

Quality of Service for High Performance IoT
Systems

BEng Thesis

CISTER-TR-161203

2016/10/31

Renato Ayres

Paulo Barbosa

BEng Thesis CISTER-TR-161203 Quality of Service for High Performance IoT Systems

© CISTER Research Center
www.cister.isep.ipp.pt

1

Quality of Service for High Performance IoT Systems

Renato Ayres, Paulo Barbosa

*CISTER Research Centre

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail: 1120681@isep.ipp.pt, 1130648@isep.ipp.pt

http://www.cister.isep.ipp.pt

Abstract

The fourth industrial generation brought both solutions as challenges. It allowed greater efficiency and
effectiveness in manufacturing, reducing both costs and wastes. However, it consists in the deployment of
innumerable devices for data collection and control processes. This brings challenges such as interoperability
between all these heterogeneous systems.

Thus, a group of partners, supported by the European Union, proposed a solution, the Arrowhead Framework. Its
aim is to create a framework with a service-oriented architecture (SOA) enabling an abstract collaboration
between all these different devices. While in development, the framework does not provide Quality of Service
(QoS), which prevents its use in more demanding networks. This limitation was the central problem solved in this
project.

This project focus on developing an architecture that provides QoS support in Arrowhead compliant systems. Here
the main challenges addressed are the following: developing an architecture capable of working with different
communication protocols and technologies; develop an architecture capable of working with an unlimited number
of QoS requirements.

During the entire project, its development process consisted in two main iterations: the first was regarding the
development of an architecture; the second consisted in the development of a pilot project based on the FTT-SE
protocol that could test the architecture developed in the first iteration.

At last, the final product consists in two systems, one for QoS configuration and other for monitoring. These two
systems are independent of each other. Regarding QoS requirements, only delay and bandwidth were
implemented.

Quality of Service for High Performance

IoT Systems

LEI-DEI

2015/2016

1120681 - Renato Ayres de Sousa

1130648 - Paulo Miguel Santos Barbosa

ISEP Supervisors:

 Luis Lino Ferreira

 Paulo Baltarejo de Sousa

External Supervisor:

 Michele Albano

Quality of Service for high performance

IoT systems

LEI-DEI

2015/2016

1120681 - Renato Ayres de Sousa

1130648 - Paulo Miguel Santos Barbosa

Degree in Informatics Engineering

October 2016

ISEP Supervisors:

 Luis Lino Ferreira

 Paulo Baltarejo de Sousa

External Supervisor:

 Michele Albano

v

Vince Lombardi, American Football Coach.

vii

Acknowledgments

First, we want to thank the DEI department for the opportunity to attend LEI. These last few

years have been very rewarding, full of challenges and learning. What we learned in ISEP, not

only intellectually but as a personal level, made us more mature persons and more prepared for

the labour market.

It should be noted that this internship would not have been possible without CISTER, especially

professor Luis Lino Ferreira who proposed the realization of this project under PESTI. For him,

Paulo Baltarejo De Sousa and Michele Albano a big thank you, they were always available and

were a key support throughout the project.

Without forgetting all the other colleagues, we are very grateful to Bruno Silva for his

cooperation and help in every stages of the internship, including the most difficult. Many thanks

to Roberto Duarte, who despite also attending PESTI, helped us in the integration phase carried

out in the final part of the project, and he was always available to help.

Paulo Barbosa/ Renato Ayres

I thank my family and friends that during these three strenuous years supported and helped

me.

Paulo Barbosa

I would like to thank all my friends and colleagues for always helping when I asked. Thank you

to my brother and two sisters for all their patience. A very special thank you to my mother for

everything she does and sacrifices for the four of us without even asking for a simple thanks.

Renato Ayres

ix

Abstract

The fourth industrial generation brought both solutions as challenges. It allowed greater

efficiency and effectiveness in manufacturing, reducing both costs and wastes. However, it

consists in the deployment of innumerable devices for data collection and control processes.

This brings challenges such as interoperability between all these heterogeneous systems.

Thus, a group of partners, supported by the European Union, proposed a solution, the

Arrowhead Framework. Its aim is to create a framework with a service-oriented architecture

(SOA) enabling an abstract collaboration between all these different devices. While in

development, the framework does not provide Quality of Service (QoS), which prevents its use

in more demanding networks. This limitation was the central problem solved in this project.

This project focus on developing an architecture that provides QoS support in Arrowhead

compliant systems. Here the main challenges addressed are the following: developing an

architecture capable of working with different communication protocols and technologies;

develop an architecture capable of working with an unlimited number of QoS requirements.

During the entire project, its development process consisted in two main iterations: the first was

regarding the development of an architecture; the second consisted in the development of a

pilot project based on the FTT-SE protocol that could test the architecture developed in the first

iteration.

At last, the final product consists in two systems, one for QoS configuration and other for

monitoring. These two systems are independent of each other. Regarding QoS requirements,

only delay and bandwidth were implemented.

Keywords (Theme): Industry 4.0, Internet of Things, Quality of Service.

Keywords (Technologies): C, Flexible Time Triggered-Switched Ethernet, Java, MongoDB,

MySQL, Representational State Transfer, Service-oriented Architecture.

xi

Resumo

A quarta geração industrial trouxe tanto de soluções como desafios. Permitiu uma maior

eficiência e eficácia na produção, reduzindo tanto custos como desperdícios. Contudo ela é

construída na configuração de inúmeros dispositivos, para a recolha de dados e até para

controlo de processos. Isto traz desafios, como a interoperabilidade entre todos estes sistemas

heterogéneos.

O projeto Arrowhead é solução proposta por um conjunto de parceiros, financiados pela União

Europeia. O seu objetivo é criar uma framework com uma arquitetura orientada a serviços (SOA)

capacitando uma colaboração abstrata entre todos estes diferentes dispositivos. Já num estado

avançado de desenvolvimento, a framework não providencia Qualidade de Serviço (QoS). Esta

limitação foi o problema central solucionado neste projeto.

O presente projeto foca-se no desenvolvimento de uma arquitetura que suporte QoS em

sistemas compatíveis com Arrowhead. Aqui os principais desafios abordados são: desenvolver

uma arquitetura capaz de trabalhar com diferentes protocolos de comunicação e tecnologias;

desenvolver uma arquitetura capaz de trabalhar com um número ilimitado de requisitos de QoS.

O processo de desenvolvimento durante o projeto dividiu-se em duas grandes iterações: a

primeira consistiu no desenvolvimento da arquitetura; a segunda consistiu num

desenvolvimento de um projeto piloto baseado no protocolo FTT-SE que pudesse testar a

arquitetura desenvolvida na primeira iteração.

O produto final consiste em dois sistemas, um de configuração e outro de monitorização,

independentes entre si. Os parâmetros de QoS implementados foram delay e largura de banda.

Palavras-chave (Tema): Indústria 4.0, Internet of Things, Qualidade de Serviço.

Palavras-chave (Tecnologias): Arquitetura Orientada a Serviços, C, Flexible Time Triggered-

Switched Ethernet, Java, MongoDB, MySQL, REST.

xiii

Notation and Glossary

This Section shows all the concepts, symbols and acronyms on the body of this document.

Notation Meaning

CISTER Research Centre in Real-Time &Embedded Computing Systems

CPS Cyber-Physical Systems

DCS Distributed Control System

DEI Departamento de Informática

ERP Enterprise Resource Planning

FTT Flexible Time-Triggered

FTT-SE Flexible Time-Triggered on Switched Ethernet

IoT Internet of Things

ISEP Instituto Superior de Engenharia do Porto

JAX-RS Java API for RESTful Web Services

LEI Licenciatura em Engenharia Informática

MES Manufacturing Execution System

QoS Quality of Service

RDBMS Relational Database Management System

REST Representational State Transfer

RESTful Characteristic of a device/system that conforms the constrains of REST.

RUP Rational Unified Process

SCADA Supervisory control and data acquisition

SLA Service Level Agreement

SOA Service Oriented Architecture

SoS System of Systems

TCP Transmission Control Protocol

TCP/IP Internet Protocol Suite

UML Unified Modeling Language

xiv

Contents

1 Introduction .. 1

1.1 Framework ... 1

1.2 Project Presentation .. 1

1.3 Organization Overview/Presentation .. 2

1.4 Project Charter ... 3

1.5 Contributions of this work ... 4

1.6 Document Organization ... 5

2 Context .. 7

2.1 The Problem ... 7

2.1.1 Communication Robustness .. 7

2.1.2 Integrating QoS in Arrowhead ... 8

2.2 Business Areas .. 8

2.3 State of the Art ... 11

2.3.1 IoT and Cooperative Automation .. 11

2.3.2 Flexible Time Triggered (FTT) .. 12

2.3.3 Network Monitoring .. 16

2.4 Arrowhead Key Definitions .. 17

2.5 Vision for the Solution .. 19

2.5.1 Arrowhead Solution Architecture ... 19

2.5.2 Supporting QoS in Arrowhead ... 21

2.6 Arrowhead Documentation Methodology ... 21

2.6.1 System-of-Systems Level ... 22

2.6.2 System Level .. 23

2.6.3 Service Level .. 23

3 Working Environment ... 26

3.1 Work Methods ... 26

3.2 Work Planning .. 27

3.3 Follow up Meetings .. 28

3.4 Technologies .. 30

3.4.1 Languages & Libraries .. 30

3.4.2 Databases .. 32

xv

3.4.3 Development ... 32

4 Arrowhead Documentation/ Analysis and Implementation ... 36

4.1 Introduction ... 36

4.2 Systems Description ... 38

4.2.1 QoSManager System Description .. 38

4.2.2 QoSMonitor System Description ... 46

4.3 Services Description ... 54

4.3.1 QoSSetup Service Description ... 54

4.3.2 Monitor service Description .. 61

4.4 Interface Design Description .. 71

4.4.1 QoSManager QoSVerify Interface Design Description .. 71

4.4.2 QoSManager QoSReserve Interface Design Description 72

4.4.3 QoSMonitor QoSEvent Interface Design Description .. 74

4.4.4 QoSMonitor QoSLog Interface Design Description ... 74

4.4.5 QoSMonitor QoSRule Interface Design Description .. 75

4.5 Semantic Profile Description .. 77

4.5.1 QoSManagerQoSVerify Semantic Profile Description ... 77

4.5.2 QoSManagerQoSReserve Semantic Profile Description .. 79

4.5.3 QoSMonitorQoSEvent Semantic Profile Description .. 82

4.5.4 QoSMonitorQoSLog Semantic Profile Description .. 83

4.5.5 QoSMonitorQoSRule Semantic Profile Description .. 84

4.6 System Design Description ... 87

4.6.1 QoSManager System Design Description (SysDD)... 87

4.6.2 QoSMonitor System Design Description (SysDD) .. 100

4.7 System-of-Systems Design Description/Pilot Project .. 117

5 Tests Description ... 138

5.1 Introduction ... 138

5.2 Unit Tests ... 138

6 Conclusion ... 146

6.1 Summary .. 146

6.2 Accomplished Objectives ... 147

6.3 Limitations and future work ... 148

6.4 Final Appreciation .. 148

7 Bibliography .. 150

xvi

xvii

Index of Figures

Figure 1 - Prediction for the IoT market expansion through 2019 [6]. ... 9

Figure 2 - FTT-SE architecture [22]. ... 14

Figure 3 - Elementary Cycle Structure [23]. .. 15

Figure 4 – Local Cloud representation [26] ... 18

Figure 5 – Systems exchanging Services, thus creating a System of Systems in a Local Cloud and

between Local Clouds [26]. ... 18

Figure 6 - Core Systems of the Arrowhead Framework [27]. .. 19

Figure 7 - The Arrowhead documentation relationships [29]. .. 22

Figure 8 - Tree view of the Arrowhead written documents and their associations. 37

Figure 9 - Overview of the QoSManager System. ... 38

Figure 10 - Domain Model of the QoSManager system. ... 39

Figure 11 - Services provided and consumed by the QoSManager. ... 44

Figure 12 - QoSMonitor High Level Component Diagram. .. 46

Figure 13 - Domain Model of the QoSMonitor system. .. 47

Figure 14 - Component Model. ... 52

Figure 15 - QoSManager QoSSetup Overview. ... 54

Figure 16 - QoSVerify Interface. .. 55

Figure 17 - High Level Sequence Diagram of QoSSetup Service QoSVerify interface. 56

Figure 18 - QoSReserve Interface. ... 57

Figure 19 - High Level Sequence Diagram of QoSSetup Service QoSReservation interface. 58

Figure 20 - QoSMonitor Monitor Overview. ... 61

Figure 21 - - QoSRule Interface ... 61

Figure 22 - High Level Sequence Diagram of Monitor service AddRule Interface. 63

Figure 23 - High Level Sequence Diagram of Monitor service RemoveRule Interface. 64

Figure 24 - QoSLog Interface ... 65

Figure 25 - High Level Sequence Diagram of Monitor service AddLog Interface 66

Figure 26 - – Event Interface. .. 67

Figure 27 - High Level Sequence Diagram of Monitor service SendEvent Interface. 68

Figure 28 – QoSManager System Use-Cases List. ... 88

Figure 29 - Sequence Diagram of UC1... 90

Figure 30 - Sequence Diagram of UC2... 92

Figure 31 - Components Diagram of the QoSManager system. ... 94

Figure 32 - Class Diagram of the QoSManager system. .. 95

Figure 33 - IVerifierAlgorithm interface. ... 96

Figure 34 - IQoSDriver interface. ... 96

Figure 35 - Database Model of the QoSStore schema. ... 98

Figure 36 - Database Model of the SystemConfigurationStore schema 98

Figure 37 - Deployment Diagram of the QoSManager system. .. 99

Figure 38 - QoSMonitor Use Cases List. .. 101

Figure 39 - QoSMonitor Sequence Diagram of UC1. ... 103

Figure 40 - QoSMonitor Sequence Diagram of UC2.. .. 105

Figure 41 - QoSMonitor Sequence Diagram of UC3. ... 107

file:///C:/Users/Paulo/Desktop/Relatorio_v77.docx%23_Toc463900575
file:///C:/Users/Paulo/Desktop/Relatorio_v77.docx%23_Toc463900580
file:///C:/Users/Paulo/Desktop/Relatorio_v77.docx%23_Toc463900581
file:///C:/Users/Paulo/Desktop/Relatorio_v77.docx%23_Toc463900585
file:///C:/Users/Paulo/Desktop/Relatorio_v77.docx%23_Toc463900597
file:///C:/Users/Paulo/Desktop/Relatorio_v77.docx%23_Toc463900598
file:///C:/Users/Paulo/Desktop/Relatorio_v77.docx%23_Toc463900599

xviii

Figure 42 - QoSMonitor Sequence Diagram of UC4.. .. 109

Figure 43 - QoSMonitor system log information .. 110

Figure 44 - Component Diagram of the QoSMonitor System. .. 112

Figure 45 - Class Diagram of the QoSMonitor system. ... 113

Figure 46 - Protocol interface .. 114

Figure 47 - Database Model of the Rule document. ... 114

Figure 48 - Database Model of the Log document.. 115

Figure 49 - Deployment Diagram of the QoSMonitor system .. 116

Figure 50 - Disposition of all devices used on the FTT-SE and Arrowhead integration. 118

Figure 51 - Component Diagram of the integration of Arrowhead with FTT-SE. 119

Figure 52 - Deployment Architecture on FTT-SE ... 120

Figure 53 - Component Diagram of FTT-SE. .. 121

Figure 54 - Class Diagram of the FTT-SE interface. ... 122

Figure 55 - Execution of the FTT-SE plugin. ... 122

Figure 56 - Basic receive function of the FTT-SE plugin. ... 123

Figure 57 -- Basic transmit function of the FTT-SE plugin.. ... 123

Figure 58 - FTTSE Use Cases List. ... 126

Figure 59 - Properties file necessary to register/delete a service... 127

Figure 60 - Properties file necessary to request a service .. 128

Figure 61 - Sequence Diagram of UC1... 129

Figure 62 - Sequence Diagram of UC2... 131

Figure 63 -- Sequence Diagram of UC3. .. 132

Figure 64 - Period Calculation ... 134

Figure 65 - Bandwidth calculation ... 134

Figure 66 - – Monitoring of the capture of the throughput during scenario 2 135

Figure 67 - Monitoring of the capture of the throughput during scenario 1 135

Figure 68 - Monitoring of the capture of the delay during scenario 1...................................... 135

Figure 69 - Monitoring of the capture of the delay during scenario 2...................................... 136

Figure 70 - Implementation of Test Case 1. .. 140

Figure 71 - TestCase 1 of the QoSMonitor system. ... 142

Figure 72 - Test Case 2 of the QoSMonitor system. .. 144

file:///C:/Users/Paulo/Desktop/Relatorio_v77.docx%23_Toc463900600
file:///C:/Users/Paulo/Desktop/Relatorio_v77.docx%23_Toc463900620
file:///C:/Users/Paulo/Desktop/Relatorio_v77.docx%23_Toc463900621

xix

Index of Tables

Table 1 - Project Charter. .. 4

Table 2 - Trigger Message structure. ... 15

Table 3 - Project Planning.. 28

Table 4 - Meetings Agenda. ... 28

Table 5 - Employed technologies. ... 30

Table 6 - Use Case 1 execution flow. ... 42

Table 7 - Use Case 2 execution flow. ... 43

Table 8 - Pointers to IDD documents.. .. 44

Table 9 - Pointers to IDD documents.. .. 44

Table 10 - Add Monitor Rule Use-Case Description .. 49

Table 11 - Remove Monitor Rule Use-Case Description ... 50

Table 12 - Add Monitor Log Use-Case Description ... 50

Table 13 - Send Event Use-Case Description ... 51

Table 14 - Pointers to IDD documents .. 52

Table 15 - Pointers to IDD documents .. 53

Table 16 - Data type description ... 59

Table 17 - Data type description ... 69

Table 18 - Pointers to SD documents .. 71

Table 19 - Pointers to CP documents .. 71

Table 20 - Pointers to SP documents .. 71

Table 21 - List of Functions provided by the QoSVerify service. ... 71

Table 22- QoSManager system web application description language. 71

Table 23 - Pointers to SD documents .. 72

Table 24 - Pointers to CP documents .. 72

Table 25 - Pointers to SP documents .. 72

Table 26 - List of Functions provided by the QoSReserve service. ... 72

Table 27 - QoSManager system web application description language 72

Table 28 - Pointers to SD documents .. 74

Table 29 - Pointers to CP documents .. 74

Table 30 Pointers to SP documents .. 74

Table 31 - List of Functions provided by the QoSEvent service ... 74

Table 32- QoSMonitor web application description language.. 74

Table 33 - Pointers to SD documents .. 75

Table 34 - Pointers to CP documents .. 75

Table 35 Pointers to SP documents .. 75

Table 36 - List of Functions provided by the QoSLog service .. 75

Table 37 - QoSMonitor system web application description language 75

Table 38 - Pointers to SD documents .. 75

Table 39 - Pointers to CP documents .. 75

Table 40 Pointers to SP documents .. 76

Table 41 - List of Functions provided by the QoSRule service .. 76

Table 42 - QoSMonitor system web application description language 76

xx

Table 43 - VerificationMessage parameters description. ... 78

Table 44 -. VerificationResponse parameters description. ... 79

Table 45 - ReservationMessage parameters description. ... 80

Table 46 - ReservationResponse parameters description. ... 81

Table 47 - EventMessage parameters description .. 82

Table 48 - AddLogMessage parameters description ... 84

Table 49 - AddRuleMessage parameters description ... 85

Table 50 - RemoveRuleMessage parameters description... 86

Table 51 – QoSManager System Information. .. 87

Table 52 – QoSManager SysD Documentation Pointer. ... 87

Table 53 - Execution Flow of Use-Case 1 of QoSManager System. ... 89

Table 54 - Execution Flow of Use-Case 2 of QoSManager System. ... 91

Table 55 - Message Stream table parameters. ... 97

Table 56 - Node table parameters .. 97

Table 57 - System Information of QoSMonitor ... 100

Table 58 – QoSMonitor SysD Documentation Pointer. ... 100

Table 59 - EventHandler SysD Documentation Pointer. ... 100

Table 60 - QoSMonitor Use-Case 1 Execution Flow. ... 102

Table 61 - QoSMonitor Use-Case 2 Execution Flow. ... 104

Table 62- QoSMonitor Use-Case 3 Execution Flow. .. 106

Table 63 - QoSMonitor Use-Case 4 Execution Flow. ... 108

Table 64 - MonitorRule collection parameters. .. 115

Table 65 - MonitorLog collection parameters. .. 115

Table 66 - Description of the used devices along and its usage. .. 119

Table 67 - EntryPoint Use-Cases. .. 124

Table 68 - Description of the parameters contained on the properties files. 126

Table 69 - Use Case 1 Execution Flow. .. 129

Table 70 - Use Case 2 Execution Flow. .. 130

Table 71 - Use Case 3 Execution Flow ... 132

Table 72 - Systems involved. ... 133

Table 73 - Test case 1. ... 139

Table 74 - Test Case 1 of the QoSMonitor system. ... 141

Table 75 - Test Case 2 of the QoSMonitor system. .. 142

Chapter 1. Introduction

1 Introduction .. 1

1.1 Framework ... 1

1.2 Project Presentation .. 1

1.3 Organization Overview/Presentation .. 2

1.4 Project Charter ... 3

1.5 Contributions of this work ... 4

1.6 Document Organization ... 5

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

1

1 IŶtƌoduĐtioŶ

Introduction chapter begins by presenting the project context and the motivations that made

the work possible. After, it is made a description of the organization responsible for the project,

giving an insight of its work area and current research topics. The contributions of the work for

other Arrowhead partners and for the students who developed it are also explained. The chapter

ends with a report guide -summarizing each Chapter.

1.1 Framework

In the third and last year of the IŶfoƌŵatiĐs’ EŶgiŶeeƌiŶg Bachelor Degree, each student must

attend an internship to apply the skills and the knowledge gained throughout the course in a

real working environment. The internship is done in the context of the curricular unit

Projeto/Estágio (PESTI) and has a minimum duration of one semester.

The internship was carried out in cooperation with the Research Centre in Real-Time &

Embedded Computing Systems (CISTER), and focused on two research areas that the centre had

already been working on: Cooperative automation; Internet of Things (IoT). The main purpose

of the project was to design and implement a generic architecture that could guarantee Quality

of Service (QoS) for IoT applications. The solution was implemented in an already developed

framework, Arrowhead.

The Arrowhead Framework [1] is an European project constituted by more than 70 partners and

has the goal to meet the following automation requirements: real time properties; security and

safety; engineering of automation functionalities. Its vision is to enable, between network

embedded devices, collaborative automation allowing interoperability of services provided by

any device.

A pilot project was also developed to test and evaluate the proposed QoS architecture, and was

deployed in a Flexible Time Triggered communication protocol.

1.2 Project Presentation

Devices for the IoT allow the development of applications that interact with embedded devices

in a physical environment. It can potentially be everything that can interact with, for instance a

power plug or medical gear, as long as they remain accessible through wired or wireless

networks. After the initial phase of suitable hardware development, all these applications have

an increasingly strong component of computer systems, namely their programming,

configuration, monitoring and control. Some of these applications can only work satisfactorily

for their users if certain QoS requirements are met. These requirements often include

parameters like communications time delay, bandwidth requirements, reliability, etc.

The Arrowhead covers these problems at the global scale for five application areas, production,

smart buildings, electro-mobility and virtual market of energy. Arrowhead architecture consists

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

2

in three core systems that support backbone operations. The first is the Orchestration System

that coordinates the service requests done by consumers. The second is the Authorisation

System that is responsible for controlling which service a consumer can consume and the third

is the Service Registry System that manages all the services registration and discovering. The

QoS functionality is integrated in the Orchestrator System, acting as supportive system.

The functionality of QoS in the Arrowhead Framework is of considerable importance to enable

automation applications, and in fact many industrial scenarios require either a short end-to-end

delay, or communication robustness. Therefore, the purpose of this project is to design and

implement QoS mechanisms for Service Oriented Architecture (SOA), based on Representational

State Transfer (REST). Such mechanisms are provided by systems that should perform three

major processes:

 verify if a service request is feasible in the current state of the network;

 configure needed network actives or alter the operating parameters of the distributed

applications.

 monitor, in real time, the status of the communications between applications to make

sure that Service-level Agreements (SLA) are not broken.

1.3 Organization Overview/Presentation

CISTER (Research Centre in Real-Time and Embedded Computing Systems) is a Research Unit

based at the School of Engineering (ISEP) of the Polytechnic Institute of Porto (IPP), Portugal

created in 1997.

Since it´s creation, CISTER has grown to become one of the leading European research units. It

has contributed and keeps contributing with seminal research works in a number of subjects:

 real-time communication networks and protocols;

 wireless sensor networks (WSN); cyber-physical systems (CPS);

 real-time programming paradigms and operating systems;

 distributed embedded systems;

 cooperative computing and QoS-aware applications;

 scheduling and schedulability analysis (including multiprocessor systems).

CISTER was, in 2004 and 2007 awarded the classification of Excellent in the FCT evaluations and

is currently one of the most prominent research unit of ISEP. It has a strong and solid

international reputation, built upon a robust record of accomplishment of publications and a

continuous presence on program and organizing committees of international top conferences

[2].

Regarding its research topics, CISTER has well-established roots in the real-time and embedded

systems (RTES) scientific community. From the viewpoint of strategic vision, the unit is

http://www.isep.ipp.pt/
http://www.cister.isep.ipp.pt/research/

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

3

consistently able to identify and contribute to emerging topics in the area, and continues to do

so.

Following the strong tradition of developing foundational work in relevant topics, such as

multiprocessor scheduling and wireless sensor networks, the unit fosters activities aligned with

the international agenda. Along with their ubiquitous deployment, embedded platforms are

becoming more complex as they grow more powerful, owing to their obligation to address ever-

increasing demanding requirements. Their complexity and resource-awareness brings further

challenges to the development of reliable and efficient systems, such as resource (e.g., CPU,

memory, power) management, novel operating systems and virtual machines, timing analyses,

etc.

In particular, with a strategic vision for the future, CISTER is working in emerging topics such as

[3]:

1. programming paradigms for the next generation of computing systems;

2. modelling and analysing temporal behaviour;

3. handling the requirements of mixed-criticalities;

4. efficient management of energy resources;

5. networking communication protocols that have timeliness as a structuring concern

while providing the required mobility, ubiquity, and pervasiveness;

6. sǇsteŵs theoƌǇ that ĐoŵďiŶes ͞phǇsiĐal ĐoŶĐeƌŶs͟ ;ĐoŶtƌol sǇsteŵs, sigŶal pƌoĐessiŶg,
etĐ.Ϳ aŶd ͞ĐoŵputatioŶal ĐoŶĐeƌŶs͟ ;ĐoŵpleǆitǇ, sĐhedulaďilitǇ, ĐoŵputaďilitǇ, etĐ.Ϳ;

7. increasing demands for quality of service and service level agreements at all layers of

increasingly complex systems.

1.4 Project Charter

At the starting point of a project, some development teams write a project charter to clarify the

major goals, tasks and each one´s roles. The charter is constituted by five elements:

 ͞stateŵeŶt͟: is the problem that motivated the project realization;

 ͞sĐope͟: is regarding the principal tasks of the project to accomplish the project goals;

 ͞goals͟: aƌe the fuŶĐtioŶalities that the pƌojeĐt ŵust aĐĐoŵplish;
 ͞ďusiŶess Đase͟: is the pƌiŶĐipal reason of the project;

 ͞teaŵ ŵeŵďeƌs͟: aƌe the people that ĐoŶtƌiďuted to the pƌojeĐt.

Since a team of developers participated in the project, each one with a different roles and tasks,

it was considered beneficial to write a project charter to avoid misperceptions about all the

project characteristics and consequently promote a fluid accomplishment of all future tasks.

http://www.cister.isep.ipp.pt/research/programmability/
http://www.cister.isep.ipp.pt/research/temporal_behaviour/
http://www.cister.isep.ipp.pt/research/mixed_criticalities/
http://www.cister.isep.ipp.pt/research/energy_aware/
http://www.cister.isep.ipp.pt/research/ubiquitous_sensing___actuation/
http://www.cister.isep.ipp.pt/research/ubiquitous_sensing___actuation/
http://www.cister.isep.ipp.pt/research/co_design_approaches_for_cps/
http://www.cister.isep.ipp.pt/research/co_design_approaches_for_cps/
http://www.cister.isep.ipp.pt/research/resource___qos_management/
http://www.cister.isep.ipp.pt/research/resource___qos_management/

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

4

Table 1 - Project Charter.

As Table 1 depicts, the involved team members are grouped by six hierarchical roles. The top

one is the Project Owner meaning the entity that funded the project. The Project Champion is

the person who decides which persons are on board, he validates the solutions design and

requirements, and is the first responsible of the project. Followed by the Project Leader that is

responsible for leading and promoting the project, and has the vision of the process. Then, the

Project Manager has a more direct contact with the development team, and contributes in

technical problems and manages the team performance. The Development Team is responsible

for implementing the solutions, and finally the Project Supporters, which are not directly

involved in the project, may have simple tasks during the project, to support the development.

1.5 Contributions of this work

The principal contribution of this work is the addition of QoS processing in the Arrowhead

Framework. Having QoS, the Arrowhead can be deployed on other networks that commonly

have high traffic, expanding itself to many industrial scenarios that require as an example either

a short end-to-end delay, or communication robustness, or both. The developed work was a

commitment made by CISTER to another Arrowhead partner, and after its development it was

integrated in the partner Arrowhead Framework implementation.

Statement Arrowhead does not guarantee communication

robustness.

Scope Develop a system to provide QoS and real time monitoring

for Arrowhead, and in the end test it in a pilot project.

Goals Verify the feasibility of QoS objectives;

Setup network actives and devices to ensure the QoS;

Monitor, in real time, the performance of services;

Detect if a QoS parameter is not being guaranteed

anymore, or any other critical event.

Business Case Guarantee communication robustness.

Team Members Project Owner European Union

Project Champion Luis Lino Ferreira –

Research Associate of

CISTER

Project Leader Michele Albano – Research

Associate of CISTER

Project Manager José Bruno Silva –Research

Associate of CISTER

Development Team Paulo Barbosa

Renato Ayres

Project Supporters Csaba Hegedús – Research

Associate of AITIA

International

Roberto Duarte-

Undergrad Student of

CISTER

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

5

Finally, the work enabled the consolidation of the knowledge already acquired during the degree

and the improvement of all skills. The presented problems here were challenging since they

required the study of unknown technologies and several communications with foreign partners.

1.6 Document Organization

This report is divided into five main chapters, Context, Work Environment, Arrowhead

Documentation/ Analysis and Implementation, Tests Description, and Conclusions.

Chapter 2, Context, starts by describing the problems in question. Further, the chapter portrays

the business areas where the problems are present. It also gives an explanation of the studied

fields that were critical for this project. More importantly, the chapter ends by explaining each

of the documents present on Chapter 4. This last section is vital for a proper comprehension of

the methodology used for the technical documentation.

Chapter 3, Working Environment, approaches the working methodologies and technologies

used in this project. In addition, the planning of the project and the meetings occurred are

explained in order to show the evolution of the work during all its lifetime.

Chapter 4, Arrowhead Documentation/ Analysis and Implementation, contains the mandatory

technical documents, obeying the Arrowhead documentation methodology. These technical

documents approach both solution analysis and implementation for each developed system, the

QoSManager and the QoSMonitor.

Chapter 5, Tests Description, focus on software testing, by explaining essential concepts and the

practiced patterns. Moreover, it also describes the performed tests for this project, dividing in

two types, White-Box and Black-Box testing. This chapter is separated from Chapter 4 since most

of the Arrowhead technical documentation does not contain software testing, with the

exception of the Black-Box tests documented on only one document.

Chapter 6, Conclusion, describes the conclusions regarding all aspects of the project, both

technical and management. First, it summarizes the work done, and follows by enumerating the

fulfilled objectives. Afterwards, it ends by listing the strengths and setbacks of the developed

work, suggesting different approaches and improvements, to implement as future work.

Chapter 2. Context

2 Context .. 7

2.1 The Problem ... 7

2.1.1 Communication Robustness .. 7

2.1.2 Integrating QoS in Arrowhead ... 8

2.2 Business Areas .. 8

2.3 State of the Art ... 11

2.3.1 IoT and Cooperative Automation .. 11

2.3.2 Flexible Time Triggered (FTT) .. 12

2.3.3 Network Monitoring .. 16

2.4 Arrowhead Key Definitions .. 17

2.5 Vision for the Solution.. 19

2.5.1 Arrowhead Solution Architecture ... 19

2.5.2 Supporting QoS in Arrowhead ... 21

2.6 Arrowhead Documentation Methodology ... 21

2.6.1 System-of-Systems Level ... 22

2.6.2 System Level .. 23

2.6.3 Service Level .. 23

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

7

2 CoŶteǆt

This Chapter introduces the motivations and business areas related to the project. Additionally,

the scientific areas and concepts that are considered necessary to understand the project are

also explained. This chapter consists of five sections.

Section 2.1 presents the problem to be solved, detailing the reasons that caused the project

development, focusing in QoS in IoT applications and the integration of the developed solutions

with the Arrowhead Framework. Afterwards the section 2.2 describes the areas of IoT that have

more to gain with this work, with the support of market statistics regarding its use in society.

Section 2.3 approaches the three principal scientific areas that required studying and analysis

for the project development, IoT and Cooperative Automation, Network Monitoring and Flexible

Time Triggered.

The Section 2.4 explains the concepts that are used to describe the architecture and that are

vital to properly understand the framework.

Regarding the designed solution for this work problem, Section 2.5 describes it with the support

of high-level diagrams for a better comprehension. First, it explains the SOA structure and the

core systems of the Arrowhead Frameworks, such as the Orchestrator and ServiceRegistry.

Afterwards, there is a description of how the QoS support was integrated in the Arrowhead,

detailing its architecture and technologies.

Since the developed solution was integrated with the Arrowhead project, the technical

documentation had necessarily to follow its methodologies, which are very specific for SOA

automation applications. Therefore, the Section 2.6 helps to explain the concepts used. This

methodology is then used on Chapter 4 in order to describe the work performed in this report.

2.1 The Problem

There are two problems approached in this project, the first is related to QoS requirements in

systems. Nowadays, most automation applications are supported on systems with limited

capabilities, the trend of applying IIoT and SOA architectures in these systems requires changes

on their development philosophy. The second problem lies in the support of QoS in the

Arrowhead Framework. The systems responsible for providing QoS as a service, must be capable

of providing configuration and monitoring operations, independently of the underlying network

technology.

2.1.1 Communication Robustness

TodaǇ’s Ŷetǁoƌks faĐe seǀeƌal ĐhalleŶges, iŶĐludiŶg ĐoŵŵuŶiĐatioŶ ƌoďustŶess, mainly because

of an exponential increase of network deployed devices and services. Consequently, these

environments become unpredictable which in the case of real-time systems it is unthinkable,

since only one failure can provoke a catastrophe.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

8

Furthermore, certain services require various QoS guarantees for their fruition, which

constitutes more challenges for these networks. In some cases, certain scenarios can guarantee

only a subset of the QoS capabilities. For instance, in wider networks such as the Internet, where

the in-between network is not under control, real-time objectives are not feasible and either

prioritization can be provided.

In order to distinguish each service and to prioritize important services, QoS serves as a quantity

measurer of quality of service. By managing certain QoS parameters as delay, jitter and

bandwidth, networks can guarantee predictable behaviours avoiding traffic congestion and data

losses [4].

QoS is often essential in many applications, a typical example of QoS parameters is latency,

safety and bandwidth. Though the use of QoS solves the problems refered above, it´s

development also brings the following challenges [5]:

 Heterogeneous networks: The diversity of different technologies and cyber-physical

systems present in automation systems such as Wi-Fi, and its geographical dispositions

poses challenges for the support of QoS.

 Performance: Common IoT devices were not developed for resource-constrained

devices and consequently have to be adapted and simplified to work properly on those

devices.

 Scalability: The continuous addition of new devices to existing systems implies extra care

on the sharing of resources, like bandwidth and CPU processing time.

The support of QoS on the Arrowhead Framework addresses these challenges.

2.1.2 Integrating QoS in Arrowhead

The support of QoS in the Arrowhead Framework, in local clouds, is a fundamental functionality

in some automation applications. To this purpose, an architecture has been developed that

outlines the roles of involved parties in supporting QoS between a service producer and a service

consumer. For this purpose, it is possible to foresee the involvement of network elements that

mediate data transfers in the system (i.e. switches, routers) and the devices that are hosting the

services.

The integration must be scalable and highly adaptable, since the Arrowhead Framework is

deployed in many different networks, using different technologies and devices dispositions.

There are multiple implementations of Arrowhead, therefore the solution has to be generic

enough to be used in many of the implementations.

Another very important feature of the architecture is that the interfaces are exactly the same

independently of the underlying network protocols and design on a Service Oriented manner.

2.2 Business Areas

IŶteƌŶet Ŷot oŶlǇ ĐhaŶged eǀeƌǇ peƌsoŶ’s life ďut also ŵaƌked a ŵilestoŶe oŶ hoǁ iŶdustƌies
work. It improved their efficiency, reducing costs by deploying all sort of sensor devices

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

9

connected to each other. This new era of Internet, IoT, instead of connecting people to people,

it connects devices to devices. It consists in a system with multiple attached physical devices

which are connected to each other via wireless or wired connections. Between these devices

occurs huge amounts of data transmission that is used for powerful intelligence gathering. One

area of IoT is Industrial Internet of Things (IIoT), where there is manufacturing focus in order to

increase productivity gains and increasing profit margin. Back in 2000, manufacturing facilities

were effectively managing only 10-12 Ethernet devices, however ten years later they are

working with hundreds or more of these devices [6].

Recent studies have predicted that IoT devices usage will grow as 35 billion devices in 2019 [7],

from all physical devices, IoT is the one with the most expected growth.

Figure 1 - Prediction for the IoT market expansion through 2019 [7].

The areas on which IoT has the most influence are [8]:

 Automotive

The automotive industry has been suffering profound changes, in both its manufacturing and

transportation areas. Automotive manufacturing, in order to respond to the market demands of

high customization and time high quality, is constantly improving, increasing its level of agility

and responsiveness. With IoT, manufacturing workers have now more control over equipment

and operator safety, and can easily identify machine faults or, in some cases, predict some [9].

Regarding the transportation area, according to Gartner [10] more than 250 million vehicles in

2020 will be globally connected. Vehicles would transmit and receive all sorts of data via the

Internet to a service centre. This connectivity enables management and control of traffic,

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

10

optimising drive energy usage and reducing traffic accidents [11]. Furthermore, IoT promises to

revolutionize automotive industry with Autonomous driving. Although it still is in a prototype

phase due to the challenges of the interaction between the vehicle and the environment, self-

driving cars with the deployment of various sensors (Vision chips) will be present in the

foreseeable future.

 Energy

In the last century mankind acknowledged its low efficiency energy creation, prejudicing the

plaŶet aŶd ĐoŶseƋueŶtlǇ all liǀiŶg ďeiŶg’s health. IoT ĐaŶ haǀe aŶ iŵpoƌtaŶt fuŶĐtioŶ oŶ the
Energy consumption, allowing a more intelligent and efficient management. Some solutions

have already been developed such as outside public lightening [12], where sensors on street

lamps receive on the luminosity of the street so that the intensity of the light that the lamp is

giving can be related to current natural lighting. It could also relate the luminosity emanating

from the street lamp with the time and day of the week: On week days, people are less active

during the earlier hours of the day in contrast with the night life during the weekends.

 Healthcare

IŶ ŵediĐiŶe, kŶoǁledge is esseŶtial to the patieŶt’s life. BǇ ĐoŶŶeĐtiŶg all kiŶds of monitoring

devices, capable of tracking all the user health status in real time, an effective treatment can

iŵpƌoǀe life ƋualitǇ aŶd iŶ soŵe Đases saǀe people’s life. In a more futuristic environment, there

could be small devices that monitor bodily functions: heart rate, glucose levels or even physical

activity. One example would be: a man has some kind of dysfunction in his heart, before going

to the cardiologist, a small device has already collect any kind of alteration in his heart. The

doctor can now act immediately but before the patient would have to undergo some additional

exams to check if he had any kind of problem. The treatment is applied sooner and therefore

may have saved a life.

 Industrial / Smart Manufacturing

Since the first industrial revolution in the nineteenth century, three more phases have

happened. The most recent and fourth revolutioŶ is Đalled ͞IŶdustƌǇ ϰ.Ϭ͟. This Ŷeǁ phase ďƌiŶgs
more advanced and efficient industrial systems with self-optimization, self-configuration, self-

diagnosis methods. With IoT monitoring systems can take place. Real time dashboards showing

machine utilization, its performance and much more gives the manufacturing managers more

control and efficiency perception, allowing them to make smarter decisions.

IoT promises to revolutionize many working areas, and currently industrial, transportation, oil &

gas, and healthcare are where IoT is most used. According to Cisco last reports, it is expectable

that the health segment will have the fastest growth, increasing from 144 million devices in 2015

to 729 million in 2020. This is due to the improved healthcare and industrial infrastructures,

growing geriatric population, and growing prevalence of chronic and lifestyle associated

diseases [13].

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

11

Arrowhead Industry Examples

Arrowhead has already been used in five applications verticals: industrial production, smart

buildings and infrastructure, electro mobility, energy production and end-user services and,

finally the virtual market of energy. One of these application verticals which can mostly benefit

from the existence of QoS support is the industrial production, specifically on the manufacturing

pilot. The following example describes an automotive manufacturing pilot in which the

Arrowhead Framework was tested.

The automotive industry is becoming extremely competitive and the current evolution of the

automotive industry towards hybrid and fully electric vehicles is further positioning the sector

in a potentially risk averse phase because of the introduction of news powertrain technologies

and new manufacturing processes. This phase of uncertainty requires an increased level of

agility and responsiveness from the automotive manufacturing industry in order to integrate the

constant changes that occur in the design of powertrain components. In particular, the

manufacturing of electric powertrain components requires additional control over the

equipment and operator safety due to the handling of dangerous chemical content.

All the above requires a radical increase in the ability to monitor and control the manufacturing

processes very closely. This implies the deployment at a large scale of so-called Industrial IoT

(IIoT). In this context, the Arrowhead Framework provided a key element in achieving

connectivity and integration between various layers of the manufacturing systems and

organisations, and in facilitating the management of data.

One of the functions that Arrowhead assumed was the maintenance of automation systems. It

had three main responsibilities: detecting faults, as soon they occur in order to minimise their

impacts; accurately assessing the stat of the system in order to anticipate faults; to enable rapid

and effective intervention in a shop floor after a fault is identified. The pilot was developed in a

ZigBee [14] protocol using REST servers in the University of Warwick.

2.3 State of the Art

State of the art section approaches the three principal scientific areas that required studying

and analysis for the project development, IoT and Cooperative Automation, Flexible Time

Triggered and Network Monitoring.

2.3.1 IoT and Cooperative Automation

IoT is a network of real-time, physical, embedded devices capable of producing an output or

eǀeŶ ƌeĐeiǀe iŶput. These deǀiĐes, Đalled as ͞thiŶgs͟, aƌe deploǇed oŶ a host, aŶd aƌe dispeƌsed
on different places, all interconnected to processing units. An entity, such as a company or a

person, can use these devices to control and monitor its host, i.e. building, machine, or person,

and improve its performance based on the collected data [15] .

In certain systems, the network devices cooperate between themselves. This integration is

called cooperative automation. In order to reach a faster solution, the solution is divided in tasks

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

12

and each task is assigned to a device, this happens in some real scenarios, in which devices

perform different tasks, cooperating in teamwork to reach the same solution.

The next sub-section describes the Industry evolution during time:

 Industrial Generations

Modern industrial production and manufacturing systems have evolved in four different

generations. The first one that enabled the industrial revolution dates back to the mid-1800s.

Mass production of goods such as clothes, cars and many other products was made possible by

the use of steam-powered machines in the beginning of the 20th century.

The second generation saw efficient pneumatic systems emerge as a widely employed solution

for mass-production. The use of pneumatic valves combined with sensors enabled automatic

production systems to be used in industrial applications.

Pneumatic motors evolved to electrical motors in the third generation. Using electricity as the

energy source made it so that even newer types of automatic control systems were created.

Sensors and actuators were now connected to new types of monitoring and control systems like

Distributed Control Systems, DCS [16] and Supervisory Control And Data Acquisition, SCADA [17]

using technologies such as field buses. The hierarchical approach of device-level, DCS, and

SCADA (known as ISA-95 [18]), soon became the architectural style in effect for how industrial

manufacturing systems were designed and set up. Eventually DSC and SCADA systems became

networked, which enabled solid integration between control systems and Enterprise Resource

Planning Systems (ERP) and Manufacturing Execution System (MES). Nowadays this is the most

generally used approach in the industry, and has been so for at least the last 20-30 years. The

current state of the art architecture ISA-95 [19] ǁas estaďlished iŶ the ϵϬ’s. Apparently, the size

of ISA-95 based automation systems seems to be narrow to nearly 100.000 I/O points, thus

becoming a technology bottleneck in the perspective of the upcoming smart cities and smart

energy grids.

In 2011, the concept of Industry 4.0 was born in Germany. This idea builds upon the last

generation of monitoring and control systems, yet allows an even thinner level of interaction

between shop-floor devices and high-level enterprise systems. In Industry 4.0, state of the art

technologies like IoT and Cyber-Physical Systems (CPS) are used in order to be able to break the

classical rigorous hierarchical approach of ISA-95 with a more flexible approach without hurdles

and sealed systems. By basing all communication on standard-based protocols, like the TCP/IP

protocol suite, it is now feasible to have information exchange between (nearly) any systems in

a manufacturing facility. This gives room for new strategies in terms of safety and security,

minimized energy consumption, global plant optimization, etc.

2.3.2 Flexible Time Triggered (FTT)

Beginning from its definition, a real time system must process the input and produce an outcome

within a specified time, else it will fail [20]. These systems were made and are mainly used for

the industry area, a perfect example of this system is Anti-Lock Braking System [21] on cars,

which guarantees the passenger safety. If this system fails it will have severe consequences.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

13

Industrial processes must be integrated on specific networks, connecting multiple systems,

working with each other, where monitoring, control and predictability are essential to guarantee

the avoidance of any failure. In this cases predictability is favoured against average throughput,

and message transmission is typically characterized by time and precedence constrains.

Communication systems that support real-time applications have to accomplish several

requirements, the most relevant are predictability, and QoS dynamic management.

Sensors are the hands and legs of the industrial automation system that monitor the industrial

operation conditions, inspections, and measurements in real-time. They are an integral part of

the industrial automation systems and provide feedback for system control [22].

Communication is the backbone of all the industrial components for efficient automation

production systems. There are multiple solutions for this real time communications, however

since Ethernet is a very used architecture it is not ready for this type of communications. Due to

Ethernet easy deployment and low cost, it is mandatory to develop real time solutions using

Ethernet.

Ethernet has a feature to avoid packets collision named CSMA/CD which is at the same time an

arbitration mechanism, and the fact of being randomness makes it the main obstacle of

supporting real-time applications in Ethernet. Several techniques have been developed for

applying the real time behaviour, some of the most relevant methods are listed below:

 Master/Slave techniques:

A hierarchy is established by dividing all network nodes into two groups, the master and salves.

The master controls the traffic in the network among slave nodes, deciding when and which

slave has the permission to send data.

 Switched Ethernet:

Using switches in the network reduces the non-deterministic behaviour of Ethernet. Basically, a

switch buffered the arrival message and checks the destination address of the message. The

output ports have output buffers and the order of message sending is based on priority level.

The FTT-SE protocol therefore proposes a solution using an Ethernet network which

accomplishes all the requirements of a real time network.

 Concept

Flexible Time Triggered – Switched Ethernet is a real-time communication protocol, and it is the

last development of the FTT-Ethernet paradigm.

Proposed in 1998, the FTT paradigm is a framework which has an ability to handle time-triggered

and event-triggered messages, timelines guarantee, temporal isolation support. Its master/salve

architecture allows a centralized message scheduling by a single node in the network called

master. The master schedules the traffic in Elementary Cycles (EC) and propagates the

respective triggers throughout the system, using Trigger Messages (TM). Whenever a slave

receives the trigger, it has the permission to transmit its message to the message receiver slave.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

14

 FTT-SE - Architecture

The FTT paradigm to overcome the Ethernet real time limitations it uses a centralized scheduling

and master/multislave transmission control. The centralized scheduling allows a dynamic QoS

management and the master/multislave control makes the network more deterministic, capable

of enforcing a notion of time and therefore avoid collisions.

The master is the system coordinator and it is responsible for building the elementary cycle and

the trigger message. The slave nodes execute the tasks required by the user, requesting services

delivered by the communication system.

FTT-SE is based on the FTT paradigm, and brings another advantage, the absence of collisions.

Due to its micro-segmented switch-based structure, as Figure 2 depicts, each port in the switch

is a private domain collision, avoiding traffic collision and capable of getting parallel transmission

in the network.

Figure 2 - FTT-SE architecture [23].

 Elementary Cycle (EC)

The master internal scheduling for all nodes is a critical process on the FTT-SE protocol, because

it´s where it’s decided which messages can be exchanged within a certain elementary cycle.

An elementary cycle is a fixed duration timeslot used to allocate traffic on the network. There

can be several windows dedicated to specific types of messages [23]. On each elementary cycle,

there are two timeslot windows, synchronous for the time-triggered messages and

asynchronous for all event-triggered messages.

As Figure 3 depicts, each elementary cycle starts with a broadcast Trigger Message (TM) by the

master. The TM synchronizes the network and identifies all the messages, synchronous or

asynchronous, that must be processed on the same elementary cycle. The synchronous

messages can have priorities, and are the first transmitted on the EC. The asynchronous traffic

occurs on the remaining time of the EC, and there are no guarantees that the real time

requirements will be accomplished.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

15

Figure 3 - Elementary Cycle Structure [24].

 Trigger Message (TM)

A TM is a message used only by the master node at the beginning of each EC. The master

propagates the TM in broadcast to be received by all slave nodes. In the trigger message payload

there is information about all the messages or tasks that must be sent from the correspondent

nodes during the EC, as Table 1 lists.

Table 2 - Trigger Message structure.

Field Size (bytes) Description

FTT Type 2 Message Type

Sequence Number 1 Sequence Number

Flags 1 Flags set

Number of Synchronous

Message

2 Message number

Number of Asynchronous

Messages

2 Message number

Message Index 4 Message information

ID 2 Message Identification

Fragmentation Number 2 Fragmentation Number

 Traffic Transmission

In FTT-SE protocol, there can only be two types of traffic, synchronous and asynchronous. Each

one is decided by the master scheduling, and are completely opposite between each other, the

synchronous is time-triggered while asynchronous is event-triggered. Both have a relevant

influence on the network communication.

 Synchronous

The master node saves all the synchronous streams on the Synchronous Requirements Table

(SRT), including the stream sender and receiver. Each stream is defined by its Worst-Case

Message Length (WCML), a deadline, period and an offset. These 4 properties will be used by

the master to decide which stream has a higher priority, depending on the scheduling policy

used.

The synchronous transmission only takes place when the timeslot for the TM ends. A bandwidth

is also dedicated to synchronous messages to be transmitted in the EC.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

16

 Asynchronous

All the asynchronous messages are saved on the Asynchronous Requirements Table (ART) on

the master node. Each stream is defined by a Worst-Case Message Length, a minimum inter-

arrival time (which replaces the deadline on the synchronous messages), and a minimum period

between two asynchronous messages (which replaces the period slot on the synchronous

messages).

For handling the asynchronous traffic, a signalling technique is used by the master. This

procedure takes advantage of full-duplex connections due to the use of Ethernet switches,

having the possibility to receive and transmit simultaneously. After the TM timeslot window, the

slave nodes communicate their status regarding the queue of asynchronous messages to the

master. After that the master records and processes the transmitted slave status using the

scheduling policy to decide which message should be transmitted at the next EC. Thus the

response time of synchronous message is never less than two ECs [24].

2.3.3 Network Monitoring

Network monitoring is the use of a system that is constantly monitoring a network, including its

system, services, machines, etc. This system can be event-based, notifying any interested part if

something fails, slows down or is not working properly. Hence, it is a different form of intrusion,

which monitors networks for threats from inside or outside. There are some highly known

monitoring tools available, with a couple being named here:

 NAGIOS [25]

It’s the ŵost ƌeĐogŶizaďle aŶd used tool iŶ the ŵoŶitoƌiŶg iŶdustƌǇ, aŶ opeŶ souƌĐe softǁaƌe
application that monitors everything from systems, networks, infrastructures, devices,

applications and services. It is highly customizable, making it very easy to anyone create

plugins, and can alert its users when something is wrong or not supposed to happen. It uses

agents for a common way of communication and can handle many protocols as SSH, SNMP,

WMI.

 CACTI [26]

Cacti was initially designed as a front-end application for the data logging tool RRDtool,

focusing more on visual graphing. Much like Nagios, it polls services at predetermined times

and graphs the data returned but has inferior protocols compatibility than Nagios.

Monitoring besides warning real time events, with current technologies can also make

predictions as enabling prognostics through the ability of calculating useful life of monitored

components. On the other hand, it can also even predict machines mal-functioning,

automatically ordering for spare part providers, for a fast response. These processes are

becoming more relevant in order to keep the production machinery running at high efficiency.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

17

2.4 Arrowhead Key Definitions

The objective of Arrowhead Framework architecture is to facilitate the creation of local

automation clouds enabling local real time performance and security, paired with simple and

cheap engineering, while enabling scalability. Here the concept of local cloud takes the view that

a specific geographically local automation should be encapsulated and protected. The local

cloud idea is to let the local cloud include the devices and systems required to perform the

desired automation tasks, pƌoǀidiŶg a loĐal ͞ƌooŵ͟ ǁhiĐh ĐaŶ ďe pƌoteĐted fƌoŵ outside
activities [5].

Devices in such local clouds are considered to be IoT devices speaking at least one SOA protocol.

The capability of building automation systems requires a number of local cloud properties to be

enabled. Furthermore, both intra and inter cloud information service exchange capabilities are

necessary for enabling IoT devices to interoperate and to be integrated with others to become

an automation System of Systems.

To discuss and define a local cloud architecture, the following definitions are important to

understand the Arrowhead Framework properly. Note that these keywords may have other

definitions in different domains, but for the usage of Arrowhead the following definitions were

made.

 Service

A Service is what is used to exchange data between a providing System to a consuming

System. A Service can be implemented to use a number of different SOA protocols, some

examples being REST or XMPP. A Service is produced by a software System. A Service

can have related metadata and can be able to support non-functional requirements such

as security, real-time operation or different levels of reliability – among others [5].

 System

A System is what provides and/or consumes services, and must be able to be the Service

provider of one or more services and in the meantime the Service consumer of one or

more services. A System is a software implementation and runs on a Device.

 Device

An Arrowhead compliant Device is a piece of hardware, with computational, memory

and communication capacities that hosts one or more Systems and can be set up in an

Arrowhead Local Cloud.

 Local Cloud

In the Arrowhead context, a Local Cloud, as represented in Figure 4, is defined as a self-

contained network with the three required core systems deployed and, at least, one

application system deployed. A Local Cloud must host only one ServiceRegistry system.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

18

Figure 4 – Local Cloud representation [27]

 System of Systems

Inside the Arrowhead Framework, a System of Systems is defined as a group of Systems

that exchanges information between themselves by means of Services. These systems

are administrated by the Arrowhead core systems, such as the Orchestrator. Therefore,

a Local Cloud becomes a System of Systems in the Arrowhead Framework's definition.

Such as Figure 5 represents, if two Systems hosted by different Local Clouds are

administrated by Arrowhead core systems to exchange services, it also is a System of

Systems. When Arrowhead compliant Systems work together, they become a System of

Systems. Seeing that two or more such System of Systems can also work together, the

Arrowhead Framework becomes a natural enabler of further, complex solutions.

Figure 5 – Systems exchanging Services, thus creating a System of Systems in a Local Cloud and between Local

Clouds [27].

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

19

2.5 Vision for the Solution

This chapter approaches the solutions of the problems already described in the Section 2.1,

explaining them with the support of diagrams. The Section 2.5.1 describes the Arrowhead

solution, in which explains the architecture and the protocols used. The Section 2.5.2 is relative

to the support of QoS in the Arrowhead Framework, describing a proposed integration

architecture.

Note that the Arrowhead solution was already developed in this project, and consisted only of

the framework without any QoS support.

2.5.1 Arrowhead Solution Architecture

The Arrowhead architecture is composed by a set of Systems, which provide a number of

Services. The objective of the framework is to provide an architecture, from which a self-

contained local automation cloud can be created. These clouds shall further be capable of

providing certain automation support services and provide support for bootstrapping, security,

suitable metadata, protocol and semantics transparency and inter-cloud service exchanges [1].

The architecture features three types of services:

 Mandatory core services

 Automation support core services

 Application services

These are provided by mandatory and support core systems, as well application systems.

Figure 6 - Core Systems of the Arrowhead Framework [1].

Figure 6 depicts the cores systems defined with the Arrowhead Framework. These mandatory

core services will enable the basic properties of a local cloud, such as service exchange between

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

20

a service producer and a service consumer with a desired level of security and autonomy. There

are three independent core systems present in Arrowhead, which are the following:

 ServiceRegistry System: The ServiceRegistry goals are to provide a storage of all active

services and enable the discovery of these. Since the Arrowhead Framework is a

domain-based infrastructure its service registry functionality is based on DNS-SD

standard [1].

 Authorisation System: The Authorisation System provides Authentication and

Authorisation of services, working with a set of rules that allow a consumer to use a

service resource or not. Two different Authorisation systems are defined within the

Arrowhead Framework, an AA – Authorisation Authentication system and an AAA –

Authorisation Authentication and Accounting system. The AA system is better suited for

local clouds enrolling Systems hosted on Devices with sufficient computational power.

While the AAA systems is better suited for local clouds enrolling Systems hosted in

resource constrained devices.

 Orchestrator System: The Orchestrator is a central component for Arrowhead, it is

utilised to dynamically allow the re-use of existing services and systems in order to

create new services and functionalities. From an architectural point of view, the

Orchestrator is responsible for finding and pairing service consumers and providers.

To facilitate automation application design, the Arrowhead Framework contains a number of

automation services hosted on supportive core systems, on the contrary of the core services

these services are optional. There are nine support core systems:

 PlantDescription system

 Configuration system

 DeviceRegistry system

 SystemRegistry system

 EventHandler system

 QoS system (see section 4)

 Historian system

 Gatekeeper system

 Translation system

From these nine systems, with the exception of the QoS, only the EventHandler was used in this

project.

EventHandler

The EventHandler supports publish/subscribe communication and filtering of events, and

storage of information regarding events. In the usual workflow, the EventHandler receives

events from event producers, dispatches them to registered event consumers, logging these

events to persistent storage, registers producers and consumers of events, and applies filtering

rules configured by Event Consumers [28].

Regarding the events flow, event producers declare they consume the Publish service, event

consumers declare that they produce the Notify service. Furthermore, producers and consumers

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

21

create rules on the plant description service regarding which event they produce/consume. The

Orchestrator system retrieves the information, computes the matchings, pushes the matching

to consumers, and to EH instances.

2.5.2 Supporting QoS in Arrowhead

Since the problem focused on configuring and monitoring QoS, two systems were defined, one

is the QoSManager, responsible for configuring QoS, the other, not less important, is the

QoSMonitor, which guarantees the success of QoS configuration by monitoring both network

and devices in real-time. Hence, these two systems are considered as supportive systems of the

Orchestrator since they only add optional functionalities to the Arrowhead Framework.

Concerning the QoSManager, it is responsible for configuring QoS, working with, not only, the

systems that consume and provide services, but also, with network actives. The functionalities

are supported by keeping track of network actives and system configurations and by managing

reservation of computational and communication capabilities over them. With the support of

drivers and algorithms, the QoSManager is capable of working under different network

technologies. These drivers are called as QoSDrivers, and they interact with the network actives

and systems using custom protocols that depend on the network active, its vendor, etc.

A Service Level Agreement (SLA) mechanism is used in both QoSManager and QoSMonitor

systems for setting up QoS parameters. In the field of embedded computing, critical applications

typically require stricter timing requirements and in mainstream embedded applications, the

focus is on energy saving and low cost. Regarding other scenarios, the SLA can specify the

amount of data that must be offered by service providers [5].

Concerning the QoSMonitor, its purpose is to make sure that given QoS Requirements

(expressed using the SLA) are being respected. The system must also warn of any given critical

events that occur. It accomplishes these objectives by monitoring the performance of services

directly, by having modules running in systems and accessing log information of network actives.

This allows the service to detect if any QoS requirements (for example monitored parameters

like delay or bandwidth, or periodicity of communication) cannot be guaranteed anymore by

the current orchestrated service.

2.6 Arrowhead Documentation Methodology

The Arrowhead Framework has the goal of addressing the technical and applicative issues

associated with cooperative automation, based on a SOA architecture. The problems of

developing these systems is the lack of adequate development methodologies, which would

facilitate the reusing of services on different applications.

As consequence, every Arrowhead partner must document and describe its developed solutions

using an Arrowhead compliant documentation method. This has the purpose of accomplishing

a common understanding of the systems developed by every Arrowhead partner. The

Arrowhead compliant methodology includes design patterns, documentation templates and

guidelines that aim at helping systems to conform to Arrowhead Framework specifications.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

22

The Arrowhead compliant documents consist in three levels: System-of-Systems, System and

Service levels, as Figure 7 depicts.

Figure 7 - The Arrowhead documentation relationships [29].

The appƌoaĐh is to applǇ teƌŵs ͞ďlaĐk-ďoǆ͟ aŶd ͞ǁhite-ďoǆ͟ oŶlǇ iŶ the “Ǉsteŵ Leǀel, iŶ the

sense of writing an abstract high-level description of a system approaching only its behaviour,

and on the other case in the sense of writing with detail the implementation done.

This documentation system has been used within the aims of this report, therefore the structure

of this report is in accordance with this kind of documentation and slightly different from more

͞tƌaditioŶal͟ PE“TI ƌepoƌts.

2.6.1 System-of-Systems Level

At the System-Of-Systems (SoS) there are two types of documentation, System-of-Systems

Description (SoSD) document and System-of-System Design Description (SoSDD).

 System-of-Systems Description (SoSD) Template

This document should contain an abstract high level view, describing the main functionalities

and generic architecture, without referring any specific technology. Such document must

include use-cases to help understand the expected behaviour. Based on these use-cases, the

document should include behaviour diagrams. It is also recommended the support of UML

diagrams, mainly component and activity diagrams [29].

In this document, it is also important to include information about non-functional requirements,

in which the security must be treated separately. This includes the definition of security

principles that SoS needs to follow on a non-technical generic level, the security objectives and

the assets which need to be protected.

 System-of-Systems Design Description (SoSDD) Template

This doĐuŵeŶt desĐƌiďes hoǁ a ͞ “Ǉsteŵ-of-Systems DesigŶ DesĐƌiptioŶ͟ has ďeeŶ iŵpleŵeŶted
on a specific scenario, describing the technologies used and its setup. The document starts with

an abstract high-level view of the SoS realization, describing how its main functionalities can be

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

23

logically implemented. Specific use-cases are described next, supported by structure and

behaviour diagram.

The non-functional requirements implemented by this realization must be listed along with its

security features. To support the validation of the security attributes of this SoS realization, it is

also necessary to include information identifying the data flows in the system as well as its

threads and vulnerabilities [29].

2.6.2 System Level

At the sǇsteŵ leǀel theƌe aƌe tǁo diffeƌeŶt ƌepƌeseŶtatioŶs, the ͞“ǇsD Teŵplate͟ ĐoŶsists iŶ a
͞ďlaĐk-ďoǆ͟ desigŶ, ǁhile the ͞“ǇsDD Teŵplate͟ ĐoŶsists iŶ a ͞ǁhite-ďoǆ͟ desigŶ.

 System Description (SysD) Template

This document provides the main template for the System Description of Arrowhead compliant

systems. As a ͞ďlaĐk-ďoǆ͟, there should be a description of the main services and interfaces of a

system without describing its internal implementation where all the system

produced/consumed services are listed. It is recommended the use of component diagrams to

represent the interoperability of different systems. This structural view can be complemented

with a high-level behavioural view such as sequence diagrams [29].

 System Design Description (SysDD) Template

This document provides the main template for the description of Arrowhead Systems,

technological implementations, describing in detail the proposed solution. Here it is encouraged

the usage of formal or semi-formal models in order to enable the automation generation of code

from the specifications as much as possible. When automation is not possible, the document

should be precise enough to guide developers towards an implementation that matches these

specifications [29].

2.6.3 Service Level

The service level consists of four documents: the SD Template, the IDD Template, the CP

Template and the SP Template.

 Service Description (SD) Template

A service description document provides an abstract description of what is needed for systems

to provide and/or consume a specific service. SD´s for Application Service are created (specified)

by the developers of any Arrowhead compliant system and by the developers of the Core

Arrowhead Framework services. The SD shall make it possible for an engineer to achieve an

Arrowhead compliant realization of a provider and/or consumer of description of how the

service is implemented by using the Communication Profile and the chosen technologies [29].

The document starts by describing the main objectives and functionalities of the service and

follows on defining the Abstract Interfaces and an Abstract Information Model. On Abstract

Interfaces section all interfaces should be detailed using a UML sequence diagram. The Abstract

Information Model section must provide a high level description of the information model with

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

24

types, attributes and relationships, based on UML Class diagram. Finally, non-functional

requirements must be described for each service.

 Interface Design Description (IDD) Template

An IDD provides a detailed description of how a service is implemented by using a specific

Communication Profile and specific technologies. This document describes each of the

interfaces in a separate sub-section, and the functions included in each interface. To support the

descriptions, the use of UML sequence, class and components diagrams is recommended. There

must be an Information Model section present in the document, containing detailed information

about the data formats used by the interface along with metadata information [29].

 Communication Profile (CP) Template

The CP document describes the types of message patterns, defining in detail how the CP handles

security issues, regarding authentication and encryption based on the protocol specifications.

For instance, in the use of Constrained Application Protocol (CoAP), Datagram Transport Layer

Security (DTLS) is enabled. This document can be identified by three characteristics: transfer

protocol (e.g. CoAP); security mechanism (e.g. DTLS); data format (e.g. XML).

 Semantic Profile (SP) Template

The SP describes the data format by pointing out its type (e.g. JSON; XML) and how that data is

encoded.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

Chapter 3. Working Environment

3 Working Environment ... 26

3.1 Work Methods ... 26

3.2 Work Planning .. 27

3.3 Follow up Meetings .. 28

3.4 Technologies .. 30

3.4.1 Languages & Libraries.. 30

3.4.2 Databases .. 32

3.4.3 Development ... 32

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

26

3 WoƌkiŶg EŶǀiƌoŶŵeŶt

This chapter describes how the project developers worked during the project, along with a

timeline. First, it introduces the work methodologies used. Then, with the support of a Gantt

diagram, the planning of the overall work is shown along with the follow up meetings. Finally, in

Section 3.4, we list all the used technologies and what systems each technology was used for.

3.1 Work Methods

The work here developed consisted in a team work involving local and foreign partners. Since

other research centres should use the developed code, the supervisors of the project had a

considerable participation in the analysis and documentation phases. This was done to ensure a

high-quality software that meets the needs of all, having also a predictable schedule. Therefore,

it was considered that the best work method should be an agile one, specifically Rational Unified

Process (RUP).

As RUP proposes, the project timeline consisted in the following four phases:

1. Inception – In this phase, the tasks consisted more in research and the studying of the

technologies that were planned to be used.

2. Elaboration – During this phase, several project architectures and technologies were

proposed and discussed with the project supervisors. Both functional and non-

functional requirements along with the pilot project were defined.

3. Construction – In this phase, all the elaborated use cases were implemented. We

integrated all the implemented systems between themselves, with the framework and

finally with the pilot project.

4. Transition – Some prototypes were made and posted on practice, resulting on code

testing and improvements.

Since this project was more research-related, it consequently involved considerable theoretical

tasks, and new technologies usage. The analysis phase has a more relevant role than in typical

software developments, and consequently was more time consuming. After each research task,

a power point would be written containing the captured ideas, and presented to the supervisors

for comments.

Some of RUP best practices [30] were adopted, such as:

 Develop Software Iteratively. In each iteration, the developing team presented the work

and received feedback from the supervisors. This occurred during the RUP construction

phase, in two weeks periods or less.

 Control changes to software. Each system was developed in different branches to isolate

any changes made by another partner.

 Visually Model Software. With the support of UML diagrams, every code design and

description was documented in graphical presentations in order to ease its

understanding by all members of the team.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

27

All the source code of the project and its design was managed using the Bitbucket [31] system,

using Git [32] as a revision control system. Regarding the tasks, the team used the Issue Tracker

system of Bitbucket for the project tasks/issues. Each task consisted in three different types:

code, analysis and tests. These work methods allowed a rigorous code design documentation

and the possibility to see what every one on the development team was doing, had done and

what was going to do. Any error or bugs that emerged, would be immediately reported.

Along with the internship responsible it was decided to do weekly report that would describe

the work done in the last seven days, so there would be a historical documentation with an

evolution timeline of the project. There would be also a weekly meeting, at minimum, with the

project responsible, where it would be discussed the tasks status, the code design and planned

future tasks. Never less than thirty minutes, every meeting participant would show what had

done, and what problems they were facing. These meetings were very important to overcome

any of the internship problems, and constantly improve the project solution.

3.2 Work Planning

The project planning since its beginning was divided in six different phases: Project

Requirements, Software Analysis, Development, Tests, Documentation, and Meetings. Unlike

typical project planning, it was best to separate the Meetings phase from the Documentation

since it had an important role. This was done because during the project, meetings occurred

very often, more than normal with both supervisors and team supporters given that they had

an enormous influence in the work planning.

Additionally, we decided that the initial phases would be the Project Requirements gathering

and the Project Meetings. In this stage of work, the team would discuss the objectives and

functionalities that were considered essential to be developed. When the team decided it had

enough information to evolve from Project Requirements to Software Analysis, the Meetings

still occurred until the end of the project.

Regarding the Software Analysis phase, it consisted in a more rigorous and detailed description

about the project application. The team, using UML [33], studied and proposed several

architectures, detailing the technologies to be used. During this stage, the team had weekly

meetings to reach a consensus about what and how certain solutions should be implemented.

Furthermore, both Development and Test phases occurred at the same time with only a few

days of difference. During Development the team implemented all the previously designed

systems along with the respective functionalities. In Testing phase, the team integrated all the

developed systems and consequently would corrected any captured failure. Two types of tests

were used, Unit [34], Acceptance [35].

Lastly, the Documentation phase involved the writing of PESTI report and the Arrowhead

compliant technical documentation. Table 3 shows a representation of the Project Planning.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

28

Table 3 - Project Planning.

3.3 Follow up Meetings

The meetings occurred throughout the project are here presented and explained. First, as Table

4 depicts, there were three types of meetings: Briefings, Tele-Conferences and Demo

Presentations.

The Briefings consisted in formal meetings with the supervisors, using Power Point [36]

presentations to discuss the project, more specifically its status, the tasks and solution

strategies. During the code implementation, the Briefings were also used to present the

developed work and discuss functionalities.

The Tele-Conferences occurred only with the foreign team supporters. The purpose of these

meetings was to resolve any technical problems and plan the joint work.

Regarding the Demo-Presentations, these meetings occurred less often that the others since

they took place in the final stage of the project. In this meetings the integration of all developed

systems and their functionalities were presented, and a proof of concept video was recorded.

In addition, it must be noted that other meetings, of more informal nature, were held daily, in a

more informal environment. Table 4 shows information regarding the meetings held throughout

the project in chronological order.

Table 4 - Meetings Agenda.

DATE SUBJECT PARTICIPANTS

16/02/2016

15:00 – 16:00

Briefing:

Project presentation.

Luis Lino, Michele, Joss, Pedro,

Paulo Barbosa

25/02/2016

10:00 – 11:00

Briefing:

Definition of tasks, elaboration of

planning.

Luis Lino, Michele, Renato, Paulo

Barbosa.

29/02/2016

16:30 – 17:30

Briefing:

Work strategy definition.

Luis Lino, Renato, Paulo Barbosa.

ID WBS TASK PREDECESSOR RESPONSIBLE DURATION START FINISH

#R 1
Project

Requirements Team 15 weeks

1

March 31 May

#A 2
Software

Analysis #R Team 10 weeks 2 May 30 June

#D 3 Development #A Team 14 weeks 1 June 31 August

#T 4 Tests #D Team 13 weeks 6 June 31 August

#D 5
Documentation #I Team 20 weeks 30 May

23

September

#M 6
Meetings none Team 34 weeks

1

March

30

September

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

29

DATE SUBJECT PARTICIPANTS

1/03/2016

15:30 – 16:30

Briefing:

Project Status.

Luis Lino, Renato, Joss, Paulo

Barbosa.

04/03/2016

15:00 – 16:00

Briefing:

Work strategy definition. Project

planning redefinition.

Luis Lino, Michele, Renato, Joss,

Pedro, Paulo Barbosa.

07/03/2016

14:30 – 15:30

Briefing:

Project Status.

Michele, Paulo Barbosa.

08/03/2016

14:30 – 15:30

Briefing:

Project Status.

Difficulties exposure.

Luis Lino, Michele, Paulo Barbosa.

11/03/2016

10:00 – 12:00

Briefing:

Code Design Discussion.

Luis Lino, Michele, Joss, Renato,

Pedro, Paulo Barbosa.

15/03/2016

15:00 - 16:00

Briefing:

Pilot-Project Discussion.

Luis Lino, Michele, Paulo Barbosa.

17/03/2016

18:00 – 19:00

Briefing:

Project Status

Project planning redefinition.

Luis Lino, Paulo Barbosa.

21/03/2016

16:00 – 17:00

Briefing:

Project Status

Project planning redefinition

Luis Lino, Paulo Barbosa.

24/03/2016

15:30 – 16:30

Briefing:

 Project Status

Luis Lino, Michele, Renato, Paulo

Barbosa.

30/03/2016

15:00-16:00

Briefing:

Project Status

Luis Lino, Michele, Renato, Paulo

Barbosa.

06/04/2016

11:30-12:30

Briefing:

Project Status

Luis Lino, Michele, Renato, Paulo

Barbosa.

08/04/2016

14:00 – 15:00

Tele - Conference:

Discussion about integration

problems.

Renato, Paulo Barbosa.

02/05/2016

14:00 – 15:00

Briefing:

Project Status

Project work methodology

redefinition.

Luis Lino, Michele, Renato, Paulo

Barbosa.

03/05/2016

14:30 – 15:30

Tele - Conference:

Problems discusses.

Shared thoughts about solutions.

Renato, Paulo Barbosa.

10/05/2016

15:30 – 16:00

Briefing:

Project Status. Code design

redefinition.

Luis Lino, Paulo Barbosa.

20/05/2016

18:00 – 20:00

Briefing:

Demonstration of features.

Project Status.

Luis Lino, Michele, Bruno, Renato,

Paulo Barbosa.

27/05/2016

15:00-16:00

Briefing:

Demonstration of features.

Luis Lino, Michele, Bruno, Renato,

Paulo Barbosa.

30/06/2016

15:00-16:00

Briefing:

Project Status.

Luis Lino, Michele, Bruno, Joss,

Paulo Barbosa.

03/06/2016

16:30 – 17:00

Briefing:

Project Status

Project planning redefinition.

Luis Lino, Bruno, Renato, Paulo

Barbosa.

09/06/2016

14:15 – 16:00

Briefing:

Demonstration of features.

Project planning redefinition.

Luis Lino, Bruno, Joss, Pedro,

Renato, Paulo Barbosa.

15/06/2016

18:00-18:30

Briefing:

Demonstration of features.

Project planning redefinition

Luis Lino, Bruno, Paulo Barbosa.

5/07/2016

11:00-11:15

Briefing:

Project Status.

Michele, Luis Lino, Renato, Bruno,

Paulo Barbosa.

18/07/2016

12:00-12:30

Briefing:

Project Status

Project planning redefinition

Michele, Luis Lino, Renato,

Roberto, Paulo Barbosa.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

30

DATE SUBJECT PARTICIPANTS

29/07/2016

17:00-17:30

Demo Presentation:

Demonstration of all features – 1st

demo.

Michele, Bruno, Renato, Roberto,

Paulo Barbosa.

1/08/2016

17:00-18:00

Demo-Presentation:

Discussed the demo.

Demonstration of features.

Luis Lino, Michele, Bruno, José

Pedro (Event Handler), Renato e

Paulo Barbosa.

13/08/2016 Demo-Presentation:

Demonstration of all features – 2nd

demo

Luis Lino, Michele, Bruno, José

Pedro (Event Handler), Renato e

Paulo Barbosa.

19/08/2016 Tele – Conference:

Discussed the developed changes.

Planning of future tasks.

Michele, Paulo Barbosa.

29/08/2016 Briefing:

Demonstration of all features –

final demo

Luis Lino, Renato, Joss, Paulo

Barbosa.

23/09/2016 Briefing:

Documentation Overview

Luis Lino, Bruno, Renato, Paulo.

3.4 Technologies

Table 5 summarizes which technologies were used, their version and the justification of their

employment. In the following sub-sections, each technology is explained.

Table 5 - Employed technologies.

Technology Version Where Was Used

Java JAVA SE 8 Arrowhead Applications

Maven 2.5.1 Arrowhead Applications

Jersey 2.23.1 Arrowhead Applications

NetBeans 8.0.1 Arrowhead and FTT-SE

Application

NS-3 3.25 For QoS and FTT-SE research

and analysis

C ANSI-C FTT-SE Application

MySQL 5.1.6 Arrowhead Database

MongoDB 3.2.2 QoSMonitor Database

3.4.1 Languages & Libraries

This sub-section describes each programming language and library used during the project.

 Java

Java is an object-oriented programming language first released by Sun Microsystems in 1995. It

is fast, secure, and reliable. From laptops to datacentres, game consoles to scientific

supercomputers, cell phones to the Internet, Java is widely used [37]. Java language is very based

on C and C++ languages, many of Java´s defining characteristics come from this two

pƌedeĐessoƌs, ǁhiĐh aƌe ƌefiŶeŵeŶts aŶd ƌespoŶses to the pƌedeĐessoƌ’s liŵitatioŶs.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

31

What really defines Java is its portability, because to make C and C++ work in different CPUs it is

needed a compiler for each type of CPU, and compilers are expensive and time-consuming to

create. Therefore, back then Java founders decided to work on a portable, platform independent

language that could be run every type of CPUs, leading to the creation of Java [38].

Currently the latest Java version is Java SE 8 and represents another very significant upgrade

with the introduction of lambda expression. The purpose of lambda expressions is to simplify

and reduce the amount of source code needed to create any functions.

 C

C is an imperative programming language, a very powerful tool, capable of providing low-level

aĐĐess the Đoŵputeƌ’s ŵeŵory. Developed by Bell Labs in 1972 it has been most used to convert

from assembly language programs and operating systems without any performance losses. The

main advantage of C language during its release was its high-level and easiness to program that

could replace assembly code when creating software.

C works best for small projects where performance is important and the programmers have the

time and skill to make it work in C. In any case, C is a very popular and influential language. This

is mainly because of C's clean (if minimal) style, its lack of annoying or regrettable constructs,

and the relative ease of writing a C compiler [39].

 Jersey

In order to simplify development of RESTful Web services and their clients in Java, a standard

and portable JAX-RS API has been designed. Jersey RESTful Web Services framework is open

source, production quality, framework for developing RESTful Web Services in Java [40].

Although Jersey is not the only JAX-RS API [41], it is the only officially developed by Oracle.

Aǀailaďle foƌ Jaǀa ϲ aŶd higheƌ ǀeƌsioŶs, it giǀes all Jaǀa ǁeď pƌogƌaŵŵeƌ’s aŶ esseŶtial tool
reducing programming time and facilitating code comprehension. JAX-RS uses annotations to

define the REST relevance of Java classes [42]. These annotations define the behaviour of

interfaces, and facilitate the implementation.

This RESTful Web Service consists in resources, that are accessed via a common interface based

on HTTP methods. There are four different HTTP methods used in REST: Get, Put, Delete and

Post.

 NS-3

For all students and investigators with limited budget NS-3 offers a free and open network

simulation platform for networking research. It is an open-source platform written in C++

capable of working in all the three main operative systems, Linux, Mac OS X and Windows.

Currently is in its third version that was released in mid-2008.

In brief, NS-3 provides models of how packet data networks work and perform, and provides a

simulation engine for users to conduct simulation experiments. Some of the reasons to use NS-

3 include performing studies that are more difficult or not possible to perform with real systems,

studying system behaviours in a highly controlled, reproducible environment, and learning

about how networks work [43].

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

32

All the NS-3 simulation are based on discrete events, meaning that between consecutive events,

no change in the system is assumed to occur, differentiating from continuous events which are

event-based systems where the program is continuously tracking the program events over time.

Therefore, discrete events systems have more performance because they have only to simulate

between time slices [44].

3.4.2 Databases

This sub-section describes the two databases technologies used for the project.

 MongoDB

MongoDB is an open-source database developed by MongoDB, Inc. MongoDB stores data in

JSON-like documents that can vary in structure. Related information is stored together for fast

query access through the MongoDB query language. MongoDB uses dynamic schemas, meaning

that you can create records without first defining the structure, such as the fields or the types

of their values [45].

Classified as NoSQL database, MongoDB eliminates the complex object relational mapping

(ORM) and instead it provides a flexible and scalable data modelling. Unlike MySQL MongoDB

has the capability of working with large quantity of data without any performance cost.

 MySQL

MySQL offers reliable, high-performance and scalable Web-based and embedded database

applications [46].

Released in 1995 MySQL is the second most used Relational Database Management System,

after Oracle (RDBMS) [47]. Developed by a Swedish company and acquired in 2008 by the giant

softǁaƌe ĐoŵpaŶǇ ͞OƌaĐle͟. WƌitteŶ iŶ C aŶd C++, it is aŶ opeŶ-source software capable of

working on most of existing operative systems such as Linux, Windows and OSX.

A relational database stores all the data in separate tables, which are then organized and

associated using foreign keys. This means that a relational database must have a logical

structure, setting up rules between different data fields, avoiding duplicate and inconsistent

data. MySQL derives from SQL, which is a standardized language for users to access the

databases.

The main characteristics that MySQL has are its portability, capable of working on almost every

platform system, compatibility, it can work in all the top 10 most used programming languages

[48] and many more, high performance.

MySQL is the ǁoƌld’s ŵost populaƌ opeŶ souƌĐe dataďase, eŶaďling the cost-effective delivery.

3.4.3 Development

This sub-seĐtioŶ desĐƌiďes the tools, suĐh IDE’s aŶd pƌojeĐt ŵaŶageŵeŶt teĐhŶologies, used foƌ
the development of the project solutions.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

33

 Maven™

Maven is a project management tool which encompasses a project object model, a set of

standards, a project lifecycle, a dependency management system, and logic for executing plugin

goals at defined phases in a lifecycle. When using Maven, a description of the project must be

made using a well-defined project object model, Maven can then apply cross-cutting logic from

a set of shared (or custom) plugins.

 NetBeans

NetBeans is the official IDE for Java 8. With its editors, code analysers, and converters, it can

quickly and smoothly upgrade applications to use new Java 8 language constructs, such as

lambdas, functional operations, and method references [49].

Initially developed by two young students in 1996, and acquired by Sun Microsystems in 2000,

NetďeaŶs is oŶe of ŵost the ŵost used IDE’s [50]. More importantly than its features, Netbeans

has a vast community due to its open-source platform.

Written completely in Java, it is a portable system capable of working on any machine, with Java

Virtual Machine installed. Many other programming languages, such as C/C++, JavaScript and

PHP are supportable by Netbeans, and its community plugins expands the IDE capabilities.

 Eclipse

Eclipse is a community for individuals and organizations who wish to collaborate on

commercially-friendly open source software. Its projects are focused on building an open

development platform comprised of extensible frameworks, tools and runtimes for building,

deploying and managing software across the lifecycle. The Eclipse Foundation is a not-for-profit,

member supported corporation that helps cultivate both an open source community and an

ecosystem of complementary products and services [51].

Eclipse is an integrated development environment capable, it is free and open-source, and can

be used development of application on Java, C, C++, JavaScript, PHP, Prolog, Python, R and on

many other languages.

Developed by IBM in 2001, Eclipse has a very large community contributing with the

development of plugins. Configurability and extensibility are the main features that Eclipse

offers.

 Git

Git is a free and open source distributed version control system designed to handle everything

from small to very large projects with unlimited number of developers [52]. It was created by in

2005 for assisting the Linux kernel development project in order to control all the changes and

therefore avoid files corruption. The time when Git was developed there were already some

version control systems such as BitKeeper [53] but all of them had some flaws, like weak

performance, so Git corrected all the other systems weaknesses.

Nowadays version control systems are widely used in software development and are a

fundamental tool. They are essentially a code repository where all the project workers can

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

34

access and change, with monitored access. Every source code changes are tracked, along who

made the change, and why they made it. Three main characteristics from Git and other system

version controls are version tracking, versions restoring and team coordination.

1. Tracking all project versions.

Version tracking allows the recording and analysing of all the project changes, who made it and

why, when a new functionality was implemented or when a bug was introduced even fixed. The

project timeline is automatically made by the version control system, reducing the project

manager work.

2. Restoring previous versions.

Being able to restore older versions of the project effectively means when the last project

changes crash it, a simply undo can be done with few clicks. Knowing this makes all the project

workers a lot more relaxed when working on important bits of a project [54].

3. Coordinating Teams.

Teams, either co-located or distributed, usually carry out resource development. Version control

is central for coordinating teams of contributors. It lets one contributor work on a copy of the

resources and then release their changes back to the common core when ready. Other

contributors work on their own copies of the same resources at the same time, unaffected by

eaĐh otheƌ’s ĐhaŶges uŶtil theǇ Đhoose to ŵeƌge oƌ commit their changes back to the project.

Any conflicts that arise whenever two contributors independently change the same part of a

resource are automatically flagged. Such conflicts can then be managed by the contributors [55].

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

Chapter 4. Arrowhead Documentation/ Analysis and Implementation

4 Arrowhead Documentation/ Analysis and Implementation ... 36

4.1 Introduction ... 36

4.2 Systems Description ... 38

4.2.1 QoSManager System Description .. 38

4.2.2 QoSMonitor System Description ... 46

4.3 Services Description ... 54

4.3.1 QoSSetup Service Description ... 54

4.3.2 Monitor service Description .. 61

4.4 Interface Design Description .. 71

4.4.1 QoSManager QoSVerify Interface Design Description .. 71

4.4.2 QoSManager QoSReserve Interface Design Description 72

4.4.3 QoSMonitor QoSEvent Interface Design Description.. 74

4.4.4 QoSMonitor QoSLog Interface Design Description ... 74

4.4.5 QoSMonitor QoSRule Interface Design Description.. 75

4.5 Semantic Profile Description .. 77

4.5.1 QoSManagerQoSVerify Semantic Profile Description ... 77

4.5.2 QoSManagerQoSReserve Semantic Profile Description 79

4.5.3 QoSMonitorQoSEvent Semantic Profile Description .. 82

4.5.4 QoSMonitorQoSLog Semantic Profile Description .. 83

4.5.5 QoSMonitorQoSRule Semantic Profile Description .. 84

4.6 System Design Description ... 87

4.6.1 QoSManager System Design Description (SysDD) .. 87

4.6.2 QoSMonitor System Design Description (SysDD) .. 100

4.7 System-of-Systems Design Description/Pilot Project .. 117

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

36

4 Aƌƌoǁhead DoĐuŵeŶtatioŶ/ AŶalǇsis aŶd
IŵpleŵeŶtatioŶ

4.1 Introduction

As partner of Arrowhead Framework, the team is obliged to write the technical documentation

following the Arrowhead templates and guidelines. Since most of this documentation

approaches both project analysis and implementation, it was decided to put in this chapter all

the written documents. The distribution of the documents per section is depicted in Figure 8.

The overall Arrowhead documentation is stored in a shared blog, located in the following URL

https://forge.soa4d.org/plugins/mediawiki/wiki/arrowhead-f/index.php/Main_Page. All

written documentation presented in this Chapter is in the process of approval by the Arrowhead

Partners, until the publication of this report.

Section 4.2 describes both QoSMaŶageƌ aŶd Qo“MoŶitoƌ sǇsteŵs iŶ a ͞ďlaĐk-ďoǆ͟ appƌoaĐh.
This Section contains two SysD documents. Section 4.3 describes both QoSSetup and Monitor

services provided by QoSManager and QoSMonitor systems, respectively. This Section contains

two SD documents. Section 4.4 describes all the interfaces provided by QoSManager and

QoSMonitor systems. This Section contains six IDD documents. Section 4.5 describes all the

semantic profiles of each interface messages. This Section contains six SP documents. Section

4.6 describes, in detail, the implementation of the QoSManager and QoSMonitor systems. This

Section contains two SysDD documents. Section 4.7 describes the implementation of the pilot

project done in a FTT-SE network. This Section contains one SoSDD document.

In overall, Sections 4.2 and 4.3 can be considered as an analysis of the project since their referred

documents focus on a higher-level description. The Sections 4.4 to 4.7 can be considered as a

technical description because the referred documents focus on the description of the used

technologies and its implementations.

https://forge.soa4d.org/plugins/mediawiki/wiki/arrowhead-f/index.php/Main_Page

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

37

Figure 8 - Tree view of the Arrowhead written documents and their associations.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

38

4.2 Systems Description

This section lists the goals, main services and interfaces of both QoSManager (Section 4.2.1) and

QoSMonitor (Section 4.2.2) systems without describing any technology.

4.2.1 QoSManager System Description

A. System Description Overview

The QoSManager purpose is to verify and manage QoS for service fruition.

This document regards a design considering that the QoSSetup and Monitor services are

produced by two different systems. Thus, QoSManager system produces the QoSSetup service,

QoSMonitor produces the Monitor service.

Acting as a support system for the Orchestrator system, the QoSManager provides services to

enable the configuration of systems and network actives. To this aim, the QoSManager system

produces the QoSSetup service, which allows two functions to be invoked. First, a verification of

a requested QoS is done with the support of a specific communication protocol algorithm.

Second, the QoSManager can configure all the necessary network actives and devices to

guarantee the selected QoS with the support of specific communication protocol drivers. To

assure the fulfilment of the QoS during execution time, the QoSManager consumes the Monitor

service provided by the QoSMonitor system.

A high level of the QoSManager system is depicted in Figure 9.

Figure 9 - Overview of the QoSManager System.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

39

a. Domain Model

Figure 10 - Domain Model of the QoSManager system.

Using Figure 10 has a guideline, the Domain Model for the QoS Manager can be described as:

The QoSManagerSystem provides only one service, the QoSSetupService. This service

provides two functionalities, the QoSVerification and QoSReservation.

The QoSVerification uses multiple QoSAlgorithms, each one is specific to a

communication protocol. The QoSReservation is similar to QoSVerification and

instead of using QoSAlgorithms it uses QoSDrivers.

To guarantee enough information to its operations, the QoSSetup accesses two stores,

QoSStore and SystemConfigurationStore. The QoSStore has various

MessagesStreams, each one is composed by two ArrowheadSystems, one

ArrowheadService and one QoSResourceReservation. The

QoSResourceReservation is formed by multiple QoSParameters, and each parameter

has a Ŷaŵe aŶd a ƌespeĐtiǀe ǀalue ;i.e. ͞ďaŶdǁidth͟ as Ŷaŵe aŶd ͞ϭϱϬϬ͟ as value).

Regarding to the SystemConfigurationStore, it has various Networks, Nodes, and

Topology. A Node contains multiple NetworkDevice, ArrowheadSystem,

Capability. The Topology entity contains two ͞Ŷeighďouƌ͟ Node objects that have a

direct communication. Such as the Node, a NetworkDevice can also have multiple

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

40

Capability objects and is grouped in a Network entity. A Network has a

CommunicationProtocol that is specific to each QoSDriver and QoSAlgorithm.

The QoSManagerSystem consumes the AddingMonitorRule operation, provided by the

MonitorService that in turn is provided from the QoSMonitorSystem.

AddingMonitorRule uses two ArrowheadSystems and one ArrowheadService.

b. Mandatory Properties Files

For storing QoS reservations and configurations of network actives and devices, the

QoSManager uses a relational database, for example a MySQL database. In order to

function properly, the QoSManager must be configured with information regarding the

databases and the QoSMonitor Uri.

The database properties file named hibernateQoS.properties, contains one

databaseurl parameter which refers to the URL of the QoSStore database, e.g.

͞jdďĐ:ŵǇsƋl://loĐalhost:ϯϯϬϲ/Ƌos_stoƌe͟:

connectionQoS.url=[databaseurl]

The database properties file named hibernateSCS.properties contains one

databaseurl parameter which refers to the URL of the SystemConfigurationStore

dataďase, e.g. ͞jdďĐ:ŵǇsƋl://loĐalhost:ϯϯϬϲ/sǇsteŵ_ĐoŶfiguƌatioŶ_stoƌe͟:

connectionSCS.url=[databaseurl]

The Monitor properties file named monitor.properties contains one

url_to_monitor parameter, which refers to the URL of the QoSMonitor system,

e.g. ͞http://ϭϵϮ.ϭϲϴ.ϭ.ϭ:ϴϬϴϬ/ƋosŵoŶitoƌ͟:

monitor.uri=[url_to_monitor]

B. Use-Cases

QoSManager provides two functionalities, the Verification of a QoS and the Reservation of a

QoS.

The first use-case, Verification of QoS requirements, involves computing whether certain QoS

requirements are feasible, with the use of an algorithm. The same algorithm, which is specific

to a communication protocol, must take into account the configurations and capabilities of the

SoS and the current reservations over the network actives and devices.

The second use-case, Reservation of a QoS, regarding configuring a stream connecting the

producer and consumer accordingly to the requested QoS. Using a set of QoSDrivers, each one

specific to a communication protocol, the QoSManager configures all the network actives and

devices to accommodate the new service.

a. Functional Requirements

The QoSManager has two major functional requirements:

 Verification of a QoS: By receiving a set of orchestrated services and QoS

requirements, using a QoS algorithm, the QoSManager must decide if the

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

41

requirements are feasible. The QoS algorithm, which is specific to a

communication protocol, verifies a request by taking into account the

configurations and capabilities of the system of systems and the current

reservations over the network devices.

 Reservation of a QoS: Whenever a service is requested with QoS requirements,

the stream connecting the producer and consumer must be configured by the

QoSManager, to accommodate the new service. This is accomplished using the

QoSDriver, which is specific to a communication protocol.

b. Non-Functional Requirements

Regarding the non-functional requirements, five must be highlighted:

- Availability: The system must be online and accessible as long as possible, 24

hours per day and 365 days per year.

- Integrity: Dealing with sensible industrial requests the system must always

report any execution error into its database for further analysations and

improvements.

- Interoperability: The developed system must be able to be easily migrated to

other Arrowhead Frameworks, since there are more than one (ex. Hungary [56],

BNearIT). At best during the migration of frameworks, there should be no

adaptation or even logic model changes.

- Performance: The system and its algorithms must have the shortest execution

time therefore an advanced hardware and good programming code should be

adopted.

- Extensibility: The System must support new communication protocols and

different algorithms therefore it should be generic.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

42

c. Use-Cases Execution Flow

Table 6 - Use Case 1 execution flow.

Use-Case 1: Verification of QoS
ID: 1

Brief description:

The use-case describes the sequence of steps for the verification of the service consumer

requested QoS.

Primary actors:

Orchestrator

Secondary actors:

Preconditions:

- The Service Consumer and Service Provider network information must already be stored at

the System Configuration Store.

Main flow:

1- A Service Consumer contacts the Orchestrator, orchestrating a service, located on a

Local Cloud, with a Quality of Service.

2- The Orchestrator requests the QoSManager to verify the feasibility of the QoS on the

consumer and producer stream.

3- Using a specific network algorithm the QoSManager verifies if the requested QoS is

or not possible giving a reject motivation back to the Orchestrator.

4- The Orchestrator gives all possible producers that can provide the requested service

with QoS.

Post conditions:

-

Alternative flows:

3*- There is no sufficient information on the System Configuration Store to verify if the

requested QoS is feasible and therefore the QoSManager sends a warning.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

43

Table 7 - Use Case 2 execution flow.

Use-Case 2: Reservation of QoS
ID: 2

Brief description:

The use-case describes the sequence of steps for the storage of events into a database or a

local file.

Primary actors:

Orchestrator

Secondary actors:

Producer System, Consumer System

Preconditions:

- The Service Consumer and Service Provider network information must already be

stored at the System Configuration Store.

- This use-case comes only after UC1.

Main flow:

1- A Service Provider registers a service.

2- A Service Consumer contacts the Orchestrator, orchestrating a service, located on the

Local Cloud, with a requested Quality of Service.

3- The Orchestrator requests the QoSManager to reserve a message stream between

the Service Consumer and the Service Provider with the QoS desired.

4- The QoSManager, using the QoSDriver, setups the necessary configurations between

the Service provider and consumer to meet the requested QoS.

5- After the configuration the QoSManager responds to the Orchestrator if the

configuration was or not successful.

Post conditions:

Alternative flows:

4** - There is no sufficient information on the System Configuration Store to the QoS setup

the QoSManager sends a warning.

C. Diagrams

Verification of QoS

This diagram is already illustrated in the Section 4.3.1.

Reservation of QoS

This diagram is already illustrated in the Section 4.3.1

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

44

D. Application Services

Figure 11 depicts a representation of the set of services provided (produced) and consumed by

the QoSManager system. This system produces one service, the QoSSetup.

The QoSManager system consumes two services, namely: the QoSMonitor Monitor service, the

Authentication core system and the Service Registry (SR).

Figure 11 - Services provided and consumed by the QoSManager.

a. Produced Services

Table 8 - Pointers to IDD documents..

Service IDD Document Reference

QoSVerify Section 4.4.1

QoSReserve Section 4.4.2

With the support of an algorithm, the QoSVerify service calculates if a certain QoS is

feasible depending on the network topology, capabilities and current QoS reservations.

On the other hand, the QoSReserve manages the reservations used to guarantee QoS to

service fruition with the support of a driver.

b. Produced Services

Table 9 - Pointers to IDD documents..

Service IDD Document Reference

QoSMonitor

-Monitor

Section 4.4.5

ServiceRegis

try

https://forge.soa4d.org/svn/arrowhead/WP7/Task%207.3/Working/A

ITIA/Arrowhead_G3.2_QuickStart.zip

Orchestratio

n

https://forge.soa4d.org/svn/arrowhead/WP7/Task%207.3/Working/A

ITIA/Arrowhead_G3.2_QuickStart.zip

The description of the QoSMonitor, Service Registry and Orchestrator can be found in

their respective references.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

45

E. Security

This chapter defines high-level security principles the system needs to follow on a non-technical,

generic level.

a. Security Objectives

The QoSManager system provides secure HTTP communications using SSL/TLS as s

security protocol. This is to keep sensible information only readable by a restricted

group of recipients with the usage of certificates.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

46

4.2.2 QoSMonitor System Description

A. System Description Overview

The QoSMonitor system provides functionality for the monitoring of performance between two

systems, one consuming a service provided by the other, in a given Arrowhead compliant

installation.

This document regards a design considering that the QoSSetup and Monitor services are

produced by two different systems. Thus, QoSManager system produces the QoSSetup service,

QoSMonitor produces the Monitor service. It uses a set of plugins (extensions of the QoSMonitor

system) deployed in producer and consumer systems to capture communication information.

The QoSManager (section 4.2.1) sends rules that are used to specify QoS requested by the

service consumer when the orchestration process is performed. The QoSMonitor (section 4.2.2)

uses the Monitor database to store rules sent by the QoSManager. Afterwards, the QoSMonitor

receives monitor logs from the plugins and uses the information to present communication state

over time in graphic form. The monitor logs are stored in the Monitor database, with each having

a reference to a specific monitor rule. Furthermore, QoSMonitor uses the same data to verify

QoS against a rule identified by the same systems as given by the monitor log, thus sending

events to the EventHandler system if QoS requirements are not met. The QoSMonitor uses the

Monitor database to access the rules defined in each monitor log. In addition, it gives the

possibility to an Arrowhead compliant system to send errors, which are then transformed into a

maximum level severity event. A high-level view of the QoSMonitor system is depicted in Figure

12.

Figure 12 - QoSMonitor High Level Component Diagram.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

47

a. Domain Model

Figure 13 - Domain Model of the QoSMonitor system.

The domain model of the QoSMonitor system, shown in Figure 13 , can be described as follows:

The QoSMonitorSystem provides the Monitor service that in turn provides four

functionalities, namely AddMonitoringRule, RemoveMonitoringRule,

AddMonitoringLog and SendEvent. Since the QoSMonitorSystem must be capable

of working with various CommunicationProtocol like ͞FTT-“E͟ oƌ eǀeŶ ͞)igBee͟, all of

these functionalities use various types of CommunicationProtocol to execute its logic. The

CommunicationProtocol is defined by the user of the functionality each time it uses it.

A Database is used to store MonitorRule and MonitorLog and to support the Monitor

service in the various use cases. The SLAVerification (in section 4.4 there is an example

of an SLA) is responsible for verifying the QoS of a MonitorLog, against a MonitorRule

using a specific CommunicationProtocol. It also works with the EventProducer to

create an event whenever information of a MonitorLog does not comply with that specified

in the respective MonitorRule (for example, if a MonitorRule exists specifying that a

consumer can use 100 MB/s of bandwidth but the MonitorLog shows that 110MB/s were

used then this is a breach in QoS). The QoSMonitorSystem consumes the

RegisterProducer and PublishEvent functionalities from the RegistryService

and PublishService services respectively. The EventHandlerSystem provides both

services.

b. Mandatory property files

The database properties file named mongodb.properties contains a

database_connectionString parameter, which refers to the connection path

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

48

of the Monitor database, e.g. ͞ŵoŶgodď://ϭϵϮ.ϭϲϴ.ϲϬ.ϳϰ:ϮϳϬϭϳ͟; the

database_name parameter which refers to the name of the database, e.g.

͞ŵoŶgodď͟

connectionString=[database_connectionString]

database=[database_name]

The ServiceRegistry properties file named serviceregistry.properties, contains a

comma_separated_list_of_ServiceRegistry parameter, which refers to

the Arrowhead Frameworks where the user wants to register the QoSMonitor as a

seƌǀiĐe pƌoǀideƌ, e.g. ͞HuŶgaƌǇ͟

registry.option=[comma_separated_list_of_ServiceRegistry]

The EventHandler services properties file named eventhandler.properties contains a

url_to_orchestration which refers to the Orchestrator System where the

EventHandler system is located, e.g. http://localhost:8080/core/orchestrator; the

eventhandler_serviceGroup parameter refers to the service group of the

EǀeŶt HaŶdleƌ sǇsteŵ, e.g. ͞suppoƌtsǇsteŵs͟; the
registry_service_definition parameter refers to the definition of the

ƌegistƌǇ seƌǀiĐe, e.g. ͞ƌegistƌǇ͟; the publish_service_definition refers to

the defiŶitioŶ of the puďlish seƌǀiĐe, e.g. ͞puďlish͟.

orchestrator.orchestration.uri=[url_to_orchestration]

eventhandler.servicegroup=[eventhandler_serviceGroup]

eventhandler.registryservicedefinition=[registry_service_de
finition]

eventhandler.publishservicedefinition=[publish_service_defi
nition]

B. Use-cases

The QoSMonitor is registered and authenticated as an Arrowhead compliant system in the

ServiceRegistry. It is considered as given that the systems being monitored were also registered.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

49

Table 10 - Add Monitor Rule Use-Case Description

Use-Case 1: Add Monitor Rule

ID: 1

Brief description:

Add monitor rule about requested Quality-of-Service between two systems.

Primary actors:

QoSManager (Section 4.2.1).

Secondary actors:

MongoDB Manager.

Preconditions:

At least one monitor parameter (for example bandwidth).

Main flow:

1- QoSManager (Section 4.2.1) sends a monitor rule to the system.

2- System validates the monitor rule.

3- Saves monitor rule in the database, identified by the given systems.

Post conditions:

Monitor rule stored in the database.

Alternative flows:

2 The payload is not valid.

 2.1 Returns bad request as response.

3 A rule identified by the same given systems already exists in the database.

 3.1 The rule is deleted.

 3.2 The new rule is saved.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

50

Table 11 - Remove Monitor Rule Use-Case Description

Use-Case 2: Remove Monitor Rule

ID: 2

Brief description:

Removes monitor rule about requested Quality-of-Service between two systems.

Primary actors:

QoSManager (Section 4.2.1).

Secondary actors:

MongoDB Manager.

Preconditions:

-

Main flow:

1- QoSManager (Section 4.2.1) sends a monitor rule to the system.

2- System checks existence of rule in the database.

3- Removes monitor rule in the database, identified by the given systems.

Post conditions:

Monitor rule deleted in the database.

Alternative flows:

2 A rule identified by the given systems does not exist in the database.

 2.1 Returns not found as response.

Table 12 - Add Monitor Log Use-Case Description

Use-Case 3: Add Monitor Log

ID: 3

Brief description:

Add monitor log with information regarding communications between two systems, service

producer and service consumer.

Primary actors:

MonitorPlugin of service prosumer.

Secondary actors:

MongoDB Manager

Preconditions:

At least one monitor parameter (for example bandwidth).

Rule identified by the given systems must exist in the database.

Main flow:

1- MonitorPlugin sends monitor log.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

51

2- System validates the payload.

3- Checks for a monitor rule identified by the given systems.

4- Saves monitor log in the database, identified by the given timestamp.

5- Validates Quality-of-Service by comparing monitor log information against rule

specifications.

Post conditions:

Monitor log stored in the database

Alternative flows:

 2.1- The payload is not valid.

 2.2- Returns bad request as response.

 3.1- A rule identified by the given systems does not exist.

 3.2- Returns not found as response.

 4.1- Checks that the Quality-of-Service requirements were not met.

 4.2- Sends event to the EventHandler system.

Table 13 - Send Event Use-Case Description

Use-Case 4: Send Event

ID: 4

Brief description:

Forwards service error descriptions as events to the EventHandler system. Normally, these

events are not related to Quality-of-Service violations.

Primary actors:

Arrowhead compliant system

Secondary actors:

-

Preconditions:

Valid payload

Main flow:

1- Arrowhead compliant system sends a service error to the system.

2- System validates the payload.

3- Creates an event with information received.

4- Sends event to the EventHandler .

Post conditions:

-

Alternative flows:

 2.1- The payload is not valid.

 2.2- Returns bad request as response.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

52

C. Diagrams

Add Monitor Rule Sequence Diagram

This diagram is already illustrated in the Section 4.3.2.

Remove Monitor Rule Sequence Diagram

This diagram is already illustrated in the Section 4.3.2.

Add Monitor Log Sequence Diagram

This diagram is already illustrated in the Section 4.3.2.

Send Event Sequence Diagram

This diagram is already illustrated in the Section 4.3.2.

D. Application Services

Figure 14 depicts a representation of the service provided and consumed by the QoSMonitor

system. This system produces one service, the Monitor service. The QoSMonitor system

consumes four services, namely: the EventHandler Registry and Publish services, the

ServiceRegistry and the Orchestration.

Figure 14 - Component Model.

Produced Services

Table 14 - Pointers to IDD documents

Service SD Document Reference

Monitor Section 4.3.2.

The Monitor service is used to add and delete monitor rules, add monitor logs and send

service errors as events to the EventHandler system. Monitor rules specify Quality-of-Service

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

53

(QoS) requested in the Orchestration process. Adding monitor logs also validates QoS against

monitor rule specifications. A service error is an occurrence that an Arrowhead compliant

system is interested in sending to the EventHandler.

Consumed Services

Table 15 - Pointers to IDD documents

Service IDD Document Reference

EventHandler

Registry

https://forge.soa4d.org/svn/arrowhead-

f/3_Core%20Systems%20and%20Services/2_Support%20Core%20Syst

ems%20and%20Services/5_Eventhandler%20system/Documetation/A

rrowhead%20IDD%20EventHandlerRegistry%20REST_WS-TLS-

XMLv1.0.docx

EventHandler

Publish

https://forge.soa4d.org/svn/arrowhead-

f/3_Core%20Systems%20and%20Services/2_Support%20Core%20Syst

ems%20and%20Services/5_Eventhandler%20system/Documetation/A

rrowhead%20IDD%20EventHandlerPublish%20REST_WS-TLS-

XMLv1.0.docx

ServiceRegistry https://forge.soa4d.org/svn/arrowhead/WP7/Task%207.3/Working/A

ITIA/Arrowhead_G3.2_QuickStart.zip

Orchestration https://forge.soa4d.org/svn/arrowhead/WP7/Task%207.3/Working/A

ITIA/Arrowhead_G3.2_QuickStart.zip

The description of the EventHandler Registry, EventHandler Publish, ServiceRegistry and

Orchestration services can be found in their respective references.

E. Security

This chapter defines high-level security principles the system needs to follow on a non-technical,

generic level.

a. Security Objectives

Objectives for this system cover the well-known AIC [57]-triad (availability, integrity,

confidentiality). The attribute availability ensures that information is available when it

is needed, and thus the system must be always on. Integrity refers to the authorized

modification of data within a given system, and it is granted by limiting to this system

the write capabilities on the NoSQL database of the log data. Confidentiality seeks to

ensure that information can only be read by authorized subjects, and must be applied

to all interactions with the QoSMonitor system.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

54

4.3 Services Description

This section provides an abstract description of what is needed for systems to provide and/or

consume the two services, QoSSetup (Section 4.3.1) and QoSMonitor (Section 4.3.2), provided

by the QoSManager (Section 4.2.1) and QoSMonitor (Section 4.2.2) systems, respectively.

4.3.1 QoSSetup Service Description

A. Overview

This document describes the QoSManager QoSSetup service, including its abstract interfaces

and its abstract information model. The QoSSetup is the only service provided by the

QoSManager system. The purpose of the QoSSetup service is calculating if a certain QoS request

is feasible by taking into account the configurations and capabilities of the system of systems

and the current reservations over the network devices. If a service consumption is compatible

with the requested QoS, the QoSSetup can be used to configure a stream connecting that

consumer and a producer according to the requested QoS.

If a consumer wants to consume a service with QoS guarantees, it must make a request to the

Orchestrator system with both the functional requirements for the service – which defines

which services the Orchestrator has to put together – and with the non-functional requirements

– which will be used by the Orchestrator in its interactions with the QoS Manager. The QoSSetup

service is consumed by the Orchestrator only, and in this sense, the QoSSetup acts as a plugin

for the Orchestrator.

Figure 15 - QoSManager QoSSetup Overview.

The QoSManager QoSSetup service is a core service.

B. Abstract Interfaces

The QoSManager QoSSetup service exposes two interfaces, namely the QoSVerify and

QoSReserve interfaces.

a. QoSManager QoSVerify

During a service orchestration request with QoS, the Orchestrator core system calls the

QoSVerify to determine if the requested QoS is feasible. The interface QoSVerify

contains one single function.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

55

Figure 16 - QoSVerify Interface.

Function:

 QoSVerify: To verify if a requested QoS is feasible the QoSManager calls the

QoSVerify function. The function will return true or false with a reason, true

means that is possible to consume a service with QoS. Whenever the service

consume is not possible the function will return false along with a reason, which

is a parameter that can have three values: Always means that the requested QoS

is not possible under no circumstance, since it would be in excess even if the SoS

was not executing any other service; Temporary means that the condition is

temporary and it depends on current resource reservations in the SoS;

Combination means that the QoS is feasible, but only with a different

orchestration of the services, for example by swapping two service producers

that are serving two service consumers. This latter condition is usually related

to the network topology.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

56

Sequence Diagram:

Figure 17 - High Level Sequence Diagram of QoSSetup Service QoSVerify interface.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

57

b. QoSManager QoSReserve

After the QoS verification, the Orchestrator core system can call the QoSReserve to

configure a stream between the consumer and the producer. The QoSReserve interface

contains one single function.

Figure 18 - QoSReserve Interface.

Function:

 QoSReserve: The QoSReserve function is used by the Orchestrator to

set up QoS. It receives an orchestrated service and a consumer, it will

update the reservations that are active in the SoS, and it will deploy QoS

configuration to devices and network actives involved in the service

fruition.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

58

Sequence Diagram:

Figure 19 - High Level Sequence Diagram of QoSSetup Service QoSReservation interface.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

59

C. Abstract Information Model

a. Service Information Data

Table 16 - Data type description

Field Description

VerificationMessage It contains a list of system providers, one consumer, a

requested service, a requested QoS and a map of commands.

VerificationResponse It contains a Boolean per a service provider, and map

containing the reasons why in some cases the QoS is not

possible.

ReservationMessage It contains one service consumer, provider, a requested

service, a requested QoS and a map of commands.

ReservationResponse It contains a Boolean and a list of the configured stream

parameters.

VerificationMessage

consumer is the system that consumes a service.

requestedService is the service to be consumed by the consumer and provided by the

producer.

providers is a list of providers, each element is a system like the consumer , that is a

possible producer of the selected service.

requestedQoS is a map containing a set of QoS parameters (i.e. bandwidth).

commands is a map containing a set of configuration parameters.

VerificationResponse

qosVerificationReponse is a map containing a Boolean per a service provider.

rejetcMotivation is a map containing a reason per a service provider.

ReservationMessage

provider is the system that provides a service.

consumer is the system that consumes a service.

service is the service to be consumed by the consumer and provided by the producer.

commands is a map containing a set of configuration parameters.

requestedQoS is a map containing a set of QoS parameters (i.e. bandwidth).

ReservationResponse

response is a Boolean about the success of the configuration.

commands is a map containing a set of the configurations done by the QoSReserve.

b. Non-functional Requirements

The QoSManager QoSSetup must satisfy five non-functional requirements:

Availability: The system must be online and accessible as long as possible, 24 hours per

day and 365 days per year.

Integrity: Since it deals with sensible industrial requests, the service must always report

any execution error into its database for further analysis and improvements.

Interoperability: The developed service must be able to be easily implemented by new

systems, and must be easily migrated to other Arrowhead Frameworks (ex. Hungary

[56], BNearIT). At best, during the migration of frameworks, there should be no

adaptation nor logic model changes.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

60

Performance: The system and its algorithms must have the shortest execution time

possible. Thus, the service must rely on advanced hardware and good programming

code.

Extensibility: The service must be able to support large number of requests, thus its

implementations must be able to leverage deployment into computational clouds and

other elasticity enablers.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

61

4.3.2 Monitor service Description

A. Overview

This document describes the QoSMonitor Monitor service, including its service interfaces and

its abstract information model. The Monitor is the only service provided by the QoSMonitor. The

purpose of the Monitor is to compare performance values of communication between two

Arrowhead compliant systems, one service producer and one service consumer, against Quality-

of-Service (QoS) contracts previously defined by the QoSManager system. It sends events to the

EventHandler system if such obligations are not fulfilled.

It also allows the possibility for an Arrowhead compliant system to notify errors, which

semantics is expressed by means of maximum severity level events.

Figure 20 - QoSMonitor Monitor Overview.

The QoSMonitor Monitor service is a core service.

B. Abstract Interfaces

The QoSMonitor Monitor service exposes three interfaces, namely the QoSRule, the QoSLog

and the Event interfaces

a. QoSMonitor QoSRule

During a service orchestration request with QoS, the Orchestrator core system calls the

QoSVerify to determine if the requested QoS is feasible. The interface QoSVerify

contains one single function.

Figure 21 - QoSRule Interface

Functions:

 AddRule: The AddRule function is used to add a monitor rule. It receives

the communication protocol, a service producer and a service

consumer, a check value for soft real time monitoring as well as a map

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

62

specifying what needs to be monitored with the requested value (i.e.

bandwidth = 100 Mbps). A rule must be associated to a unique id.

 RemoveRule: The RemoveRule function exists for removing rules. It

receives a service producer and a service consumer.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

63

Sequence Diagram:

Figure 22 - High Level Sequence Diagram of Monitor Service AddRule Interface.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

64

Figure 23 - High Level Sequence Diagram of Monitor service RemoveRule Interface.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

65

b. QoSMonitor QoSLog

After This interface is used to send messages containing logs regarding communication

monitoring to the QoSMonitor. The log activities are intended to be performed in the

producer and the consumer systems. Upon the usage of this interface, the system saves

the log as well as verifies if the respective rule specifications are being met. If not, an

event is sent to the EventHandler with this information.

Figure 24 - QoSLog Interface

Function:

 AddLog: The AddLog function is used by the MonitoringPlugins in the provider

and consumer systems to add monitor log data to the QoSMonitor. The function

receives the communication protocol being used, the service producer and the

service consumer, the timestamp as well as a map specifying what was

monitored and the data value (i.e. bandwidth = 152 Mbps).

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

66

Sequence-Diagram:

Figure 25 - High Level Sequence Diagram of Monitor service AddLog Interface

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

67

c. Event

This interface gives the possibility of sending maximum severity level events to the

EventHandler. An error message is transformed into an event and sent to the

aforementioned system.

Figure 26 – Event Interface.

Functions:

 SendEvent: The SendEvent functions is used by Arrowhead compliant

services as a means of sending events to the EventHandler system. It

receives the communication protocol, the system using the function, an

error message and a map of protocol specific handling information.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

68

Sequence-Diagram:

Figure 27 - High Level Sequence Diagram of Monitor Service SendEvent Interface.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

69

C. Abstract Information Model

a. Service Information Data

Table 17 - Data type description

Field Description

AddRuleMessage It contains the communication protocol, a service

producer and a service consumer, a check value for

soft real time monitoring as well as a map specifying

what needs to be monitored with the requested

value.

RemoveRuleMessage It contains a service producer and a service

consumer.

LogMessage It contains the communication protocol being used,

the service producer and the service consumer, the

timestamp as well as a map specifying what was

monitored with a designated value.

EventMessage It contains the communication protocol, the system

using the function, an error message and a map of

protocol specific handling information.

AddRuleMessage

consumer is the system that consumes a service.

requestedService is the service to be consumed by the consumer and provided by the

producer.

providers is a list of providers, each element is a system like the consumer , that is a

possible producer of the selected service.

requestedQoS is a map containing a set of QoS parameters (i.e. bandwidth).

commands is a map containing a set of configuration parameters.

RemoveRuleMessage

qosVerificationReponse is a map containing a Boolean per a service provider.

rejetcMotivation is a map containing a reason per a service provider.

LogMessage

provider is the system that provides a service.

consumer is the system that consumes a service.

service is the service to be consumed by the consumer and provided by the producer.

commands is a map containing a set of configuration parameters.

requestedQoS is a map containing a set of QoS parameters (i.e. bandwidth).

EventMessage

response is a Boolean about the success of the configuration.

commands is a map containing a set of the configurations done by the QoSReserve.

b. Non-functional Requirements

Regarding the non-functional requirements, five must be satisfied by this service:

- Availability: The system must be online and accessible as long as possible, 24

hours per day and 365 days per year.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

70

- Integrity: Dealing with sensible industrial requests, the systems implementing

this service must always report any execution error into its database for further

analysis and improvements.

- Interoperability: The developed service must be able to be easily implemented

by new systems, and must be easily migrated to other Arrowhead Frameworks

(ex. Hungary [56], BNearIT). At best, during the migration of frameworks, there

should be no adaptation nor logic model changes.

- Performance: The system and its algorithms must have the shortest execution

time possible. Thus, the service must rely on advanced hardware and good

programming code.

- Extensibility: The service must be able to support large number of requests, thus

its implementations must be able to leverage deployment into computational

clouds and other elasticity enablers.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

71

4.4 Interface Design Description

This section provides a detailed description, describing functions and exchanged messages of

five interfaces, two relative to the QoSSetup (Section 4.3.1) service, QoSVerify (Section 4.4.1)

and QoSReserve (Section 4.4.2), and the remaining three are relative to the QoSMonitor (Section

4.3.2) service, QoSEvent (Section 4.4.3), QoSLog (Section 4.4.4), QoSRule(Section 4.5.5).

4.4.1 QoSManager QoSVerify Interface Design Description

A. Interface Design Description Overview

This document describes how to realize the QoSManager QoSVerify interface.

Table 18 - Pointers to SD documents

 Service description Path

Arrowhead SD

QoSManagerQoSSetup

Section 4.3.1.

Table 19 - Pointers to CP documents

Communicati

on Profile

Path

Arrowhead CP

REST_WS-TLS-

JSON

https://forge.soa4d.org/plugins/mediawiki/wiki/arro
whead-f/index.php/Main_Page

Table 20 - Pointers to SP documents

Semantic Profile Path

Arrowhead SP

QoSManagerQoSVerify-JSON

Section 4.5.1.

B. Interfaces

a. QoSManagerQoSVerify_JSON

Table 21 - List of Functions provided by the QoSVerify service.

Function Service Method Input Output

qosVerify /QoSVerify PUT VerificationMessage VerificationR

esponse

Table 22- QoSManager web application description language.

Interface Description QoSManager.wadl

Location Appendix

Version 1.0

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

72

b. Information Model

See Arrowhead QoSManager QoSSetup Service SD, in Section 4.3.1, for the abstract

information model

VerificationMessage

VerificationMessage is the abstract data type described in the SD document, cited in

Section 4.3.1.

VerificationResponse

VerificationResponse is the abstract data type described in the SD document, cited in

Section 4.3.1.

4.4.2 QoSManager QoSReserve Interface Design Description

A. Interface Design Description

This document describes how to realize the QoSManager QoSReserve interface.

Table 23 - Pointers to SD documents

Service description Path

Arrowhead SD QoSManagerQoSSetup Section 4.3.1.
Table 24 - Pointers to CP documents

Communicati

on Profile

Path

Arrowhead CP

REST_WS-TLS-

JSON

https://forge.soa4d.org/plugins/mediawiki/wiki/arro
whead-f/index.php/Main_Page

Table 25 - Pointers to SP documents

Semantic Profile Path

Arrowhead SP QoSManagerQoSReserve-JSON Section 4.5.2.

B. Interfaces

a. QoSManagerQoSReserve_JSON

Table 26 - List of Functions provided by the QoSReserve service.

Function Service Method Input Output

qosReserve /QoSReserve PUT ReservationMessage ReservationRe

sponse
Table 27 - QoSManager system web application description language

Interface Description QoSManager.wadl

Location Appendix

Version 1.0

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

73

b. Information Model

ReservationMessage

ReservationMessage is the abstract data type described in the SD document, cited in

Section 4.3.1.

ReservationResponse

ReservationResponse is the abstract data type described in the SD document, cited in

Section 4.3.1.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

74

4.4.3 QoSMonitor Event Interface Design Description

A. Interface Design Description

This document describes how to realize the QoSMonitor Event interface.

Table 28 - Pointers to SD documents

Service description Path

Arrowhead SD QoSMonitorMonitor Section 4.3.2.
Table 29 - Pointers to CP documents

Communicati

on Profile

Path

Arrowhead CP

REST_WS-TLS-

JSON

https://forge.soa4d.org/plugins/mediawiki/wiki/arro
whead-f/index.php/Main_Page

Table 30 Pointers to SP documents

Semantic Profile Path

Arrowhead SP QoSMonitorEvent-JSON Section 4.5.3.

B. Interfaces

a. QoSMonitorEvent_JSON

Table 31 - List of Functions provided by the QoSEvent service

Function Service Method Input Output

sendEvent /Monitor POST EventMessage OK
Table 32- QoSMonitor web application description language

Interface Description QoSMonitor.wadl

Location Appendix.

Version 1.0

b. Information Model

EventMessage

EventMessage is the abstract data type described in QoSMonitor Monitor SD, cited in

Section 4.3.2.

4.4.4 QoSMonitor QoSLog Interface Design Description

A. Interface Design Description

This document describes how to realize the QoSMonitor QoSLog interface.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

75

Table 33 - Pointers to SD documents

Service description Path

Arrowhead SD QoSMonitorMonitor Section 4.3.2
Table 34 - Pointers to CP documents

Communicati

on Profile

Path

Arrowhead CP

REST_WS-TLS-

JSON

https://forge.soa4d.org/plugins/mediawiki/wiki/arro
whead-f/index.php/Main_Page

Table 35 Pointers to SP documents

Semantic Profile Path

Arrowhead SP QoSMonitorQoSLog-JSON Section 4.5.4.

B. Interfaces

a. QoSMonitorQoSLog_JSON

Table 36 - List of Functions provided by the QoSLog service

Function Service Method Input Output

addMonitorLog /Monitor POST LogMessage OK
Table 37 - QoSMonitor system web application description language

Interface Description QoSMonitor.wadl

Location Appendix.

Version 1.0

b. Information Model

LogMessage

LogMessage is the abstract data type described in QoSMonitor Monitor SD, cited in

Section 4.3.2 .

4.4.5 QoSMonitor QoSRule Interface Design Description

A. Interface Design Description

This document describes how to realize the QoSMonitor QoSRule interface.

Table 38 - Pointers to SD documents

Service description Path

Arrowhead SD

QoSMonitorMonitor

Section 4.3.2

Table 39 - Pointers to CP documents

Communication Profile Path

Arrowhead CP

REST_WS-TLS-JSON

https://forge.soa4d.org/plugins/mediawiki/wiki/a
rrowhead-f/index.php/Main_Page

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

76

Table 40 Pointers to SP documents

Semantic Profile Path

Arrowhead SP QoSMonitorQoSRule-JSON Section 4.5.5 .

B. Interfaces

a. QoSMonitorQoSRule_JSON

Table 41 - List of Functions provided by the QoSRule service

Function Service Method Input Outp

ut

addMonitorRule /Monitor POST AddRuleMessage OK

removeMonitorRule /Monitor DELETE RemoveRuleMessage OK
Table 42 - QoSMonitor system web application description language

Interface Description QoSMonitor.wadl

Location Appendix.

Version 1.0

b. Information Model

AddRuleMessage

AddRuleMessage is the abstract data type described in QoSMonitor Monitor SD, cited

in Section 4.3.2 .

RemoveRuleMessage

RemoveRuleMessage is the abstract data type described in QoSMonitor Monitor SD,

cited in Section 4.3.2 .

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

77

4.5 Semantic Profile Description

This section describes the data forma by pointing out its type (e.g. JSON; XML) and how that

data is encoded of the five interfaces already described in section 4.4 .

4.5.1 QoSManagerQoSVerify Semantic Profile Description

A. Overview

The QoSManager QoSVerify-JSON profile is used to represent the data of the QoSVerify

interface.

B. Data Format

VerificationMessage

The description regarding this data type is in Section 4.4.1.

{
 "requesteService":{
 "interfaces":["RESTJSON"],
 "serviceMetaData":[{"key":"location",
"value":"Portugal"}],
 "serviceDefinition":"C1",
 "serviceGroup":"Cs"
 },
 "consumer":{
 "address":"192.168.60.23",
 "authenticationInfo":"noAuth",
 "port":"9999",
 "systemGroup":"Cs",
 "systemName":"C1"
 },
 "provider":[
 {"address":"192.168.60.69",
 "authenticationInfo":"noAuth",
 "port":"9999",
 "systemGroup":"Ps",
 "systemName":"P1"}
],
 "requestedQoS":{
 "entry": [
 {
 "key": "delay",
 "value": "300"
 },
 {
 "key": "bandwidth",
 "value": "2"
 }
]
 }
}

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

78

Each parameter of the VerificationMessage is described in Table 43.

Table 43 - VerificationMessage parameters description.

ID Parameter Description

1 requestedService:interfaces List of String containing all available

interfaces protocols to access the service.

2 requestedService:serviceMetaData Map of Strings containing a description of

the service.

3 requestedService:serviceDefinition String containing the name of the service.

4 requestedService:serviceGroup String containing a name for the group

where the services belongs.

5 consumer:address String containing the IP address of the

system.

6 consumer:authenticationInfo String containing information about the

Authorisation procedure of the system.

7 consumer:port String containing the port of the system

where users establish a connection.

8 consumer:systemGroup String containing the name of the group

where the system belongs.

9 consumer:systemName String containing the name of the

system.

10 provider:* See descriptions 5,6,7,8.

11 requestedQoS:delay Integer (milliseconds) containing the

maximum delay of the message stream.

This parameter is Optional.

12 requestedQoS:bandwidth Decimal (Bps) containing the maximum

bandwidth for the message stream. This

parameter is Optional.

VerificationResponse

The description regarding this data type is in Section 4.4.1.

{
 "qosVerificationResponse":{
 "entry": [
 {
 "key": {
 "systemName":"provider1",
 "systemGroup":"providers"
 },
 "value": "true"
 },
 {
 "key": {
 "systemName":"provider2",
 "systemGroup":"providers"
 },
 "value": "false"
 }
]
 },
 "rejectMotivation":{
 "entry": [

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

79

 {
 "key": {
 "systemName":"provider2",
 "systemGroup":"providers"
 },
 "value": "ALWAYS"
 }
]
 }
}

Each parameter of the VerificationResponse is described in Table 44.

Table 44 -. VerificationResponse parameters description.

ID Parameter Description

1 qosVerificationResponse Map of systems and Booleans as values. This

map lists the systems that are capable of

providing QoS (Boolean as true) and the ones

that cant (Boolean as false).

2 rejectMotivation Map of systems and Strings as values. This

map lists the rejection causes for each system

that cannot provide the QoS.

4.5.2 QoSManagerQoSReserve Semantic Profile Description

A. Overview

The QoSManagerQoSReserve-JSON profile is used to represent the data of the QoSReserve

interface.

B. Data Format

Data received by the QoSManager QoSReserve interface will have the following format:

ReservationMessage

The description regarding this data type is in Section 4.4.2.

{
 "service":{
 "interfaces":["RESTJSON"],
 "serviceMetaData":[{"key":"location",
"value":"Portugal"}],
 "serviceDefinition":"Camera1",
 "serviceGroup":"Cameras"
 },
 "consumer":{
 "address":"192.168.60.23",
 "authenticationInfo":"noAuth",
 "port":"9999",
 "systemGroup":"Consumers",

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

80

 "systemName":"Consumer1"
 },
 "provider":[
 {"address":"192.168.60.69",
 "authenticationInfo":"noAuth",
 "port":"9999",
 "systemGroup":"ProcessingUnits",
 "systemName":"Unit2"}
],
 "requestedQoS":{
 "entry": [
 {
 "key": "delay",
 "value": "20"
 },
 {
 "key": "bandwidth",
 "value": "2"
 }
]
 }
}

Each parameter of the ReservationMessage is described in Table 45.

Table 45 - ReservationMessage parameters description.

ID Parameter Description

1 service:interfaces List of String containing all available interfaces

protocols to access the service.

2 service:serviceMetaData Map of Strings containing a description of the

service.

3 service:serviceDefinition String containing the name of the service.

4 service:serviceGroup String containing a name for the group where

the services belongs.

5 consumer:address String containing the IP address of the system.

6 consumer:authenticationInfo String containing information about the

Authorisation procedure of the system.

7 consumer:port String containing the port of the system where

users establish a connection.

8 consumer:systemGroup String containing the name of the group

where the system belongs.

9 consumer:systemName String containing the name of the system.

10 provider:* See descriptions 5,6,7,8.

11 requestedQoS:delay Integer (milliseconds) containing the

maximum delay of the message stream. This

parameter is Optional.

12 requestedQoS:bandwidth Decimal (Bps) containing the maximum

bandwidth for the message stream. This

parameter is Optional.

ReservationResponse

The description regarding this data type is in reference 4.4.2.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

81

{
 "response": false,
 "commands":[
 {
 "url": "127.0.0.1/entrypoint",
 "comand":"size:1,period:3,type:0"
 }
]
}

Each parameter of the ReservationResponse is described in Table 46.

Table 46 - ReservationResponse parameters description.

ID Parameter Description

1 response Boolean relative to the success of the

configuration of the QoS.

2 commands Map containing the configuration data sent to

all devices.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

82

4.5.3 QoSMonitorEvent Semantic Profile Description

A. Overview

The QoSMonitorEvent-JSON profile is used to represent the data of the Event interface.

B. Data Format

Data received by the QoSMonitor Event interface will have the following format:

EventMessage

The description regarding this data type is in Section 4.4.3.

{
 "protocol":"ftt-se ",
 "system":{
 "address":"192.168.60.50",
 "authenticationInfo":"authinfo",
 "port":"9996",
 "systemGroup":"group",
 "systemName":"name"
 },
 "parameters":{
 "entry": [
 {
 "key": "stream_id ",
 "value": "1"
 }]
 },
 "errorMessage":"message"
}

Each parameter of the EventMessage is described in Table 47.

Table 47 - EventMessage parameters description

ID Parameter Description

1 protocol String containing the communication protocol

Ŷaŵe ;i.e. ͞ftt-se͟Ϳ.
2 system:address String containing the IP address of the system.

3 system:authenticationInfo String containing information about the

Authorisation procedure of the system.

4 system:port String containing the port of the system where

users establish a connection.

5 system:systemGroup String containing the name of the group where

the system belongs.

6 system:systemName String containing the name of the system.

7 parameters:stream_id Map element. Integer containing a message

package identifier where the event occurred.

8 errorMessage String containing an error message.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

83

4.5.4 QoSMonitorQoSLog Semantic Profile Description

A. Overview

The QoSMonitorQoSLog-JSON profile is used to represent the data of the Monitor interface

B. Data Format

Data received by the QoSMonitor QoSLog interface will have the following format:

AddLogMessage

The description regarding this data type is in Section 4.4.4 .

{
 "protocol":"ftt-se",
 "provider":{
 "address":"192.168.60.50",
 "authenticationInfo":"authinfo",
 "port":"9996",
 "systemGroup":"group",
 "systemName":"name"
 },
 "consumer":{
 "address":"192.168.60.69",
 "authenticationInfo":"authinfo",
 "port":"9996",
 "systemGroup":"group",
 "systemName":"name"
 },
 "parameters":{
 "entry": [
 {
 "key": "delay",
 "value": "90"
 },
 {
 "key": "bandwidth",
 "value": "120"
 }]
 },
 "timestamp":"1474384344"
}

Each parameter of the AddLogMessage is described in Table 48.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

84

Table 48 - AddLogMessage parameters description

ID Parameter Description

1 protocol String containing the communication

pƌotoĐol Ŷaŵe ;i.e. ͞ftt-se͟Ϳ.
2 system:address String containing the IP address of the

system.

3 system:authenticationInfo String containing information about the

Authorisation procedure of the system.

4 system:port String containing the port of the system

where users establish a connection.

5 system:systemGroup String containing the name of the group

where the system belongs.

6 system:systemName String containing the name of the system.

7 parameters:delay Map element. Integer containing

communication delay in milliseconds.

8 parameters:bandwidth Map element. Integer containing

communication bandwidth in Mbps.

9 timestamp Long containing the time when the log was

sent.

4.5.5 QoSMonitorQoSRule Semantic Profile Description

A. Overview

The QoSMonitorQoSRule-JSON profile is used to represent the data of the QoSRule interface.

B. Data Format

Data received by the QoSMonitor QoSRule interface will have the following format:

AddRuleMessage

The description regarding this data type is in Section 4.4.5 .

{
 "protocol": "ftt-se",
 "provider": {
 "systemGroup": "a1",
 "systemName": "s24",
 "address": "192.168.60.144",
 "port": "8080",
 "authenticationInfo": "noAuth"
 },
 "consumer": {
 "systemGroup": "tr3",
 "systemName": "temp2",
 "address": "192.168.60.190",
 "port": "8081",
 "authenticationInfo": "noAuth"
 },
 "parameters": {
 "entry": [{

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

85

 "key": "delay",
 "value": "20"
 },
 {
 "key": "bandwidth",
 "value": "1500"
 },
 {
 ”key”: ”stream_id”,
 ”value”: ”2”
 },
 {
 ”key”: ”NLogs”,
 ”value”: ”10”
]
 },
 "softRealTime": "false"
}

Each parameter of the AddRuleMessage is described in Table 49.

Table 49 - AddRuleMessage parameters description

ID Parameter Description

1 protocol String containing the communication protocol

Ŷaŵe ;i.e. ͞ftt-se͟Ϳ.
2 provider:address String containing the IP address of the system.

3 provider:authenticationInfo String containing information about the

Authorisation procedure of the system.

4 provider:port String containing the port of the system where

users establish a connection.

5 provider:systemGroup String containing the name of the group

where the system belongs.

6 provider:systemName String containing the name of the system.

7 consumer:* See descriptions 2,3,4,5.

8 parameters:delay Map element. Integer (milliseconds)

containing the maximum delay of the

message stream. This parameter is optional.

9 parameters:bandwidth Map element. Decimal (Bps) the maximum

bandwidth for the message stream. This

parameter is optional.

10 Parameters:stream_id Map element. Integer identifying the

stream_id being worked with. Not optional.

11 parameters:NLogs Map element. Integer with the number of logs

to work with if softRealTime time parameter

is set to true.

12 softRealTime Boolean containing the type of stream to be

monitored (true for soft real-time and false

for hard real-time).

RemoveRuleMessage

The description regarding this data type is in reference 4.4.5.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

86

{
 "provider": {
 "systemGroup": "a1",
 "systemName": "s24",
 "address": "192.168.60.144",
 "port": "8080",
 "authenticationInfo": "noAuth"
 },
 "consumer": {
 "systemGroup": "tr3",
 "systemName": "temp2",
 "address": "192.168.60.190",
 "port": "8081",
 "authenticationInfo": "noAuth"
 }
}

Each parameter of the RemoveRuleMessage is described in Table 50.

Table 50 - RemoveRuleMessage parameters description

ID Parameter Description

1 type String containing the communication protocol

Ŷaŵe ;i.e. ͞ftt-se͟Ϳ.
2 provider:address String containing the IP address of the system.

3 provider:authenticationInfo String containing information about the

Authorisation procedure of the system.

4 provider:port String containing the port of the system where

users establish a connection.

5 provider:systemGroup String containing the name of the group where

the system belongs.

6 provider:systemName String containing the name of the system.

7 consumer:* See descriptions 2,3,4,5.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

87

4.6 System Design Description

This section describes in detail the implementation of QoSManager and QoSMonitor Systems,

approaching the used technologies and software patterns.

4.6.1 QoSManager System Design Description (SysDD)

A. System Design Description Overview

Table 51 – QoSManager System Information.

Name QoSManager (see Section 4.2.1).

Owner ISEP

The Arrowhead QoSManager system has been developed by CISTER/ISEP, for the Arrowhead

project with the goal of managing all requests with Quality of Service (QoS) by verifying the

feasibility and its configuration to any involved party, such as network actives and devices.

Acting as a support system for the Orchestrator, the QoSManager also works with the

QoSMonitor system to guarantee the fulfilment of the requested QoS during the life of a

message stream.

This system produces one service only, the QoSSetup. This service provides two interfaces, the

QoSVerify to verify the feasibility of a QoS; and the QoSReserve for the configuration of the

network.

A more abstract description of the QoSManager system can be found on the document

referenced in Table 52.

Table 52 – QoSManager SysD Documentation Pointer.

System name Path

QoSManager Section 4.2.1 .

B. Use-cases

a. Non-Functional Requirements

To guarantee the non-functional requirements described in the document referenced in

Table 52, this section lists the proposed solutions to its corresponding requirement:

 Availability: Deployment on a dedicated server.

 Integrity: Usage of a Log system, reporting any considerable code instruction

execution. This allows to create a historical of all the application interactions

between users or systems.

 Interoperability & Extensibility: Usage of SOLID [58] software principles,

developing a high cohesion and low coupling code.

 Performance: Usage of high performance technologies, specifically MySQL for

the databases operations.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

88

b. List of Use-Cases

The QoSManager is registered and authenticated on the Arrowhead system as any other

Arrowhead compliant system. The Orchestration Service is the only system to make use of the

QoSManager in order to configure a QoS between the service consumer and provider.

As Figure 28 shows, there are two possible use-cases: The Verification of QoS (UC1) and

Reservation of QoS (UC2).

Figure 28 – QoSManager System Use-Cases List.

As Table 53 depicts, the Verification of a QoS verifies if a requested QoS is feasible depending

on the devices capabilities and on the active QoS reservations. This use-case receives a list of

providers with a requested QoS and returns a response using its QoS algorithm, containing the

approved providers and the reasons why on the rejected providers the QoS wasn´t possible.

Concerning the implementation of the Use-Case 1, as Figure 29 shows, it starts whenever the

QoSManagerResource class receives a QoSVerify REST object. The

QoSManagerService class is responsible for the core operations of the use-case, providing

the qosVerify() method to verify the received QoS requirements. Both SCSFactory and

QoSFactory classes, which are singleton [59], create DTO [60] objects. In addition, these two

factories also use the database repositories (SystemConfigurationStoreRepository

and QoSStoreReposiroty) to get NetworkDevice objects from an

ArrowheadSystem object, and to get from an ArrowheadSystem its corresponding QoS

reservation. Additionally, the VerifierAlgorithmFactory has the goal of locating the

IQoSVerifierAlgorithm implementation classes, using the reflector [61] pattern. The

IQoSVerifierAlgorithm interface receives in its verifyQoS() method the capabilities,

reservations of each ArrowheadSystem consumer and provider, the QoS parameters

requested by the consumer, and the configuration commands that are optional. In the end, the

interface method returns which systems are capable of sustaining the QoS.

Concerning the implementation of the Use-Case 2, as Figure 30 shows, it starts whenever the

QoSManagerResource class receives a QosReserve REST object. The

QoSManagerService class, for this Use-Case, provides the qosReserve() method to

reserve the received QoS requirements. Both SCSFactory and QoSFacory classes, which

are singleton [59], create DTO [60] objects. Each factory invokes the respective database

operations located in the SystemConfigurationStoreRepository and

QoSStoreRepository. Particularly, the operations that get a NetworkDevice object

from its deployed ArrowheadSystem object, and that save a MessageStream object.

Additionally, the DriverFactory class has the goal of associating a communication type

name to its respective IQoSDriver implementation, using the reflector [61] pattern. The

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

89

IQoSDriver provides the configure method, in which receives the configuration of a network,

each consumer and provider ArrowheadSystem, the requested QoS and the configuration

commands that are optional. In the end, the interface methods returns a success status

indicating if the configuration was or not successful.

Table 53 - Execution Flow of Use-Case 1 of QoSManager System.

Use-Case 1: Verification of QoS
ID: 1

Brief description:

The use-case describes the sequence of steps for the verification of the service consumer

requested QoS.

Primary actors:

Orchestrator

Secondary actors:

-Provider Systems, Consumer System.

Preconditions:

- The Service Consumer and Service Provider network information must already be stored

at the System Configuration Store.

Main flow:

1- A Service Consumer contacts the Orchestrator, orchestrating a service, located

on a Local Cloud, with a Quality of Service.

2- The Orchestrator requests the QoSManager to verify the feasibility of the QoS on

the consumer and producer stream.

3- Using a specific network algorithm, the QoSManager verifies if the requested

QoS is or not possible giving a reject motivation back to the Orchestrator.

4- The Orchestrator gives all possible producers that can provide the requested

service with QoS.

Post conditions:

-

Alternative flows:

3.1- There is no sufficient information on the System Configuration Store to verify if the

requested QoS is feasible and therefore the QoSManager sends a warning.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

90

Figure 29 - Sequence Diagram of UC1.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

91

As Table 54 depicts, the QoSManager also provides the Reservation of QoS use-case.

It receives a provider and a consumer system between which the QoSDriver must configure a

connection. Note that it is recommendable that this use-case is executed only after the QoS

verification to have full assurance of the success of the QoS reservation, however this is not

mandatory.

Table 54 - Execution Flow of Use-Case 2 of QoSManager System.

Use-Case 2: Reservation of QoS
ID: 2

Brief description:

The use-case describes the sequence of steps for the storage of events into a database or a

local file.

Primary actors:

Orchestrator

Secondary actors:

Provider System, Consumer System.

Preconditions:

- The Service Consumer and Service Provider network information must already be

stored at the System Configuration Store.

- This use-case comes only after UC1.

Main flow:

1- A Service Provider registers a service.

2- A Service Consumer contacts the Orchestrator, orchestrating a service, located on

the Local Cloud, with a requested Quality of Service.

3- The Orchestrator requests the QoSManager to reserve a message stream between

the Service Consumer and the Service Provider with the QoS desired.

4- The QoSManager, using the QoSDriver, setups the necessary configurations

between the Service provider and consumer to meet the requested QoS.

5- After the configuration the QoSManager responds to the Orchestrator if the

configuration was or not successful.

Post conditions:

QoS reservation logged in the database.

Alternative flows:

4.1 - There is no sufficient information on the System Configuration Store to the QoS setup

the QoSManager sends a warning.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

92

Figure 30 - Sequence Diagram of UC2.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

93

C. Security

This chapter describes how security is implemented in the QoSManager System.

a. Decomposition of the System

None.

b. Technical Security Requirements

Any network exploit in IoT systems can cause both physical and economic damages,

particularly in smart-cities, manufacturing, and transportation. The developed solution

prevents these security problems.

Therefore, the QoSManager system provides a secure HTTP protocol (HTTPS) using a

specific Java KeyStore (JKS) file. To interact with the QoSManager the user must know a

private password, preventing unauthorized systems from using the QoSManager.

c. Data Flow Diagram

None.

d. Threats and Vulnerabilities

None.

D. Solution Description

The purpose of this chapter is to describe the implementation of the solution. Initially an

overview of the system architecture is described with the support of a component diagram, then

all the core classes used on the code implementation are explained along with a class diagram.

Since the QoSManager must be able to interface with custom communication protocols, the

following chapter explains what the user must do to create a new adapter. Finally, the two

databases which the system works with, are explained with the support of a database model

diagram.

a. Components Diagram

As Figure 31 depicts, the QoSManager is divided into three major components: the

QoSSetup is where the core logic is implemented; the QoSDriver and QoS Verifier are

developed to a specific communication protocol.

While the QoSSetup component manages all the core operations that QoSManager has

assigned to, both QoSVerifier and QoSDriver have the responsibility of verifying QoS on

a network, and configure a network according to the made request, respectively.

Regarding to interaction with other components, the Orchestrator uses the

QoSManager for the management of QoS. The QoSMonitor is used by the QoSManager

whenever a configuration is made, with the aim of providing online monitoring of QoS.

Both QoSStore and SystemConfigurationStore are used to store all the data regarding to

QoS reservation and network configurations respectively.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

94

Figure 31 - Components Diagram of the QoSManager system.

b. Classes Structure, and Design Patterns under use

To accomplish both Interoperability and Scalability requirements, the code was

developed according to best practices, as explained next.

Since the QoSManager has to work with an unpredictable number of custom

communication protocols, the programming patterns Reflection [61] and Factory [62]

were used on the QoSDriver and QoSVerifier components.

The Reflection pattern is a mechanism that allows the lookup and loading of software

modules at runtime, for example to extend a software structure and behaviour

dynamically [61]. In this project, it was used to avoid code recompilation every time an

adapter with a new custom communication protocol was added. The Factory pattern is

a creational pattern that hides the logic creation of an object, acting as an interface. It

is used on the QoSFactory and SCSFactory classes, to create both Data Transfer Object

(DTO) and specific database objects. It is also present on the QoSDriverFactory and

VerifierAlgorithmFactory to assign them the correspondent driver of a specific

communication protocol.

Another used pattern is Repository [63], which is used to isolate all database related

operations in a software, in order to avoid duplication of code and to simplify the

business model logic. The IQoSRepository and ISCSRepository are the classes where this

pattern is implemented, and they have the responsibility of managing the interaction

with the QoS Store and System Configuration Store, respectively. Even in relation to the

databases, the classes QoSFactory and SCSFactory are responsible of facilitating all the

databases operations by receiving DTO objects and converting them to the databases

models and vice-versa.

Figure 32 depicts how the QoSManager main classes are structured and what operations

they offer.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

95

Figure 32 - Class Diagram of the QoSManager system.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

96

c. Adapting to new communication protocols

Each time a new communication protocol is added, a QoSVerifier algorithm and a

specific QoSDriver adapter must be developed. In the current implementation, both

algorithm and driver must be contained in a class whose name is the same of the novel

protocol, to ease the usage of the Reflection pattern to load it in at runtime, and they

ŵust ďe plaĐed iŶto the paĐkage ͞ƋosŵaŶageƌ.ǀeƌifieƌalgoƌithŵs͟ iŶ Đase of the Qo“
verifier algorithms and in the case of the QoS driver in the package

͞ƋosŵaŶageƌ.dƌiǀeƌs͟.

Regarding the QoS algorithm, shown in Figure 33, the developed class must be an

implementation of the interface IVerifierAlgorithm. The function verifyQoS()

verifies the feasibility of the QoS parameters to be set up, depending on the available

network capabilities and current QoS reservations.

In relation to the QoS Driver, shown in Figure 34, it must be an implementation of the

interface IQoSDriver. Its configure() function receives the network and its devices

including the requested QoS to set-up the stream between the service provider and

consumer.

Figure 33 - IVerifierAlgorithm interface.

Figure 34 - IQoSDriver interface.

d. Databases

To support the QoSSetup service that the QoSManager provides, the system must keep

track of the network devices configuration and the QoS reservations of computational

and systems. In particular, the QoSManager accesses two stores:

The System Configuration Store, containing the configuration of the system of systems,

thus providing information regarding network topologies, capabilities of the network

actives and devices, configuration of both network actives and systems.

The QoSStore, which keeps track of resource reservations over the network actives and

systems.

Both databases represented on Figures 35 and 36 are deployed on a MySQL server,

which guarantees data consistency and fast execution time.

Regarding the QoSStore, its main table is the Message Stream table, shown in Table

55. It contains all the information regarding the stream service, both provider and

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

97

consumer systems, and the respective QoS reservations. Another important parameter

is the stream type, which expresses the used communication protocol.

Table 55 - Message Stream table parameters.

Field Data Type Key Unique Description

qualityOfService_id QoSResourceReservation Foreign No QoS

Reservatio

n

Parameter

s.

type Varchar No No Communic

ation

Protocol

type of the

stream.

;eǆ. ͞fttse͟Ϳ
consumer_id ArrowheadSystem Foreign Yes Service

Consumer.

provider_id ArrowheadSystem Foreign Yes Service

Provider.

service_id Integer Foreign Yes Service

that is both

consumed

and

produced.

qualityOfService_id Integer Foreign No Stream

parameter

s related to

its

configurati

on.

message_stream_id Integer Primary Yes Identifier

of the

Message

Stream.

The other used by the QoSManager system is the System Configuration Store. The

ĐeŶtƌal taďle is ͞Node͟ ǁheƌe all the Ŷetǁoƌk deǀiĐes aŶd aĐtiǀes aƌe saǀed. This taďle,

shown in Table 56 is logically divided into two table, the Node_deployedsystem

and Node_processingcapabilties, containing all the systems and network

devices that are deployed on that node, and its processing and networking capabilities.

Table 56 - Node table parameters

Field Data Type Key Unique Description

id Integer Primary Yes Identifier of the

Node.

Device_model_code String No Yes Code containing the

device brand, model

and, If possible, its

code.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

98

Figure 35 - Database Model of the QoSStore schema.

Figure 36 - Database Model of the SystemConfigurationStore schema

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

99

e. Deployment Diagram

Regarding the deployment, shown in Figure 37, three machines were used to deploy all the

necessary components for the scenario. The three core systems were deployed on the same

machine, although they could be on separate machines. The OS used on the first machine was

Windows 10 and the web server was built on the Grizzly framework. Regarding to the developed

QoSManager and QoSMonitor, both were deployed in a different machine with the same

Windows 10 OS and same web server framework. The two databases, which the QoSManager

works with, were installed in a Windows 10 machine on a MySQL server.

The applications that were used during the deployment are stored on the following repository

(https://bitbucket.org/cister_pt_arrowhead/), including the QoSManager and QoSMonitor

systems. The two systems were developed using the Netbeans IDE [64].

Figure 37 - Deployment Diagram of the QoSManager system.

https://bitbucket.org/cister_pt_arrowhead/

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

100

4.6.2 QoSMonitor System Design Description (SysDD)

A. System Design Description Overview

Table 57 - System Information of QoSMonitor

Name QoSMonitor (see Section 4.2.2).

Owner ISEP

The Arrowhead QoSMonitor system has been developed by CISTER/ISEP for the Arrowhead

project with the goal of monitoring communication performance between systems, usually two

systems, composed by a service producer and a service consumer, in an Arrowhead compliant

installation.

This system is also supported by a plugin, an extension of the QoSMonitor deployed in each of

the two last mentioned systems, responsible for capturing information regarding

communications between them and sending it to the QoSMonitor, responsible for QoS

examination. It uses previously defined rules to compare the QoS requirements against the data

received. If any of these rules is not fulfilled an event is created which is sent to consuming nodes

using the EventHandler [65] system. It also allows sending events to the aforementioned system

by Arrowhead compliant systems.

A black box description of the QoSMonitor and the EventHandler systems can be found on the

documents referenced in Table 58 and Table 59 respectively.

Table 58 – QoSMonitor SysD Documentation Pointer.

System name Path

QoSMonitor Section 4.2.2
Table 59 - EventHandler SysD Documentation Pointer.

System name Path

EventHandler https://forge.soa4d.org/svn/arrowhead-
f/3_Core%20Systems%20and%20Services/2_Support%
20Core%20Systems%20and%20Services/5_Eventhandl
er%20system/Documetation/Arrowhead%20SySD%20Ev
entHandlerSystem%20v1.0.docx

B. Use-Cases

a. Non-Functional Requirements

Regarding the non-functional requirements there are 5 that must be highlighted:

 Availability: Deployment on a dedicated server.

 Integrity: Usage of a Log system, reporting any considerable code instruction

execution. This allows to create a historical of all the application interactions

between users or systems

 Interoperability & Extensibility: Usage of SOLID software principles, developing

a high cohesion and low coupling code.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

101

 Performance: Usage of high performance technologies, specifically MongoDB

for the database operations

b. List of Use-Cases

The QoSMonitor is registered and authenticated on the Arrowhead system as an

Arrowhead compliant system. The QoSManager is the only system, developed so far that

makes use of the QoSMonitor functionalities. Any Arrowhead compliant system can

exploit the sending of events functionality.

As Figure 38 shows, there are four possible use-cases.

Figure 38 - QoSMonitor Use Cases List.

As detailed in Table 60, adding a monitor rule implies that the QoSManager sends a

payload with the communication protocol, identification of the two involved systems,

QoS parameters with respective requested values and a check value for soft real time or

real time monitoring.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

102

Table 60 - QoSMonitor Use-Case 1 Execution Flow.

Use-Case 1: Add Monitor Rule
ID: 1

Brief description:

Add monitor rule about requested Quality-of-Service between two systems.

Primary actors:

QoSManager

Secondary actors:

MongoDB Manager.

Preconditions:

At least one monitor parameter.

Main flow:

1- QoSManager sends a monitoring rule to the QoSMonitor.

2- QoSMonitor validates the payload.

3- QoSMonitor saves monitoring rule in the database, identified by the given systems.

Post conditions:

Monitor rule stored in the database.

Alternative flows:

2.1- The payload is not valid.

2.2- Returns bad request as response.

3.1- A rule identified by the same given systems already exists in the database.

3.2- The rule is deleted.

3.3- The new rule is saved.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

103

Figure 39 - QoSMonitor Sequence Diagram of UC1.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

104

As shown in Table 61, to remove a monitoring rule, the QoSManager only needs to send the

identification of the rule, therefore the service producer and service consumer.

Table 61 - QoSMonitor Use-Case 2 Execution Flow.

Use-Case 2: Remove Monitor Rule
ID: 2

Brief description:

Removes monitor rule about requested Quality-of-Service between two systems.

Primary actors:

QoSManager.

Secondary actors:

MongoDB Manager.

Preconditions:

-

Main flow:

1- QoSManager sends a monitor rule to QoSMonitor.

2- QoSMonitor checks existence of rule in the database.

3- Removes monitor rule in the database, identified by the given systems.

Post conditions:

Monitor rule deleted in the database.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

105

Figure 40 - QoSMonitor Sequence Diagram of UC2..

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

106

A monitor log is a set of information regarding performance monitoring of services or systems

in an Arrowhead compliant installation in a given moment. To add a monitor log, a monitor

plugin needs to send a payload with the communication protocol, identification of the two

involved systems, QoS parameters with respective monitored values and a timestamp to work

ǁith soft ƌeal tiŵe if it’s eŶaďled. Afteƌ the log is saǀed iŶ the dataďase, the ĐoƌƌespoŶdiŶg ƌule
is retrieved by using the given systems and the parameters are compared against each other.

The rule requested values versus the log monitored values. If QoS inconsistency is found, then a

maximum severity level is sent to the EventHandler. Table 62 shows the execution flow of this

use case.

Table 62- QoSMonitor Use-Case 3 Execution Flow.

Use-Case 3: Add Monitor Log
ID: 3

Brief description:

Add monitor log with information regarding communications between two systems, service

producer and service consumer.

Primary actors:

MonitorPlugin of service prosumer.

Secondary actors:

MongoDB Manager

Preconditions:

At least one monitor parameter.

Rule identified by the given systems must exist in the database.

Main flow:

1- MonitorPlugin sends monitor log.

2- System validates the payload.

3- Checks for a monitor rule identified by the given systems.

4- Saves monitor log in the database, identified by the given timestamp.

5- Validates Quality-of-Service by comparing monitor log information against rule

specifications.

Post conditions:

Monitor log stored in the database

Alternative flows:

2.1- The payload is not valid.

2.2- Returns bad request as response.

3.1- A rule identified by the given systems does not exist.

3.2- Returns not found as response.

4.1- Checks that the Quality-of-Service requirements were not met.

4.2- Sends event to the EventHandler system.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

107

Figure 41 - QoSMonitor Sequence Diagram of UC3.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

108

As supported by Table 63, to send an event to the EventHandler system, an Arrowhead

compliant system needs to send a payload with the communication protocol and specific

parameters, the source of the error, and an arbitrary error message. Normally, these events are

not related to Quality-of-Service violations.

Table 63 - QoSMonitor Use-Case 4 Execution Flow.

Use-Case 4: Send Event
ID: 4

Brief description:

Forwards service error descriptions as events to the EventHandler system. Normally, these

events are not related to Quality-of-Service violations.

Primary actors:

Arrowhead compliant system

Secondary actors:

-

Preconditions:

Valid payload

Main flow:

1- Arrowhead compliant system sends a service error to the system.

2- System validates the payload.

3- Creates an event with information received.

4- Sends event to the EventHandler.

Post conditions:

-

Alternative flows:

2.1- The payload is not valid.

2.2- Returns bad request as response.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

109

Figure 42 - QoSMonitor Sequence Diagram of UC4..

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

110

C. Graphical Interface

The QoSMonitor system also provides a way to show graphics of monitoring information. It

works by defining what information goes into the graphical interface, and the QoSMonitor

system works with it. Figure 43 is an example of the window that is shown when the process of

receiving MonitorLog begins. Two areas stand out and are identified by the letters A and B. In

the A area, information regarding the logged monitor parameters is shown in the form of area

graphs. The logged parameters are the same requested in the QoSReserve process of the

QoSManager system and stored in the MonitorRule. Each MonitorRule at some point has a

window associated. The title of the window is the identification of the MonitorRule. In the B

area, every event regarding breaks in Quality-of-Service is shown, as well as any event received

by a system in the context of this window, through the SendEvent functionality. For example, in

FTTSE implementation streams are used as a mean of communication between a service

provider and a service consumer. The stream is identified by a number, so when using the

SendEvent functionality, the stream id is sent so that the correct MonitorRule can be found and

the specific window is updated.

Figure 43 - QoSMonitor system log information

D. Security

This chapter describes how security is implemented in the QoSMonitor System.

a. Decomposition of the System

None.

b. Technical Security Requirements

Any network exploit in IoT systems can cause both physical and economic damages,

particularly in smart-cities, manufacturing, and transportation. The developed solution

prevents these security problems.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

111

Therefore, the QoSManager system provides a secure HTTP protocol (HTTPS) using a

specific Java KeyStore (JKS) file. To interact with the QoSMonitor the user must know a

private password, preventing unauthorized systems from using the QoSMonitor.

c. Data Flow Diagram

None.

d. Threats and Vulnerabilities

None.

E. Solution Description

The purpose of this chapter is to describe the implementation of the solution. Initially an

overview of the system architecture is presented, supported by a component diagram,

afterwards the core classes used on the code implementation are explained along with a class

diagram.

Since the QoSManager must be ready to work with multiple communication protocols the

Section 4.2.1 explains what the user must do to create a new one. Finally, the database the

system works with is explained with the support of a database model diagram.

a. Component Diagram

As Figure 44 depicts, the QoSMonitor is divided in three major components: the Monitor

and the Protocol are where the core logic is implemented, with the latter being an

abstraction for a specific communication protocol. At last the DatabaseManager is

responsible for all database related operations as well as storing all rules and logs.

Furthermore, the major responsibility of the Monitor component is the delegation of

tasks, to successfully reach the goal requested by the QoSMonitor, namely the use cases

previously mentioned.

In regards to the exterior components, the QoSManager uses the system to create and

delete monitoring rules after the QoSReserve process.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

112

Figure 44 - Component Diagram of the QoSMonitor System.

b. Classes Structure

To accomplish both Interoperability and Extensibility requirements the code was

developed according to the best practices to achieve these ends, as explained next.

Since the QoSMonitor had to work with an unknown number of communication

protocols, the programming pattern Reflection [61] was used on the Protocol

component.

The Reflection [61] pattern is a mechanism that allows changing a software structure

and behaviour dynamically. In this project it was used to avoid code recompilation every

time a new communication protocol was added, regardless the performance cost.

Another used pattern is Repository [63] which is related to database operations. This

pattern is meant to isolate all database related operations, in order to avoid duplication

of code and to simplify the business model logic. The MongoDatabaseManager is

the class where this pattern is implemented, and it has the responsibility of managing

the MongoDatabase operations. It also converts the database object files into model

data, for further manipulation and from model into persistent data for storing purposes.

Figure 45 show a representation of how the QoSMonitor main classes are structured

and what operations they offer.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

113

Figure 45 - Class Diagram of the QoSMonitor system.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

114

c. Supporting new communication protocols

Each time a new communication protocol is added, a Protocol class be implemented.

The file must have the same exact name as the protocol due to the use of the Reflection

pattern, and it must be located in the package qos.monitor.protocol.

The developed class must be an implementation of the Protocol interface, shown in

Figure 46. The functions filterRuleMessage and filterLogMessage

transform AddRule and AddLog messages into MonitorRule and MonitorLog

respectively, for database storage and Quality-of-Service verification.

Figure 46 - Protocol interface

d. Databases

To support rules and logs functionalities that the QoSMonitor provides, the system must

keep track of the configurations made in the network (i.e. rules) and logs to enable soft

real time monitoring. To do this a MongoDB instance is used: a NoSQL database that

stores data in BSON [66] documents, a specific type based in JSON. It guarantees great

data consistency and performance. It uses Collections instead of Tables, but with the

same basic purpose.

A representation of the information being stored is shown in Figure 47 and 48 as well as

an explication in the respective following tables.

MonitorRule:

A MonitorRule is identified by the provider and consumer parameters. The combination

of all four is unique. Rules collection saves MonitorRule.

Figure 47 - Database Model of the Rule document.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

115

Table 64 - MonitorRule collection parameters.

Field Data Type Unique Description

id ObjectId Yes MongoDB document

identification

type String No Communication

Protocol type. (ex.

͞fttse͟Ϳ
providerSystemName String No Service Provider

providerSystemGroup String No Service Provider

consumerSystemName String No Service Consumer

consumerSystemGroup String No Service Consumer

parameters Map<String, String> No Requested Monitor

Parameters

softRealTime Boolean No Check value for soft real

time or real time

monitoring

MonitorLog:

A MonitorLog collection is created for each MonitorRule, and is named using the

provider and consumer parameters. For each log received in addLog function, a

MonitorLog document is saved in the respective collection.

Figure 48 - Database Model of the Log document.

Table 65 - MonitorLog collection parameters.

Field Data Type Unique Description

id ObjectId Yes MongoDB document

identification

type String No Communication

Protocol type. (ex.

͞fttse͟Ϳ
parameters Map<String, String> No Logged Monitor

Parameters

timestamp Long Yes Timestamp of monitor

e. Deployment Diagram

Regarding the deployment, shown on Figure 49, three machines were used to deploy all

the necessary components to a properly functioning system. The QoSMonitor was

deployed in a machine with the Windows 10 OS in a Apache Tomcat servlet container.

The database instance which the QoSMonitor works with was installed in a Linux server

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

116

machine. The EventHandler system was deployed in a machine with Windows 10 OS in

a Grizzly server. A deployment diagram is depicted in figure 49.

Figure 49 - Deployment Diagram of the QoSMonitor system

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

117

4.7 System-of-Systems Design Description/Pilot Project

This section describes how the Arrowhead with QoS support solution has been implemented on

an FTT-SE scenario, describing the technologies used and its setup.

A. Overview

The QoS-as-a-Service in the Local Cloud was implemented on the Flexible Time Triggered

Switched Ethernet (FTT-SE) [67] ǁhiĐh is a Tiŵe Tƌiggeƌed Model Đapaďle of pƌoǀidiŶg a ͞ƌeal
tiŵe͟ Ŷetǁoƌk oŶ the Ethernet. The goal of this pilot project was to prove the QoS functionality

of the Arrowhead Framework.

FTT-SE is implemented over Raw Sockets to access the MAC layer of the Ethernet hardware, and

it uses these sockets to transmit and receive data between all nodes. The solution does not make

use of the Internet Protocol (IP), and instead it connects the nodes with a switch in a layer 2

topology, using MAC addresses to address the nodes and establish communications.

During the integration of all components, several issues emerged, and the two most important

are discussed in this section.

a. Address Incompatibility

The addresses used in the REST-based Arrowhead communication are the ones of the IP

protocol stack. On the other hand, FTT-SE uses the MAC addresses of the nodes. Since

Arrowhead only works with TCP/IP, two possible solutions were proposed.

1) The first one was the use of the TunTap [68] technology to create a

generic interface allowing the use of TCP/IP over FTT-SE. This solution makes

possible TCP/IP transmissions between internal and external devices in FTT-SE,

since TunTap would receive them and retransmit them over FTT-SE.

2) Another proposed solution to this problem was to use multiple network

interface on the nodes. Every node had an IEEE 802.3 interface managed by the

FTT-SE protocol for the service fruition, and another interface, wireless or not,

to perform TCP/IP communications with Arrowhead.

The second solution was chosen due to the remaining time of the project since it was

obvious that the first solution would require more development and analysis time.

However, in future work, the first solution must be developed instead of the second one,

since it avoids the use of unnecessary technologies, mainly Berkeley Sockets, and

demands less performance from the nodes.

b. Deployment of the Network

Another issue with the topology of the demonstrator was that FTT-SE needed to be

deployed on a dedicated network to work properly, since interferences with nodes, not

respecting the FTT-SE protocol, would impair the protocol.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

118

It was decided to deploy a local network of nodes providing and consuming services,

plus a node managing the FTT-SE (FTT-SE Master node, as per the FTT-SE specifics);

nodes talk with each other through the FTT-SE interface. Moreover, all the mentioned

nodes and an EntryPoint node interact through the IP interface (see Section a). The

EntryPoint node has also got a public IP address to reach (and be reached by) the

Arrowhead Framework, and act as the internet gateway for all other nodes.

Figure 50 presents an overview of the implemented topology. Relatively to the FTT-SE

network, three FTT-SE nodes (master node, consumer node and provider node) are

connected to a switch. The EntryPoint, the service producer and consumer nodes are

also connected via their secondary interfaces, a wireless one, to avoid interferences with

the FTT-SE network.

The Arrowhead network consists in three core systems: the Orchestrator, Service

Registry and Authentication. The Orchestrator is used to create the matching between

service producers and service consumers, to allow service fruition. The Service Registry

allows the registration of systems and services in the Arrowhead Local Cloud. The

authentication is used to authenticate and provide Authorisation for connections

between services. These systems are vital for the Arrowhead operations.

Figure 50 - Disposition of all devices used on the FTT-SE and Arrowhead integration.

On a component perspective, as Figure 51 depicts, the Arrowhead network contains the

Orchestrator, QoSManager and QoSMonitor systems. The QoSManager interacts with

two databases, the SystemConfigurationStore and QoSStore. The QoSMonitor interacts

only with the Monitor Store. Relatively to FTT-SE network, both consumer and producer

nodes must have a plugin to work with Arrowhead. In addition, the EntryPoint must also

contain an application capable of retransmitting any request to or from Arrowhead.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

119

Figure 51 - Component Diagram of the integration of Arrowhead with FTT-SE.

B. Deployment Architecture

FTT-SE requires at least one Master node to manage all communications, and every node must

share the same 100Mbps switch to exchange both data and control messages. Since the FTT-SE

application only works on Linux Operative System (OS), all used machines had installed the

Debian GNU/Linux 7.7 (wheezy) OS [69], as shown in Figure 53. Each machine had two network

interfaces, one Ethernet interface dedicated to FTT-SE communications, and a wireless interface

responsible for the communications with the Arrowhead Framework.

In the deployment of FTT-SE, each node was installed on a quad core laptop, all connected by a

100Mbps switch, as per Table 66.

Table 66 - Description of the used devices along and its usage.

Devices Used For

HP Probook 6460b [70] FTT-SE application as a

Master/Consumer/Producer Node

Switch TP-LINK SF1008D (100Mbps Full-

Duplex) [71]

Connect the Master and

producer/consumer nodes for FTTSE

Since the FTT-SE code is written on C language (ANSI-C [72]) it was decided to deploy on each

consumer and producer node a Berkeley Socket server to communicate with the EntryPoint

machine. Therefore, any service request or registry is communicated to the EntryPoint via

Berkeley Sockets.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

120

The EntryPoint is responsible for converting any socket message to HTTP and vice-versa, making

possible establishing a connection between any FTT-SE producer/consumer and the Arrowhead

Framework. Therefore, in the EntryPoint it was developed a Web Server, communicating

towards the Arrowhead Framework, and a Socket Server, interacting with the local nodes. The

OS used is Windows 10 [73].

The full deployment features four machines located on the FTT-SE network to guarantee

communication with the Arrowhead Framework, those are the EntryPoint, the Consumer, the

Producer and the Master.

Figure 52 - Deployment Architecture on FTT-SE

C. Components Architecture

This section is divided into three Sections; it starts by describing the components deployed on

the FTT-SE node including the monitoring capabilities and operations. Further, it also details the

EntryPoint responsibilities, operations and communications. Finally, the section ends by

explaining the monitoring capabilities and how the message streams are monitored.

In an overall view, the only node that did not need any development work was the master node.

The existing FTT-SE application was modified with new components named monitoring, core

and services requester. As described on Figure 53, any client that wishes to register a service, or

look up one, must be running an application named ͞FTTSE_Arrowhead_Plugin͟.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

121

Figure 53 - Component Diagram of FTT-SE.

a. FTT-SE node

The FTTSE_Arrowhead_Plugin is divided in three independent components. The

first one is FTT-SE Wrapper, which contains the original FTT-SE application

incorporated on an IEEE 802.3 interface. The FTSSE Wrapper component had been

developed in a past project, and its goal is to simplify all possible interactions with the

original FTT-SE app by working as a wrapper and providing a simplified API. The

remaining components were developed specifically for this pilot project.

The first developed component was the FTTSE_Monitor_Plugin which has all the

logic components necessary for the application to send/receive messages and monitor

them. Another responsibility of this component is monitoring, during the message

streams, all the streams delay, bandwidth and critical events.

The ArrowheadServicesRequester, which is used by the

FTTSE_Monitor_Plugin, is responsible for services registering and for the requests

made to the Arrowhead via the EntryPoint node.

To use the FTTSE_Arrowhead_Plugin the header core_public.h must be

included. Through the core_public.h the user can provide or request a service to

Arrowhead and, when a stream is configured, it can send and receive messages. Figure

54 shows that there are two important parameters that are set when a stream is

configured, the application parameter that contains all the registered streams, and the

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

122

information for the monitoring operations. The application stream parameter contains

all the configuration parameters for the stream, such as the identifier and the message

size. It is through the application stream that the user can put the data message that he

wants to send.

The application provides twelve functions, as Figure 54 describes, to guarantee the

necessary operations of the application. How to use these functions is described next.

Figure 54 - Class Diagram of the FTT-SE interface.

To use the FTTSE_Arrowhead_Plugin, both consumer and producer must call the

function plugin_start(), as shown in Figure 55. The function initiates a slave node

in FTT-SE and creates the socket server to listen for any Arrowhead request. The

required parameters are the following: consumer_application that will be

initialized by FTT-SE and has all the streams and informations; the TYPE_CONSUMER is

a number that will define the type of the slave, it can also be TYPE_PRODUCER; the

SOCKET_PORT is the port where the socket server will listen; the interface is the name

of the network interface where FTT-“E ǁill opeƌate ;eǆ. ͞ethϬ͟Ϳ; the receives() is

the function that will be called whenever a stream is created.

Figure 55 - Execution of the FTT-SE plugin.

The developed plugin creates a stream whenever a consumer requests a service.

Therefore, a stream has only one consumer and producer. The plugin also allows a

producer to have multiple consumers. Figure 56 and 57 shows basic transmitting and

receiving functions that the user must create in the FTT-SE plugin.

application * consumer_application;

plugin_start(consumer_application, TYPE_CONSUMER,

SOCKET_PORT, INTERFACE, receives);

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

123

Figure 56 - Basic receive function of the FTT-SE plugin.

Figure 57 -- Basic transmit function of the FTT-SE plugin..

b. EntryPoint

In addition to the FTT-SE components, it was necessary to deploy a new device named

EntryPoint. This System is not Arrowhead compliant, and it was developed as a

workaround for the FTT-SE limitations. The EntryPoint is responsible for retransmitting

all the messages originated by any producer/consumer node to the Arrowhead

Framework and vice-versa. It is divided into 3 components, the WebServer which

receives and processes any input from the Arrowhead Framework; the

MonitorPlugin that receives all the statistics from the FTTSE_Monitor_Plugin

and retransmits to the Arrowhead; the SocketServer which receives all the inputs

from any producer/consumer node via socket.

During the retransmissions, the EntryPoint must change the messages protocol from

socket to HTTP or the other way around, since it acts as gateway between the FTT-SE

messages sent via socket, and the REST based world of the Arrowhead requests sent via

HTTP.

There are six use cases associated to the EntryPoint, which connects to any

Producer/Consumer FTT-SE node, the QoSDriver (that is integrated on the QoSManager

system), the Orchestrator, the ServiceRegistry and the QoSMonitor, as Table 67 shows.

void * receives(void * stream) {

 application_stream * message_stream = (application_stream*) stream;

 unsigned char rec[get_application_stream_stream_size(message_stream)];

 unsigned int received_msg_size = -1;

 int ret = 0;

 while (ret != -1) {
 ret = receive(message_stream, &rec, &received_msg_size);

 }

}

void * transmits(void * stream) {

 application_stream * message_stream = (application_stream*) stream;

 char * content[] = ũHello WorldŪ;
 unsigned int received_msg_size = -1;

 int ret = 0;

 while (ret != -1) {

 int ret = send(message_stream, &content, sizeof(content));
 }

}

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

124

Table 67 - EntryPoint Use-Cases.

Use Case From To Protocol Interface

Configure

Stream

QoSDriver Service

Producer/Consu

mer

REST-

JSON

http:/<ip

address>:<port>/entrypoi

nt/configure

Service

Registratio

n

Service

Producer

Service Registry SOCKET-

JSON

port: 9999

Service

Deletion

Service

Producer

Service Registry SOCKET-

JSON

port: 9999

Critical

Event

Notification

Service

Producer/Co

nsumer

QoSMonitor SOCKET-

JSON

port:9999

Monitoring

Logs

Service

Producer/Co

nsumer

QoSMonitor SOCKET-

JSON

port:9999

Service

Request

Service

Consumer

Orchestrator SOCKET-

JSON

port:9999

c. Monitoring

This section describes the monitoring plugin in two different sections: its capabilities;

and the functioning of the plugin.

Capabilities

Currently, monitoring has the capability to track the message streams delay, bandwidth

and any critical event. On each message transmission and reception, the time and size

of the message are logged and sent to the Arrowhead framework to verify if the QoS is

being fulfilled.

Thƌee ĐhaƌaĐteƌistiĐs aƌe iŵpoƌtaŶt foƌ the MoŶitoƌiŶg ĐoŶfiguƌatioŶ. ͞ delaǇ͟ is the tiŵe
interval between send messages, meaning that if the second message was sent 30ms

after the first one, the ͞delaǇ͟ ǁill ďe ϯϬŵs. ͞BaŶdǁidth͟ is the ŵaǆiŵuŵ ŵessage size
sent per unit time. Time to time the QoSMonitor will check if the last recorded

throughputs are superior to the defined bandwidth, if so, notifications and warnings are

triggered. A third characteristic is the message stream consistency, which is also being

monitored in real time by the plugin, detecting any eventual critical event. A critical

event is considered as an abnormal situation that prejudices or even stops the stream

between producer and consumer (ex. a deadline that was not fulfilled).

Monitoring data are accumulated onto a queue and the Monitor component transmits

its logs to the QoSMonitor system every 300 milliseconds. The monitoring data has thus

a maximum delay of 300ms with respect to data collection.

OŶe ŵoƌe Qo“ paƌaŵeteƌ that ǁas iŶitiallǇ ĐoŶsideƌed is ͞ƌespoŶse-tiŵe͟. Due to the
FTT-SE specifics (communications are half-duplex, meaning that the producer cannot get

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

125

a response of the consumer whenever it sends a message), this QoS parameter

immediately was discarded.

Monitoring Plugin Functioning

The Monitor Plugin takes care of sending message logs to the QoS Monitor from the

monitored nodes.

One issue was raised during the monitoring tests: it was not possible to send message

log reliably every 20ms. This caused data inconsistency and in worst cases the loss of

some log data. Since one major non-functional requirement of FTT-SE was the capability

of providing a message with a minimum delay of 20ms, and each FTT-SE message was

monitored, a solution to the monitoring problem ought to be found.

The solution was the use of a queue, to save all incoming logs, and periodically a specific

thread would flush the queue content and send it to the QoSMonitor via a message.

After some tests, it was concluded that the minimum delay that would guarantee

content consistency in our deployment was of 300ms.

Whenever a user decides to transmit or receive data, the FTTSE_Monitor_Plugin

component, that provides an interface to the user (producer or consumer), will add to

the queue all the monitoring statistics relative to that sent/received message stream. A

specialized thread, named monitor thread, flushes the queue content every 300ms and

sends the data to the QoSMonitor via the EntryPoint node. Both queue and thread are

responsible for one stream only, therefore each stream will have its dedicated monitor

thread and queue.

Since the used programming language was ANSI-C [72] aŶd ŶatiǀelǇ it doesŶ’t pƌoǀide
dynamic lists, dedicated wait-free queues were studied and tested, among the several

queues available on GitHub [74]. One main requirement about the queue

implementation was that it would be wait-free, to avoid any interruption that would

compromise the FTT-SE operations.

D. Use-Cases

The FTTSE_Arrowhead_Plugin has three possible use-cases, as Figure 58 shows:

1- Service Registration – a user service is registered and made available to provide

services to other consumers by means of the Arrowhead Framework

2- Request of a Service – a consumer requests a service with or without QoS, and

the Arrowhead Framework provides it by configuring a FTT-SE stream between that

consumer and the provider

3- Service Deletion – a service selected by the user is deleted, and will be no longer

provided by the Arrowhead Framework.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

126

Figure 58 - FTTSE Use Cases List.

All three use-cases require a properties file to point the service and system that the user wants

to register/request/delete. All files contain a JSON structure.

In use-cases 1 and 3, a properties file described on Figure 59 is used. In use case 2, the property

file is described in figure 60.

Several important details related to the property file content should be highlighted. Firstly, all

file parameters must be present, and the values must obey the rules that Table 68 describes.

Table 68 - Description of the parameters contained on the properties files.

ID File Parameter Necessary in Description

1 serviceGroup UC1,2,3 String containing a name for the

group where the service

belongs.

2 serviceDefinition UC1,2,3 String containing the name of

the service.

3 interfaces UC1,2,3 List of strings containing all

available interfaces protocols to

access the service.

4 serviceRegistryEntry:

provider:systemGroup

UC1,3 String containing the name of

the group where the system

belongs.

5 serviceRegistryEntry:

provider:systemName

UC1,3 String containing the name of

the system.

6 serviceRegistryEntry:

provider:address

UC1,3 String containing the address of

the system.

7 serviceRegistryEntry:

provider:port

UC1,3 String containing the port of the

system where users establish a

connection.

8 serviceRegistryEntry:

provider:authenticationInfo

UC1,3 String containing information

about the Authorisation

procedure of the system.

9 serviceRegistryEntry:

serviceURI

UC1,3 String containing the URI of the

service.

10 serviceRegistryEntry:

serviceMetadata

UC1,3 Map of strings containing a

description of the service.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

127

11 serviceRegistryEntry:

tSIG_key

UC1,3 String containing the access key

of the DNSSD server allowing to

register/delete a service

12 serviceRegistryEntry:

version

UC1,3 String containing the version of

the service.

13 orchestrationFlags UC2 Map of strings containing the

selected options to the service

request. For this project one

necessary string was needed,

triggerInterCloud.

TriggerInterCloud must be false,

because the QoS on Arrowhead

only works in Local Clouds.

14 requestedService: * UC2 See descriptions 3, 10, 2, 1.

15 requestedQoS:

delay

UC2 Integer (milliseconds) containing

the maximum delay of the

message stream. This parameter

is Optional.

16 requestedQoS:

bandwitdh

UC2 Decimal (Bps) containing the

maximum bandwidth for the

message stream. This parameter

is Optional.

17 requesterSystem:

*

UC2 See descriptions 4, 5, 6, 7, 8.

Figure 59 - Properties file necessary to register/delete a service.

{

"serviceGroup":"ServiceGroupA",
"serviceDefinition":"ServiceDefinitionA",
"interfaces":["RESTJSON"],
"serviceRegistryEntry":{
 "provider":{
 "systemGroup":"SystemGroupA",
 "systemName":"SystemNameB",
 "address":"127.0.0.1",
 "port":"8080",
 "authenticationInfo":"authinfo"
 },

 "serviceURI":"/video/3",
 "serviceMetadata":[{"key":"location","value":"Portugal"}],
 "tSIG_key":"AAABBBCCCDDD=",
 "version":"1.0"
 }

}

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

128

Figure 60 - Properties file necessary to request a service

{

"serviceGroup":"ServiceGroupA",
"serviceDefinition":"ServiceDefinitionA",
"interfaces":["RESTJSON"],
"serviceRegistryEntry":{
 "provider":{
 "systemGroup":"SystemGroupA",
 "systemName":"SystemNameB",
 "address":"127.0.0.1",
 "port":"8080",
 "authenticationInfo":"authinfo"
 },

 "serviceURI":"/video/3",
 "serviceMetadata":[{"key":"location","value":"Portugal"}],
 "tSIG_key":"AAABBBCCCDDD=",
 "version":"1.0"
 }

}

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

129

Table 69 - Use Case 1 Execution Flow.

Use Case 1: Service Registration
ID: 1

Brief description:

The user registers a service.

Primary actors:

Client

Secondary actors:

EntryPoint, Service Registry (SR).

Preconditions:

The User must have a properties file with the service information, containing the service

description and the security key that allow him to register a service on the Service Registry

(SR).

Main flow:

1- A Service Provider requests registration of a service.

2- The ͞FTT“E_Aƌƌoǁhead_PlugiŶ͟ seŶds the ƌegistƌatioŶ ƌeƋuest to the EŶtƌǇPoiŶt.
3- The EntryPoint will validate and retransmits via REST to the Service Registry System

(SR) of the Arrowhead Framework.

4- The SR will notify of the success of the registration.

5- The EntryPoint will return the same SR response back to the node where the user

made the request.

Post conditions:

-

Alternative flows:

2.1-If the file was not found an error message will be shown.

3.1- If the properties file has errors, the entry point will give an error back to the user.

Figure 61 - Sequence Diagram of UC1.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

130

Table 70 - Use Case 2 Execution Flow.

Use Case 2: Request of a Service
ID: 2

Brief description:

The user requests a service.

Primary actors:

Client

Secondary actors:

EntryPoint, Orchestrator System.

Preconditions:

The User must have a properties file with the service request information.

Main flow:

1- A Service Consumer requests a service.

2- The ͞FTT“E_Aƌƌoǁhead_PlugiŶ͟ seŶds to the EntryPoint the request.

3- The EntryPoint validates the request and if successful sends to the Orchestrator

System of the Arrowhead Framework the request made.

4- The Arrowhead Framework will configure the streams between a producer and a

consumer nodes on FTT-SE, sending the configuration to EntryPoint.

5- The EntryPoint will send to both producer and consumer the configuration message.

6- The FTTSE_Arrowhead_Plugin will receive the stream configuration and if successful

will return success back to the EntryPoint.

7- The EntryPoint will communicate back to the Arrowhead the success.

8- The Orchestrator will finally send a response of the service request.

9- The EntryPoint will return the message to both producer and consumer nodes.

10- The consumer can now receive the data, and the producer transmit it.

Post conditions:

-

Alternative flows:

2.1 - If the file was not found an error message will be shown.

3.1 - If the properties file has errors, the entry point will give an error back to the user.

4.1- If the Orchestrator doesn’t haǀe aŶǇ seƌǀiĐe like the oŶe that ǁas ƌeƋuested, aŶ eƌƌoƌ
message will be sent to the EntryPoint and consequently back to the user.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

131

Figure 62 - Sequence Diagram of UC2.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

132

Table 71 - Use Case 3 Execution Flow

Use Case 3: Service Deletion
ID: 3

Brief description:

The user deletes a service.

Primary actors:

Client

Secondary actors:

EntryPoint, Service Registry (SR)

Preconditions:

- The user must have a properties file containing the service description and a security

key that allows him to delete a service on the SR.

- The service must exist on the SR.

Main flow:

1- A Service Provider request a service deletion.

2- The ͞FTT“E_Aƌƌoǁhead_PlugiŶ͟ seŶds to the EŶtƌǇPoiŶt.
3- The EntryPoint will validate and retransmits via REST to the Service Registry System

(SR) of the Arrowhead Framework.

4- The SR will notify of the success of the deletion.

5- The EntryPoint will return the same SR response back to the node where the user

made the request.

Post conditions:

Alternative flows:

2.1 - If the properties file was not found, use case ends with warning.

3.1 - If the properties file fails the EntryPoint validation, the use case ends with warning.

Figure 63 -- Sequence Diagram of UC3.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

133

E. Systems

Beyond the SR and the Orchestrator Systems that are the principal systems of the Arrowhead

Framework, there are two more Systems, which deserve a description, as Table 72 depicts.

These two systems communicate with the EntryPoint whenever a stream is created, and are

support systems for the Orchestrator.

The QoSManager has a considerable responsibility on the Use Case 2 because its QoSDriver

sends to the EntryPoint the configuration of the stream between the service provider and

consumer, according to the requested QoS.

The QoSMonitor will act as a receiver since it only receives the message streams monitoring data

regarding delay, bandwidth and events, all sent from the service consumer and provider nodes.

Table 72 - Systems involved.

System name Path

QoSManager Section 4.2.1.

QoSMonitor Section 4.2.2.

Although the QoSDriver is not a system, it is worth mentioning because it is instrumental to

allow Arrowhead to interact with the FTT-SE protocol, whose configuration is not REST-based.

For each stream, it is necessary to set the FTT-SE network configurations, in particular, the

current stream period, id and the EntryPoint URL.

In FTT-SE, the EC (ms) consists in a time interval where all FTT-SE messages occur. The stream id

is a number that identifies a stream, therefore to avoid any inconsistence/duplication, the

stream id is incremented whenever a new service request is made. The EntryPoint URL gives the

location where the QoSDriver makes the streams configuration requests, since the interaction

with the QoSDriver is initiated by this last component and thus the EntryPoint must be reachable

as a server.

Currently the QoSDriver is capable of creating a stream in accordance with two QoS goals, delay

and bandwidth.

The FTT-SE parameters that allow the management of the delay and bandwidth are the stream

period and size. The stream period is the number of ECs between each message transmission,

corresponding to the time interval between messages transmission. If the EC is 20ms and the

period is three, that means a message will be sent every 60ms (20*3). Note this time interval

varies according to the stream type, which can be Synchronous or Asynchronous. If the stream

is asynchronous the period value will be the maximum interval time, and in the case of

synchronous will be the exact time interval. This happens because FTT-SE acts as Event-Triggered

for asynchronous communication, and Worst Case Communication Time must be considered.

For synchronous communication, FTT-SE is Time-Triggered. The size (Bytes) corresponds to the

message size.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

134

To impose the delay, a period must be calculated by dividing the requested delay by the EC, as

Figure 64 represents. If the delay is 80ms and the EC 20ms, the period value will be four ECs. If

no delay is chosen, the period will have the default value of five.

Relatively to the bandwidth, as Figure 65 shows, the stream message size is calculated by

multiplying the message delay (ms) by the requested bandwidth (Bps), then dividing by 1000

(ms) due to the seconds and milliseconds unit differentiation. If the requested bandwidth is 30

Bps and the message delay (EC*PERIOD) is 20ms, the message size will be 1.5 B.

Figure 64 - Period Calculation

Figure 65 - Bandwidth calculation

F. Non-Functional Requirements Realization

 The FTT-SE must be capable of providing messages streams with a minimum delay of

20ms.

 The QoS parameters monitoring must have a maximum delay of 500ms.

 Regarding security, all the data exchanged between the producer/consumer nodes with

the EntryPoint via socket is not encrypted. However the messages between the

QoSManager system and the EntryPoint are protected with a SSL/TLS protocol that uses

Java Key Stores.

G. Proof of Concept/ Acceptance Test

After the development of all components, to test the project, it was decided to transmit a file,

specifically a video, between an Arrowhead Service Producer with a Consumer. To prove that

the QoS was being accomplished, two scenarios were created. On scenario 1 a user requests a

service with QoS (20ms of delay and 300KBps of bandwidth) under a very congested network;

on scenario 2, on the same congested network, the user requests the same video service without

QoS.

To reproduce the video, it was used the video player MPlayer [75] because it had the capability

of reading from a pipe. The goal of the use of a pipe was to play the video while is still being

transmitted by the producer. It was expected that during the reproduction of the video of the

service without QoS the video would stop and be inconsistent; in the service request with QoS,

the reproduction of the video would be fluid. Relatively to monitoring, on scenario 1 the

captured delay and throughput must be similar to the ones requested. However, on scenario 2

it was expected the capture of inconsistent values both on delay and bandwidth, due to its best-

effort transmission along with the stressful network.

int EC = getEC();
int PERIOD = delay/EC; //number of ECs

int EC getEC(); //ms
int PERIOD = getPERIOD(); //number of ECs
float SIZE = EC*PERIOD*BANDWITH/1000; // Bytes

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

135

During testing, both scenarios had the expected results, proving the success of the QoS

implementation in the Arrowhead Framework. Figures 66 to 69 show the monitoring statistic

collected during the message streams transmission, making possible to observe the consistency

of both QoS parameters on scenario 1 and the QoS values compliance. Regarding the values

obtained during scenario 2, it is also possible to observe the expected inconsistency and values

irregularity on both delay and throughput QoS parameters.

Figure 66 - – Monitoring of the capture of the throughput during scenario 2

Figure 67 - Monitoring of the capture of the throughput during scenario 1

Figure 68 - Monitoring of the capture of the delay during scenario 1.

0

100000

200000

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

T
h

ro
u

g
h

p
u

t
(B

p
s)

Sequence Number of Message

Scenario 2 (without QoS) - Throughput per time

0

200000

400000

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

T
ro

g
h

p
u

t
(B

p
s)

Sequence Number of Message

Scenario 1 (with QoS) - Throughput per time

0

10

20

30

4 6 8 10 12 14 16 18 20

D
e

la
y

 (
m

s)

Sequence Number of Message

Scenario 1 (with QoS) - Delay per message

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

136

Figure 69 - Monitoring of the capture of the delay during scenario 2.

0

200

400

600

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

D
e

la
y

 (
m

s)

Sequence Number of Message

Scenario 2 (without QoS) - Delay per message

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

Chapter 5. Tests Description

5 Tests Description ... 138

5.1 Introduction ... 138

5.2 Unit Tests ... 138

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

138

5 Tests DesĐƌiptioŶ

This section provides a description of the software tests performed, first introducing the

theoretical concepts in section 5.1 . Finally, in section 5.2, some of the developed unit tests are

explained.

5.1 Introduction

The realization of software tests is fundamental to guarantee that an application behaves as

expected and accomplished successfully all its requirements. This process should occur during a

project development to eliminate any construction errors, that otherwise could in result in

avoidable problems.

In fact, there are two different approaches of development tests, ͞Black-Box͟ and ͞White-Box͟

testing. ͞Black-Box͟ testing is done without knowing the internal parts of the software, the

tester knows what the program should do but does not know how it works. This testing approach

applies in different levels of software testing such as integration testing, system testing or

acceptance testing. Whereas the White-Box testing focus on the internal parts of the software,

forcing the tester to know the structure of the program. Most commonly, the White-Box testers

have programming skills and had already studied the implementation code. This testing

approach applies in three different level of software testing: integration, unit and system [76].

Since this project had two developed systems, several ͞White-Box͟ unit tests were

implemented, using the framework JUnit (version 4.12). These tests focused in the core

functionalities of both systems, which were of extreme importance to guarantee the

accomplishment of each system requirements.

It is important to note that as section G describes, the team, after the development of the pilot

project, performed a ͞Black-Box͟ acceptance test. This test consisted in two different scenarios,

one with configuration of QoS and the other with best-effort transmission. Each scenario was

carried out in the same environment conditions, including the network traffic, and demanded a

different behaviour of the developed systems. At the end, all systems behaved as expected.

Therefore, this Chapter only describes some of the ͞White-Boǆ͟ uŶits tests peƌfoƌŵed during

development, ǁhile the ͞BlaĐk-Boǆ͟ tests aƌe desĐƌiďed iŶ “eĐtioŶ 4.7.

5.2 Unit Tests

A unit test is code that exercises a specific portion of a codebase in a particular context. Typically,

each unit test sends a specific input to a method and verifies that the method returns the

expected value, or takes the expected action. Unit tests prove that the code does in fact do what

you expect it to do [77].

During development, several unit tests were implemented to both QoSManager and

QoSMonitor systems. In order to have an organized testing structure the team adopted the AAA

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

139

[78] testing pattern. AAA, or Arrange, Act and Assert pattern consists in these three stages, one

preceding the other. The first stage is the Arrange, which is where the tester makes the

necessary set up prior to invoking the method of interest. It can consist in simple instantiations

of objects or it can even consist in more complex set ups, depending on the application. The

second stage is the Act, where the tester invokes the method of interest. Finally, in the Assert

stage, the tester ensures that his expectations were met, by comparing the obtained result with

the expected one.

Regarding the QoSManager (Section 4.2.1) the classes that demanded more testing were the

ones responsible of verifying certain QoS requirements, named as QoSAlgorithm, and the ones

responsible of configuring a network depending on certain QoS requirements, named as

QoSDriver. These classes are specific to a communication protocol, and since in this project only

one communication protocol was worked (FTT-SE) there were only two classes available.

Moreover, only the FTT-SE QoSDriver was implemented at the expense of the QoSAlgorithm.

Therefore most of the unit tests focused in the FTT-SE QoSDriver.

Table 73 describes a unit test performed for the generateCommand() method of the class

FTTSE in a success scenario perspective. As well, Figure 70 shows how the same unit test was

implemented. This method receives a list of QoS requirements along with the network

information, including a stream identifier, the elementary cycle of the network and the

maximum transmission unit of the switch. After processing this input, it is expected that the

method returns a list of commands containing the configuration parameters of the stream to be

configured.

Table 73 - Test case 1.

Purpose Evaluate function return.

Setup None.

Test data Three integer objects corresponding to the network configuration: a

contour of the streams ID, the elementary cycle value and the

maximum transmission unit.

One map ĐoŶtaiŶiŶg the folloǁiŶg Qo“ ƌeƋuiƌeŵeŶts: ͞ďaŶdǁidth͟
ǁith ǀalue of ϭϱϬϬ aŶd ͞delaǇ͟ ǁith a ǀalue of ϮϬ.

Expected result The method must return a map containing the following instructions:

͞peƌiod͟ ǁith ǀalue of ϭ, ͞size͟ ǁith ǀalue of ϳϱϬϬ, ͞ id͟ ǁith the ǀalue
of ϭ, aŶd the ͞sǇŶĐhƌoŶous͟ ǀalue as Ϭ.

Steps Create a map object, containing certain QoS requirements.

Create three integer objects to use as parameters as invoking.

Invoke the

Actual result The method should return a map containing the following

instructions: ͞period͟ with value of 1, ͞size͟ ǁith ǀalue of ϳϱϬϬ, ͞id͟
ǁith the ǀalue of ϭ, aŶd the ͞sǇŶĐhƌoŶous͟ ǀalue as Ϭ.

Remarks The method returned the expected configuration commands and it is

considered successful.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

140

Figure 70 - Implementation of Test Case 1.

As for the QoSMonitor system, the same scenario of the QoSManager applies given that the

logic is conditioned by the communication protocol being used. Therefore, only one class was in

need of testing, the FTTSE class. A generic interface, IProtocol, defines the behaviour that

each communication protocol representative class must implement, thus supporting the use

cases described in section 4.2.2.B. Five methods are defined in the IProtocol interface, but

only four were tested since the remaining one plays a part in the showing of graphics and is not

important for this matter. They are:

 filterRuleMessage(AddMonitoringRule message): takes an

AddMonitoringRule as a parameter and creates a MonitorRule with the needed

information, specific to the communication protocol.

 filterLogMessage(AddMonitoringLog message): takes an

AddMonitoringLog as a parameter and creates a MonitorLog with the needed

information, specific to the communication protocol.

 createEvent(SendEvent message): takes a SendEvent as a parameter and

creates an EventHandler compliant event with the needed information.

 verifyQoS(MonitorRule rule, MonitorLog… logs): takes a

MonitorRule and at least one MonitorLog as parameters. As the name says, it

compares logs information against that defined by the rule The number (N) of

/**

 * Test of generateCommands method, of class FTTSE. With

QoS, bandwitdh

 * 1500B/s, delay 20 ms.

 */

 @Test

 public void testGenerateCommands1() {

 //ARRANGE

 Integer streamID = 0;

 Integer elementaryCycle = 20;

 Integer mtu = 1500;

 Map<String, String> requestedQoS = new HashMap<>();

 requestedQoS.put("bandwidht", "1500");

 requestedQoS.put("delay", "20");

 FTTSE instance = new FTTSE();

 Map<String, String> expResult = new HashMap<>();

 expResult.put("PERIOD", "1");

 expResult.put("SIZE", "7500");

 expResult.put("ID", "1");

 expResult.put("SYNCHRONOUS", "0");

 //ACT

 Map<String, String> result = instance.

 generateCommands(streamID, elementaryCycle,

mtu, requestedQoS);

 //ASSERT

 assertEquals(expResult, result);

 }

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

141

MonitorLog parameters defines if soft real time (N > 1) or real time (N = 1) monitoring

is to be executed. When executing a real time Quality-of-Service verification, an error of

10% is added to the bandwidth and 15 ms to the delay, to compensate for the processing

time of the FTTSE protocol.

With that said, in this report only the verifyQoS() tests ǁill ďe shoǁŶ siŶĐe it’s the ŵost
important of the four.

Table 74 describes a unit test created for the verifyQoS() method of the FTTSE class in a

success scenario perspective. In the FTTSE specification, only bandwidth and delay are

monitored. After processing the inputs, it is expected that the return represents a violation in

the requested Quality-of-Service, defined in the MonitorRule.

Table 74 - Test Case 1 of the QoSMonitor system.

Purpose Evaluate function return.

Setup MonitorRule and MonitorLog instantiations.

Test data A MonitorRule and a MonitorLog with default information.

The MonitorRule has three parameters, a stream_id with a value of 1,

a requested bandwidth value of 200 Mbps and a requested delay

value of 40 ms.

The MonitorLog has two parameters, a logged bandwidth value of

120 and a logged delay value of 60.

Expected result The method returns an instance of SLAVerificationResponse that is a

representation of the output of the Quality-of-Service verification

process. It must have information about the unmet requested value

in the MonitorLog, in this case is the delay which exceeds the value

specified in the MonitorRule.

Steps Create a MonitorRule with default information and the following

parameters: stream_id value of 1, requested bandwidth value of 200

Mbps, requested delay value of 40 ms.

Create a MonitorLog with default information and the following

parameters: logged bandwidth value of 120, logged delay value of 60.

Create a SLAVerificationResponse with information about the unmet

requested values and the respective logged values. In this case

requested delay value of 40 ms and logged value of 60 ms.

Actual result The method should return a SLAVerificationResponse with

information of the unmet requested values. In this case a requested

delay value of 40 and a logged value of 60.

Remarks The method returned the expected SLAVerificationResponse and it is

considered successful.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

142

Figure 71 - Test Case 1 of the QoSMonitor system.

Table 75 describes a unit test created for the verifyQoS() method of the FTTSE class in a

success scenario perspective. In the FTTSE specification only bandwidth and delay are monitored

After processing the inputs, it is expected that the return represents a violation in the requested

Quality-of-Service, defined in the MonitorRule. In this case, soft real time is enabled, and 20

MonitorLog instances are used.

Table 75 - Test Case 2 of the QoSMonitor system.

Purpose Evaluate function return.

Setup MonitorRule and 20 MonitorLog instantiations.

Test data A MonitorRule and 20 MonitorLog with default information.

The MonitorRule has four parameters, a stream_id with a value of 1,

a requested bandwidth value of 200 Mbps, a requested delay value

of 40 ms and the number of last logs (NLogs) to use in the monitoring

process set as 20. Also has a Boolean value for soft real time set as

true.

/**

 * Test of verifyQoS method in real time, not meeting QoS

 * requirements.

 */

@Test

public void testVerifyQoSNotMetRealTime() {

 System.out.println("verifyQoSNotMetRealTime");

 //ARRANGE

 /* Creates a MonitorRule with default information, a

stream_id value of 1, requested bandwidth and delay values

of 200 Mbps and 40 ms respectively */

 MonitorRule rule = createMonitorRule("1", "200", "40");

 /* Creates a MonitorLog with default information,

 logged bandwidth and delay values of 120 Mbps and

 60 ms respecively. */

 MonitorLog log = createMonitorLog("120", "60");

 //Output of a QoS verification process.

 SLAVerificationResponse expResult

 = new SLAVerificationResponse();

 //Information about an unmet requested value.

 expResult.addParameter(

 new SLAVerificationParameter("delay", 40.0, 60.0));

 //ACT

 //Variable instance represents a FTTSE instance.

 SLAVerificationResponse result

 = instance.verifyQoS(rule, log);

 //ASSERT

 assertEquals(expResult, result);
}

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

143

The 20 MonitorLog instances have two parameters each, a logged

bandwidth value and a logged delay value and each one is

represented next:

MonitorLog 1: bandwidth value: 112, delay value:58

MonitorLog 2: bandwidth value: 162, delay value:75

MonitorLog 3: bandwidth value: 158, delay value:65

MonitorLog 4: bandwidth value: 164, delay value:45

MonitorLog 5: bandwidth value: 100, delay value:20

MonitorLog 6: bandwidth value: 780, delay value:100

MonitorLog 7: bandwidth value: 12, delay value:90

MonitorLog 8: bandwidth value: 1200, delay value:10

MonitorLog 9: bandwidth value: 192, delay value:48

MonitorLog 10: bandwidth value: 241, delay value:40

MonitorLog 11: bandwidth value: 243, delay value:39

MonitorLog 12: bandwidth value: 351, delay value:20

MonitorLog 13: bandwidth value: 121, delay value:17

MonitorLog 14: bandwidth value: 801, delay value:45

MonitorLog 15: bandwidth value: 709, delay value:38

MonitorLog 16: bandwidth value: 125, delay value:85

MonitorLog 17: bandwidth value: 251, delay value:21

MonitorLog 18: bandwidth value: 199, delay value:37

MonitorLog 19: bandwidth value: 177, delay value:49

MonitorLog 20: bandwidth value: 120, delay value:60

Expected result The method returns an instance of SLAVerificationResponse that is a

representation of the output of the Quality-of-Service verification

process. It must have information about the unmet requested value

in the MonitorLog, in this case both the bandwidth and the delay

exceed the respective values specified in the MonitorRule.

Steps Create a MonitorRule with default information and the following

parameters: stream_id value of 1, requested bandwidth value of 200

Mbps, requested delay value of 40 ms.

Create 20 MonitorLog instances with default information and the

values described in the test data section of this table.

Create a SLAVerificationResponse with information about the unmet

requested values and the respective calculated values of the last 20

logs. In this case requested bandwidth value of 50 Mpbs and

calculated of 310.9 of the last 20 logs and requested delay value of 40

ms and calculated value of the last 20 logs of 47.85 ms.

Actual result The method should return a SLAVerificationResponse with

information of the unmet requested values. In this case a requested

bandwidth value of 250 Mbps and a calculated value of 310.9 of the

last 20 logs and a requested delay value of 40 and calculated value of

47.85 of the last 20 logs.

Remarks The method returned the expected SLAVerificationResponse and it is

considered successful.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

144

Figure 72 - Test Case 2 of the QoSMonitor system.

/**

 * Test of verifyQoS method in soft real time, not meeting QoS

 * requirements.

 */

@Test

public void testVerifyQoSNotMetSoftRealTime() {

 System.out.println("verifyQoSNotMetSoftRealTime");

 //ARRANGE

 /* Creates a MonitorRule with default information, a

stream_id value of 1, requested bandwidth and delay values

of 200 Mbps and 40 ms respectively */

 MonitorRule rule = createMonitorRule("1", "250", "40");

 //Enables soft real time monitoring

 rule.setSoftRealTime(true);

 rule.getParameters().put("NLogs", "20");

 /* Creates 20 MonitorLog with default information,

 bandwidth and delay values */

 MonitorLog[] logs = create20Logs();

 //Output of a QoS verification process.

 SLAVerificationResponse expResult

 = new SLAVerificationResponse();

 //Information about unmet requested values.

 expResult.addParameter(

 new SLAVerificationParameter("bandwidth", 250.0,

310.9));

 expResult.addParameter(

 new SLAVerificationParameter("delay", 40.0, 60.0));

 //ACT

 //Variable instance represents a FTTSE instance.

 SLAVerificationResponse result

 = instance.verifyQoS(rule, logs);

 //ASSERT

 assertEquals(expResult, result);
}

Chapter 6. Conclusion

6 Conclusion ... 146

6.1 Summary .. 146

6.2 Accomplished Objectives ... 147

6.3 Limitations and future work ... 148

6.4 Final Appreciation .. 148

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

146

6 CoŶĐlusioŶ

This chapter is divided in three sections. Section 6.1 summarizes the project problem and the

proposed solution. After, Section 6.2 describes the planned objectives, the ones that were

accomplished and the others that were not. The project limitations and its future work are

described in Section 6.3. Finally, Section 6.4 we present a final assessment on the developed

solution and the research centre that made this project possible.

6.1 Summary

The developed project consisted of the design and implementation of an architecture that would

allow QoS support in the Arrowhead-framework. The Arrowhead-framework was developed

under the Arrowhead Project which focused on allowing collaborative automation by devices

embedded in the network. Furthermore, to test the architecture and prove its validity, a pilot

project was also developed which applied the concept to real-time video application running

over a FTT-SE network.

The implemented solution consisted in two independent systems, the QoSManager and

QoSMonitor. The QoSManager is responsible of configuring QoS parameters in networks, and

the QoSMonitor is responsible of monitoring all the QoS requested requirements. These two

systems interact with each other and also with the other Arrowhead systems such as the

Orchestrator, the Service Registry and EventHandler.

Regarding the pilot project, we developed an application on top of the FTT-SE code, with the

purpose of integrating it with the Arrowhead Framework. During the integration, we designed

an architecture, which proposed the addition of an EntryPoint device that could retransmit the

messages coming from the Arrowhead and FTT-SE network. FTT-SE is a real-time protocol and

as such must process the input and produce an outcome within a specified time, else it will fail

In FTT-SE protocol A hierarchy is established by dividing all network nodes in two groups, the

master and salves. The master controls the traffic in the network among slave nodes, deciding

when and which slave has the permission to send data.

In all, the developed project allowed the consume of services with two QoS requirements: delay

and bandwidth. After the integration, a proof of concept was also implemented, with the

recording of a video demo. To prove the success of the work, the team made a test recurring to

a video transmission between a consumer and a producer node on a FTT-SE network. This test

occurred in two scenarios, one with QoS support and other without it (best-effort transmission).

On both scenarios the network had a considerable usage of bandwidth by other application,

thus allowing to prove that the required QoS levels were being accomplished.

As expected, the video transmitted in the best-effort scenario was inconsistent. However, on

the other scenario, the video transmitted with the requested QoS requirements had the

required quality, proving the success of the project.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

147

6.2 Accomplished Objectives

As Chapter 1 explained, the primary objective of this project was to design an architecture that

could support QoS in the Arrowhead Framework. This architecture had to be abstract enough

to be capable of working with different network technologies and QoS requirements. Since this

architecture was designed, developed and tested with the support of the pilot project it is fair

enough to say that this objective was successfully accomplished.

Regarding the developed architecture, both QoS configuring and monitoring goals were

achieved with the development of the QoSManager and QoSMonitor systems. Only one

functionality of the QoSManager, checking if certain QoS requirements were feasible in FTT-SE,

was not implemented due to insufficiency of time and high mathematical complexity.

The extensibility objectives regarding to the communication protocols and SLA parameters were

also accomplished in both QoSManager and QoSMonitor systems recurring to software design

patterns. These two developed systems are capable of working with multiple communication

protocols without the need of recompiling their source codes. As long, there is a QoSDriver and

a QoSAlgorithm class for each communication protocol, both systems can operate in various

protocols. Regarding the SLA parameters, the same objective was accomplished since both

systems are capable of working with unlimited number of parameters. It is important to note

that this depends on the capability of the monitoring plugins. If they are capable of monitoring

only delay, obviously both QoSManager and QoSMonitor systems can solely operate with this

parameter.

Furthermore, the developed monitoring graphical interface allowed the user to visualize the

monitored parameters, like delay or bandwidth, and any given critical event, such as a loss of a

packet. Therefore, all the monitored data is displayed in graphics using the JavaFX [79] platform,

allowing a user-friendly and easily comprehensible graphical interface. The visualisation of the

monitored data can only be done in the node where the QoSMonitor system is deployed.

Another planned objective consisted in the implementation of a pilot project. The team

successfully implemented the pilot project, proving the well functioning of all the developed

systems. Considering the limitations of the FTT-SE network, the team studied different

architecture solutions and come to a final one, which imposed the addition of one network

interface per node and the addition of a computer node, named as EntryPoint. The EntryPoint

had the purpose of converting socket messages to HTTP messages and vice-versa.

After the implementation of the proposed architecture, the QoS support of the Arrowhead could

finally be tested in the FTT-SE network. The team decided to transmit a video from a producer

to a consumer and during that transmission the video would be reproduced in the consumer

node, to prove the robustness of the stream connecting both producer and consumer. Using

MPlayer, as section 4.7 describes, the team tested and recorded the system behaviour. As

expected the video reproduction was consistent and fluid with the QoS support, and in the other

hand, it was inconsistent without the QoS support.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

148

As a final point, it is fair enough to say that all the objectives were achieved with success, except

the QoSAlgorithm of the FTT-SE network.

6.3 Limitations and future work

Despite the developed architecture had been successfully tested, some of its non-functional

requirements such as security and performance could not be implemented in a proper way.

Furthermore, due to lack of documentation, the integration with the FTT-SE protocol proved to

be more complicated than expected. As a result, the pilot-project was unstable, so in the future

work it must be corrected. Still on the pilot-project, it is expected as future work to develop a

different architecture that avoids the use of two interfaces. Such architecture could be

supported using the Tun/Tap technology, enabling the transport of TCP packets in FTT-SE.

Although most of the objectives were accomplished, both systems can be improved in several

scenarios. First, the QoSAlgorithm for the FTT-SE network must be implemented, since it is

important for the QoSVerify functionality of the QoSManager.

Regarding the QoSMonitor, its graphical interface could, as future work, be deployed as a web

service, allowing its visualization via browser, outside the local cloud where the QoSMonitor

system is deployed. Also, in order to avoid overload in the seƌǀiĐe pƌoǀideƌs, a ͞load-ďalaŶĐiŶg͟
like mechanism should be employed by the QoSMonitor system and the respective plugins

deploǇed iŶ the pƌoǀideƌ sǇsteŵs ;e.g. ǁheŶeǀeƌ a pƌoǀideƌ ĐaŶ’t ƌelaǇ all the ŵoŶitoƌiŶg
information, in MonitorLog form, to the QoSMonitor system, the frequency of transmission of

MonitorLog can be halved).

In order to increase the consistency and integrity of the developed systems, as future work,

other pilot-projects must be made, specially in other communication protocols than the FTT-SE,

such as ZigBee [14].

Another asset for the foreseeable future work would be the implementation of this architecture

for other Arrowhead Frameworks. Since some of the partners use different implementations of

the Arrowhead, it would be beneficial for all, the addition of the QoS support.

The developed work is being prepared to be included in a paper, which is under development.

Since all primary objectives were achieved and the developed work has potential to be extended

in the core functionalities (as referred throughout this report, more protocols) it can be a

starting point, given that not only the Quality-of-Service core systems were implemented but

also a pilot pƌojeĐt ǁas ŵade to shoǁ all the fƌaŵeǁoƌk’s practical uses.

6.4 Final Appreciation

The inherent problems in this project enabled a positive experience, especially enriching ones.

The solution implementation required a large versatility by all developers, since various

technologies were studied and used.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

149

The solution development focused primarily on good programming techniques and in the usage

of robust technologies in order to fulfil some of the project non-functional requirements.

Although the solution complies with its main objectives, it still requires greater robustness, more

specifically in the FTT-SE application.

Regarding the organization where the internship took place, CISTER facilities are of high quality

where there was no lack of resources necessary to carry out the work. The working environment

had been always been pleasant, and since the beginning, all CISTER colleagues made very easy

the integration of every team member in the research centre. As CISTER focuses on various areas

of work, the centre does not have in its work philosophy a fixed software development

methodology. As a result, the team and the supervisors had almost daily contact, to guarantee

that all were aware of the project status and problems.

At last, assessing the outcome and considering the complexity and the time of work, the team

was pleased with the results achieved.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

150

7 BiďliogƌaphǇ

[1] Arrowhead, Arrowhead Book, 2013.

[2] C. R. CeŶteƌ, ͞Cisteƌ IŶfo,͟ Cisteƌ ReseaƌĐh CeŶteƌ, ϱ JuŶe ϮϬϭϲ. [OŶliŶe]. Aǀailaďle:
http://cister.isep.ipp.pt/info.

[3] ͞Cisteƌ ReseaƌĐh TopiĐs,͟ ϱ JuŶe ϮϬϭϲ. [OŶliŶe]. Aǀailaďle:
http://cister.isep.ipp.pt/research/.

[4] G. BƌaŶĐa, ͞AƌĐhiteĐtuƌes aŶd TeĐhŶologies foƌ QualitǇ of “eƌǀiĐe,͟ ItalǇ, ϮϬϭϮ.

[5] L. L. Feƌƌeiƌa aŶd M. AlďaŶo, ͞Qo“-as-a-“eƌǀiĐe iŶ the LoĐal Cloud,͟ ϮϬϭϲ.

[6] PANDUIT, ͞ModeƌŶiziŶg the IŶdustƌial EtheƌŶet Netǁoƌk,͟ PANDUIT, JulǇ ϮϬϭϲ. [OŶliŶe].
Available: http://www.panduit.com/ccurl/368/276/modernizing-the-industrial-

ethernet-network-with-increased-visibility,0.pdf. [Accessed 3 October 2016].

[7] ͞IƌoŶ Papeƌ,͟ IƌoŶ Papeƌ, ϱ MaƌĐh ϮϬϭϱ. [OŶliŶe]. Aǀailaďle:
http://www.ironpaper.com/webintel/articles/internet-things-market-statistics-2015.

[Accessed 3 June 2016].

[8] ͞IŶtel,͟ IŶtel, [OŶliŶe]. Aǀailaďle: http://ǁǁǁ.iŶtel.Đoŵ/ĐoŶteŶt/ǁǁǁ/us/eŶ/iŶteƌŶet-

of-things/industry-solutions.html. [Accessed 4 June 2016].

[9] “AP, ͞IoT foƌ the Autoŵotiǀe IŶdustƌǇ,͟ “AP, ϮϬϭϰ. [OŶliŶe]. Aǀailaďle:
https://www.sap.com/bin/sapcom/en_us/https://www.sap.com/bin/sapcom/en_us/d

ownloadasset.2014-10-oct-31-20.ceo-perspective-the-interrnet-of-things-for-the-

automo.2014-10-oct-31-20.ceo-perspective-the-interrnet-of-things-for-the-

automotive-industry-pdf.html. [Accessed 2 October 2015].

[10] GaƌtŶeƌ, ͞GaƌtŶeƌ TeĐhŶologǇ CoŶsultaŶt - OffiĐial “ite,͟ GaƌtŶeƌ, [OŶliŶe]. Aǀailaďle:
http://www.gartner.com/technology/home.jsp. [Accessed 2 October 2016].

[11] N. Vej, ͞IoT - Fƌoŵ ReseaƌĐh aŶd IŶŶoǀatioŶ to Maƌket DeploǇŵeŶt,͟ Riǀeƌ Puďlisheƌs,
Denmakr, 2014.

[12] TeleŶsa, ͞IoT iŶ sŵaƌt Đities pƌojeĐt,͟ TeleŶsa, [OŶliŶe]. Aǀailaďle:
http://www.telensa.com/. [Accessed 2 October 2016].

[13] ͞BusiŶessWiƌe,͟ BussiŶeWiƌe, ϳ JuŶe ϮϬϭϲ. [OŶliŶe]. Aǀailaďle:
http:www.businesswire.com/news/home/20160607005875/en/Global-Internet-IoT-

Healthcare-Market-Grow-37.6. [Accessed 8 June 2016].

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

151

[14] IGI, ͞)igďee Wiƌeless DesĐƌiptioŶ,͟ [OŶliŶe]. Aǀailaďle:
https://www.digi.com/resources/standards-and-technologies/rfmodems/zigbee-

wireless-standard. [Accessed 25 September 2016].

[15] RaǇŵoŶd Haŵes, ͞The IŶteƌŶet of ThiŶgs,͟ U.“. ReseaƌĐh, ϮϬϭϰ.

[16] YOKOGAWA, ͞DC“ DesĐƌiptioŶ,͟ YOKOGAWA, [OŶliŶe]. Aǀailaďle:
http://www.yokogawa.com/solutions/products-platforms/control-system/distributed-

control-systems-dcs/. [Accessed 26 September 2016].

[17] IBM, ͞“CADA DesĐƌiptioŶ,͟ IBM, [OŶliŶe]. Aǀailaďle: http://ǁǁǁ-

935.ibm.com/services/us/iss/pdf/scada_whitepaper.pdf. [Accessed 29 September

2016].

[18] I“A, ͞I“A-ϵϱ DesĐƌiptioŶ,͟ [OŶliŶe]. Aǀailaďle: https://isa-95.com/. [Accessed 26

September 2016].

[19] I“A, ͞I“A-ϵϱ DesĐƌiptioŶ,͟ I“A, [OŶliŶe]. Aǀailaďle: https://www.isa.org/isa95/.

[20] R. Maƌau, ͞Real TIŵe-Communications over siwtched Ethernet supporting dynamic QoS

MaŶagŵeŶt.,͟ ϮϬϬϵ.

[21] ToǇota, ͞AŶti-loĐk Bƌake “Ǉsteŵ,͟ ToǇota, [OŶliŶe]. Aǀailaďle: http://ǁǁǁ.toǇota-

global.com/innovation/safety_technology/safety_technology/technology_file/active/.

[Accessed 16 Sepetmber 2016].

[22] Teǆas IŶstƌuŵeŶts, ͞AŶ IŶside look at iŶdustƌial EtheƌŶet ĐoŵŵuŶiĐatioŶ pƌotoĐols,͟
2013.

[23] M. H. Ashjaei, ͞EǆteŶdiŶg FTT-SE Protocol for Multi-Masteƌ Netǁoƌks,͟ VąsteƌĆs,

Sweden, 2012.

[24] C. Goŵes, ͞ FTT-“E: DeseŶǀolǀiŵeŶto de uŵ disseĐtoƌ paƌa uŵ pƌotoĐolo de teŵpo ƌeal.,͟
Universidade Aveiro, Aveiro, 2010.

[25] NAGIO“, ͞Nagios Hoŵe Page,͟ [OŶliŶe]. Aǀailaďle: https://ǁǁǁ.Ŷagios.oƌg/. [AĐĐessed
29 September 2016].

[26] CACTI, ͞CACTI Hoŵe Page,͟ [OŶliŶe]. Aǀailaďle: http://ǁǁǁ.ĐaĐti.Ŷet/. [AĐĐessed Ϯϵ
September 2016].

[27] J. Delsing, P. Varga, J. Eliasson, F. Blomqvist, P. Olofsson, H. Derhamy, O. Carlsson, P. P.

Pereira, T. S. Cinotti, A. Skou, L. Ferreira and M. D. S. Sanchez, IoT based Automation -

made possible using Arrowhead Framework, 2013.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

152

[28] M. AlďaŶo, L. L. Feƌƌƌeiƌa aŶd J. “ousa, ͞EǆteŶdiŶg puďlish/suďsĐƌiďe ŵeĐhaŶisŵs to “OA
appliĐatioŶs,͟ ϮϬϭϲ.

[29] L. L. Feƌƌeiƌa, ͞The Aƌƌoǁhead ApƌoaĐh foƌ “OA Application Development and

DoĐuŵeŶtatioŶ,͟ Aƌƌoǁhead, EU, ϮϬϭϰ.

[30] IBM, ͞RatioŶal UŶified PƌoĐess - Best PƌaĐtiĐes foƌ “oftǁaƌe DeǀelopŵeŶt Teaŵs,͟ IBM,
2011.

[31] BitďuĐket , ͞BitďuĐket,͟ BitďuĐket, [OŶliŶe]. Aǀailaďle: https://ďitďuĐket.oƌg/. [Accessed

16 September 2016].

[32] Git, ͞Git OffiĐial Page,͟ Git, [OŶliŶe]. Aǀailaďle: https://git-scm.com/. [Accessed 16

September 2016].

[33] UML, ͞UML DesĐƌiptioŶ,͟ UML, [OŶliŶe]. Aǀailaďle: http://ǁǁǁ.uŵl.oƌg/. [AĐĐessed Ϯϳ
September 2016].

[34] M. Foǁleƌ, ͞UŶit Tests DesĐƌiptioŶ,͟ MaƌtiŶ Foǁleƌ, ϱ MaǇ ϮϬϭϰ. [OŶliŶe]. Aǀailaďle:
http://martinfowler.com/bliki/UnitTest.html. [Accessed 16 September 2016].

[35] Agile AlliaŶĐe, ͞AĐĐepteŶĐe TestiŶg,͟ Agile AlliaŶĐe, [OŶliŶe]. Aǀailaďle:
https://www.agilealliance.org/glossary/acceptance/. [Accessed 13 October 2016].

[36] MiĐƌosoft, ͞Poǁeƌ PoiŶt Tool,͟ MiĐƌosoft, [OŶliŶe]. Aǀailaďle:
https://office.live.com/start/PowerPoint.aspx. [Accessed 16 September 2016].

[37] OƌaĐle., ͞Jaǀa DesĐƌiptioŶ.,͟ ϱ JuŶe 2016. [Online]. Available:

https://java.com/en/download/faq/whatis_java.xml.

[38] H. Schildt, Java The Complete Reference Ninth Edition Book, Oracle Press., 2014.

[39] N. Parlante, Essential C book, Standford CS Education Library, 2003.

[40] Jersey, ͞JeƌseǇ Jaǀa Net,͟ JeƌseǇ , [OŶliŶe]. Aǀailaďle: https://jeƌseǇ.jaǀa.Ŷet/. [AĐĐessed
8 June 2016].

[41] OƌaĐle, ͞JAX-R“ API,͟ OƌaĐle, [OŶliŶe]. Aǀailaďle: https://jaǆ-rs-

spec.java.net/nonav/2.0/apidocs/. [Accessed 16 September 2016].

[42] Vogella, ͞JeƌseǇ Tutoƌial,͟ Vogella, ϭϱ DeĐeŵďeƌ ϮϬϭϱ. [OŶliŶe]. Aǀailaďle:
http://www.vogella.com/tutorials/REST/article.html. [Accessed 16 September 2016].

[43] N.-ϯ. Pƌess., ͞N“-ϯ DoĐuŵeŶtatioŶ.,͟ ϱ JuŶe ϮϬϭϲ. [OŶliŶe]. Aǀailaďle:
https://www.nsnam.org/docs/tutorial/html/introduction.html#about-ns3.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

153

[44] Wikipedia, ͞DisĐƌete EǀeŶt “iŵulatioŶ,͟ ϲ JuŶe ϮϬϭϲ. [OŶliŶe]. Aǀailaďle:
https://en.wikipedia.org/wiki/Discrete_event_simulation.

[45] MoŶgoDB, ͞MoŶgoDB,͟ MoŶgoDB, [OŶliŶe]. Aǀailaďle:
https://www.mongodb.com/compare/mongodb-mysql. [Accessed 8 June 2016].

[46] P. OƌaĐle, ͞OƌaĐle MY“Ql,͟ ϳ JuŶe ϮϬϭϲ. [OŶliŶe]. Aǀailaďle:
http://www.oracle.com/us/products/mysql/overview/index.html.

[47] TutoƌialPoiŶts, ͞RDBM“ DesĐƌiptioŶ,͟ TutoƌialPoiŶts, [OŶliŶe]. Aǀailaďle:

https://www.tutorialspoint.com/sql/sql-rdbms-concepts.htm. [Accessed 29 September

2016].

[48] ͞MǇ“QL,͟ ϳ JuŶe ϮϬϭϲ. [OŶliŶe]. Aǀailaďle: http://ǁǁǁ.tioďe.Đoŵ/tioďe_iŶdeǆ.

[49] O. Pƌess, ͞NetďeaŶs,͟ NetďeaŶs, [OŶliŶe]. Aǀailaďle: https://ŶetďeaŶs.oƌg/features/.

[Accessed 8 June 2016].

[50] C. A. Wheƌe, ͞Most Populaƌ Desktop IDEs & Code Editoƌs iŶ ϮϬϭϰ,͟ Code AŶǇ Wheƌe,
[Online]. Available: https://blog.codeanywhere.com/most-popular-ides-code-editors/.

[Accessed 8 June 2016].

[51] EĐlipse, ͞EĐlipse DesĐƌiptioŶ,͟ ϳ JuŶe ϮϬϭϲ. [OŶliŶe]. Aǀailaďle: https://eĐlipse.oƌg/oƌg/.

[52] G. Weďsite, ͞Git DesĐƌiptioŶ,͟ ϳ JuŶe ϮϬϭϲ. [OŶliŶe]. Aǀailaďle: https://git-scm.com/.

[53] B. Weďsite, ͞Bitkeepeƌ,͟ ϳ JuŶe ϮϬϭϲ. [OŶliŶe]. Aǀailaďle: http://ǁǁǁ.ďitkeepeƌ.com/.

[54] G. Weďsite, ͞WhǇ Use VeƌsioŶ CoŶtƌol,͟ ϳ JuŶe ϮϬϭϲ. [OŶliŶe]. Aǀailaďle:
https://www.git-tower.com/learn/git/ebook/en/command-line/basics/why-use-

version-control.

[55] O. Weďsite, ͞VeƌsioŶ CoŶtƌol,͟ ϳ JuŶe ϮϬϭϲ. [OŶliŶe]. Aǀailaďle: http://oss-

watch.ac.uk/resources/versioncontrol.

[56] Csaďa Miklós Hegedűs, ͞Aƌƌoǁhead HuŶgaƌiaŶ Fƌaŵeǁoek,͟ ϮϬϭϱ.

[57] PeaƌsoŶ, ͞AIC,͟ PeaƌsoŶ, [OŶliŶe]. Aǀailaďle:
http://www.pearsonitcertification.com/articles/article.aspx?p=1708668. [Accessed 13

October 2016].

[58] CleaŶ Codeƌ, ͞“OLID desĐƌiptioŶ,͟ ϮϬϬϵ. [OŶliŶe]. Aǀailaďle:
https://sites.google.com/site/unclebobconsultingllc/getting-a-solid-start. [Accessed 24

September 2016].

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

154

[59] Lokesh Gupta, ͞“iŶgletoŶ DesĐƌiptioŶ,͟ HoǁToDoIŶJaǀa, ϮϮ OĐtoďeƌ ϮϬϭϮ. [Online].

Available: http://howtodoinjava.com/design-patterns/creational/singleton-design-

pattern-in-java/. [Accessed 2016 September 2016].

[60] MiĐƌosoft, ͞DTO DesĐƌiptioŶ,͟ MiĐƌosoft, [OŶliŶe]. Aǀailaďle:
https://msdn.microsoft.com/en-us/library/ff649585.aspx. [Accessed 26 September

2016].

[61] Pƌogƌaŵ Cƌeek, ͞RefleĐtioŶ PatteƌŶ desĐƌiptioŶ,͟ Pƌogƌaŵ Cƌeek, [OŶliŶe]. Aǀailaďle:
http://www.programcreek.com/2013/09/java-reflection-tutorial/. [Accessed 9

September 2016].

[62] Pƌogƌaŵ Cƌeek, ͞FaĐtoƌǇ PatteƌŶ desĐƌiptioŶ.,͟ Pƌogƌaŵ Cƌeek, [OŶliŶe]. Aǀailaďle:
http://www.programcreek.com/2013/02/java-design-pattern-factory/. [Accessed 9

September 2016].

[63] MiĐƌosoft, ͞RepositoƌǇ PatteƌŶ desĐƌiptioŶ.,͟ MiĐƌosoft, [OŶliŶe]. Aǀailaďle:
https://msdn.microsoft.com/en-us/library/ff649690.aspx. [Accessed 9 September

2016].

[64] OƌaĐle, ͞NetďeaŶs DesĐƌiptioŶ,͟ OƌaĐle, [OŶliŶe]. Aǀailaďle: https://ŶetďeaŶs.oƌg/.
[Accessed 11 September 2016].

[65] ͞EǀeŶt HaŶdleƌ “Ǉsteŵ,͟ [OŶliŶe]. Aǀailaďle: uƌl. [AĐĐessed ϭϱ 9 2016].

[66] MoŶgoDB, ͞B“ON DesĐƌiptioŶ,͟ MoŶgoDB, [OŶliŶe]. Aǀailaďle:
https://www.mongodb.com/json-and-bson. [Accessed 26 September 2016].

[67] U. d. Poƌto, ͞FTT,͟ UŶiǀeƌsidade do Poƌto, [OŶliŶe]. Aǀailaďle:
https://paginas.fe.up.pt/~ftt/sections/Flavours/index.html#ftt_se. [Accessed 7

September 2016].

[68] KeƌŶel, ͞TuŶTap DesĐƌiptioŶ,͟ KeƌŶel, [OŶliŶe]. Aǀailaďle:
https://www.kernel.org/doc/Documentation/networking/tuntap.txt. [Accessed 7

September 2016].

[69] DeďiaŶ, ͞DeďiaŶ - The Universal OpeƌatiŶg “Ǉsteŵ,͟ DeďiaŶ, [OŶliŶe]. Aǀailaďle:
https://www.debian.org/index.pt.html. [Accessed 7 September 2016].

[70] HP, ͞“uppoƌt CeŶtƌe,͟ HP, [OŶliŶe]. Aǀailaďle:
http://h20564.www2.hp.com/hpsc/swd/public/readIndex?sp4ts.oid=5045601.

[Accessed 7 September 2016].

[71] TP-LINK, ͞TL-“FϭϬϬϴϬD “ǁitĐh DesĐƌptioŶ,͟ TP-LINK, [Online]. Available: http://www.tp-

link.com/lk/products/details/cat-4763_TL-SF1008D.html. [Accessed 7 September 2016].

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

155

[72] Wikipedia, ͞Cϴϵ,͟ Wikipedia, ϭϲ August ϮϬϭϲ. [OŶliŶe]. Aǀailable:

https://en.wikipedia.org/wiki/ANSI_C. [Accessed 7 September 2016].

[73] WiŶdoǁs, ͞WiŶdoǁs ϭϬ Hoŵe Page,͟ WiŶdoǁs, [OŶliŶe]. Aǀailaďle:
https://www.microsoft.com/pt-pt/windows/get-windows-10. [Accessed 7 September

2016].

[74] supeƌŵaƌtiaŶ, ͞Wait-Free Queue,͟ GitHuď, [OŶliŶe]. Aǀailaďle:
https://github.com/supermartian/lockfree-queue. [Accessed 7 September 2016].

[75] MPlaǇeƌ, ͞MPlaǇeƌ Hoŵe Page,͟ [OŶliŶe]. Aǀailaďle:
http://www.mplayerhq.hu/design7/news.html. [Accessed 7 September 2016].

[76] British Coŵputeƌ “oĐietǇ, ͞“taŶdaƌd foƌ “oftǁaƌe CoŵpoŶeŶt TestiŶg,͟ Bƌitish Coŵputeƌ
Society, 2014.

[77] Deǀelopeƌ “alesfoƌĐe, ͞UŶit Tests desĐƌiptioŶ.,͟ ϮϬϭϰ. [OŶliŶe]. Aǀailaďle:
https://developer.salesforce.com/page/How_to_Write_Good_Unit_Tests. [Accessed 24

September 2016].

[78] MiĐƌosoft, ͞AAA testiŶg patteƌŶ,͟ MiĐƌosoft, ϳ JaŶuaƌǇ ϮϬϭϲ. [OŶliŶe]. Aǀailaďle:
https://msdn.microsoft.com/en-us/library/hh694602.aspx. [Accessed 26 September

2016].

[79] OƌaĐle, ͞JaǀaFX - The RiĐh ClieŶt Platfoƌŵ,͟ [OŶline]. Available:

http://www.oracle.com/technetwork/java/javase/overview/javafx-overview-

2158620.html. [Accessed 11 October 2016].

[80] F. Oliǀeiƌa, ͞IŵpleŵeŶtaçĆo da ƌede Fleǆiďle TIŵe Tƌiggeƌ paƌa “ǁitĐhed EtheƌŶet Ŷo
SImulador NS-ϯ,͟ I“EP, Poƌto, ϮϬϭϱ.

[81] IDC, ͞IDC Maƌket IŶtelligeŶĐe Foƌŵ,͟ IDC, [OŶliŶe]. Aǀailaďle: https://ǁǁǁ.idĐ.Đoŵ/.
[Accessed 15 Junho 2016].

[82] “ŵaƌtBeaƌ, ͞FuŶĐtioŶal Tests DesĐƌiptioŶ,͟ “ŵaƌtBeaƌ, [OŶliŶe]. Aǀailaďle:
https://smartbear.com/learn/automated-testing/introduction-to-functional-testing/.

[Accessed 16 September 2016].

[83] MIĐƌosoft, ͞IŶtegƌatioŶ TestiŶg,͟ MiĐƌosoft, [OŶliŶe]. Aǀailaďle:
https://msdn.microsoft.com/en-us/library/aa292128(v=vs.71).aspx. [Accessed 16

September 2016].

[84] OƌaĐle, ͞DAO DesĐƌiptioŶ,͟ OƌaĐle, [OŶliŶe]. Aǀailaďle:
http://www.oracle.com/technetwork/java/dataaccessobject-138824.html. [Accessed

26 September 2016].

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

156

[85] I. MoŶgoDB, ͞CoŵŵuŶitǇ | MoŶgoDB,͟ [OŶliŶe]. Aǀailaďle:
https://www.mongodb.com/community.

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

Appendixes

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

 March - 2016 April - 2016 May - 2016 June - 2016 July - 2016 August - 2016 September- 2016

ID WBS TASK

PREDECESSO

R

RESPONSIBL

E

DURATIO

N

(Weeks) START FINISH

1
st

W
e

e
k

2
n

d
W

e
e

k

3
rd

W
e

e
k

4
th

W
e

e
k

5
th

W
e

e
k

1
st

W
e

e
k

2
n

d
W

e
e

k

3
rd

W
e

e
k

4
th

W
e

e
k

5
th

W
e

e
k

1
st

W
e

e
k

2
n

d
W

e
e

k

3
rd

W
e

e
k

4
th

W
e

e
k

5
th

W
e

e
k

1
st

W
e

e
k

2
n

d
W

e
e

k

3
rd

W
e

e
k

4
th

W
e

e
k

5
th

W
e

e
k

1
st

W
e

e
k

2
n

d
W

e
e

k

3
rd

W
e

e
k

4
th

W
e

e
k

1
st

W
e

e
k

2
n

d
W

e
e

k

3
rd

W
e

e
k

4
th

W
e

e
k

5
th

W
e

e
k

1
st

W
e

e
k

2
n

d
W

e
e

k

3
rd

W
e

e
k

4
th

W
e

e
k

5
th

W
e

e
k

#R 1 Project Requirements
#R_1 1.1 Initial Project Planning

 Team 1 1 March 4 March

#R_2 1.2 Project Concepts Studying Team 5 1 March 31 March
#R_3 1.3 Project Technologies Studying Team 10 1 March 29 April
#R_4 1.4 Testing Arrowhead Framework Team 5 1 March 31 March
#R_5 1.5 Testing FTTSE application Team 15 1 March 31 May
#R_6 1.6 Testing Event Handler Project Renato 5 1 June 30 June
#R_7 1.7 Software Specifications and Functionalities Team 15 1 March 31 May

#A 2 Software Analysis #R

#A_1 2.1 Resolution of Arrowhead Architecture Team
#A_1_

1

2.1.

1 QoSManager Paulo 6 2 May 3 June
#A_1_

2

2.1.

2 QoSMonitor Renato 6 2 May 3 June

#A_2 2.2 Resolution of Databases structures
#A_2_

1

2.2.

1 QoSManager Paulo 10 2 May 30 June
#A_2_

2

2.2.

2 QoSMonitor Renato 10 2 May 30 June

#A_3 2.3
Resolution of the global Architecture (Arrowhead with

FTTSE)
#A_3_

1

2.3.

1 QoSManager Paulo 10 2 May 30 June
#A_3_

2

2.3.

2 QoSMonitor Renato 10 2 May 30 June
#D 3 Development #A

#D_1 3.1 QoSManager Paulo 14 1 June 31 August
#D_2 3.2 QoSMonitor Renato 14 1 June 31 August
#D_3 3.3 QoSMonitor integration with QoSManager Team 13 13 June 31 August

#D_4 3.4 QoSMonitor integration with EventHandler Renato 1 13 June 17 June

#D_5 3.5 FTTSE interface Team 6 11 July 19 August
#D_6 3.6 FTTSE monitoring Team 4 1 August 26 August

#D_7 3.7 Arrowhead integration with FTTSE Team 2 22 August 31 August

#D_8 3.8 Demo Preparation with Video Paulo 2 8 August 19 August

#T 4 Tests #D

#T_1 4.1 QoSManager: Unit Testing Team 13 6 June 31 August

#T_2 4.2 QoSMonitor: Unit Testing Team 13 6 June 31 August

#T_3 4.3 QoSMonitor integration with QoSManager: Integration Tests Team 11 20 June 31 August

#T_4 4.4
QoSMonitor integration with EventHandler: Integration

Tests Team 2 6 July 13 July

#T_5 4.5 Arrowhead integration with FTTSE: Integration Tests Team 2 22 August 31 August

#D 5 Documentation #I

#D_1 5.1
Project Report Team 20 30 May

30

September

#D_2 5.2
Arrowhead Technical Documents Team 4

1

September

23

September
#M 6 Meetings none

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT SYSTEMS

#M_1 6.1
Hungary Partners Team 23 2 May

30

September

#M_2 6.2
CISTER supervisors Team 34 1 March

30

September

#M_3 6.3 Milestones Demonstrations Team 13 6 June 31 August

#M_4 6.4 FTTSE partner Team 25 15 March 19 August
#M_5 5.4 Event Handler partner Team 9 23 May 11 July

Document title

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT

SYSTEMS

Version

[Kategori]

Date

13/10/2016

Status

[Status]

 Page

9 (184)

www.arrowhead.eu

QoSManager.wadl
<application xmlns="http://wadl.dev.java.net/2009/02">
<doc xmlns:jersey="http://jersey.java.net/" jersey:generatedBy="Jersey:
2.23.1 2016-06-09 18:05:47"/>
<doc xmlns:jersey="http://jersey.java.net/" jersey:hint="This is simplified
WADL with user and core resources only. To get full WADL with extended

resources use the query parameter detail. Link:

http://localhost:8444/qos/application.wadl?detail=true"/>
<grammars>
<include href="application.wadl/xsd0.xsd">
<doc title="Generated" xml:lang="en"/>
</include>
</grammars>
<resources base="http://localhost:8444/qos/">
<resource path="QoSManager">
<method id="home" name="GET">
<response>
<representation mediaType="text/plain"/>
</response>
</method>
<resource path="/QoSVerify">
<method id="qosVerification" name="PUT">
<request>
<ns2:representation xmlns:ns2="http://wadl.dev.java.net/2009/02" xmlns=""
element="qoSVerify" mediaType="application/json"/>
</request>
<response>
<representation mediaType="application/json"/>
</response>
</method>
</resource>
<resource path="/QoSReserve">
<method id="qosReservation" name="PUT">
<request>
<ns2:representation xmlns:ns2="http://wadl.dev.java.net/2009/02" xmlns=""
element="qoSReserve" mediaType="application/json"/>
</request>
<response>
<representation mediaType="application/json"/>
</response>
</method>
</resource>
</resource>
</resources>
</application>

Document title

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT

SYSTEMS

Version

[Kategori]

Date

13/10/2016

Status

[Status]

 Page

10 (184)

www.arrowhead.eu

QoSMonitor.wadl (1/2)

<application xmlns="http://wadl.dev.java.net/2009/02">

<doc xmlns:jersey="http://jersey.java.net/" jersey:generatedBy="Jersey: 2.23.1 2016-06-09

18:05:47"/>

<doc xmlns:jersey="http://jersey.java.net/" jersey:hint="This is simplified WADL with user and

core resources only. To get full WADL with extended resources use the query parameter detail.

Link: http://localhost:8144/qosmonitor/application.wadl?detail=true"/>

<grammars>

<include href="application.wadl/xsd0.xsd">

<doc title="Generated" xml:lang="en"/>

</include>

</grammars>

<resources base="http://localhost:8144/qosmonitor/">

<resource path="Monitor">

<resource path="/QoSRule">

<method id="addRule" name="POST">

<request>

<ns2:representation xmlns:ns2="http://wadl.dev.java.net/2009/02" xmlns=""

element="addMonitorRule" mediaType="application/json"/>

</request>

<response>

<representation mediaType="application/json"/>

</response>

</method>

<method id="removeRule" name="DELETE">

<request>

<ns2:representation xmlns:ns2="http://wadl.dev.java.net/2009/02" xmlns=""

element="removeMonitorRule" mediaType="application/json"/>

</request>

<response>

<representation mediaType="application/json"/>

</response>

</method>

</resource>

<resource path="/reload">

<method id="startService" name="GET">

<response>

<representation mediaType="application/json"/>

</response>

</method>

</resource>

<resource path="/online">

<method id="getIt" name="GET">

<response>

<representation mediaType="text/plain"/>

</response>

</method>

</resource>

Document title

QUALITY OF SERVICE FOR HIGH PERFORMANCE IOT

SYSTEMS

Version

[Kategori]

Date

13/10/2016

Status

[Status]

 Page

11 (184)

www.arrowhead.eu

QoSMonitor.wadl – (2/2)
<resource path="/Event">
<method id="sendEvent" name="POST">
<request>
<ns2:representation xmlns:ns2="http://wadl.dev.java.net/2009/02"
xmlns="" element="eventMessage" mediaType="application/json"/>
</request>
<response>
<representation mediaType="application/json"/>
</response>
</method>
</resource>
<resource path="/QoSLog">
<method id="addLog" name="POST">
<request>
<ns2:representation xmlns:ns2="http://wadl.dev.java.net/2009/02"
xmlns="" element="addMonitorLog" mediaType="application/json"/>
</request>
<response>
<representation mediaType="application/json"/>
</response>
</method>
</resource>
</resource>
</resources>
</application>

