in earliest-deadline-first order. If the current job is eligible
then start its execution on the processor to which its corresponding task
is assigned. (Note that since every task is assumed to be assigned to its
favorite processor type, the jobs of each task execute on the respective
favorite processor types). If the current job is not eligible then do not
execute it; consider the next job in the set of active jobs.

Figure 8.4: The behavior of ra-np-pEDF-fav algorithm.

phase-B subtasks that are assigned to virtual processors in a VPB virtual processor group are

scheduled using ra-np-pEDF-fav.

Remark: In the rest of the chapter, to avoid tedium, we skip special mentioning of tasks that

do not request a resource set (which are split into only phase-A) and hence, for such tasks, the

discussion about phase-B and phase-C does not apply.

8.4 The new algorithm, LP-EE-vpr

In this section, we describe all the four steps of our new algorithm, LP-EE-vpr, in detail and also

provide its pseudo-code.

8.4.1 Creating the subtasks

LP-EE-vpr creates three subtasks from each task, one subtask for each phase of the task and it

assigns minimum inter-arrival time, deadlines and execution times to each subtask. Specifically,

254 Shared Resource Scheduling on T-type Heterogeneous Multiprocessors

B
e

fo
re

 ru
n

-tim
e

A

t ru
n

-tim
e

Tasks Processors Resources

Subtasks Resources Processors

Subtasks Resources
Virtual

Processors

Schedule

 Step 3: Assign subtasks to processors

Step 2: Create virtual processors

Step 1: Create subtasks

 Step 4: Run-time dispatching

Assignment of subtasks
to processors

Arrival of
jobs

Figure 8.5: Four steps of our new algorithm, LP-EE-vpr. Each of the three first steps takes three
inputs and produces outputs. Some outputs are identical to the inputs (e.g., in Step 1, “proces-
sors" are inputs and they are outputs) and they are marked in white. Some outputs, however, are
produced (e.g., “subtasks" are outputs from Step 1 and they are not inputs to Step 1) and they are
marked in gray.

each subtask will have t different execution times, one for each processor type and each subtask

will also have t different deadlines, one for each processor type. When a subtask is assigned to a

processor, only one of its execution times is applicable and only one of its deadlines is applicable;

the type of processor on which the subtask is assigned determines this. The algorithm assigns

parameters (minimum inter-arrival time, deadlines and execution times) to subtasks and assigns

subtasks to processors so that when subtasks are scheduled at run-time it holds that (i) the three

subtasks of a task execute in sequence (that is, one of the subtasks of τi must finish execution before

another subtask of τi can start execution) and (ii) if each subtask of a task meets its deadline then

the task from which these subtasks are formed meets its deadline as well.

From each implicit-deadline sporadic task, τi ∈ τ , the algorithm creates three constrained-

deadline sporadic subtasks denoted by τi,A,τi,B and τi,C corresponding to phase-A, phase-B and

phase-C execution of task τi, respectively. In the rest of the chapter, the subscript A,B and C will

be used in the notations corresponding to phase-A, phase-B and phase-C subtasks, respectively.

Also, the superscript k will be used in the notations corresponding to a processor of type-k. For

example, Ck
i,A,C

k
i,B and Ck

i,C denote the worst-case execution time of task τi ∈ τ on a processor

of type-k before requesting the resource set Ri (phase-A subtask), while holding the resource set

8.4 The new algorithm, LP-EE-vpr 255

Job of task τi
arrives

Deadline of
the job

Phase-A Phase-B Phase-C

The phase-A
subtask is
assigned to

 vpi,ac∈VPAC

The phase-B subtask
accessing resources

is assigned to
vpi,b∈VPB

The phase-C
subtask is

assigned to
 vpi,ac∈VPAC

Be
fo

re

ru
n-

tim
e

A
t

ru
n-

tim
e Dispatch

using
preemptive EDF

Dispatch using
ra-np-pEDF-fav

t t+Ti Time

Job requests
resource set Ri

Dispatch
using

preemptive EDF

Job releases
resource set Ri

Figure 8.6: Three execution phases of a job along with the design-time and run-time decisions of
LP-EE-vpr algorithm.

(phase-B subtask) and after releasing the resource set (phase-C subtask), respectively3.

The parameters of the three subtasks, τi,A, τi,B and τi,C, that are derived from the corresponding

task, τi ∈ τ , are set as shown in Table 8.1. It is easy to see that the following property holds: for

each task τi ∈ τ and for each pair of processor types k and k′, it holds that: Dk
i,A +Dk′

i,B +Dk
i,C ≤

Ti = Di. This implies that, if for each task τi ∈ τ , it holds that, phase-A and phase-C of τi are

assigned to the same processor type then if at run-time we can ensure that all subtasks meet their

deadlines then the corresponding tasks meet their deadlines as well. Indeed, later in Section 8.4.3

while assigning subtasks to processors, we ensure that this property holds.

We group these derived subtasks into the following task sets:

τ
A = {τi,A | i ∈ {1,2, . . . ,n}}

τ
B,R(Pj) = {τi,B | i ∈ {1,2, . . . ,n} ∧ Ri ⊆ R(Pj)}

τ
C = {τi,C | i ∈ {1,2, . . . ,n}}

3Recall that, for a task that does not request a resource set, Ck
i,B and Ck

i,C do not exist.

Subtask of τi WCET on type-k Deadline on type-k Minimum
inter-arrival time

τi,A Ck
i,A =CAk

i Dk
i,A =

Ck
i,A

Ck
i
× Ti

2 Ti,A = Ti

τi,B Ck
i,B =CBk

i Dk
i,B = Ti

2 Ti,B = Ti

τi,C Ck
i,C =CCk

i Dk
i,C =

Ck
i,C

Ck
i
× Ti

2 Ti,C = Ti

Table 8.1: The parameters of the three constrained-deadline subtasks, τi,A, τi,B and τi,C, that are
derived from the given implicit-deadline sporadic task, τi, that requests a resource set. For a task
that does not request a resource set, only one subtask corresponding to phase-A execution, i.e.,
τi,A, is derived and hence for such a task, τi,B and τi,C do not exist.

256 Shared Resource Scheduling on T-type Heterogeneous Multiprocessors

...

Type-1 processors . . .

m1 physical
processors

m2 physical
processors

mt physical
processors

.

m1 VPAC virtual
processors

m2 VPAC virtual
processors . . .

mt VPAC virtual
processors

.

|P|*MAXP VPB
virtual processors . . .

|P|*MAXP VPB
virtual processors

|P|*MAXP VPB
virtual processors

Type-2 processors Type-t processors

Figure 8.7: m+ t×|P|×MAXP virtual processors created from m physical processors of a t-type
heterogeneous multiprocessor platform.

Note that τi,A refers to a subtask and τA refers to a set of subtasks. Analogously, for τi,B and

τB,R(Pj). Analogously, for τi,C and τC.

As opposed to the given task set τ which contains implicit-deadline sporadic tasks, these de-

rived task sets contain constrained-deadline sporadic subtasks. Also, observe that, the task set τA

is derived such that, on a processor of type-k, the density of every subtask, τi,A ∈ τA, is twice the

utilization of the corresponding task, τi ∈ τ . Formally,

∀τi,A ∈ τ
A : δ

k
i,A =

Ck
i,A

Dk
i,A

=
Ck

i,A
Ck

i,A×Ti

Ck
i ×2

=
2×Ck

i
Ti

= 2×uk
i of τi ∈ τ (8.1)

Analogously, it can be seen that, the density of every subtask, τi,C ∈ τC, is twice the utilization of

the corresponding task, τi ∈ τ .

8.4.2 Creating virtual processors

In this section, we describe the creation of virtual processors from the given physical processors

of a t-type heterogeneous multiprocessor platform.

LP-EE-vpr creates m+ t×|P|×MAXP virtual processors from the given m physical proces-

sors as shown in Figure 8.7. The main idea is as follows. LP-EE-vpr treats physical processors

of each type as an identical multiprocessor platform and creates a certain number of virtual pro-

cessors of the corresponding type from this platform. To be precise, mk physical processors of

type-k are treated as an identical multiprocessor platform and mk+ |P|×MAXP virtual processors

of type-k are created from them (see different columns in Figure 8.7, separated by “solid vertical

lines”) and ordered as shown in Figure 8.7. Now, if we look at the first and the second row in

8.4 The new algorithm, LP-EE-vpr 257

Figure 8.7 (separated by “dashed horizontal lines”), each of these rows represent a t-type hetero-

geneous multiprocessor platform of virtual processors — the first row represents a t-type hetero-

geneous multiprocessor platform with t×|P|×MAXP virtual processors of which |P|×MAXP

virtual processors are of type-k (∀k : k ∈ {1,2, . . . , t}) and the second row represents a t-type het-

erogeneous multiprocessor platform with m virtual processors of which mk virtual processors are

of type-k (∀k : k ∈ {1,2, . . . , t}). In this manner, m+ t×|P|×MAXP virtual processors are cre-

ated from m physical processors of a t-type heterogeneous multiprocessor platform. Precisely,

LP-EE-vpr creates virtual processors with the following specifications:

• m virtual processors (denoted as VPAC): From mk physical processors of type-k, it creates

mk virtual processors of type-k (∀k : k∈ {1,2, . . . , t}) each of speed 1
1+MAXP×

⌈
|P|×MAXP

mk

⌉ times

the speed of a corresponding physical processor of type-k. So, in total, m such virtual

processors are created from m physical processors. These are later used to schedule phase-

A and phase-C subtasks and are referred to as ‘VPAC virtual processors’.

• t × |P| ×MAXP virtual processors (denoted as VPB): From mk physical processors of

type-k, it creates |P| ×MAXP virtual processors of type-k (∀k : k ∈ {1,2, . . . , t}) each of

speed MAXP
1+MAXP×

⌈
|P|×MAXP

mk

⌉ times the speed of a corresponding physical processor of type-k.

So, in total, t×|P|×MAXP such virtual processors are created from m physical processors

of a t-type heterogeneous multiprocessor platform. These are later used to schedule phase-B

subtasks and are referred to as ‘VPB virtual processors’.

In other words, from each processor type, say type-k, LP-EE-vpr creates mk + |P|×MAXP virtual

processors of type-k, i.e., mk VPAC virtual processors of type-k and |P|×MAXPVPB virtual pro-

cessors of type-k. The way these virtual processors are created is as follows. From each processor

πp of type-k (∀k : k ∈ {1,2, . . . , t}):

• initially, one VPAC virtual processor of type-k is created which is of speed
1

1+MAXP×
⌈
|P|×MAXP

mk

⌉ times the speed of πp

• later,
⌈
|P|×MAXP

mk

⌉
VPB virtual processors of type-k are created each of which is of speed

MAXP
1+MAXP×

⌈
|P|×MAXP

mk

⌉ times the speed of πp

Lemma 47. The earlier specified set of virtual processors, VPAC and VPB, can be created from

the given t-type heterogeneous multiprocessor platform π as described above. This procedure to

create the virtual processors ensures that the capacity of a virtual processor comes from a single

physical processor.

Proof. The proof is a direct consequence of the fact that each physical processor of type-k can

emulate one VPAC virtual processor of type-k (∀k : k ∈ {1,2, . . . , t}) and
⌈
|P|×MAXP

mk

⌉
VPB virtual

processors of type-k, as per the specifications of the virtual processors. Indeed, for each πp ∈ π ,

258 Shared Resource Scheduling on T-type Heterogeneous Multiprocessors

we have

1× 1

1+MAXP×
⌈
|P|×MAXP

mk

⌉
︸ ︷︷ ︸

VPAC virtual processor

+

⌈ |P|×MAXP
mk

⌉
× MAXP

1+MAXP×
⌈
|P|×MAXP

mk

⌉
︸ ︷︷ ︸

VPB virtual processors

= 1

Thus, mk physical processors of type-k can emulate mk VPAC virtual processors of type-k and⌈
|P|×MAXP

mk

⌉
×mk ≥ |P|×MAXPVPB virtual processors of type-k. Overall, m physical processors

of a t-type heterogeneous multiprocessor platform can emulate m VPAC virtual processors and

t×|P|×MAXP VPB virtual processors.

From the above discussion, it is trivial to see that no virtual processor is created using two or

more physical processors and hence it holds that, the capacity of a virtual processor comes from a

single physical processor alone. Hence the proof.

We now describe the rest of the steps in the algorithm, LP-EE-vpr, for assigning and schedul-

ing the tasks with the help of pseudo-code.

8.4.3 Pseudo-code of LP-EE-vpr algorithm

The pseudo-code of LP-EE-vpr algorithm is shown in Algorithm 16. The algorithm works as

follows.

On line 1, it creates the sets τA, τB,R(Pj) and τC of constrained-deadline sporadic subtasks from

the given set τ of implicit-deadline sporadic tasks as described in Section 8.4.1.

On line 2, it creates mVPAC and t×|P|×MAXPVPB virtual processors from the given t-type

heterogeneous multiprocessor platform of m physical processors as discussed in Section 8.4.2.

On line 3, it groups t × |P| ×MAXP VPB virtual processors into |P| groups of VPB virtual

processors; each group contains t×MAXP VPB virtual processors, with MAXP virtual processors

of each type, i.e., MAXP virtual processors of type-1, MAXP virtual processors of type-2 and so

on. Each group of virtual processors, denoted by GroupB[j], where j = {1,2, . . . , |P|}, is used for

scheduling phase-B subtasks that access a subset of resources from resource partition R(Pj).

On line 4, it assigns the set of phase-A subtasks, τA, to VPAC virtual processors using LP-EE

algorithm[Bar04c]4. The algorithm, LP-EE, is designed for non-migratively scheduling a set of

implicit-deadline sporadic tasks that do not share resources on t-type heterogeneous multipro-

cessors. The internals of LP-EE and its performance bound are described in detail in [Bar04c].

The average-case performance of LP-EE is discussed in [RAB13]. Therefore, we only give an

overview of LP-EE here. The algorithm, LP-EE, has two steps: first, it assigns the tasks to proces-

sors and then schedules the tasks on each processor using preemptive EDF. The task assignment

step works as follows:

• The assignment problem is formulated as Mixed Integer Linear Program (MILP) and then

relaxed to Linear Program (LP). The LP formulation is solved using an LP solver (such as
4We selected LP-EE because it is simple to implement and easy to explain and it has a proven speed competitive

ratio. However, a couple of other algorithms can be used instead as discussed later in Section 8.6.5

8.4 The new algorithm, LP-EE-vpr 259

Algorithm 16: LP-EE-vpr(τ,Π(m1,m2, . . . ,mt),R): Algorithm for scheduling implicit-
deadline sporadic tasks that share resources on t-type heterogeneous multiprocessors

// Lines 1-10 execute before run-time; line 11 executes at
run-time.

1 Create the sets τA, τB,R(Pj) and τC of constrained-deadline sporadic subtasks from the given
task set τ of implicit-deadline sporadic tasks as described in Section 8.4.1.

2 Create m VPAC and t×|P|×MAXP VPB virtual processors from the given m physical
processors of a t-type heterogeneous multiprocessor platform as described in Section 8.4.2.

3 Form |P| virtual processor groups out of t×|P| VPB virtual processors as follows. Take
MAXP VPB virtual processors of each type (i.e., t×MAXP virtual processors, in total) and
form a virtual processor group, GroupB[1]; then take MAXP more VPB virtual processors
of each type and form another virtual processor group, GroupB[2] and so on. Overall, we
will have |P| VPB virtual processor groups; every group containing t×MAXP VPB virtual
processors of which MAXP virtual processors are of type-k, where k ∈ {1,2, . . . , t}.

4 Assign all the subtasks τi,A ∈ τA to VPAC virtual processors using the algorithm
LP-EE [Bar04c] (more details in the description of the algorithm in Section 8.4.3).

5 foreach τi ∈ τ do
6 if

(
∃ j : j ∈ {1,2, . . . , |P|} ∧ Ri ⊆ R(Pj)

)
then

7 Assign τi,B to the MAXP virtual processors in the j’th VPB virtual processor group,
GroupB[j], on which subtask τi,B has the smallest execution time.

8 end
9 end

10 Assign every subtask τi,C ∈ τC to that virtual processor in VPAC to which the corresponding
subtask τi,A ∈ τA has been assigned on line 4.

11 Schedule the subtasks of τA and τC that are assigned on each VPAC virtual processor using
preemptive EDF on that virtual processor. Schedule the subtasks of τi,B that are assigned to
each VPB virtual processor group using ra-np-pEDF-fav, on the respective virtual processor
group.

GUROBI Optimizer [Gur13] or IBM ILOG CPLEX [IBM12]). Tasks are then assigned to

the processors according to the values of the respective indicator variables in the solution

provided by the solver. Using certain tricks [Pot85], it is shown that, there exists a solution

(for example, the solution that lies on the vertex of the feasible region) to the LP formulation

in which all but at most m−1 tasks are integrally assigned to processors and such a solution

can be obtained, where m denotes the number of processors.

• The remaining at most m−1 tasks are integrally assigned on the remaining capacity of the

processors using “exhaustive enumeration”.

The abbreviation LP-EE comes from the fact that the algorithm makes use of Linear Programming

and Exhaustive Enumeration techniques to provide the solution [Bar04c].

On lines 5–9, it assigns all the phase-B subtasks that request the “related” resources, i.e.,

resources that belong to the same resource partition, to the same VPB virtual processor group.

Specifically, all the subtasks requesting (a subset of) resources from resource partition R(Pj),

260 Shared Resource Scheduling on T-type Heterogeneous Multiprocessors

∀ j ∈ {1,2, . . . , |P|}, are assigned to the virtual processors in the j’th VPB virtual processor group,

GroupB[j], on which these subtasks have the smallest execution time.

On line 10, it assigns every phase-C subtask, τi,C, to that virtual processor in VPAC to which

the corresponding phase-A subtask, τi,A, has been assigned (on line 4). Such an assignment does

not endanger the schedulability of the tasks assigned on the VPAC virtual processors as there is

a precedence constraint between these subtasks — this is formally proven later in Lemma 55 in

Section 8.5.3. Also, such an assignment ensures that the number of migrations per job is restricted

to at most two. This is easy to verify because both phase-A and phase-C of a task execute on the

same physical processor as they are assigned to the same virtual processor (recall that the capacity

of a virtual processor comes from a single physical processor — Lemma 47) and only the phase-B

subtask might have to execute on a different physical processor as the virtual processor to which

phase-B of the task is assigned might have been created from a different physical processor. Hence,

it can be seen that, for a given job, one migration may happen when the job requests the resource

set and another migration may happen when the job releases the resource set.

On line 11, it schedules the subtasks of τA and τC that are assigned to each VPAC virtual

processor using preemptive EDF on that virtual processor. It schedules the subtasks of τB,R(Pj)

that are assigned to each VPB virtual processor group, GroupB[j], using ra-np-pEDF-fav algorithm

(listed in Figure 8.4), on the respective virtual processor group. Recall that, all the tasks in τB,R(Pj)

request (a subset of) resources from resource partition R(Pj) and hence are assigned to VPB virtual

processor group, GroupB[j].

For preemptive EDF scheduling, the following result is well-known (an easily obtained gen-

eralization of the result shown in [LL73]), which we make use of while proving the performance

of LP-EE-vpr.

Lemma 48. (utilization-based schedulability test)

Let τ[πp] denote the tasks assigned on a processor πp of type-k. If ∑τi∈τ[πp] u
k
i ≤ 1 and tasks are

scheduled with preemptive EDF on πp then all deadlines are met.

Note that in Algorithm 16, lines 1–10 execute before run-time and only line 11 executes at

run-time. The algorithm, LP-EE-vpr, is named after the fact that it makes use of the algorithm,

LP-EE, for assigning some of the subtasks on virtual processors.

8.5 Speed competitive ratio of LP-EE-vpr algorithm

In this section, we prove the speed competitive ratio of the proposed algorithm. But first we present

notations (in Section 8.5.1) and then prove the speed competitive ratio of ra-np-pEDF algorithm

(in Section 8.5.2). After that, we present some useful results (a previously known and a few new

results, in Section 8.5.3) and the speed competitive ratio of ra-np-pEDF-fav algorithm that are

used later while proving the speed competitive ratio of LP-EE-vpr algorithm (in Section 8.5.4).

8.5 Speed competitive ratio of LP-EE-vpr algorithm 261

8.5.1 Notations

Let Π(m1,m2, . . . ,mt) denote a t-type heterogeneous multiprocessor platform of m processors

of which mk processors are of type-k, where k ∈ {1,2, . . . , t} and ∀k : mk > 0; note that m =

m1 +m2 + . . .+mt .

Let Π(m1,m2, . . . ,mt)×〈s1,s2, . . . ,st〉 denote a t-type platform in which, ∀k ∈ {1,2,. . . , t}, it

holds that, the speed of every type-k processor is sk times the speed of a corresponding type-k

processor in Π(m1,m2, . . . ,mt), where sk > 0 is a real number. As a special case of the above, we

use Π(m1,m2, . . . ,mt)×〈s,s, . . . ,s〉 to denote a t-type platform in which, for each k ∈ {1,2,. . . , t},
the speed of every type-k processor is s times the speed of a corresponding type-k processor

in Π(m1,m2, . . . ,mt), where s > 0 is a real number. For convenience, we sometimes denote

Π(m1,m2, . . . ,mt)×〈s,s, . . . ,s〉 as Π(m1,m2, . . . ,mt)× s.

If τ is a task set and y,y′,y′′ are positive real numbers then we let mulCDT(τ,y,y′,y′′) denote

a task set where for each task in τ: its execution time is multiplied by y; its deadline is multiplied

by y′ and its minimum inter-arrival time is multiplied by y′′.

We will now introduce three types of predicates (i) predicates that state if a task set is schedu-

lable for a given scheduling algorithm, (ii) predicates that state if a task set is feasible and (iii)

predicates that state if a task set is schedulable for a given scheduling algorithm according to a

certain class of schedulability tests.

For a task set τ where tasks do not share resources, let sched(A,τ,Π(m1,m2, . . . ,mt)) be a

predicate that indicates that, if task set τ is scheduled by algorithm A on platform Π(m1,m2, . . . ,mt)

then for each set of jobs that τ can generate according to the model described in Section 8.2, it

holds that, all jobs meet their deadlines and the constraint of restricted migration is satisfied (which

in this case means that no migration is allowed because there are only phase-A executions).

For a task set τ where tasks may share resources from a set R of resources, we let the symbol

sched(A,τ,R,Π(m1,m2, . . . ,mt)) be a predicate that indicates that, if τ is scheduled by algorithm

A on platform Π(m1,m2, . . . ,mt) then for each set of jobs that τ can generate according to the

model described in Section 8.2, it holds that, all jobs meet their deadlines and the constraint of

restricted migration is satisfied and there is no instant where a resource in R is held by more

than one job. Analogously, for a task set τ where tasks may share resources in R, and where

Pj is a resource set and τB,R(Pj) is the task set derived as in Section 8.4.1, we let the symbol

sched
(
A,τB,R(Pj),R(Pj),Π(m1,m2, . . . ,mt)

)
be a predicate that indicates that, if τB,R(Pj) is sched-

uled by algorithm A on platform Π(m1,m2, . . . ,mt) then for each set of jobs that τB,R(Pj) can gen-

erate according to the model described in Section 8.2, it holds that, all jobs meet their deadlines

and the constraint of restricted migration is satisfied (which in this case means that, no migration

is allowed because there are only phase-B executions) and there is no instant where a resource in

R(Pj) is held by more than one job.

For a task set τ where tasks do not share resources, let nmig-feas(τ,Π(m1,m2, . . . ,mt)) be

a predicate that indicates that, for each set of jobs that τ can generate according to the model

described in Section 8.2, it holds that, there exists a schedule that meets all deadlines of all jobs

262 Shared Resource Scheduling on T-type Heterogeneous Multiprocessors

and the constraint of restricted migration is satisfied (which in this case means that, no migration

is allowed because there are only phase-A executions).

For a task set τ where tasks may share resources from a set R of resources, we let the symbol

rmig-feas(τ,R,Π(m1,m2, . . . ,mt)) be a predicate that indicates that, for each set of jobs that τ can

generate according to the model described in Section 8.2, it holds that, there exists a schedule that

meets all deadlines of all jobs and the constraint of restricted migration is satisfied and there is no

instant where a resource in R is held by more than one job. Analogously, for a task set τ where

tasks may share resources in R, and where Pj is a resource set and τB,R(Pj) is the task set derived

from τ as in Section 8.4.1, we let the symbol rmig-feas
(
τB,R(Pj),R(Pj),Π(m1,m2, . . . ,mt)

)
be a

predicate that indicates that, for each set of jobs that τB,R(Pj) can generate according to the model

described in Section 8.2, it holds that, there exists a schedule that meets all deadlines of all jobs

and the constraint of restricted migration is satisfied (which in this case means that, no migration

is allowed because there are only phase-B executions) and there is no instant where a resource in

R(Pj) is held by more than one job.

Some of these predicates will be used by adding a suffix “-δ” to the scheduling algorithm or al-

gorithm class where applicable, for example, for non-migrative scheduling of constrained-deadline

sporadic subtasks corresponding to different phases. Such predicates with suffix -δ signify that the

schedulability of the task set other than just being established via some exact test, must addition-

ally be ascertainable via a (potentially pessimistic) density-based uniprocessor schedulability test

(similar to Lemma 48). That is, for τ[πp] of tasks assigned on a processor πp of type-k, to meet

all deadlines, it must hold that: ∑τi∈τ[πp] δ
k
i ≤ 1. For example, sched(A-δ ,τ,Π(m1,m2, . . . ,mt))

denotes a predicate that is true if for the task set τ which does not share resources is ascertained

schedulable by algorithm A on platform Π(m1,m2, . . . ,mt) using the above mentioned density-

based schedulability test.

We use a function, create-fav-taskset(τ,Π(m1,m2, . . . ,mt)). This function takes a task

set τ as input in which each task, τi ∈ τ , is characterized by its minimum inter-arrival time, Ti, and

its deadline, Di, and its t worst-case execution times (one WCET on each processor type), C1
i ,

C2
i , . . ., Ct

i . The function outputs a task set τ ′ in which each task, τ ′i ∈ τ ′, is characterized by its

minimum inter-arrival time, T ′i , its deadline, D′i, and its single worst-case execution time, C′i . For

each task, τ ′i ∈ τ ′, it sets T ′i = Ti and D′i = Di and C′i = mink∈{1,2,...,t}Ck
i . Informally, from the

given task set, it constructs another task set in which, the execution time of each task is equal to

the execution time of its corresponding task on its favorite processor type and the minimum inter-

arrival time of each task is equal to the minimum inter-arrival time of its corresponding task and

the deadline of each task is equal to the deadline of its corresponding task.

We also use a function create-fav-platform(τ,Π(m1,m2, . . . ,mt),m′) which generates

a multiprocessor platform with m′ identical processors where each processor is such that for each

task in τ it holds that the execution time is as if it executed on the processor type in Π(m1,m2, . . . ,mt)

for which its execution time is the smallest.

8.5 Speed competitive ratio of LP-EE-vpr algorithm 263

8.5.2 Speed competitive ratio of ra-np-pEDF-fav algorithm

Recall (from step 11 of Algorithm 16 in Section 8.4.3), that the LP-EE-vpr algorithm uses the

ra-np-pEDF-fav algorithm (defined in Section 8.2) to schedule phase-B execution of tasks. For

this reason, we need to show that, ra-np-pEDF-fav algorithm has a finite speed competitive ratio.

We will do so by first showing the speed competitive ratio of ra-np-pEDF algorithm and later show

(in Section 8.5.3) how it translates to a heterogeneous multiprocessor.

As a by-product of our proof of the speed competitive ratio of ra-np-pEDF algorithm, we

obtain a corollary which is a new result on the speed competitive ratio of non-preemptive EDF

scheduling on a single processor. Previously, it was known that the speed competitive ratio of

non-preemptive EDF on a single processor is at most three. In this section, we see that it is at most

two.

We start by proving a relationship between the feasibility of a set of tasks that executes always

holding a resource and the feasibility of this task set on an identical multiprocessor.

Lemma 49. ∀τ , ∀Π(m1,m2, . . . ,mt), ∀R, v≥ |UNER| such that τ is an implicit-deadline sporadic

task set and ∀τi ∈ τ : Ri 6= /0 and ∀τi ∈ τ , it holds that whenever τi executes, it holds the resource

set Ri:

rmig-feas
(

τ,R,Π(m1,m2, . . . ,mt)
)
=⇒

rmig-feas
(
create-fav-taskset

(
τ,Π(m1,m2, . . . ,mt)

)
,R,

create-fav-platform
(

τ,Π(m1,m2, . . . ,mt),v
))

Proof. The lemma follows from two observations:

1. The task set τ is such that at each instant, there can be at most |UNER| jobs executing at

this instant.

2. If a task set is feasible then giving each task an execution time as if it executed on the

processor where its execution time is smallest cannot violate feasibility.

The truth of the first observation can be seen as follows: Suppose that the first observation was

false. Then there would exist a feasible schedule such that there exists an instant where |UNER|+1

or more jobs execute at that instant. Then it follows that, there are two or more jobs that execute

holding the same resource set in UNER. Consequently, this schedule is not feasible. Hence the

first observation is true.

The truth of the second observation can be seen as follows: For a feasible schedule, if we

change the execution time of a job to a smaller value then we can simply idle the processor so that

the schedule for all other jobs are the same and hence feasibility is not violated by reducing the

execution time of a job.

We can then show (below) how the feasibility relates to the schedulability of ra-np-pEDF.

264 Shared Resource Scheduling on T-type Heterogeneous Multiprocessors

Lemma 50. ∀τ , ∀Π(m1,m2, . . . ,mt), ∀R, ∀x≥ 1, v≥ |UNER| such that τ is an implicit-deadline

sporadic task set and ∀τi ∈ τ : Ri 6= /0 and ∀τi ∈ τ it holds that whenever τi executes it holds re-

source set Ri:

rmig-feas
(
create-fav-taskset

(
τ,Π(m1,m2, . . . ,mt)

)
,R,

create-fav-platform
(

τ,Π(m1,m2, . . . ,mt),v
))

=⇒

sched
(

ra-np-pEDF,mulCDT
(
create-fav-taskset

(
τ,Π(m1,m2, . . . ,mt)

)
,

1
2× v× x

,
1
x
,1
)
,R,create-fav-platform

(
τ,Π(m1,m2, . . . ,mt),v

))
Proof. The proof is by contradiction. Suppose that the claim of the lemma is false. Then there

exists a τ,Π(m1,m2, . . . ,mt),R,x ≥ 1,v ≥ |UNER| such that τ is an implicit-deadline sporadic

task set and ∀τi ∈ τ : Ri 6= /0 and ∀τi ∈ τ , it holds that, whenever τi executes, it holds resource set

Ri for which it holds that:

(Expression (8.2) is true) ∧ (Expression (8.3) is false)

where Expression (8.2) and Expression (8.3) are defined as:

rmig-feas
(
create-fav-taskset

(
τ,Π(m1,m2, . . . ,mt)

)
,R,

create-fav-platform
(

τ,Π(m1,m2, . . . ,mt),v
))

(8.2)

sched
(

ra-np-pEDF,mulCDT
(
create-fav-taskset

(
τ,Π(m1,m2, . . . ,mt)

)
,

1
2× v× x

,
1
x
,1
)
,R,create-fav-platform

(
τ,Π(m1,m2, . . . ,mt),v

))
(8.3)

Note that both Expression (8.2) and Expression (8.3) make statements about a task set and a

multiprocessor platform with identical processors. Since it is an identical multiprocessor, we do

not need to specify execution times as depending on processor type and hence, we let C j denote

the execution time of task τ j for the task set in Expression (8.2). Because of our assumption that

the task set τ is an implicit-deadline sporadic task set and because Expression (8.2), it follows that:

(C1 ≤ D1 = T1) ∧ (C2 ≤ D2 = T2) ∧ ·· · ∧ (Cn ≤ Dn = Tn) (8.4)

We will now discuss the implication of Expression (8.3) being false. Since Expression (8.3) is

false, it follows that, there exist an assignment of arrival times to jobs such that a deadline is

missed. Let t0 denote the earliest time when a deadline is missed. Let us choose a job whose

8.5 Speed competitive ratio of LP-EE-vpr algorithm 265

deadline expires at time t0 and let us call it DMJ (deadline miss job). Let t2 denote the arrival time

of the job DMJ. Let τk denote the task that generated DMJ. From Expression (8.4), we get:

Ck ≤ Dk = Tk (8.5)

Let S(τk) be defined as:

S(τk) = {τk′ :
(
τk′ ∈ create-fav-taskset

(
τ,Π(m1,m2, . . . ,mt)

))
∧ (τk′ 6= τk) ∧ (|Rk′ ∩Rk| ≥ 1)} (8.6)

S(τk) is the set of tasks that can share a resource with task τk. If |S(τk)|= 0 then DMJ would have

executed immediately when it arrived and because of Expression (8.5) and because 1
2×v×x ≤ 1

x it

would follow that τk would have met its deadline and this would be a contradiction. Hence, we

know that:

|S(τk)| ≥ 1 (8.7)

Let BLT (τk,DMJ, t2) be defined as:

BLT (τk,DMJ, t2) = {τk′ : (τk′ ∈ S(τk)) ∧ (there is a job of task τk′ executing at time t2)} (8.8)

Informally, BLT (τk,DMJ, t2) is the set of tasks in S(τk) such that these tasks executed at time t2.

Let BLJ(τk,DMJ, t2) be defined as the set of jobs generated by BLT (τk,DMJ, t2) such that the jobs

executed at time t2. Clearly, for each element in BLJ(τk,DMJ, t2), there is a corresponding element

in BLT (τk,DMJ, t2). Intuitively, BLT means "blocking-tasks" and BLJ means "blocking-jobs".

Let us explore two cases:

1. |BLT (τk,DMJ, t2)| ≥ 1.

Let t1 denote maximum of the finishing times of the jobs in BLJ(τk,DMJ, t2). Let us choose

a job in BLJ(τk,DMJ, t2) that finished at time t1 and let the task that generated this job be

denoted τi and let tb denote the starting time of this job. From the definition of t2, we have

tb ≤ t2.

We will now discuss the time interval [tb,t0) and we let L denote the duration of this time

interval (that is L = t0− tb). During this time, at each instant t, at least one of the following

is true: (i) the set of jobs executing at time t includes a job of task τi or (ii) the set of jobs

executing at time t includes DMJ (the job of task τk) or (iii) the set of jobs executing at time

t includes a job of a task in S(τk)\{τi}.

266 Shared Resource Scheduling on T-type Heterogeneous Multiprocessors

Since we had a deadline miss, we obtain that:

Ci

2× v× x
+max(0,bL−

Dk
x

Tk
c+1)× Ck

2× v× x
+

∑
τi′∈(S(τk)\{τi})

max(0,bL−
Di′
x

Ti′
c+1)× Ci′

2× v× x
> L (8.9)

Using Expression (8.4) on Expression (8.9) and rewriting yields:

Ci

2× v× x
+max(0,bL−

Tk
x +Tk

Tk
c)× Ck

2× v× x
+

∑
τi′∈(S(τk)\{τi})

max(0,bL−
Ti′
x +Ti′

Ti′
c)× Ci′

2× v× x
> L (8.10)

Since at time t2, there is a job of task τi executing and it follows that this job of task τi started

to execute at time t2 or earlier. Since tb is defined as the starting time of this job we obtain:

tb ≤ t2. This gives us:

t0− t2 ≤ t0− tb (8.11)

Note that t0− t2 = Dk/x. Also note that, t0− tb = L. This gives us:

Dk

x
≤ L (8.12)

Using Expression (8.4) on Expression (8.12) yields:

Tk

x
≤ L (8.13)

We will now discuss the implication of Expression (8.2) being true. Since Expression (8.2)

is true, it follows that, for every possible assignment of arrival times to jobs in the task set

create-fav-taskset(τ,Π(m1,m2, . . . ,mt)), all deadlines are met on an identical mul-

tiprocessor with v processors and where it is required that the resource sharing constraints

are respected. Let us consider the case that, tasks arrive periodically. Then it follows that,

there exist a time when a job of task τi arrives. And since deadlines are met, this job must

have finished at most Ti time units later and hence there exist a time when a job of task

τi executed. Let tarbegin denote the time when this job of task τi started to execute and

let tarend denote the time L′ time units later. (Clearly, tarend-tarbegin = L′.) We can also

observe that, for some other task τi′ , it holds that, at each instant, a job of task τi′ arrives at

most Ti′ time units later. Hence, during this time interval [tarbegin,tarend] (of duration L′),

8.5 Speed competitive ratio of LP-EE-vpr algorithm 267

there are at least

b L′

Ti′
c (8.14)

jobs of task τi′ with arrival time within [tarbegin,tarend].

Hence, during this time interval [tarbegin,tarend] (of duration L′), there are at least

max(0,bL
′−Di′

Ti′
c) (8.15)

jobs of task τi′ with arrival time and deadline within [tarbegin,tarend].

Using Expression (8.4) gives us that during this time interval [tarbegin,tarend] (of duration

L′), there are at least

max(0,bL
′−Ti′

Ti′
c) (8.16)

jobs of task τi′ with arrival time and deadline within [tarbegin,tarend].

Note that, for the feasible schedule, at each instant, there can be at most v jobs executing

(because otherwise there would be two jobs executing while holding the same resource set).

With this observation and using Expression (8.16) gives us:

min(Ci,L′)+max(0,bL
′−Tk

Tk
c)×Ck + ∑

τi′∈(S(τk)\{τi})
max(0,bL

′−Ti′

Ti′
c)×Ci′

≤ v×L′ (8.17)

Expression (8.17) applies for any choice of L′. Applying it with L′ = 2L× x gives us:

min(Ci,2L× x)+max(0,b2L× x−Tk

Tk
c×Ck)+

∑
τi′∈(S(τk)\{τi})

max(0,b2L× x−Ti′

Ti′
c)×Ci′ ≤ v×2L× x (8.18)

Let us explore two cases.

(a) Ci > 2L× x

We will show that, if this case is true then it contradicts Expression (8.2). Note that

τi and τk share at least one resource and hence it is impossible for them to execute

simultaneously. Recall that, Expression (8.2) states that there is a feasible schedule

so in this feasible schedule, it must hold that, τi and τk never execute simultaneously.

With reasoning similar to Expression (8.16), we obtain that, for the case of periodically

arriving tasks, in a time interval of duration 2Tk, there is at least one job of task τk that

has arrived and whose deadline expired. Hence, from Expression (8.2), it follows

268 Shared Resource Scheduling on T-type Heterogeneous Multiprocessors

that, in a time interval of duration 2Tk, there is at least one job of task τk that has

executed entirely. Using Expression (8.13) and the condition of the case gives us that:

Ci > 2Tk. Hence, during the time when a job of τi executes, there is at least one job of

τk executing. But this is impossible because τi and τk share resources. Hence, this is a

contradiction.

(b) Ci ≤ 2L× x

Using the condition of the case on Expression (8.18) and dividing by 2v× x gives us:

Ci

2× v× x
+max(0,b2L× x−Tk

Tk
c)× Ck

2× v× x
+

∑
τi′∈(S(τk)\{τi})

max(0,b2L× x−Ti′

Ti′
c)× Ci′

2× v× x
≤ L (8.19)

Combining Expression (8.19) with Expression (8.10) and multiplying by 2v× x and

observing that the resulting equation has the same term on both sides and this can be

canceled out gives us:

max(0,b2L× x−Tk

Tk
c)×Ck + ∑

τi′∈(S(τk)\{τi})
max(0,b2L× x−Ti′

Ti′
c)×Ci′

<

max(0,bL−
Tk
x +Tk

Tk
c)×Ck + ∑

τi′∈(S(τk)\{τi})
max(0,bL−

Ti′
x +Ti′

Ti′
c)×Ci′

(8.20)

Observe that, the left-hand side can be rewritten as a single sum. And also observe

that, the right-hand side can be rewritten as a single sum. Rewriting each of the sums

as two sums gives us:

∑
τi′∈((S(τk)∪{τk})\{τi})∧(Ti′≤L− Ti′

x +Ti′)

max(0,b2L× x−Ti′

Ti′
c)×Ci′+

∑
τi′∈((S(τk)∪{τk})\{τi})∧(Ti′>L− Ti′

x +Ti′)

max(0,b2L× x−Ti′

Ti′
c)×Ci′

<

∑
τi′∈((S(τk)∪{τk})\{τi})∧(Ti′≤L− Ti′

x +Ti′)

max(0,bL−
Ti′
x +Ti′

Ti′
c)×Ci′+

∑
τi′∈((S(τk)∪{τk})\{τi})∧(Ti′>L− Ti′

x +Ti′)

max(0,bL−
Ti′
x +Ti′

Ti′
c)×Ci′ (8.21)

Observing that the last sum is zero and relaxing the second term on the left-hand side

8.5 Speed competitive ratio of LP-EE-vpr algorithm 269

gives us:

∑
τi′∈((S(τk)∪{τk})\{τi})∧(Ti′≤L− Ti′

x +Ti′)

max(0,b2L× x−Ti′

Ti′
c)×Ci′

<

∑
τi′∈((S(τk)∪{τk})\{τi})∧(Ti′≤L− Ti′

x +Ti′)

max(0,bL−
Ti′
x +Ti′

Ti′
c)×Ci′ (8.22)

Hence, there exists a task τi′ such that

(τi′ ∈ ((S(τk)∪{τk})\{τi})) ∧ (Ti′ ≤ L− Ti′

x
+Ti′) ∧(

max(0,b2L× x−Ti′

Ti′
c)×Ci′ < max(0,bL−

Ti′
x +Ti′

Ti′
c)×Ci′

)
(8.23)

Hence, there exists a task τi′ such that

(τi′ ∈ ((S(τk)∪{τk})\{τi})) ∧ (Ti′ ≤ L− Ti′

x
+Ti′) ∧(

2L× x−Ti′ < L− Ti′

x
+Ti′

)
(8.24)

Hence, there exists a task τi′ such that

(τi′ ∈ ((S(τk)∪{τk})\{τi})) ∧ (
Ti′

x
≤ L) ∧ ((2x−1)×L < (2−1/x)×Ti′) (8.25)

Hence, there exists a task τi′ such that(
τi′ ∈

(
(S(τk)∪{τk})\{τi}

))
∧
(
(2x−1)× Ti′

x
< (2−1/x)×Ti′

)
(8.26)

This is a contradiction.

2. |BLT (τk,DMJ, t2)|= 0

From the case, we obtain that there is no task in S(τk) such that this task executed at the

time when DMJ arrived. We will now discuss the time interval [t2,t0). We let L denote the

duration of this time interval. Clearly,

L =
Dk

x
(8.27)

Using Expression (8.4) on Expression (8.27) yields:

L =
Tk

x
(8.28)

During this time interval [t2,t0), at each instant, either (i) the set of jobs executing includes

a job of task τk or (ii) the set of jobs executing includes a job of a task in S(τk).

270 Shared Resource Scheduling on T-type Heterogeneous Multiprocessors

Since we had a deadline miss, we obtain that:

Ck

2× v× x
+ ∑

τi′∈S(τk)

max(0,bL−
Di′
x

Ti′
c+1)× Ci′

2× v× x
> L (8.29)

Using Expression (8.4) on Expression (8.29) and rewriting yields:

Ck

2× v× x
+ ∑

τi′∈S(τk)

max(0,bL−
Ti′
x +Ti′

Ti′
c)× Ci′

2× v× x
> L (8.30)

We can discuss the implication of Expression (8.2) being true just like in Case 1 and this

gives us:

max(0,b2L× x−Tk

Tk
c)× Ck

2× v× x
+

∑
τi′∈S(τk)

max(0,b2L× x−Ti′

Ti′
c)× Ci′

2× v× x
≤ L (8.31)

Combining Expression (8.31) with Expression (8.30) and multiplying by 2v×x and observ-

ing that max(0,b2L×x−Tk
Tk
c) = max(0,b2Tk−Tk

Tk
c) = 1 and rewriting gives us:

∑
τi′∈S(τk)

max(0,b2L× x−Ti′

Ti′
c)×Ci′ < ∑

τi′∈S(τk)

max(0,bL−
Ti′
x +Ti′

Ti′
c)×Ci′

Rewriting each of the sums as two sums gives us:

∑
τi′∈(S(τk))∧(Ti′≤L− Ti′

x +Ti′)

max(0,b2L× x−Ti′

Ti′
c)×Ci′+

∑
τi′∈(S(τk))∧(Ti′>L− Ti′

x +Ti′)

max(0,b2L× x−Ti′

Ti′
c)×Ci′

<

∑
τi′∈(S(τk))∧(Ti′≤L− Ti′

x +Ti′)

max(0,bL−
Ti′
x +Ti′

Ti′
c)×Ci′+

∑
τi′∈(S(τk))∧(Ti′>L− Ti′

x +Ti′)

max(0,bL−
Ti′
x +Ti′

Ti′
c)×Ci′ (8.32)

Observing that the last sum is zero and relaxing the second term on the left-hand side gives

8.5 Speed competitive ratio of LP-EE-vpr algorithm 271

us:

∑
τi′∈(S(τk))∧(Ti′≤L− Ti′

x +Ti′)

max(0,b2L× x−Ti′

Ti′
c)×Ci′

<

∑
τi′∈(S(τk))∧(Ti′≤L− Ti′

x +Ti′)

max(bL−
Ti′
x +Ti′

Ti′
c)×Ci′ (8.33)

Observing Expression (8.33) gives us that, there is at least one term on the left-hand side

that is smaller than the corresponding term on the right-hand side. This together with Ex-

pression (8.28) give us that, there exists a task τi′ such that

(τi′ ∈ S(τk))∧ (Ti′ ≤ L− Ti′

x
+Ti′)∧ (L =

Tk

x
)∧ (2L× x−Ti′ < L− Ti′

x
+Ti′)

Hence, there exists a task τi′ such that

(τi′ ∈ S(τk)) ∧ (
Ti′

x
≤ L) ∧ (L =

Tk

x
) ∧ ((2x−1)×L < (2− 1

x
)×Ti′) (8.34)

Hence, there exists a task τi′ such that

(τi′ ∈ S(τk)) ∧
(

Ti′

x
≤ L
)
∧
(
(2x−1)× Ti′

x
< (2− 1

x
)×Ti′

)
(8.35)

This is a contradiction.

Hence, if the lemma is false then we obtain a contradiction. Consequently, the lemma is

true.

Combining the two previous lemmas gives us (below) a relationship between the feasibility on

a heterogeneous multiprocessor and the schedulability of ra-np-pEDF algorithm.

Lemma 51. ∀τ , ∀Π(m1,m2, . . . ,mt), ∀R, ∀x≥ 1, v≥ |UNER| such that τ is an implicit-deadline

sporadic task set and ∀τi ∈ τ : Ri 6= /0 and ∀τi ∈ τ it holds that whenever τi executes it holds

resource set Ri :

rmig-feas(τ,R,Π(m1,m2, . . . ,mt)) =⇒

sched
(

ra-np-pEDF,mulCDT(create-fav-taskset(τ,Π(m1,m2, . . . ,mt)) ,

1
2× v× x

,
1
x
,1),R,create-fav-platform(τ,Π(m1,m2, . . . ,mt),v)

)
Proof. Follows from Lemma 49 and Lemma 50.

272 Shared Resource Scheduling on T-type Heterogeneous Multiprocessors

Corollary 9. Consider an implicit-deadline sporadic tasks set that is offline non-preemptive fea-

sible on a single processor. If this task set is scheduled by the non-preemptive EDF algorithm on

a processor with twice the speed then this task set is schedulable.

Proof. Follows from specializing Lemma 51 with v = 1 and x = 1 and a system with a single pro-

cessor and a single resource and all tasks share this single resource and whenever a task executes

it needs to hold this resource.

8.5.3 Useful results

In this section, we present a previously known (Lemma 52) result and some new results (Lemma 53-

56 and Corollary 10) that we use while proving the speed competitive ratio of our algorithm,

LP-EE-vpr, in Section 8.5.4.

Lemma 52 states that the speed competitive ratio of algorithm, LP-EE, proposed in [Bar04c]

is two. The algorithm, LP-EE, non-migratively schedules a set of implicit-deadline sporadic tasks

that do not share resources on a t-type heterogeneous multiprocessor platform.

Lemma 52 (From Theorem 3 in [Bar04c]).

nmig-feas(τ,Π(m1,m2, . . . ,mt))⇒ sched(LP-EE,τ,Π(m1,m2, . . . ,mt)×2)

We now show that, if an implicit-deadline sporadic task set τ in which tasks do not share re-

sources is non-migrative-offline schedulable on a t-type heterogeneous multiprocessor platform,

Π(m1,m2, . . . ,mt), then the constrained-deadline sporadic task set τA (in which tasks do not share

resources as well) which is derived from τ (as described in Section 8.4.1) is also non-migrative of-

fline schedulable but on platform Π(m1,m2, . . . ,mt)×2 (e.g., by non-migrative preemptive EDF).

This is shown with the help of a density-based schedulability test by exploiting the fact that, on

a processor πp of type-k, the density δ k
i,A of a task τi,A ∈ τA is twice the utilization uk

i of the cor-

responding task τi ∈ τ (see Expression (8.1)). Hence, the density of the task τi,A ∈ τA on a twice

faster platform Π(m1,m2, . . . ,mt)×2 is equal to the utilization of the corresponding task τi ∈ τ on

platform Π(m1,m2, . . . ,mt).

Lemma 53.

nmig-feas(τ,Π(m1,m2, . . . ,mt))⇒ nmig-feas-δ
(
τ

A,Π(m1,m2, . . . ,mt)×2
)

Proof. Suppose that the left-hand side predicate, nmig-feas(τ,Π(m1,m2, . . . ,mt)), is true. Then

let us arbitrarily choose one set of jobs JS generated by the task set τ . Since it holds that

nmig-feas(τ,Π(m1,m2, . . . ,mt)) is true, there exists a non-migrative-offline schedule for this job

set on platform Π(m1,m2, . . . ,mt) in which all the deadlines are met. Since jobs do not migrate

and since there is only one phase per job (because there are no resource requests) and since it

holds (as stated in Section 8.2) that, all phase-A executions of a given task execute on the same

8.5 Speed competitive ratio of LP-EE-vpr algorithm 273

processor, we can form, from this schedule, a partitioning of the tasks. In this schedule, let τ[πp]

be the set of tasks assigned to processor πp. This gives us:

∀k, ∀πp of type-k ∈Π(m1,m2, . . . ,mt) : ∑
τi∈τ[πp]

uk
i ≤ 1 (8.36)

We now show that there must also exist a non-migrative-offline schedule for the derived task

set τA on platform Π(m1,m2, . . . ,mt)×2 in which all the deadlines are met. By definition of

τA, we know that, for every task τi ∈ τ , there exists a corresponding task, τi,A ∈ τA. Also, from

Expression (8.1), we know that, on a processor of type-k, where k ∈ {1,2, . . . , t}, density δ k
i,A of

task τi,A ∈ τA is twice the utilization uk
i of the corresponding task, τi ∈ τ .

Let us assign task set τA on platform Π(m1,m2, . . . ,mt)×2 as follows: if a task, τi ∈ τ , is as-

signed to a processor of type-k, say πp of type-k∈Π(m1,m2, . . . ,mt), in the non-migrative-offline

schedule which meets all deadlines, then we assign its corresponding task, τi,A ∈ τA, to the corre-

sponding processor in the faster platform, i.e., to processor πp of type-k ∈ Π(m1,m2, . . . ,mt)×2.

From the fact that this assignment of τA, which is identical to the assignment of τ , is made on a

platform twice faster (on which the densities of tasks will be halved) and from Expressions (8.1)

and (8.36), we get:

∀k, ∀πp of type-k ∈Π(m1,m2, . . . ,mt)×2 : ∑
τi,A∈τA[πp]

δ
k
i,A ≤ 1 (8.37)

which satisfies density-based schedulability test of non-migrative EDF on a t-type heterogeneous

multiprocessor platform. We can repeat this reasoning for any choice of JS. Hence, the task set τA

is non-migrative-offline feasible on the platform Π(m1,m2, . . . ,mt)×2. Hence the lemma.

Corollary 10.

nmig-feas-δ
(
τ

A,Π(m1,m2, . . . ,mt)×2
)
⇒ nmig-feas(τ,Π(m1,m2, . . . ,mt))

Proof. Follows from reasoning analogous to the reasoning for the proof of Lemma 53.

The following lemma is an extension of Lemma 52 obtained by applying density-based test

instead of utilization-based test and on twice faster platforms.

Lemma 54.

nmig-feas-δ
(
τ

A,Π(m1,m2, . . . ,mt)×2
)
⇒ sched

(
LP-EE-δ ,τA,Π(m1,m2, . . . ,mt)×4

)
Proof. Let us assume that the left-hand side predicate nmig-feas-δ

(
τA,Π(m1,m2, . . . ,mt)×2

)
of

the claim is true. From Corollary 10, it holds that, the predicate nmig-feas(τ,Π(m1,m2, . . . ,mt))

is also true. Then, from Lemma 52, the predicate sched(LP-EE, τ , Π(m1,m2, . . . ,mt) × 2) must

hold true as well. From Expression (8.1), we know that, on a processor of type-k, density δ k
i,A of

every task τi,A ∈ τA is twice the utilization uk
i of the corresponding task τi ∈ τ , and hence it must

274 Shared Resource Scheduling on T-type Heterogeneous Multiprocessors

Dk
i,A

 Ti ≥ Dk
i,A + Dk

i,B + Dk
i,C

t

Ck
i,A

Ck
i,A + Ck

i,C

2 * (Ck
i,A + Ck

i,B + Ck
i,C)

Figure 8.8: Assigning phase-C subtasks to the same virtual processor as the respective phase-A
subtasks (earlier assigned using a density-based test) preserves schedulability.

hold that the predicate sched
(
LP-EE-δ ,τA,Π(m1,m2, . . . ,mt)×4

)
is true as well, from a similar

reasoning as used in Lemma 53. Hence the proof.

The following lemma states that, if tasks from τA are preemptive EDF schedulable on a proces-

sor πp of type-k then we can assign the respective phase-C subtasks from τC as well onto processor

πp and after this assignment, the entire set of tasks assigned to processor πp is preemptive EDF

schedulable.

Lemma 55. Let τA[πp] denote the set of phase-A subtasks assigned on processor πp of type-k. If

τA[πp] is preemptive-EDF schedulable, ascertainable with a density-based test on πp, i.e.,

δ
k
τA[πp]

de f
= ∑

τi,A∈τA[πp]

δ
k
i,A ≤ 1

then τA[πp]∪ τC[πp] (where τC[πp] is the set of respective phase-C subtasks whose arrivals have

fixed offset from the arrival of respective phase-A subtasks) is preemptive-EDF schedulable on

processor πp of type-k.

Proof. We know that the task set τA[πp] is preemptive-EDF schedulable, ascertainable with a

density-based test, on processor πp of type-k, i.e., δ k
τA[πp]

≤ 1. To show that τA[πp]∪ τC[πp] is

schedulable on processor πp, it is sufficient to show that the demand-bound function5, DBF(τA[πp]∪
τC[πp], t), of task set τA[πp]∪ τC[πp], never exceeds δ k

τA[πp]
× t at any instant t [BMR90].

The following holds for every phase-A subtask, τi,A ∈ τA, and respective phase-C subtask,

τi,C∈τC:

DBF({τi,A}∪{τi,C}, t)≤ t×δ
k
i,A = t×

Ck
i,A

Dk
i,A

(8.38)

5The demand bound function of a task τi, dbf(τi, t), is the maximum possible execution demand by jobs of τi, that
have both arrival and deadline within any interval of length t. The demand bound function of a task set τ is defined as:
DBF(τ, t) = ∑τi∈τ dbf(τi, t) [BMR90].

8.5 Speed competitive ratio of LP-EE-vpr algorithm 275

This can be verified from Figure 8.8 since the maximum “slope” to any point in the graph of

DBF({τi,A}∪{τi,C}, t) from the origin is δ k
i,A =

Ck
i,A

Dk
i,A

(which is equal to 2×uk
i of τi ∈ τ , as per our

choice of Dk
i,A), at abscissa t = Dk

i,A. Summing Expression (8.38) for all the subtasks τi,A ∈ τA[πp]

and the corresponding subtasks τi,C ∈ τC[πp] yields:

DBF(τA[πp]∪ τ
C[πp], t)≤ t× ∑

τi,A∈τA[πp]

δ
k
i,A = t×δ

k
τA[πp]

Hence the proof.

We will now prove a guarantee on the schedulability of ra-np-pEDF-fav.

Lemma 56. Let τ denote an implicit-deadline sporadic task set. Let R denote the set of resources

in the system. Let Pj denote one resource request partition of R and let R(Pj) denote the resources

belonging to this resource request partition.

rmig-feas(τ,R,Π(m1,m2, . . . ,mt))⇒

sched
(

ra-np-pEDF-fav,τB,R(Pj),R(Pj),Π
(
|Pj|, |Pj|, . . . , |Pj|

)
×4×|Pj|

)
(8.39)

Proof. Let τ ′ denote the subset of tasks in τ that request a resource set in Pj. Let τ ′′ denote a set

of tasks derived from τ ′ but where a task in τ ′′ does not perform any execution before requesting

a resource set and a task in τ ′′ does not perform any execution after releasing a resource set.

Then consider the three claims below:

1. rmig-feas(τ,R,Π(m1,m2, . . . ,mt))⇒ rmig-feas(τ ′′,R(Pj),Π(m1,m2, . . . ,mt))

2. rmig-feas(τ ′′,R(Pj),Π(m1,m2, . . . ,mt))⇒
sched

(
ra-np-pEDF-fav,τ ′′B,R(Pj),R(Pj),Π

(
|Pj|, |Pj|, . . . , |Pj|

)
×4×|Pj|

)
3. τ ′′B,R(Pj) = τB,R(Pj)

If we can prove these three claims then the correctness of the lemma follows. Hence, we prove the

claims below.

Proving 1. This claim follows from the fact that the feasibility cannot be violated by only

considering a subset of the tasks and by only considering a subset of the resources and by only

considering some of the execution of a task.

Proving 2. Applying Lemma 51 with the task set τ ′′ and the resource set R(Pj) and with x = 2

and v = |Pj| yields:

rmig-feas
(
τ
′′,R(Pj),Π(m1,m2, . . . ,mt)

)
=⇒

sched
(

ra-np-pEDF,mulCDT(create-fav-taskset
(
τ
′′,Π(m1,m2, . . . ,mt)

)
,

1,
1
2
,1),R(Pj),create-fav-platform

(
τ
′′,Π(m1,m2, . . . ,mt),v

)
×4×|Pj|

)
(8.40)

276 Shared Resource Scheduling on T-type Heterogeneous Multiprocessors

The order in which the functions mulCDT and create-fav-taskset are applied can be

changed without affecting the result. And the result of the create-fav-platform function

when taken τ ′′ as input is the same as when taken mulCDT(τ ′′,1, 1
2 ,1) as input. This gives us:

rmig-feas
(
τ
′′,R(Pj),Π(m1,m2, . . . ,mt)

)
=⇒

sched
(

ra-np-pEDF,create-fav-taskset
(

mulCDT(τ ′′,1,
1
2
,1),Π(m1,m2, . . . ,mt)

)
,

R(Pj),create-fav-platform

(
mulCDT(τ ′′,1,

1
2
,1),Π(m1,m2, . . . ,mt),v

)
×4×|Pj|

)
(8.41)

Observing that mulCDT(τ ′′,1, 1
2 ,1) = τ ′′B,R(Pj) gives us:

rmig-feas
(
τ
′′,R(Pj),Π(m1,m2, . . . ,mt)

)
=⇒

sched
(

ra-np-pEDF,create-fav-taskset
(

τ
′′B,R(Pj),Π(m1,m2, . . . ,mt)

)
,R(Pj),

create-fav-platform
(

τ
′′B,R(Pj),Π(m1,m2, . . . ,mt),v

)
×4×|Pj|

)
(8.42)

Observe that the schedule generated by the ra-np-pEDF scheduling policy of tasks in the task set

create-fav-taskset
(
τ ′′B,R(Pj),Π(m1,m2, . . . ,mt)

)
on processors in the computing platform

create-fav-platform
(
τ ′′B,R(Pj),Π(m1,m2, . . . ,mt),v

)
is identical to the schedule generated

by ra-np-pEDF-fav scheduling of tasks in τ ′′B,R(Pj) on Π
(
|Pj|, |Pj|, . . . , |Pj|

)
. Combining this ob-

servation with (8.42) gives us:

rmig-feas
(
τ
′′,R(Pj),Π(m1,m2, . . . ,mt)

)
=⇒

sched
(

ra-np-pEDF-fav,τ ′′B,R(Pj),R(Pj),Π
(
|Pj|, |Pj|, . . . , |Pj|

)
×4×|Pj|

)
(8.43)

This states the Claim 2.

Proving 3. The correctness of this claim (τ ′′B,R(Pj) = τB,R(Pj)) can be seen directly from the

definition of τ ′′B,R(Pj).

Hence the lemma.

8.5.4 The speed competitive ratio of LP-EE-vpr algorithm

We now prove the speed competitive ratio of the LP-EE-vpr algorithm.

Theorem 23. The LP-EE-vpr algorithm has the following speed competitive ratio:

4×
(

1+MAXP×
⌈

|P|×MAXP
min{m1,m2,...,mt}

⌉)
.

Proof. We prove the claim by considering the scheduling of tasks in each of the three phases

independently and then merging the results from these three scenarios.

8.5 Speed competitive ratio of LP-EE-vpr algorithm 277

Consider phase-A scheduling. Combining Lemma 53 and Lemma 54, yields:

rmig-feas(τ,Π(m1,m2, . . . ,mt))⇒ sched
(
LP-EE-δ ,τA,Π(m1,m2, . . . ,mt)×4

)
(8.44)

Consider phase-C scheduling. Note that LP-EE-vpr assigns a phase-C subtask, τi,C ∈ τC, to the

same VPAC virtual processor to which the corresponding phase-A subtask, τi,A ∈ τA, is assigned

(see line 10 in Algorithm 16). For convenience, let LP-EE-δ -cp denote such a task assignment

policy, i.e., using LP-EE-δ to assign phase-A subtasks and ‘copying’ the assignment for respective

phase-C subtasks. Lemma 55 showed that such an assignment preserves schedulability of the

relevant tasks. From Lemma 55 and Expression (8.44), we get:

rmig-feas(τ,Π(m1,m2, . . . ,mt))⇒ sched
(
LP-EE-δ -cp,τA∪ τ

C,Π(m1,m2, . . . ,mt)×4
)

(8.45)

Now let us discuss phase-B scheduling. From Lemma 56 we obtain:

∀Pj ∈ P : rmig-feas(τ,R,Π(m1,m2, . . . ,mt)) =⇒

sched
(

ra-np-pEDF-fav,R(Pj),τ
B,R(Pj),Pj,Π

(
|Pj|, |Pj|, . . . , |Pj|

)
×4×|Pj|

)
(8.46)

We know that, MAXP = maxPj∈P
∣∣Pj
∣∣. Using this, rewriting Expression (8.46) yields:

∀Pj ∈ P : rmig-feas
(
τ,R(Pj),Π(m1,m2, . . . ,mt)

)
=⇒

sched
(

ra-np-pEDF-fav,τB,R(Pj),R(Pj),Π
(
|Pj|, |Pj|, . . . , |Pj|

)
×MAXP×4

)
(8.47)

Let us now combine the results obtained for task sets τA ∪ τC and τB,R(Pj). Dividing the type-k

(∀k : k ∈ {1,2, . . . , t}) processor speeds in Expression (8.45) by 4×
(

1+MAXP×
⌈
|P|×MAXP

mk

⌉)
,

we get:

rmig-feas

(
τ,Π(m1,m2, . . . ,mt)×

〈
1

4×
(

1+MAXP×
⌈
|P|×MAXP

m1

⌉) , . . . ,
1

4×
(

1+MAXP×
⌈
|P|×MAXP

mt

⌉)〉)=⇒

sched

(
LP-EE-δ -cp,τA∪ τ

C,Π(m1,m2, . . . ,mt)×〈
1

1+MAXP×
⌈
|P|×MAXP

m1

⌉ , . . . , 1

1+MAXP×
⌈
|P|×MAXP

mt

⌉〉) (8.48)

Dividing the type-k (∀k : k ∈ {1,2, . . . , t}) processor speeds in Expression (8.47) by a factor of

278 Shared Resource Scheduling on T-type Heterogeneous Multiprocessors

4×
(

1+MAXP×
⌈
|P|×MAXP

mk

⌉)
, we get:

∀Pj ∈ P : rmig-feas

(
τ,R(Pj),Π(m1,m2, . . . ,mt)×〈

1

4×
(

1+MAXP×
⌈
|P|×MAXP

m1

⌉) , . . . , 1

4×
(

1+MAXP×
⌈
|P|×MAXP

mt

⌉)〉)=⇒

sched
(

ra-np-pEDF-fav,τB,R(Pj),R(Pj),Π
(
|Pj|, |Pj|, . . . , |Pj|

)
×〈

MAXP

1+MAXP×
⌈
|P|
m1

⌉ , . . . , MAXP

1+MAXP×
⌈
|P|
mt

⌉〉) (8.49)

The specifications of the processors in the right-hand side predicates of Expression (8.48) and

Expression (8.49) match those of the virtual processors that LP-EE-vpr created (see Section 8.4.2).

Recall that LP-EE-vpr assigned phase-A and phase-C subtasks to VPAC virtual processors and

phase-B subtasks to VPB virtual processors. Hence, combining Expression (8.48) and |P| instances

of Expression (8.49), yields:

rmig-feas

(
τ,R,Π(m1,m2, . . . ,mt)×

〈
1

4×
(

1+MAXP×
⌈
|P|×MAXP

m1

⌉) , . . . ,
1

4×
(

1+MAXP×
⌈
|P|×MAXP

mt

⌉)〉)=⇒

sched
(

LP-EE-vpr,τ,R,Π(m1,m2, . . . ,mt)
)

(8.50)

We know that higher speed processors do not jeopardize the feasibility of a task set. Hence, we

can write:

rmig-feas
(

τ,R,Π(m1,m2, . . . ,mt)×〈min{s1,s2, . . . ,st} , . . . ,min{s1,s2, . . . ,st}〉
)
⇒

rmig-feas
(

rmo,τ,R,Π(m1,m2, . . . ,mt)×〈s1,s2, . . . ,st〉
)

8.5 Speed competitive ratio of LP-EE-vpr algorithm 279

Substituting sk =
1

4×
(

1+MAXP×
⌈
|P|×MAXP

mk

⌉) , ∀k : k ∈ {1,2, . . . , t}, in the above expression and com-

bining with Expression (8.50) and rewriting gives:

rmig-feas

(
τ,R,Π(m1,m2, . . . ,mt)×〈

1

4×
(

1+MAXP×max
{⌈
|P|×MAXP

m1

⌉
, . . . ,

⌈
|P|×MAXP

mt

⌉}) ,
. . . ,

1

4×
(

1+MAXP×max
{⌈
|P|×MAXP

m1

⌉
, . . . ,

⌈
|P|×MAXP

mt

⌉})〉)=⇒

sched
(

LP-EE-vpr,τ,R,Π(m1,m2, . . . ,mt)
)

(8.51)

Let us multiply the speeds of all the processors in Expression (8.51) by the following factor:

4×
(

1+MAXP×max
{⌈
|P|×MAXP

m1

⌉
, . . . ,

⌈
|P|×MAXP

mt

⌉})
. This gives us:

rmig-feas
(

τ,R,Π(m1,m2, . . . ,mt)
)
=⇒

sched
(

LP-EE-vpr,τ,R,Π(m1,m2, . . . ,mt)×〈
4×
(

1+MAXP×max
{⌈ |P|×MAXP

m1

⌉
, . . . ,

⌈ |P|×MAXP
mt

⌉})
, . . . ,

4×
(

1+MAXP×max
{⌈ |P|×MAXP

m1

⌉
, . . . ,

⌈ |P|×MAXP
mt

⌉})〉)
By rewriting the right-hand side predicate of the above expression, we get:

rmig-feas
(

τ,R,Π(m1,m2, . . . ,mt)
)
=⇒

sched
(

LP-EE-vpr,τ,R,Π(m1,m2, . . . ,mt)×〈
4×
(

1+MAXP×
⌈ |P|×MAXP

min{m1,m2, . . . ,mt}

⌉)
, . . . ,

4×
(

1+MAXP×
⌈ |P|×MAXP

min{m1,m2, . . . ,mt}

⌉)〉)
Hence the theorem.

Theorem 24. Consider the case in which each task can request at most one resource, i.e, ∀τi ∈ τ :

|Ri| ≤ 1. For this case, LP-EE-vpr has a speed competitive ratio of 4×
(

1+
⌈

|R|
min{m1,m2,...,mt}

⌉)
.

Proof. If ∀τi ∈ τ : |Ri| ≤ 1 then every connected component in the graph has one vertex and hence

every resource request partition has one element. Thus, MAXP = 1. Also, the number of resource

request partitions |P| is no greater than |R|, i.e., |P| ≤ |R|. Applying this on Theorem 23 gives us

the theorem.

280 Shared Resource Scheduling on T-type Heterogeneous Multiprocessors

8.6 Discussion

In this section, we briefly discuss run-time mechanisms for realizing virtual processors and the

preemptions generated and also highlight a couple of useful properties of LP-EE-vpr algorithm

such as deadlock-free property, nested resource access and the bound on number of migrations per

job. Also, a couple of tricks to improve the performance of LP-EE-vpr algorithm are discussed as

well.

8.6.1 Run-time mechanism for realizing virtual processors and the preemptions
generated

Given that the research literature has been lacking a scheduling algorithm for heterogeneous mul-

tiprocessors with resource sharing such that the algorithm has a proven speed competitive ratio,

our focus in this chapter has been to create one. We did not deal with the cost of preemption.

Assuming that there is no cost of a preemption, one can create a set of virtual processors from

a single physical processor without losing capacity as follows. Choose a timeslot size (denoted as

S) and subdivide time into time intervals, each being of duration equal to the timeslot size S. Then

if we want to create a set VP =
{

vp1,vp2, ...,vp|VP |
}

of virtual processors where virtual processor

vpl (where l ∈ {1,2, . . . , |VP |}) has speed SPl and accomplish this as long as ∑l∈{1,2,...,|VP |}SPl ≤
1, then this can be done as follows. Create a reserve for vpl in the timeslot so that this reserve has

the duration S×vpl and let the time of this reserve supply time to the virtual processor vpl . Then

let S be arbitrarily small. This gives us the desired virtual processors and this is the idea we have

assumed in this paper.

Unfortunately, this approach generates an infinite number of preemptions. One could generate

virtual processors in two other ways. First, by choosing S being the greatest common denominator

of the parameters of the subtasks, one can still form virtual processors as mentioned above and

still utilize 100% of the capacity of a physical processor [AB08]. This approach has two problems

(i) the greatest common divisor of the parameters of the subtasks may not exist (this is an issue

for the case that parameters are not rational numbers) and (ii) even if the greatest common divisor

of the parameters of the subtasks exists, it may still be very small and hence may generate a very

large number of preemptions. A second way to choose S (which avoids this drawback) is to choose

a positive integer δ and then choose S as the minimum of all parameters of subtasks divided by

δ . This approach has been used for creating virtual processors in [AB08, BA09] so that as long

as the sum of the speeds of the virtual processors desired to be formed does not exceed a given

bound UB(δ) (higher than 60% but lower than 100%), which is a function of δ , then all virtual

processors can be formed. We can use such approaches at the cost of having a speed competitive

ratio being multiplied by 1/UB(δ).

8.6 Discussion 281

8.6.2 Bound on the number of migrations per job

The algorithm, LP-EE-vpr, by design, limits the number of migrations per job to at most two.

Recall that, LP-EE-vpr assigns both phase-A and phase-C executions of a task τi to the same VPAC

virtual processor and phase-B of that task to another VPB virtual processor. Since the algorithm

creates the virtual processors in such a manner that the capacity of no virtual processor comes from

more than one physical processor (Lemma 47 in Section 8.4.2), it is clear that both phase-A and

phase-C of a task are assigned to the same physical processor. Since the virtual processor in VPB

to which phase-B of task τi is assigned may come from a different physical processor, migration

of a job of task τi can only occur at time instants when the job requests or releases the resource set

Ri. Thus, the algorithm limits the number of migrations per job to at most two.

8.6.3 Nested resource access

To enable our algorithm for handling tasks with nested resource access, one of the two below

mentioned techniques can be used.

• Group locking. It is a previously known technique [BLBA07] in which the inner locks of

a nested resource access are removed and only an outer lock (referred to as a group lock) is

retained. The following example illustrates how nested resource access can be handled with

the help of group locks. Consider a nested resource access in which jobs of a task τi request

and release the resources in the following order: Each job of task τi does the following (in

order):

request(r1)

request(r2)

release(r2)

request(r3)

release(r3)

release(r1)

With group locking, a new lock would be created, say r123 and then task τi would be changed

such that each job of τi now does the following (in order):

request(r123)

release(r123)

If there is any other task that requests one or more of these resources (i.e., resource r1, r2

and r3) then these tasks need to be changed as well.

• A variant of group locking. Another way to handle nested resource access is to request

all the resources in the nested block at the beginning of the nested block and release all the

282 Shared Resource Scheduling on T-type Heterogeneous Multiprocessors

resources at the end of this block. With this technique, in the above example, task τi would

be changed such that each job of task τi now does the following (in order):

request(r1 and r2 and r3)

release(r1 and r2 and r3)

Since we allow multiple resources to be requested simultaneously, we can use any of the above

two techniques for handling tasks with nested resource access.

8.6.4 Deadlock free property

Partial allocation describes a situation where a task is “waiting” for additional resource(s) while

“holding” previously acquired one(s). Partial allocation is a necessary condition for deadlock to

occur — see Chapter 7 in [SGG09]. Recall that, we assume (as mentioned in Section 8.2) that a

job of task τi performs a single request for the resource set Ri and then releases all the resources in

the resource set Ri at once. And hence with this assumption, partial allocation never happens. And

consequently, the algorithm LP-EE-vpr, for the assumptions stated in Section 8.2, cannot enter a

deadlocked state.

8.6.5 Performance improvement

In this section, we describe a couple of tricks to improve the performance of the algorithm.

First, we dimensioned the phase-B virtual processors without considering the parameters of the

subtasks that will execute on this virtual processor. A possible way to increase the performance of

our algorithm though would be to determine, for each resource request partition, what is the lowest

speed that is needed in order for the subtasks requesting the resources from the corresponding

resource partition to be ra-np-pEDF-fav schedulable.

Second, our algorithm is based on LP-EE algorithm [Bar04c] for assigning phase-A and phase-

C subtasks. We selected LP-EE because it is simple to implement and easy to explain and it has

a proven speed competitive ratio. Unfortunately, this algorithm has a time-complexity that is

exponential with the number of processors. But we can replace LP-EE with another algorithm

that is proposed in [Bar04b]. This algorithm has the same speed competitive ratio as LP-EE but

runs with polynomial time-complexity because it does not perform exhaustive enumeration. In

addition, one could replace LP-EE with the task assignment algorithm in [WBB13] (which has a

better speed competitive ratio than LP-EE). Then we would have a scheduling algorithm for our

problem (with resource sharing), with a better speed competitive ratio but at the expense of having

a time-complexity that is a polynomial of very high degree.

8.7 Conclusions

In many computer systems, apart from processors, tasks also share resources such as data struc-

tures, sensors, etc. and tasks must operate on such resources in a mutually exclusive manner while

8.7 Conclusions 283

accessing the resource. Scheduling real-time tasks that share resources on a heterogeneous multi-

processor platform is a complex problem. In this work, we took the first step to solve the issue via

a scheduling algorithm with a proven speed competitive ratio for heterogeneous multiprocessors.

This work considered the problem of scheduling a task set of implicit-deadline sporadic tasks

to meet all deadlines on a t-type heterogeneous multiprocessor platform where tasks may share

multiple resources. The tasks must operate on such resources in a mutually exclusive manner

while accessing the resource, that is, at all times, when a job of a task holds a resource, no other

job of any task can hold that resource. Each job may request (a subset of) resources at most once

during its execution and it has to request all the resources in the subset together. A job is allowed

to migrate when it requests/releases the resources but a job is not allowed to migrate at other times.

We presented an algorithm, LP-EE-vpr, and proved its speed competitive ratio. Specifically,

we proved that, if an implicit-deadline sporadic task set is schedulable to meet all deadlines on

a t-type heterogeneous multiprocessor platform by an optimal scheduling algorithm that allows

a job to migrate only when it requests or releases a resource set, then our algorithm succeeds

to meet all deadlines as well with the same restriction on job migration but given processors

4×
(

1+MAXP×
⌈

|P|×MAXP
min{m1,m2,...,mt}

⌉)
times as fast. For the special case that each task requests at

most one resource, the bound of LP-EE-vpr collapses to 4×
(

1+
⌈

|R|
min{m1,m2,...,mt}

⌉)
. To the best

of our knowledge, LP-EE-vpr is the first algorithm for real-time scheduling of sporadic tasks with

resource sharing on t-type heterogeneous multiprocessors that has a provably good performance .

Further, as a by-product of the above result, for the problem of non-preemptive scheduling

of tasks on a uniprocessor, we improved the previously known [AE10] speed competitive ratio of

non-preemptive-EDF algorithm from three to two.

284 Shared Resource Scheduling on T-type Heterogeneous Multiprocessors

Part IV

Conclusions

285

Chapter 9

Conclusions, Discussions and Future
Directions

A real-time software system is often modeled as a set of sporadic tasks where each task generates

a (potentially infinite) sequence of jobs. Each job of a task may arrive at any time once a minimum

inter-arrival time has elapsed since the arrival of the previous job of the same task. Each job has

an execution time and a deadline within which it has to complete its execution. Many real-time

systems can be effectively modeled using implicit-deadline sporadic tasks in which it is assumed

that, for each task, its deadline is equal to its minimum inter-arrival time.

With the emergence of multicores, there is a strong interest in understanding the challenges

involved in deploying embedded real-time systems on such computing platforms. Many mul-

ticore computing platforms as of today are heterogeneous in nature. The heterogeneous multi-

processor computational model (i.e., unrelated parallel machines) is more generic than identical

or uniform multiprocessors, in terms of the systems that it can accommodate. Generally, this

called for algorithms with a provably good performance for scheduling real-time workload on het-

erogeneous multiprocessors. We partially solve the issue by proposing several task assignment

algorithms which in turn enable the scheduling of real-time workload on heterogeneous multi-

processors consisting of a constant number (denoted by t ≥ 2) of distinct processor types. In a

t-type heterogeneous multiprocessor (i) not all processors are of the same type, (ii) the execu-

tion time of a task depends on the type of processor on which it executes and (iii) the number

of distinct types of processors is a constant and is given by t ≥ 2. A two-type heterogeneous

multiprocessor is a special case of t-type in which it holds that t = 2. These models are of

great practical interest, as they capture many current/future single-chip heterogeneous multipro-

cessors [AMD13a, App13, Int13c, Int13b, Nvi12, Qua13, Sam13a, ST 12, Tex13, Jon, Int13a].

Specifically, this dissertation considered the following problems for implicit-deadline sporadic

tasks on both two-type and t-type heterogeneous multiprocessors:

P1. design efficient algorithms to assign tasks to individual processors (non-migrative task as-

signment) such that for every valid job arrival pattern “there exists” a schedule that meets

all deadlines.

287

288 Conclusions, Discussions and Future Directions

P2. design efficient algorithms to assign tasks to processor types (intra-migrative task assign-

ment) such that for every valid job arrival pattern “there exists” a schedule that meets all

deadlines.

In many computing systems, apart from sharing a processor, tasks also share other resources

such as data structures, sensors, etc. and tasks must operate on such resources in a mutually exclu-

sive manner while accessing the resource, that is, at all times, when a job of a task holds a resource,

no other job of any task can hold that resource. Hence, this dissertation also considered the fol-

lowing problem for implicit-deadline sporadic tasks on both two-type and t-type heterogeneous

multiprocessors:

P3. design efficient algorithms to assign tasks that share resources to processors such that for

every valid job arrival pattern “there exists” a schedule that meets all deadlines.

Unfortunately, all the three problems are hard to solve, in the sense that, it is not possible to

design an optimal algorithm with polynomial time-complexity unless P = NP. Hence, this work

proposed several (non-optimal) task assignment algorithms with polynomial time-complexity and

proved their performance in terms of speed competitive ratio. The speed competitive ratio SCRA

of an algorithm A is informally defined as follows. If an optimal algorithm can find a solution

for the problem (P1 or P2 or P3) then the algorithm A also succeeds to find such a solution but

given SCRA times faster processors compared to the processors used by the optimal algorithm. A

summary of the contributions of this research is presented next.

9.1 Summary of results

9.1.1 Intra-migrative task assignment algorithms

This work proposed intra-migrative task assignment algorithms both for two-type heterogeneous

multiprocessors as well as generic t-type heterogeneous multiprocessors. In Chapter 3, we pro-

posed a low-degree polynomial time-complexity intra-migrative task assignment algorithm for

two-type heterogeneous multiprocessors and showed that the speed competitive ratio of this algo-

rithm is 1+α/2≤ 1.5 against an equally powerful intra-migrative adversary where the parameter

0 < α ≤ 1 is the property of the task set; it is the maximum of all the task utilizations that are no

greater than one. In Chapter 6, we designed a polynomial time-complexity intra-migrative task

assignment algorithm for t-type heterogeneous multiprocessors and showed that the speed com-

petitive ratio of this algorithm is 1+α× t−1
t against an equally powerful intra-migrative adversary

where the parameter, t ≥ 2, denotes the number of distinct processor types in the platform.

9.1.2 Non-migrative task assignment algorithms

This work also proposed several non-migrative task assignment algorithms for two-type heteroge-

neous multiprocessors and also an algorithm for the generic t-type heterogeneous multiprocessors.

9.2 Implication of the results 289

In Chapter 4, for two-type heterogeneous multiprocessors, we proposed (i) a low-degree polyno-

mial time-complexity non-migrative task assignment algorithm and showed that the speed com-

petitive ratio of this algorithms is 1+α ≤ 2 against an equally powerful non-migrative adversary,

where the parameter 0 < α ≤ 1 is the maximum of all the task utilizations that are no greater than

one; (ii) a low-degree polynomial time-complexity non-migrative task assignment algorithm and

showed that the speed competitive ratio of this algorithms is 1+α ≤ 2 against a more powerful

intra-migrative adversary; (iii) a polynomial-time complexity non-migrative task assignment algo-

rithm and showed that its speed competitive ratio is 1.5 and in addition it needs 3 extra processors

against an equally powerful non-migrative adversary and finally (iv) a polynomial time approxi-

mation scheme with a speed competitive ratio of 1+3ε against an equally powerful non-migrative

adversary where ε > 0 is an input parameter. In Chapter 7, for t-type heterogeneous multiproces-

sors, we proposed a non-migrative task assignment algorithm of polynomial time-complexity and

showed that the speed competitive ratio of this algorithm is 1+α ≤ 2 against an equally powerful

intra-migrative adversary.

9.1.3 Resource sharing algorithms

Further, this work also proposed task assignment algorithms for resource sharing problem (in

which tasks are allowed to migrate only when they request or release the resource) both for two-

type and the generic t-type heterogeneous multiprocessors. In Chapter 5, for two-type hetero-

geneous multiprocessors, we proposed a low-degree polynomial time-complexity algorithm with

a speed competitive ratio of 4 + 6 ·
⌈

|R|
min(m1,m2)

⌉
against an equally powerful adversary (which

also permit a task to migrate only when it requests or releases a resource), where |R| denotes

the number of shared resources and m1 (resp., m2) denotes the number of processors of type-1

(resp., type-2). In Chapter 8, for t-type heterogeneous multiprocessors, we proposed a polynomial

time-complexity algorithm with a speed competitive ratio of 4×
(

1+MAXP×
⌈

|P|×MAXP
min{m1,m2,...,mt}

⌉)
against an equally powerful adversary1.

We describe the implication of these results in the next section.

9.2 Implication of the results

9.2.1 Bin-packing heuristics for heterogeneous multiprocessors

Bin-packing heuristics are popular for assigning tasks on identical and uniform multiprocessors

because they are easy to implement, run fast and offer finite speed competitive ratio. Yet, straight-

forward application of bin-packing heuristics on heterogeneous multiprocessors perform poorly.

Hence, before this research, bin-packing heuristics were not considered for assigning tasks to pro-

cessors on heterogeneous multiprocessors. Only Integer Linear Programming (ILP) modeling,

Linear Programming (LP) relaxation approaches for ILP and dynamic programming techniques

were known to perform well on heterogeneous multiprocessors. As part of this work, we observed

1The terms P and MAXP in the speed competitive ratio are defined in Chapter 8

290 Conclusions, Discussions and Future Directions

that the cause of low performance of bin-packing heuristics on two-type heterogeneous multipro-

cessors is that, by considering tasks one by one, they lack a “global view” of the problem and thus

may assign a task to a processor where it executes slowly. Then we showed how to address this

“lack of global view” issue while designing task assignment algorithms for heterogeneous mul-

tiprocessors. Overall, this work showed how bin-packing heuristics can be used (by providing a

global view) to achieve a provably good performance for task assignment algorithms on two-type

heterogeneous multiprocessors.

9.2.2 Cutting planes technique for heterogeneous multiprocessors

Although task assignment schemes with provably good performance have previously been devel-

oped by relaxing an Integer Linear Program to a Linear Program and cutting planes have been

used to solve Integer Linear Program in different efforts, no work in the past had shown how

cutting planes can be used to improve the performance of provably good algorithms for assign-

ing real-time tasks to processors. This work showed that cutting planes can be used to design

provably good task assignment algorithms with improved speed competitive ratio on two-type

heterogeneous multiprocessors.

9.2.3 Low-degree polynomial time-complexity algorithms for heterogeneous mul-
tiprocessors

The special structure of two-type heterogeneous multiprocessors enables the designers to design

task assignment algorithms with a low-degree polynomial time-complexity which is otherwise not

possible (for the generic t-type heterogeneous multiprocessors, as of today). Prior to this work,

approaches to solve the task assignment problem on heterogeneous multiprocessors relied on solv-

ing a linear programming formulation and/or dynamic programming techniques. Both these tech-

niques do not facilitate achieving a low-degree polynomial time-complexity. This work showed

that, for two-type heterogeneous multiprocessors, low-degree polynomial time-complexity can be

achieved by relating the task assignment problem on two-type heterogeneous multiprocessors to

fractional knapsack problem and by using bin-packing heuristics.

The next section lists some of the problems that could be explored in the heterogeneous mul-

tiprocessor scheduling topic.

9.3 Future directions

With a larger goal of deploying real-time systems workload on heterogeneous multiprocessor com-

puting platforms, in this work, we studied the problem of scheduling real-time tasks on heteroge-

neous multiprocessors. In particular, we looked at the problem of assigning tasks to individual

processors (to processor types, respectively) before run-time such that all the deadlines are met

upon scheduling these tasks on each processor (processor type, respectively) using an optimal

9.3 Future directions 291

uniprocessor (identical multiprocessor, respectively) scheduling algorithm at run-time. In doing

so, we made a couple of assumptions about the workload and the computing platform.

These assumptions abstracted out the unnecessary details such as the architectural features of

the computing platform (for example, shared hardware resources such as cache, memory, system

bus, etc.), complex deadlines of the workload (for example, workloads in which deadline of a task

is not equal to its minimum inter-arrival time), etc. and thereby served a couple of purposes. First,

these assumptions were helpful in understanding and addressing the fundamental issues involved

in the (real-time) task assignment problem on heterogeneous multiprocessors. Second, abstracting

out the architectural features of the computing platform generalized the problem under considera-

tion to a variant of the well-known bin-packing problem (in which the bins are of different types

and each item has a different size for a different type of bin) so that the solutions designed here

are applicable in several domains. However, one of the limitations of making such assumptions is

that the solutions designed here are not directly applicable in real-world and/or industrial settings.

Despite this limitation, we believe that, this work is significant since, it (i) is one of the initial

works to explore the problem of scheduling real-time tasks on heterogeneous multiprocessors, (ii)

provided a deeper understanding of the problem and (iii) made considerable inroads in solving the

problem (at least the theoretical aspects of it).

In order to achieve the larger goal of deploying the (industrial) real-time systems on hetero-

geneous multiprocessors, it is very essential to relax some of these assumptions and accordingly

either adapt the solutions proposed here or design the new solutions, if necessary. This can be

the generic direction in which the work can be extended in near future. We now list a couple of

specific options for extending this work.

9.3.1 Constrained-deadline and arbitrary-deadline sporadic tasks

Although the implicit-deadline sporadic task model has been a favorite model for researchers, un-

fortunately, not all the real-time systems workload can be captured by this model due to more

complex deadlines. Specifically, many real-time systems need to process alarms or emergency

events. These events occur infrequently (perhaps only once during the entire operation of the

system — ideally they would never happen) but when they do occur, the computer system must

perform processing within a very tight deadline: the constrained-deadline sporadic model cap-

tures such systems [Mok83b]. This model is like the implicit-deadline sporadic model but for

each task it must hold that its deadline is no greater than its minimum inter-arrival time. In other

systems (e.g., signal processing), a task generates jobs with a high rate (i.e., small inter-arrival

time) to perform sampling at high rate but the deadline is larger than the minimum inter-arrival

time: the arbitrary-deadline sporadic model captures such systems [Mok83b]. This model is like

the implicit-deadline sporadic model but it allows for each task deadline to take any value. Be-

cause of the usefulness of the arbitrary-deadline sporadic model, researchers created a plethora of

results for this model for scheduling tasks on a single processor [Leh90, BMR90] and for identical

multiprocessors [BF05, BF07a, CC11]. Recently, an algorithm for assigning arbitrary-deadline

292 Conclusions, Discussions and Future Directions

sporadic tasks on a heterogeneous multiprocessor has been developed [MSRvdSW12]. This algo-

rithm has polynomial time-complexity and a proven speed competitive ratio. Unfortunately, this

is the only work that exists for assigning arbitrary-deadline sporadic tasks on heterogeneous mul-

tiprocessors and it has a very large speed competitive ratio (shown to be 17.9). So, it is of interest

to design algorithms with lower (that is better) speed competitive ratios.

9.3.2 Shared hardware resources

The presence of shared hardware resources such as memory, cache, bus, interconnect, etc. in

multiprocessor computing platforms are going to have a significant impact on the execution of

tasks and hence on the schedulability of real-time systems. For example, the presence of such

shared hardware resources does not even facilitate and in fact complicates the computation of up-

per bounds on the key timing parameters such as the worst-case execution time of a task. Further,

many chip manufacturers including Tilera and Intel have declared plans for many-core chips with

hundreds of cores. On such computing platforms, the question on whether tasks meets their dead-

lines will increasingly become dependent on sharing of these hardware resources. Unfortunately,

there is a very little effort to study the impact of such shared hardware resources on the schedula-

bility of real-time systems on heterogeneous multiprocessors. Hence, extending the work in this

direction will be of great interest to the community.

9.3.3 Parallel task model

One of the assumptions we made at the beginning of this work is that, a job cannot execute on

more than one processor at any given time — referred to as the sequential programming model.

This assumption was done in order to simplify the complexity of the problem. However, it is

restrictive, in the sense that, it may not allow us to fully exploit the underlying parallelism of a

multicore computing platform. In order to take advantage of the available parallelism, there is

a need to shift to parallel programming models. Such models introduce a new dimension to the

problem as they allow jobs to be split into parallel execution segments at specific points thereby

leading to shorter response times whenever possible. This in turn increases the schedulability of

the system.

Recently, researchers have started studying the scheduling problem for parallel task model on

multicores (e.g., [LKR10, SALG11, NBGM12, LALG13]). However, these are initial efforts and

a lot of issues need to be addressed in this direction. Hence, extending the work in this direction

may also be of great interest to the community.

9.4 Concluding remarks

With the emergence of multicores, there is a strong interest in deploying embedded real-time

systems on multiprocessor computing platforms. Most of these multicores are heterogeneous in

nature and unfortunately the current scheduling theory is not mature enough to address some of the

9.4 Concluding remarks 293

challenges that arise while deploying real-time systems on heterogeneous multicores. This called

for the development of scheduling theory in order to facilitate the deployment of embedded real-

time system on heterogeneous multicores. This dissertation addresses some of the fundamental

problems in this regard and lays the foundation for the future research which can focus on extend-

ing the theory by removing some of the simplifying assumptions of this work, thereby increasing

the number of real-time systems that may be deployed on heterogeneous multicores.

294 Conclusions, Discussions and Future Directions

References

[AB08] Björn Andersson and Konstantinos Bletsas. Sporadic multiprocessor scheduling
with few preemptions. In Proceedings of the 20th Euromicro Conference on
Real-Time Systems, pages 243–252, 2008.

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Ap-
proach. Cambridge University Press, 1st edition, 2009.

[ABJ01] Björn Andersson, Sanjoy Baruah, and Jan Jonsson. Static-Priority Scheduling on
Multiprocessors. In Proceedings of the 22nd IEEE Real-Time Systems Sympo-
sium, pages 193–202, 2001.

[AE10] Björn Andersson and Arvind Easwaran. Provably good multiprocessor schedul-
ing with resource sharing. Real-Time Systems, 46(2):153–159, 2010.

[AJ03] Björn Andersson and Jan Jonsson. The utilization bounds of partitioned and pfair
static-priority scheduling on multiprocessors are 50%. In Proceedings of the 15th
Euromicro Conference on Real-Time Systems, pages 33–40, 2003.

[AMD13a] AMD Inc. AMD Accelerated Processing Units.
http://www.amd.com/us/products/technologies/apu/Pages/apu.aspx, 2013.

[AMD13b] AMD Inc. AMD Dual-Core Processors: Twice the Processing Power of
Single-Core Chip. http://www.amd.com/us/products/technologies/multi-core-
processing/Pages/dual-core-processing.aspx, 2013.

[And03] Björn Andersson. Static-priority scheduling on multiprocessors. PhD thesis,
Chalmers University of Technology, 2003.

[App13] Apple Inc. Apple A5X: Dual-core CPU and Quad-core GPU.
http://support.apple.com/kb/SP647, 2013.

[ARB10] Björn Andersson, Gurulingesh Raravi, and Konstantinos Bletsas. Assigning real-
time tasks on heterogeneous multiprocessors with two unrelated types of proces-
sors. In Proceedings of the 31st IEEE International Real-Time Systems Sympo-
sium, pages 239–248, 2010.

[ARM13a] ARM Inc. Cortex-A9 Processor. http://www.arm.com/products/processors/cortex-
a/cortex-a9.php, 2013.

[ARM13b] ARM Inc. The big.LITTLE Processing with Cortex-A15 and Cortex-A7.
http://www.arm.com/products/processors/technologies/biglittleprocessing.php,
2013.

295

296 REFERENCES

[AS00] James Anderson and Anand Srinivasan. Early-release fair scheduling. In Pro-
ceedings of the 12th Euromicro conference on Real-time systems, pages 35–43,
2000.

[AT07a] Björn Andersson and Eduardo Tovar. Competitive Analysis of Static-Priority of
Partitioned Scheduling on Uniform Multiprocessors. In Proceedings of the 13th
IEEE International Conference on Embedded and Real-Time Computing Systems
and Applications, pages 111–119, 2007.

[AT07b] Björn Andersson and Eduardo Tovar. Competitive Analysis of Partitioned
Scheduling on Uniform Multiprocessors. In Proceedings of the 15th Interna-
tional Workshop on Parallel and Distributed Real-Time Systems, pages 1–8,
2007.

[BA09] Konstantinos Bletsas and Björn Andersson. Notional Processors: An Approach
for Multiprocessor Scheduling. In Proceedings of the 15th IEEE International
Real-Time and Embedded Technology and Applications Symposium, pages 3–12,
2009.

[Bar04a] Sanjoy Baruah. Feasibility analysis of preemptive real-time systems upon hetero-
geneous multiprocessor platforms. In Proceedings of the 25th IEEE International
Real-Time Systems Symposium, pages 37–46, 2004.

[Bar04b] Sanjoy Baruah. Partitioning real-time tasks among heterogeneous multiproces-
sors. In Proceedings of the 33rd International Conference on Parallel Processing,
pages 467–474, 2004.

[Bar04c] Sanjoy Baruah. Task partitioning upon heterogeneous multiprocessor platforms.
In Proceedings of the 10th IEEE International Real-Time and Embedded Tech-
nology and Applications Symposium, pages 536–543, 2004.

[Bar11] Sanjoy Baruah. Task assignment on two unrelated types of processors. In Pro-
ceedings of the 19th International Conference on Real-Time and Network Sys-
tems, pages 69–78, 2011.

[Bar13] Sanjoy Baruah. Partitioned EDF scheduling: a closer look. Real-Time Systems,
49(6):715–729, 2013.

[BC03] Gerald Borsuk and Timothy Coffey. Moore’s law: A department of defense per-
spective. In INSS CTNSP Defense Horizons, volume 30, pages 1–8. Institute for
National Strategic Studies (INSS), July 2003.

[BCL05] Marko Bertogna, Michele Cirinei, and Giuseppe Lipari. Improved schedulability
analysis of edf on multiprocessor platforms. In Proceedings of the 17th Euromi-
cro Conference on Real-Time Systems, pages 209–218, 2005.

[BCL09] Marko Bertogna, Michele Cirinei, and Giuseppe Lipari. Schedulability analysis
of global scheduling algorithms on multiprocessor platforms. IEEE Transactions
on Parallel and Distributed Systems, 20(4):553–566, April 2009.

[BCPV96] Sanjoy Baruah, Neil Cohen, Greg Plaxton, and Donald Varvel. Proportionate
progress: A notion of fairness in resource allocation. Algorithmica, 15:600–625,
1996.

REFERENCES 297

[BF05] Sanjoy Baruah and Nathan Fisher. The partitioned multiprocessor scheduling
of sporadic task systems. In Proceedings of the 26th IEEE Real-Time Systems
Symposium, pages 321–329, 2005.

[BF07a] Sanjoy Baruah and Nathan Fisher. The partitioned dynamic-priority scheduling
of sporadic task systems. Real-Time Systems, 36(3):199–226, August 2007.

[BF07b] Sanjoy Baruah and Nathan Fisher. The Partitioned Dynamic-priority Scheduling
of Sporadic Task Systems. Real-Time Systems, 36(3):199–226, August 2007.

[BLBA07] Aaron Block, Hennadiy Leontyev, Bjorn Brandenburg, and James Anderson. A
Flexible Real-Time Locking Protocol for Multiprocessors. In Proceedings of the
13th IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications, pages 47–56, 2007.

[Ble07] Kanstantinos Bletsas. Worst-case and Best-case Timing Analysis for Real-time
Embedded Systems with Limited Parallelism. PhD thesis, The University of York,
2007.

[BLK83] J. Blazewicz, J. K. Lenstra, and A. Kan. Scheduling subject to resource con-
straints: classification and complexity. Discrete Applied Mathematics, 5(1):11–
24, 1983.

[BMR90] Sanjoy Baruah, Aloysius Mok, and Louis Rosier. Preemptively scheduling hard-
real-time sporadic tasks on one processor. In Proceedings of the IEEE Real-Time
Systems Symposium, pages 182–190, 1990.

[BRH90] Sanjoy Baruah, Louis Rosier, and R. Howell. Algorithms and complexity con-
cerning the preemptive scheduling of periodic, real-time tasks on one processor.
Real-Time Systems, 2(4):301–324, October 1990.

[BTW95] Alan Burns, Ken Tindell, and Andy Wellings. Effective analysis for engineering
real-time fixed priority schedulers. IEEE Transactions on Software Engineering,
21(5):475–480, 1995.

[Bur91] Alan Burns. Scheduling hard real-time systems: a review. Software Engineering
Journal, 6(3):116 –128, may 1991.

[CB11] Bipasa Chattopadhyay and Sanjoy Baruah. A lookup-table driven approach to
partitioned scheduling. In Proceedings of the 17th IEEE Real-Time and Embed-
ded Technology and Applications Symposium, pages 257–265, 2011.

[CC11] Jian-Jia Chen and Samarjit Chakraborty. Resource augmentation bounds for ap-
proximate demand bound functions. In Proceedings of the 32nd IEEE Real-Time
Systems Symposium, pages 272–281, 2011.

[CFH+04] John Carpenter, Shelby Funk, Philip Holman, Anand Srinivasan, James Ander-
son, and Sanjoy Baruah. A Categorization of Real-time Multiprocessor Schedul-
ing Problems and Algorithms, chapter 30. Chapman & Hall/CRC, 2004.

[CG06] Liliana Cucu and Jöel Goossens. Feasibility Intervals for Fixed-Priority Real-
Time Scheduling on Uniform Multiprocessors. In Proceedings of the 11th Con-
ference on Emerging Technologies and Factory Automation, pages 397–404, sept.
2006.

298 REFERENCES

[CGJ97] Edward Coffman, Michael Garey, and David Johnson. Approximation algorithms
for NP-hard problems. chapter Approximation algorithms for bin packing: a
survey, pages 46–93. PWS Publishing Co., Boston, MA, USA, 1997.

[CLRS01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms, 2nd Ed. McGraw-Hill, 2001.

[CSV12] José Correa, Martin Skutella, and José Verschae. The power of preemption on
unrelated machines and applications to scheduling orders. Math. Oper. Res.,
37(2):379–398, May 2012.

[DAN+11] Dakshina Dasari, Björn Andersson, Vincent Nélis, Stefan Petters, Arvind
Easwaran, and Jinkyu Lee. Response Time Analysis of COTS-Based Multicores
Considering the Contention on the Shared Memory Bus. In Proceedings of the
8th IEEE International Conference on Embedded Software and Systems, pages
1068–1075, nov 2011.

[DB11] Robert Davis and Alan Burns. A survey of hard real-time scheduling for multi-
processor systems. ACM Computing Survey, 43(4):35:1–35:44, October 2011.

[Der74] Michael Dertouzos. Control robotics: The procedural control of physical pro-
cesses. In Proceedings of IFIP Congress (IFIP’74), 1974.

[Dha77] Sudarshan K. Dhall. Scheduling periodic-time - critical jobs on single proces-
sor and multiprocessor computing systems. PhD thesis, University of Illinois at
Urbana-Champaign, 1977.

[DJ06] Vivek Darera and Lawrence Jenkins. Utilization Bounds for RM Scheduling on
Uniform Multiprocessors. In Proceedings of the 12th IEEE International Confer-
ence on Embedded and Real-Time Computing Systems and Applications, pages
315–321, 2006.

[DL78] Sudarshan K. Dhall and Chung Laung Liu. On a Real-Time Scheduling Problem.
Operations Research, 26(1):127–140, 1978.

[DRBB09] Robert Davis, Thomas Rothvoß, Sanjoy Baruah, and Alan Burns. Exact quantifi-
cation of the sub-optimality of uniprocessor fixed priority preemptive scheduling.
Real-Time Systems, 43(3), November 2009.

[DVT12] Matthew DeVuyst, Ashish Venkat, and Dean Tullsen. Execution migration in a
heterogeneous-ISA chip multiprocessor. In Proceedings of the seventeenth inter-
national conference on Architectural Support for Programming Languages and
Operating Systems, pages 261–272, 2012.

[FB03] Shelby Funk and Sanjoy Baruah. Characteristics of EDF schedulability on uni-
form multiprocessors. In Proceedings of the 15th Euromicro Conference on Real-
Time Systems, pages 211–218, july 2003.

[FBB06] Nathan Fisher, Sanjoy Baruah, and Theodore P. Baker. The partitioned schedul-
ing of sporadic tasks according to static-priorities. In Proceedings of the 18th
Euromicro Conference on Real-Time Systems, pages 118–127, 2006.

REFERENCES 299

[GAB02] Paolo Gai, Luca Abeni, and Giorgio Buttazzo. Multiprocessor DSP scheduling
in system-on-a-chip architectures. In Proceedings of the 14th Euromicro Con-
ference on Real-Time Systems (ECRTS 2002), pages 231–238, Vienna, Austria,
June 2002.

[Gee05] David Geer. Taking the Graphics processor Beyond Graphics. IEEE Computer,
38(9):14–16, 2005.

[GFB03] Joël Goossens, Shelby Funk, and Sanjoy Baruah. Priority-driven scheduling of
periodic task systems on multiprocessors. Real-Time Systems., 25(2-3):187–205,
September 2003.

[GHF+06] Michael Gschwind, H. Peter Hofstee, Brian Flachs, Martin Hopkins, Yukio
Watanabe, and Takeshi Yamazaki. Synergistic Processing in Cell’s Multicore
Architecture. IEEE Micro, 26(2):10–24, 2006.

[GJ78] Michael Garey and David Johnson. “Strong” NP-Completeness results: Motiva-
tion, examples, and implications. Journal of ACM, 25(3):499–508, July 1978.

[GJ79] Michael Garey and David Johnson. Computers and Intractability: A guide to the
theory of NP-Completeness. W. H. Freeman & Co, 1979.

[GSYY10] Nan Guan, Martin Stigge, Wang Yi, and Ge Yu. Fixed-Priority Multiprocessor
Scheduling with Liu and Layland’s Utilization Bound. In Proceedings of the 16th
IEEE Real-Time and Embedded Technology and Applications Symposium, pages
165–174, 2010.

[Gur13] Gurobi Optimization Inc. Gurobi optimizer. http://www.gurobi.com, 2013.

[HBL12] Mike Holenderski, Reinder J. Bril, and Johan J. Lukkien. Parallel-task scheduling
on multiple resources. In Proceedings of the 24th Euromicro Conference on Real-
Time Systems, pages 233–244, 2012.

[Hor74] W. A. Horn. Some simple scheduling algorithms. Naval Research Logistics
Quarterly, 21(1):177–185, 1974.

[HS76] Ellis Horowitz and Sartaj Sahni. Exact and Approximate Algorithms for Schedul-
ing Nonidentical Processors. Journal of the ACM, 23:317–327, April 1976.

[HS86] Dorit Hochbaum and David Shmoys. A polynomial approximation scheme for
machine scheduling on uniform processors: using the dual approximation ap-
proach. In Proc. of the sixth conference on Foundations of software technology
and theoretical computer science, pages 382–393, 1986.

[HT73] John Hopcroft and Robert Tarjan. Efficient Algorithms for Graph Manipulation.
Communications of the ACM, 16(6):372–378, June 1973.

[IBM12] IBM Inc. IBM ILOG CPLEX Optimizer: High-performance math-
ematical programming solver for linear programming, mixed in-
teger programming, and quadratic programming. http://www-
01.ibm.com/software/integration/optimization/cplex-optimizer/, 2012.

300 REFERENCES

[Int13a] Intel Corp. Bay Trail: Multicore SoC Family for Mobile De-
vices. http://www.intel.com/newsroom/kits/idf/2013_fall/
pdfs/bay_trail_fact_sheet.pdf, 2013.

[Int13b] Intel Corp. The 4th Generation Intel Core i7 Processor.
http://www.intel.com/content/www/us/en/processors/core/core-i7-
processor.html, 2013.

[Int13c] Intel Corporation. Intel Atom Processor Z6xx Series-Based Platform for Embed-
ded Computing, 2013. http://www.intel.com/content/www/us/en/
processors/atom/intel-atom-processor-z6xx-series.html.

[Int13d] Intel Corporation. Intel Core 2 Extreme Mobile Processor.
http://www.intel.com/products/processor/core2xe/mobile/index.htm, 2013.

[Int13e] Intel Corporation. Intel Core 2 Quad Processors.
http://www.intel.com/products/processor/core2quad/index.htm, 2013.

[Joh73] David Johnson. Near-optimal Bin Packing Algorithm. PhD thesis, Department
of Mathematics, Massachusetts Institute of Technology, 1973.

[Jon] Jonah Alben. NVIDIA Brings Kepler, World’s Most Advanced Graphics Archi-
tecture, to Mobile Devices. http://blogs.nvidia.com/blog/2013/07/
24/kepler-to-mobile/ as of Oct 1, 2013.

[Jon97] Mike Jones. What Happened on Mars?, 1997. http://www.ece.cmu.edu/
~raj/mars.html.

[JP99] Klaus Jansen and Lorant Porkolab. Improved approximation schemes for
scheduling unrelated parallel machines. In Proceedings of the 31st annual ACM
symposium on Theory of computing, pages 408–417, 1999.

[JPKA95] Todd Jochem, Dean Pomerleau, Bala Kumar, and Jeremy Armstrong. Pans: a
portable navigation platform. In Proceedings of the Intelligent Vehicles Sympo-
sium, pages 107–112, 1995.

[Kar84] Narendra Karmakar. A new polynomial-time algorithm for linear programming.
Combinatorica, 4(4):373–395, 1984.

[KAS93] Daniel Katcher, Hiroshi Arakawa, and Jay Strosnider. Engineering and analy-
sis of fixed priority schedulers. IEEE Transactions on Software Engineering,
19(9):920–934, 1993.

[Kop11] Hermann Kopetz. Real-Time Systems: Design Principles for Distributed Em-
bedded Applications. Springer Publishing Company, Incorporated, 2nd edition,
2011.

[KV06] Bernhard Korte and Jens Vygen. Combinatorial Optimization: Theory and Al-
gorithms. Springer, 3rd edition, 2006.

[LALG13] Jing Li, Kunal Agrawal, Chenyang Lu, and Christopher D. Gill. Outstanding
Paper Award: Analysis of Global EDF for Parallel Tasks. In 25th Euromicro
Conference on Real-Time Systems, pages 3–13, 2013.

http://www.intel.com/newsroom/kits/idf/2013_fall/pdfs/bay_trail_fact_sheet.pdf
http://www.intel.com/newsroom/kits/idf/2013_fall/pdfs/bay_trail_fact_sheet.pdf
http://www.intel.com/content/www/us/en/processors/atom/intel-atom-processor-z6xx-series.html
http://www.intel.com/content/www/us/en/processors/atom/intel-atom-processor-z6xx-series.html
http://blogs.nvidia.com/blog/2013/07/24/kepler-to-mobile/
http://blogs.nvidia.com/blog/2013/07/24/kepler-to-mobile/
http://www.ece.cmu.edu/~raj/mars.html
http://www.ece.cmu.edu/~raj/mars.html

REFERENCES 301

[LBOS95] Jörg Liebeherr, Almut Burchard, Yingfeng Oh, and Sang Son. New strategies
for assigning real-time tasks to multiprocessor systems. IEEE Trans. Comput.,
44(12):1429–1442, December 1995.

[LDG04] José López, José Díaz, and Daniel García. Utilization Bounds for EDF Schedul-
ing on Real-Time Multiprocessor Systems. Real-Time Systems Journal, 28:39–
68, 2004.

[Leh90] John P. Lehoczky. Fixed priority scheduling of periodic task sets with arbitrary
deadlines. In Proceedings of the 11th Real-Time Systems Symposium, pages 201
–209, 1990.

[LFS+10] Greg Levin, Shelby Funk, Caitlin Sadowskin, Ian Pye, and Scott Brandt. DP-
FAIR: A simple model for understanding optimal multiprocessor scheduling. In
Proceedings of the 22nd Euromicro Conference on Real-Time Systems, pages 3–
13, 2010.

[LGDG03] José López, Manuel García, José Díaz, and Daniel García. Utilization Bounds
for Multiprocessor Rate-Monotonic Scheduling. Real-Time Systems, 24(1):5–28,
January 2003.

[Liu69] Chung Laung Liu. Scheduling algorithms for multiprocessors in a hard real-time
environment. JPL Space Programs Summary, II:37–60, 1969.

[Liu00] Jane Liu. Real-Time Systems. Prentice Hall, 1st edition, 2000.

[LKR10] Karthik Lakshmanan, Shinpei Kato, and Ragunathan (Raj) Rajkumar. Scheduling
parallel real-time tasks on multi-core processors. In Proceedings of the 31st IEEE
International Real-Time Systems Symposium, pages 259–268, 2010.

[LL73] Chung Laung Liu and James W. Layland. Scheduling algorithms for multipro-
gramming in a hard real-time environment. Journal of the ACM, 20:46–61, 1973.

[LM08] Charles Leiserson and Ilya Mirman. How to survive the multicore software rev-
olution. http://www.scribd.com/doc/95085266/How-to-Survive-the-Multicore-
Software-Revolution, 2008.

[LR10] Karthik Lakshmanan and Ragunathan Rajkumar. Scheduling Self-Suspending
Real-Time Tasks with Rate-Monotonic Priorities. In Proceedings of the 16th
IEEE International Real-Time and Embedded Technology and Applications Sym-
posium, pages 3–12, 2010.

[LSD89] John Lehoczky, Lui Sha, and Ye Ding. The rate monotonic scheduling algorithm:
exact characterization and average case behavior. In Proceedings of the 10th Real
Time Systems Symposium, pages 166 –171, dec 1989.

[LSL+09] Yan Li, Vivy Suhendra, Yun Liang, Tulika Mitra, and Abhik Roychoudhury. Tim-
ing Analysis of Concurrent Programs Running on Shared Cache Multi-Cores. In
Proceedings of the 30th IEEE Real-Time Systems Symposium, pages 57–67, 2009.

[LST90] Jan Lenstra, David Shmoys, and Éva Tardos. Approximation algorithms for
scheduling unrelated parallel machines. Math. Program., 46:259–271, 1990.

302 REFERENCES

[LW82] Joseph Leung and Jennifer Whitehead. On the complexity of fixed-priority
scheduling of periodic real-time tasks. Performance Evaluation, 2(4):237–250,
1982.

[LY08] David G. Luenberger and Yinyu Ye. Linear and Nonlinear Programming, 3rd
Ed. International Series in Operations Research & Management Science, 2008.

[LYGY10] Mingsong Lv, Wang Yi, Nan Guan, and Ge Yu. Combining Abstract Interpreta-
tion with Model Checking for Timing Analysis of Multicore Software. In Pro-
ceedings of the 31st IEEE Real-Time Systems Symposium, pages 339–349, 2010.

[Mok83a] Aloysius Mok. Fundamental Design Problems of Distributed Systems for Hard
Real-time Environments. PhD thesis, Massachusetts Institute of Technology,
1983.

[Mok83b] Aloysius K. Mok. Fundamental Design Problems of Distributed Systems for
the Hard Real-Time Environment. Technical report, Electrical Engineering and
Computer Science Dept., Massachusetts Institute of Technology (USA), 1983.

[MSRvdSW12] Alberto Marchetti-Spaccamela, Cyriel Rutten, Suzanne van der Ster, and Andreas
Wiese. Assigning sporadic tasks to unrelated parallel machines. In Proceedings
of the 39th IEEE International Colloquium on Automata, Languages and Pro-
gramming (ICALP 2012), pages 665–676, 2012.

[NBGM12] Geoffrey Nelissen, Vandy Berten, Joël Goossens, and Milojevic Milojevic. Tech-
niques optimizing the number of processors to schedule multi-threaded tasks.
In Proceedings of the 24th Euromicro Conference on Real-Time Systems, pages
321–330, 2012.

[NBN+12] Geoffrey Nelissen, Vandy Berten, Vincent Nélis, Joël Goossens, and Milojevic
Milojevic. U-EDF: An Unfair But Optimal Multiprocessor Scheduling Algorithm
for Sporadic Tasks. In Proceedings of the 24th Euromicro Conference on Real-
Time Systems, pages 13–23, 2012.

[Nvi12] Nvidia Inc. Tegra 2 and Tegra 3 Super Chip Processors.
http://www.nvidia.com/object/tegra-3-processor.html, 2012.

[OB98] Dong-Ik Oh and Ted Baker. Utilization Bounds for N-Processor Rate Monotone
Scheduling with Static Processor Assignment. Real-Time Systems, 15(2):183–
192, September 1998.

[OS95] Yingfeng Oh and Sang H. Son. Fixed-priority scheduling of periodic tasks on
multiprocessor systems. Technical report, University of Virginia, Charlottesville,
VA, USA, 1995.

[Pap94] Christos Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[Pot85] Chris N. Potts. Analysis of a linear programming heuristic for scheduling unre-
lated parallel machines. Discrete Applied Mathematics, 10:155–164, 1985.

[PSC+10] Rodolfo Pellizzoni, Andreas Schranzhofer, Jian-Jia Chen, Marco Caccamo, and
Lothar Thiele. Worst case delay analysis for memory interference in multicore
systems. In Proceedings of the Conference on Design, Automation and Test in
Europe, pages 741–746, 2010.

REFERENCES 303

[PSTW97] Cynthia A. Phillips, Cliff Stein, Eric Torng, and Joel Wein. Optimal time-critical
scheduling via resource augmentation. In Proceedings of the 29th ACM Sympo-
sium on Theory of Computing, pages 140–149, 1997.

[Qua13] Qualcomm Inc. Snapdragon processors. http://www.qualcomm.com/snapdragon,
2013.

[RA13] Gurulingesh Raravi and Björn Andersson. Task assignment algorithm for two-
type heterogeneous multiprocessors using cutting planes. Technical report, 2013.

[RAB13] Gurulingesh Raravi, Björn Andersson, and Konstantinos Bletsas. Assigning real-
time tasks on heterogeneous multiprocessors with two unrelated types of proces-
sors. Real-Time Systems, 49(1):29–72, 2013.

[RABN12] Gurulingesh Raravi, Björn Andersson, Konstantinos Bletsas, and Vincent Nélis.
Task Assignment Algorithms for Two-Type Heterogeneous Multiprocessors. In
Proceedings of the 24th Euromicro Conference on Real-Time Systems, pages 34–
43, 2012.

[RAEP07] Jakob Rosén, Alexandru Andrei, Petru Eles, and Zebo Peng. Bus access op-
timization for predictable implementation of real-time applications on multipro-
cessor systems-on-chip. In Proceedings of the 28th IEEE International Real-Time
Systems Symposium, pages 49–60, 2007.

[RM09] Austin Rogers and Aleksandar Milenković. Security extensions for integrity and
confidentiality in embedded processors. Microprocess. Microsyst., 33(5-6):398–
414, August 2009.

[RN12a] Gurulingesh Raravi and Vincent Nélis. A PTAS for assigning sporadic tasks
on two-type heterogeneous multiprocessors. In Proceedings of the 33rd IEEE
International Real-Time Systems Symposium, pages 117–126, 2012.

[RN12b] Gurulingesh Raravi and Vincent Nélis. A PTAS for assigning sporadic tasks on
two-type heterogeneous multiprocessors. In Proceedings of the 33rd IEEE Real-
Time Systems Symposium, pages 117–126, 2012.

[RS94] Krithi Ramamritham and John Stankovic. Scheduling algorithms and operating
systems support for real-time systems. Proceedings of the IEEE, 82(1):55–67,
jan 1994.

[RSL88] Raj Rajkumar, Lui Sha, and John P. Lehoczky. Real-Time Synchronization Pro-
tocols for Multiprocessors. In Proceedings of the 9th IEEE Real-Time Systems
Symposium, pages 259 –269, 1988.

[RSS90] Krithi Ramamritham, John A. Stankovic, and Perng-Fei Shiah. Efficient schedul-
ing algorithms for real-time multiprocessor systems. IEEE Trans. Parallel Dis-
trib. Syst., 1(2):184–194, April 1990.

[SAA+04] Lui Sha, Tarek Abdelzaher, Karl Arzen, Anton Cervin, Theodore Baker, Alan
Burns, Giorgio Buttazzo, Marco Caccamo, John Lehoczky, and Aloysius Mok.
Real Time Scheduling Theory: A Historical Perspective. Real-Time Systems,
28(2-3):101–155, nov 2004.

304 REFERENCES

[SALG11] Abusayeed Saifullah, Kunal Agrawal, Chenyang Lu, and Christopher Gill. Multi-
core real-time scheduling for generalized parallel task models. In Proceedings of
the 32nd IEEE Real-Time Systems Symposium, pages 217–226, 2011.

[Sam13a] Samsung Inc. Samsung Exynos processor. www.samsung.com/exynos/, 2013.

[Sam13b] Samsung Inc. Samsung’s new eight-core Exynos 5 Octa SoC promises not to
hog battery. http://arstechnica.com/gadgets/2013/01/samsungs-new-eight-core-
exynos-5-octa-soc-promises-efficiency/, 2013.

[SGG09] Abraham Silberschatz, Peter Galvin, and Greg Gagne. Operating System Con-
cepts. Wiley, 8th edition, 2009.

[Sip96] Michael Sipser. Introduction to the Theory of Computation. International Thom-
son Publishing, 1st edition, 1996.

[SNE10] Simon Schliecker, Mircea Negrean, and Rolf Ernst. Bounding the shared resource
load for the performance analysis of multiprocessor systems. In Proceedings of
the Conference on Design, Automation and Test in Europe, pages 759–764, 2010.

[Spe] IEEE Spectrum. Cmu’s autonomous car doesn’t look like a robot.
http://spectrum.ieee.org/automaton/robotics/artificial-intelligence/cmu-
autonomous-car-doesnt-looks-like-a-robot.

[SRL90] Lui Sha, Raj Rajkumar, and John P. Lehoczky. Priority inheritance protocols:
An approach to real-time synchronization. IEEE Transactions on Computers,
39(9):1175–1185, 1990.

[ST 12] ST Ericsson. NOVA Processor Family – Highest Performance Appli-
cation Processors, 2012. http://www.stericsson.com/products/
application_processors.jsp.

[Tan07] Stewart Tansley. Trends in Embedded Systems–A Microsoft Perspective. In
Proceedings of the 3rd International Conference on Microelectronic Systems Ed-
ucation, page 4, june 2007.

[Tex13] Texas Instruments. OMAP applications processors. http://www.ti.com/omap,
2013.

[WBB13] Andreas Wiese, Vincenzo Bonifaci, and Sanjoy Baruah. Partitioned EDF
scheduling on a few types of unrelated multiprocessors. Real-Time Systems,
49(2):219–238, 2013.

[Wes00] Douglas B. West. Introduction to Graph Theory. Prentice Hall, 2nd edition,
2000.

[Zha03] Feng Zhao. Programming Embedded Sensor Networks, 2003. Invited talk at
the First International Conference on Hardware/Software Codesign and System
Synthesis.

http://www.stericsson.com/products/application_processors.jsp
http://www.stericsson.com/products/application_processors.jsp

	Front Page
	Table of Contents
	I Introduction
	1 Background on Real-Time Systems
	1.1 Introduction to real-time systems
	1.2 Modeling real-time systems
	1.3 Categorization of real-time systems
	1.4 Real-time scheduling paradigms
	1.5 Background on real-time scheduling theory

	2 Overview of This Research
	2.1 Problem definition
	2.2 Hardness of the problem
	2.3 Why study heterogeneous multiprocessors?
	2.4 Common assumptions
	2.5 Performance metrics
	2.6 Contributions and significance of this work
	2.7 Organization of the report

	II Two-type Heterogeneous Multiprocessors
	3 Intra-migrative Scheduling on Two-type Heterogeneous Multiprocessors
	3.1 Introduction
	3.2 System model
	3.3 The hardness of the intra-migrative task assignment problem
	3.4 MILP-Algo: An optimal intra-migrative task assignment algorithm
	3.5 LP-Algo: An intra-migrative task assignment algorithm
	3.6 SA: An intra-migrative task assignment algorithm
	3.7 Speed competitive ratio of SA algorithm
	3.8 Average-case performance evaluations
	3.9 Conclusions

	4 Non-migrative Scheduling on Two-type Heterogeneous Multiprocessors
	4.1 Introduction
	4.2 The hardness of the non-migrative task assignment problem
	4.3 FF-3C algorithm and its variants
	4.4 SA-P algorithm
	4.5 Cutting plane algorithm
	4.6 A polynomial time approximation scheme
	4.7 Conclusions and Discussions

	5 Shared Resource Scheduling on Two-type Heterogeneous Multiprocessors
	5.1 Introduction
	5.2 System model and assumptions
	5.3 The hardness of the shared resource scheduling problem
	5.4 Overview of our approach
	5.5 Few notations and useful results
	5.6 FF-3C-vpr algorithm and its speed competitive ratio
	5.7 Conclusions

	III T-type Heterogeneous Multiprocessors
	6 Intra-migrative Scheduling on T-type Heterogeneous Multiprocessors
	6.1 Introduction
	6.2 System model
	6.3 MILP-Algo: An optimal intra-migrative algorithm
	6.4 An overview of our intra-migrative task assignment algorithm, LPGIM
	6.5 Step 1 of LPGIM: Solving the LP formulation
	6.6 Step 2 of LPGIM: Forming the bi-partite graph
	6.7 Step 3 of LPGIM: Detecting and removing the circuits in the graph
	6.8 Step 4 of LPGIM: Integrally assigning the fractional tasks
	6.9 Conclusions

	7 Non-migrative Scheduling on T-type Heterogeneous Multiprocessors
	7.1 Introduction
	7.2 System model
	7.3 LPGNM: The non-migrative task assignment algorithm
	7.4 Conclusions

	8 Shared Resource Scheduling on T-type Heterogeneous Multiprocessors
	8.1 Introduction
	8.2 System model
	8.3 Overview of our algorithm
	8.4 The new algorithm, LP-EE-vpr
	8.5 Speed competitive ratio of LP-EE-vpr algorithm
	8.6 Discussion
	8.7 Conclusions

	IV Conclusions
	9 Conclusions, Discussions and Future Directions
	9.1 Summary of results
	9.2 Implication of the results
	9.3 Future directions
	9.4 Concluding remarks

	References

