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Abstract 
Known algorithms capable of scheduling implicit-deadline sporadic tasks over identical processors at up to 100% 
utilisation invariably involve numerous preemptions and migrations. To the challenge of devising ascheduling scheme 
with as few preemptions and migrations as possible, for a given guaranteed utilisation bound, we respond with the 
algorithm NPS-F. It is configurable with a parameter, trading off guaranteed schedulable utilisation (up to 100%) vs 
preemptions. For any possible configuration, NPS-F introduces fewer preemptions than any other known algorithm 
matching its utilisation bound.  

A clustered variant of the algorithm, for systems made of multicore chips, eliminates (costly) off-chip task migrations, 
by dividing processors into disjoint clusters, formed by cores on the same chip (with the cluster size being a parameter). 
Clusters are independently scheduled (each, using non-clustered NPS-F). The utilisation bound is only moderately 
affected. 

We also formulate an important extension (applicable to both clustered and non-clustered NPS-F) which optimises the 
supply of processing time to executing tasks and makes it more granular. This reduces processing capacity requirements 
for schedulability without increasing preemptions. 
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scheme with as few preemptions and migrations as possible, for a given guar-
anteed utilisation bound, we respond with the algorithm NPS-F. It is config-
urable with a parameter, trading off guaranteed schedulable utilisation (up to
100%) vs preemptions. For any possible configuration, NPS-F introduces fewer
preemptions than any other known algorithm matching its utilisation bound.
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eliminates (costly) off-chip task migrations, by dividing processors into disjoint
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parameter). Clusters are independently scheduled (each, using non-clustered
NPS-F). The utilisation bound is only moderately affected.
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1 Introduction

Consider the problem of preemptively scheduling n sporadic tasks (τ1 to τn) on
m identical processors (P1 to Pm). A task τi generates a (potentially infinite)
sequence of jobs, occurring at least Ti time units apart. A job by τi requires up
to Ci time units of execution over the next Ti time units after its arrival (with
Ti, Ci being real numbers and 0 ≤ Ci ≤ Ti). This model is termed sporadic; it
is a generalisation of the classic periodic model. We assume that tasks share
no resources (other than the processors themselves). A processor executes
at most one job at a time and no job may execute on multiple processors
simultaneously. The utilisation of the task set is defined as Uτ = 1

m
·
∑n

i=1
Ci

Ti
.

The utilisation bound UB of a scheduling algorithm is a threshold such that
all task sets with Uτ ≤ UB meet their deadlines under said algorithm.

Many multiprocessor scheduling algorithms can be categorised as either
partitioned or global. Under global scheduling, a single dispatch queue is shared
by all processors and at any moment, the m highest-priority runnable tasks
get to execute on the m processors. Under partitioning, each task may only ex-
ecute on a specific processor and not migrate. Preemptions are limited and the
multiprocessor scheduling problem is reduced to many uniprocessor scheduling
problems (which allows reuse of many results from uniprocessor scheduling).
Yet no partitioned algorithm can have a utilisation bound above 50% (Carpen-
ter et al, 2004). Conversely, the pfair family of global scheduling algorithms
offers utilisation bounds of 100% (Baruah et al, 1996; Anderson and Srini-
vasan, 2004) but at the cost of numerous preemptions (Devi and Anderson,
2005).

Hybrid approaches aim for combination of strengths: EDF-fm (Anderson
et al, 2005) schedules soft, not hard, real-time tasks at up to 100% system
utilisation with limited tardiness. Ehd2-SIP and EDDP (Kato and Yamasaki,
2007, 2008), with utilisation bounds of 50% and 65%, typically generate few
preemptions, although no respective upper bound is known. Under EKG-
sporadic (Andersson and Bletsas, 2008) most tasks utilise a single processor
but at most m − 1 utilise two – but never simultaneously. This algorithm is
configurable for utilisation bounds up to 100% at the cost of increased pre-
emptions.

Among other hybrid approaches, EDF-SS (Andersson et al, 2008) is related
to EKG-sporadic, but extends to arbitrary-deadline tasks. Due to different
bin-packing and task-splitting, for implicit-deadline tasks, it performs better
than EKG-sporadic on average – but has no proven utilisation bound. By
comparison, EDF-WM (Kato et al, 2009) involves much fewer preemptions
for similar performance, and is proven to dominate partitioning – but does
not have a proven utilisation bound above 50%. Finally, DM-PM (Kato and
Yamasaki, 2009), another scheme with limited preemptions, is based on fixed-
priority scheduling (unlike the other algorithms, which are based on EDF).
Again, the utilisation bound is 50%.

Before NPS-F (which was first presented in the conference version of this
paper (Bletsas and Andersson, 2009b)), of all schemes with utilisation bounds
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above 50%, the most “preemption-light” (in terms of a proven upper bound
on preemptions) was Notional Processor Scheduling (NPS) (Bletsas and An-
dersson, 2009a). Yet its utilisation bound is just 66.6̄%. Note that although
EDZL (Cho et al, 2002) has even fewer preemptions, it is yet unproven whether
its utilisation bound exceeds 50% (Chao et al, 2008).

NPS-F, is configurable for utilisation bounds from 75% up to 100% (traded
off with preemptions). NPS-F has better upper bounds on preemptions than
any known algorithm matching it in terms of utilisation bound. We also intro-
duce a clustered variant of NPS-F (for systems made of multicore chips) with
somewhat lower utilisation bound but which eliminates the costliest (in terms
of overhead) type of migrations. These are the migrations between cores on
different chips, which cause cache misses necessitating main memory I/O and
severely hurting performance (Fedorova et al, 2005; Anderson et al, 2006).

The scheduling potential of NPS-F can be noticeably improved if the offsets
between the time windows of execution on different processors, for migrating
tasks, are optimised. In this article, we introduce a sophisticated approach to
that, termed Ω-optimisation. This optimisation reduces the processing capac-
ity requirements for scheduling a given set of tasks.

NPS-F stands for “Notional Processor Scheduling – Fractional capacity”.
It is related to NPS (Bletsas and Andersson, 2009a) though the reader need
not be familiar. The relation is discussed later.

In this paper, Section 2 discusses concepts prerequisite to understanding
the approach. Section 3 introduces NPS-F and quantifies its performance in
terms of schedulable utilisation and preemptions. Section 4 does the same for
the clustered variant. Section 5 introduces the Ω-optimisation, which reduces
processing capacity requirements for schedulability. Section 6 experimentally
evaluates the performance of the algorithm, for scheduling task sets with util-
isation above its utilisation bound. Section 7 discusses principles for the in-
tegration of shared resource management to the scheduling scheme. Section 8
concludes.

2 Useful concepts

2.1 On periodic reserves

We assume a sporadic task model (Mok, 1983; Leung and Whitehead, 1982) (as
do also virtually all of the previously cited hybrid multiprocessor algorithms).
This task model is tremendously relevant for its usefulness in modelling real-
time systems (Fisher et al, 2010, p. 27). We also assume implicit deadlines (i.e.
the deadline of task τi is Ti).

A periodic reserve is a kind of server, for scheduling one or more sporadic
tasks. The concept originates with our work in (Andersson and Bletsas, 2008).
It is a fixed-length time window, available periodically, every S time units (an
interval termed the “timeslot length”). Time within the reserve is exclusively
for the execution of tasks served by it (e.g. under EDF policy). Conversely,
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tasks served by the reserve cannot execute outside its bounds. Figure 1(a)
provides an example of multiple tasks scheduled within a periodic reserve,
under EDF.

Suppose that S ≤ TMIN
δ , where TMIN is the shortest of the interarrival

times of all tasks served by the reserve and δ is a positive integer. It then
holds (see Theorem 5 in the Appendix) that implicit-deadline tasks of cumu-
lative utilisation U are always schedulable under EDF by a reserve of length
inflate(U) · S, with inflate(U) given by:

inflate(U) =
(δ + 1) · U

U + δ
(1)

The inverse function,

deflate(U)
def
= inflate−1(U) =

δ · U

(δ + 1) − U
(2)

represents the maximum cumulative task utilisation that a periodic reserve of
size U · S may accommodate (with S = TMIN

δ
). The quantity

α(U)
def
= inflate(U) − U =

U · (1 − U)

U + δ
(3)

is termed inflation. It expresses, by which amount the processor capacity al-
located for a reserve should exceed the cumulative utilisation of the respec-
tive workload served, so as to ensure schedulability of all tasks served by
the reserve, even under the most unfavorable arrival phasings, relative to the
start/end of a reserve. Figure 2 plots the functions inflate, deflate and α for
different values of δ. The higher the value of δ, the lesser the inflation.

2.2 Utilising multiple adjacent reserves

Typically, each reserve is implemented on a particular processor – see Fig-
ure 1(a). However, multiple temporally adjacent, “staggered” reserves on dif-
ferent processors, all serving the same tasks, act as a “distributed reserve”. In
terms of processing capacity for tasks served (ignoring dispatching/migration
overheads), such a distributed reserve is equivalent to a conventional reserve
of the aggregate length implemented on a single processor (see illustration in
Figure 1(b)). In (Bletsas and Andersson, 2009a), when such a distributed re-
serve has 100% of the processing capacity of a processor, it is dubbed notional
processor. By extension, if this capacity is below 100%, it is termed fractional-
capacity notional processor. A notional processor is formally represented as

(

(a0, a1, ..., az), (h0, h1, ..., hz−1), ω
)

with 0 = a0 < a1 < . . . < az ≤ 1, hu ∈ {1, 2, . . . , m}, ∀u ∈ {0, 1, . . . , z − 1}
and 0 ≤ ω < 1. The a variables correspond to time offsets within a timeslot
(expressed as a fraction of S) – any two successive a variables define the start
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Fig. 1 Scheduling multiple tasks within (a) a single periodic reserve (b) temporally adjacent
reserves on different processors. Observe that in example (b), wherein the two reserves
summed match in duration the single reserve in the first example (with identical arrivals
and timeslot length), task execution intervals are identical to those in case (a).

Fig. 2 Functions inflate, deflate and α, for different values of parameter δ.

and end of a reserve. The h variables are indexes of physical processors (where
the notional processor is mapped betweeen any two a-offsets). The variable ω
is a phase offset (expressed as a fraction of S) for the start of the first reserve,
relative to time t = 0. The integer z is simply the number of reserves that the
notional processor uses.
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Fig. 3 An example demonstating how the formal definition of a notional processor trans-
lates its mapping onto physical processors

The semantics are that on time instant t, the notional processor in consid-
eration is mapped to processor Phr

, r being the integer for which:

ar · S ≤ (t − ω · S) modulo S < ar+1 · S (4)

If az = 1, the notional processor is full-capacity (i.e. always mapped to some
physical processor, on every instant); else, it is of fractional capacity deflate(az).
The example of Figure 3 demonstrates how the formal definition of a notional
processor specifies its mapping onto physical processors at runtime.

There is one run queue per notional processor and one dispatcher per phys-
ical processor.

3 The algorithm NPS-F

Consider the assignment of n tasks (in no particular order) over infinite unit-
capacity bins (b1, b2, . . .) using First-Fit bin-packing. (First-Fit assigns tasks
one by one to the lowest-indexed bin possible, subject to previous assignments).
Post-assignment, as tasks are finite, only some m′′ (finite) bins (b1 to bm′′) have
been assigned tasks. Let Up denote the cumulative utilisation of tasks assigned
to bp.

Our approach schedules the tasks on each bin bp on a corresponding no-
tional processor P̃p of (fractional) capacity inflate(Up). In turn, all m′′ notional
processors are implemented upon the m physical processors (P1 to Pm).

In an example, Figure 4(a) depicts bin utilisations after bin-packing and
Figure 4(b) shows the processing capacity requirements for corresponding no-
tional processors. Note that, to schedule tasks of cumulative utilisation Up on
a notional processor, the latter consumes processing capacity inflate(Up) ≥ Up.

We have come up with two alternative approaches (equivalent, in terms of
scheduling potential) for mapping notional processors to physical ones.

Under flat mapping (Figure 4(c)), each notional processor (and thus, each
task) migrates between at most two physical processors. This is achieved by
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Fig. 4 Alternative approaches to mapping notional to physical processors.

Fig. 5 “Walk through” of how notional processors are mapped, one by one, under (a) the
flat and (b) the semi-partitioned approach. In the example, 4 notional processors (P̃1 to P̃4,
respectively consuming 0.72, 0.75, 0.7 and 0.78 times the processing capacity of a physical
processor) are mapped to 3 physical processors (P1 to P3). The patterns drawn are repeating.
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“filling” physical processors one by one; to accommodate a notional processor,
we use one reserve formed out of the remaining capacity of the current physical
processor and, if necessary, another reserve (appropriately sized) on the next
higher-indexed processor.

Under semi-partitioned mapping (Figure 4(d)), notional processors indexed
1 to m are implemented each on a single reserve, on a different notional pro-
cessor. Leftover processing capacity is then used for the creation of reserves
where the remaining notional processors are mapped. Therefore, m notional
processors (and the associated tasks) always stay on one physical processor,
but the rest may need to migrate between many.

Figure 5 illustrates, via a step-by-step example, how notional processors
are mapped, under each approach. The pseudocode in Figure 6 describes how
values are assigned to the a, h and ω variables that formally define each no-
tional processor under either flat (lines 6–21) or semi-partitioned mapping
(lines 23–54).

Under flat mapping, this derivation is conducted for each notional processor
in turn, in order of increasing index (loop at line 6). Physical processors are also
“filled up” in order of increasing index (with the variable last h denoting the
index of the “current” physical processor). Timeslot slices on each processor
are allocated from left to right (along the time axis), in a repeating pattern.
The variable last ω tracks what fraction of a timeslot (from left to right) is
already filled up on the current physical processor; the next notional processor
is mapped from there onwards. If it cannot be accommodated on the remaining
capacity of the current physical processor (line 14), it uses as much as possible
from it (line 15) and as much as needed from the next physical processor (line
15) and last h is incremented (line 17).

Semi-partitioned mapping, in contrast, first maps notional processors 1 to
m, each on a different physical processor (lines 23–30) using a single reserve
occupying the rightmost part of the respective timeslot (lines 27–28). Remain-
ing notional processors m+1 to m′′ are then mapped (lines 33–54), in order of
increasing index. In this second stage (as with flat mapping) physical proces-
sors are revisited (and their remaining capacity filled up) in order of increasing
index, with the respective free timeslot slices being filled from left to right. The
variable acc tracks the processor utilisation that has already been allocated
to the current notional processor (over one or more physical processors). The
variable spent tracks the utilisation of the current physical processor that has
been assigned to (previous) notional processors indexed m + 1 or higher (i.e.
the left-hand side allocated portion of its timeslot, filled from left to right).
The right-hand side allocated portion of its timeslot (allocated to a notional
processor indexed 1 to m) is given by 1− inflate(U [last h]). If the free timeslot
slice in the middle (of length (1 − inflate(U [last h]) − spent) · S) suffices for
the yet unmapped portion of the (inflated) utilisation of the current notional
processor, it is used from left to right as much as needed (lines 48–51); we can
then proceed to map the next physical processor. Else, it is used up entirely
(lines 41–43) and we move to the next physical processor (lines 44–46) and so
on, until the current notional processor is fully accommodated.
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1. procedure map notional processors() is
2. last h:=1;
3. last a:=0;
4. last ω:=0;
5. if (MAPPING MODE=="FLAT") then
6. for np:=1 to m" do
7. ω[np]:=(last ω+last a) modulo 1;
8. last ω:=ω[np];
9. a[np][0]:=0;

10. h[np][0]:=last h;
11. if (ω[np]+inflate(U[np])<1) then
12. a[np][1]:=inflate(U[np]);
13. last a:=a[np][1];
14. else //spans two CPUs
15. a[np][1]:=1-ω[np];
16. h[np][1]:=last h+1;
17. last h:=last h+1;
18. a[np][2]:=inflate(U[np]);
19. last a:=a[np][2];
20. end if
21. end for
22. else //(MAPPING MODE=="SEMI-PARTITIONED")
23. for np:=1 to m do
24. a[np][0]:=0;
25. a[np][1]:=inflate(U[np]);
26. h[np][0]:=np;
27. tmp:=last ω+1-inflate(U[np]);
28. ω[np][0]:=fractional part of(tmp);
29. last ω:=ω[np][0];
30. end for
31. last ω:=0; //rewind;
32. spent:=0; //rewind;
33. for np:=m+1 to m′′ do
34. a[np][0]:=0;
35. h[np][0]:=last h;
36. z:=1;
37. acc:=0;
38. ω[np]:=last ω; //initialise
39. while (acc<U[np]) do
40. if (acc+1-inflate(U[last h])-spent<inflate(U[np]))then
41. a[np][z]:=acc+(1-inflate(U[last h]))-spent;
42. h[np][z]:=last h;
43. acc:=a[np][z];
44. z:=z+1;
45. last h:=last h+1;
46. spent:=0;
47. else
48. a[np][z]:=inflate(U[np]);
49. h[np][z]=last h;
50. last ω:=(last ω+inflate(U[np])) modulo 1;
51. spent:=a[np][z]-a[np][z-1];
52. end if
53. end while
54. end for
55. end if
56. end procedure

Fig. 6 Notional processor implementation.

Whether flat or semi-partitioned mapping is used, the sufficient and neces-
sary condition for schedulability with NPS-F (i.e. mapping notional to physical
processors) is
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m′′

∑

p=1

inflate(Up) ≤ m (5)

3.1 Utilisation bound

Our proof for the utilisation bound of the algorithm (Theorem 3), relies on
Theorem 1 and Lemma 1, which follow:

Theorem 1 Assume First-Fit bin-packing with item sizes in the range (0,
1] over an infinite set of bins {b1, b2, . . .}. Let m′′ denote the index of the
highest-indexed utilised bin, after bin-packing. Let Up denote the utilised ca-
pacity of bin bp, ∀p ∈ {1, 2, . . .}. If m′′≥2, it holds that

∑m′′

p=1 Up

m′′
>

1

2
(6)

Theorem 1 follows from (Garey and Johnson, 1979, p. 125).

Theorem 2 For any set U = {U1, U2, · · · , Um′′} of (not necessarily distinct)
real numbers in the range (0,1],

m′′

∑

p=1

inflate(Up) ≤ m′′ · inflate

(∑m′′

p=1 Up

m′′

)

Proof If m′′=1, the proof is trivial. If m′′≥2, let q, r be integers such that
Uq = minm′′

p=1{Up} and Ur = maxm′′

p=1{Up}.
The function inflate is continuous and infinitely differentiable and

d
dU inflate(U) > 0 and d2

dU2 inflate(U) < 0, ∀U ∈ [0, 1]. Therefore,

2 · inflate
(Uq + Ur

2

)

≥ inflate(Uq) + inflate(Ur)

Let us obtain a modified set U(1) = {U (1)
1 , U

(1)
2 , · · · , U

(1)
m′′} by setting Uq and

Ur equal to Uq+Ur

2 . Then,
∑m′′

p=1 inflate(U (1)
p ) ≥

∑m′′

p=1 inflate(Up).
By repeating the procedure forever, each time with different q, r for the

resulting modified set U(2), U(3),. . ., we converge to the set U(∞) with U
(∞)
1 =

U
(∞)
2 = . . . = U

(∞)
m′′ = 1

m′′ ·
∑m′′

p=1 Up. Then, since ∀k:
∑m′′

p=1 inflate(U (k+1)
p ) ≥

∑m′′

p=1 inflate(U (k)
p ), it holds that

m′′

∑

p=1

inflate(U (∞)
p ) ≥

m′′

∑

p=1

inflate(Up) ⇒

m′′

∑

p=1

inflate(Up) ≤ m′′ · inflate

(
1

m′′
·

m′′

∑

p=1

Up

)

(7)
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'(

Lemma 1 α(U) < 1
2·δ+1 · U, ∀U ∈ (1

2 , 1]

Proof The function α is strictly decreasing and non-negative over [12 , 1]. Thus,
for any U ∈ (1

2 , 1], it holds that:

α(U)

U
<
α(1

2 )
1
2

=
1

2 · δ + 1
⇒ α(U) <

1

2 · δ + 1
· U (8)

'(

Theorem 3 The utilisation bound of NPS-F is 2·δ+1
2·δ+2 .

Proof An equivalent claim is that every task set with cumulative utilisation
not above 2·δ+1

2·δ+2 ·m is schedulable by NPS-F over m physical processors. This,
we will prove.

Recall (Inequality 5) that the m′′ notional processors can be mapped to m

physical processors if and only if
∑m′′

p=1 inflate(Up) ≤ m. Also, from Theorem 2:

m′′

∑

p=1

inflate(Up) ≤ m′′ · inflate

(∑m′′

p=1 Up

m′′

)

(9)

Therefore, for schedulability, it suffices that

m′′ · inflate

(∑m′′

p=1 Up

m′′

)

≤ m (10)

If m′′=1, the condition is trivially met. If m′′≥2, let Ū denote
∑m′′

p=1 Up

m′′ . Then,
Inequality 10 becomes:

m′′ · inflate
(

Ū
)

≤ m ⇔ m′′ · (Ū + α(Ū)) ≤ m (11)

From Theorem 1: Ū > 1
2 . Thus, by applying Lemma 1 to Inequality 11, it

suffices for schedulability that

m′′ · (Ū +
1

2 · δ + 1
· Ū) ≤ m ⇔ m′′ · Ū ·

2 · δ + 2

2 · δ + 1
≤ m ⇔

m′′ · Ū ≤
2 · δ + 1

2 · δ + 2
· m (12)

But m′′ · Ū equals the cumulative utilisation of the task set. Therefore, any
task set of cumulative utilisation up to 2·δ+1

2·δ+2 · m is schedulable, which proves
the theorem. '(
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3.2 Domination over partitioning with First-Fit bin-packing

We will show that NPS-F dominates partitioning with First-Fit bin-packing,
in terms of the task sets that it can schedule.

Lemma 2 Any task set schedulable using partitioning and First-Fit bin-packing
is also schedulable by NPS-F (irrespective of the value for δ).

Proof We will rely on the fact that the same First-Fit bin-packing used for
partitioning, is also used within NPS-F, to populate the bins.

If a task set can be scheduled during First-Fit partitioning then, using
NPS-F (and assuming the order of the tasks does not change), the same task-
set, after the bin-packing step, will leave no more than m bins occupied. (In
fact even the the task assignments will be the same, in both cases.) Then,

m′′

∑

i=1

inflate(Up) =
m

∑

i=1

inflate(Up) ≤
m

∑

i=1

1 = m (13)

which means that the task set is schedulable by NPS-F. This holds for any
value used for δ. '(

In practice, with NPS-F, the designer can check whether m′′ ≤ m after
the bin-packing stage and, if so, has the option of using pure partitioning,
instead of notional processors, to schedule the task set. This way, the additional
preemptions associated with the implementation of the reserves are avoided.

3.3 Upper bound on preemptions

Definition 1 A task with outstanding computation at time t, is said to be
preempted at time t if it executes on processor p just before t but not just
after t.

By this definition, which we believe captures the notion of preemption used
in the research community, a job that starts executing is not preempted, nor
is one that finishes executing. Also, a job executing both just before and just
after t but on different processors is, by the same definition, preempted at time
t. Such a preemption is a migration.

With flat mapping, there exist two types of preemptions (other than due
to task arrivals):

– type-α1: Occurring when the reserve implementing a notional processor runs
out (while a task is executing on it). At most one such preemption per no-
tional processor per timeslot occurs. It is potentially a migration.

– type-β1: Occurring when a notional processor (with a task currently executing
on it) migrates to another physical processor. At most one such preemption
per physical processor per timeslot occurs. For the preempted task, it is a
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migration (unless the notional processor migration coincides with a context
switch on the migrated notional processor and, additionally, the preempted
task next resumes execution at a future instant when the notional processor
has moved back to the original physical processor).

With semi-partitioned mapping, there likewise exist two types of preemptions
(other than due to task arrivals):

– type-α2: Occurring when the reserve implementing a notional processor runs
out (while a task is executing on it). At most one such preemption per no-
tional processor per timeslot occurs. For notional processors P̃1 to P̃m it is
never a migration (because they only utilise one physical processor each).

– type-β2: Occurring whenever a notional processor (with a task currently ex-
ecuting on it) migrates to another physical processor. At most one such pre-
emption per physical processor per timeslot occurs. It is a migration (except
under the conditions earlier described in the context of type-β1 preemptions.

Thus, during an interval of length ∆t, overall preemptions (including mi-
grations) cannot exceed

Npr(∆t) = Narr(∆t) +

⌈
∆t

S

⌉

· m′′

︸ ︷︷ ︸

type-α

+

⌈
∆t

S

⌉

· m

︸ ︷︷ ︸

type-β

= Narr(∆t) +

⌈
∆t

S

⌉

· (m + m′′) (14)

where Narr(∆t) is an upper bound on task arrivals within the interval. We
next eliminate m′′ from Equation 14:

Corollary 1 For any task set τ with Uτ ≤ 1: m′′ < 2 · m

Proof From Theorem 1 follows that
∑m′′

p=1 Up>
m′′

2 . But
∑m′′

p=1 Up =
∑n

i=1
Ci

Ti
=

m · Uτ ≤ m. Therefore, m > m′′

2 ⇒ m′′ < 2 · m '(

Thus from Equation 14 and Corollary 1, we obtain:

Npr(∆t) < Narr(∆t) +

⌈
∆t

S

⌉

· 3 · m ⇒

Npr(∆t) < Narr(∆t) +

⌈
∆t

TMIN

⌉

· 3 · m · δ (15)

This bound for preemptions is the same as for the variant of EKG for sporadic
tasks (Andersson and Bletsas, 2008), which also uses a parameter δ, with
the same semantics as in NPS-F (i.e. trading off schedulable utilisation vs
preemptions). However, for the same δ, NPS-F always has higher utilisation
bound (see Table 1 and, for proof, Theorem 6 in the Appendix). Moreover, the
algorithm in (Andersson and Bletsas, 2008) caps processor utilisation at its
utilisation bound (except when assigning tasks with very large utilisations).
NPS-F thus dominates that scheme without causing more preemptions.
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UB δ = 1 δ = 2 δ = 3 δ = 4 δ→∞

NPS-F 75% 83.3̄% 87.5% 90% →100%
EKG-spor. 2008 65.7% 79.8% 85.6% 88.9% →100%

Table 1 Comparison of utilisation bounds

Yet a comparison, in terms of preemptions, of NPS-F with the original
NPS (Bletsas and Andersson, 2009a) is more complicated. NPS has a util-
isation bound of 66.6̄%, lower than that of even NPS-F with δ=1. Yet its
preemption bound is seemingly lower than that of NPS-F. For a given task set
schedulable by both algorithms, are preemptions under NPS fewer than under
NPS-F with δ = 1?

The answer is that it depends on the task set. Indeed, NPS can, retroac-
tively, be described, as NPS-F with semi-partitioned mapping and δ = 1 with
two differences: (D1) different bin-packing and (D2) sub-optimal sizing of no-
tional processors indexed m + 1 or higher. D1 alone renders comparisons de-
pendent on the actual task set. However, D2 affects typical behavior, as we
will explain:

For NPS, the upper bound on preemptions is

Npr(∆t) = Narr(∆t) +

⌈
∆t

TMIN

⌉

·
(

2 · m +
m

3

)

which appears lower than the respective upper bound for NPS-F (see Inequal-
ity 15). However, it also holds that, for both NPS and NPS-F(δ = 1),

Npr(∆t) = Narr(∆t) +

⌈
∆t

TMIN

⌉

· (m + m′′)

where m′′ is the number of notional processors1.
It is because of the fact that m′′ could not exceed m + *m

3 + under NPS,
due to its relative inefficiency (D2) that NPS appears more preemption-light
than NPS-F(δ=1). It is this same inefficiency that limits the utilisation bound
of NPS to 66.6% (vs 75% for NPS-F(δ=1)). Inversely reasoning, due to NPS-F
being more efficient in utilising processing capacity, it is likelier that fewer bins
are needed to accommodate the same task set under NPS-F(δ=1) compared
to NPS, than vice versa. In turn, this would mean fewer preemptions. In this
light, it is not correct to say that NPS-F(δ=1) is more preemption-intensive
than NPS.

Regarding comparisons with EDF-WM, Kato et al (2009), in their exper-
iments with EDF-WM and EDF-SS established that even EDF-SS(δ = 1)
typically involves many more context switches (and, obviously preemptions)
than EDF-WM – up to an order of magnitude. Since EDF-SS (in the context

1 Note that the terminology differs slightly in (Bletsas and Andersson, 2009a). In (Bletsas
and Andersson, 2009a), where semi-partitioned mapping is used, notional processors indexed
1 to m are conflated with the physical processors to which they are mapped and are not
explicitly termed notional.
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of implicit-deadline tasks) and NPS-F have essentially the same upper bound
on preemptions due to the implementation of the reserves (which constitute
the bulk of preemptions), as a function of δ and the time interval length, the
unfavorable comparison would also extend to NPS-F.

Therefore NPS-F is not the most preemption-light multiprocessor schedul-
ing scheme, among all those that typically perform well – but only among
those with UB> 50%.

4 Clustered variant of NPS-F

We now introduce a derivative of NPS-F, motivated by desire to (i) adapt
scheduling approaches to the state of the art in chip design, i.e. multicores;
(ii) alleviate a weakness, i.e. that migrations, though limited, may be costly.

4.1 On multicores and processor clusters

Multicore chips are by now mainstream and common – even in embedded
systems (ARM Ltd, 2008). The major manufacturers already offer affordable
dual-,triple- (AMD Inc., 2008a), quad-, six- (Intel Corporation, 2008c) and
eight-cores. Common to most latest designs is a top-level cache shared by all
cores (Intel Corporation, 2008a,c,b, 2009; AMD Inc., 2008c,b,a).

In such architectures, reads and writes on the the same data by differ-
ent cores of the same chip, necessitate less main memory I/O, compared to
cores from different chips. In particular, when a task migrates from core P1

to core P2 on the same chip, the task state that P2 needs is already on-chip.
This is important for performance because top-level cache misses, by causing
accesses to main memory, impact performance far more than do lower-level
cache misses (Fedorova et al, 2005; Anderson et al, 2006). Indeed, were P1 and
P2 on different chips, top-level cache misses would be likely.

We leverage this by dividing processors into (non-overlapping) clusters, in-
dependently scheduled under NPS-F. Each cluster is formed by the cores of a
given respective chip. This ensures that off-chip migrations never occur. There-
fore, our approach does not cause additional top-level misses (and associated
main memory I/O). Performance losses due to task migration are thus kept
in check. In the general case, eliminating off-chip migrations also helps handle
other issues: cache coherency, locking, per-processor OS data structures.

The concept of processor clusters is well-known in the the literature, in-
cluding recent work (Brandenburg et al, 2008; Shin et al, 2007; Calandrino
et al, 2007). Calandrino et al (2007) share motivation with us (experimenting
with EDF-scheduled clusters over multicores, so as to reduce migration and
preemption costs relative to global EDF). Yet, the utilisation bound in (Calan-
drino et al, 2007) is just 50%. Shin et al (2007) aim to improve schedulability
but allow for overlapping clusters (which runs counter to our motivation); also,
no utilisation bounds are proven.
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4.2 The modified algorithm

Let µ (a divisor of m) denote the cluster size. We thus have m
µ clusters, Q1

to Qm
µ

, of µ processors each. Cluster Qq is formed by processors P(q−1)·µ+1 to
P(q−1)·µ+µ.

All that our clustered algorithm does is partition the task set into subsets,
each of which can provably be scheduled over one cluster using NPS-F. To
describe it, it thus suffices to explain how this partitioning is performed –
follow the pseudocode of Figure 7 in parallel with our comments.

To each cluster Qq corresponds a different set of bins (b(q)
1 , b

(q)
2 , b

(q)
3 , . . .).

Tasks are assigned one by one, with clusters tested for assignment in order of
index. Inequality 5 (sufficient and necessary condition for schedulability under
NPS-F) becomes in the context of a cluster:

m′′(q)
∑

p=1

inflate(U (q)
p ) ≤ µ (16)

If a task can be assigned First-Fit to (one of) the bins of the cluster in consid-
eration while satisfying Inequality 16, it is assigned there; else, the next cluster
is considered. Therefore, post-assignment, all clusters are schedulable. Note,
however, that in a generalisation of previous semantics, during bin-packing,
m′′(q) refers to the number of utilised bins pertaining to cluster Qq at the given
point in the execution of the algorithm and, after every assignment, its value
is updated accordingly.

Note also that, although infinite bins correspond to each cluster, only a
finite number thereof are potential assignment targets during bin-packing. If,
prior to attempting to assign some task τi within some cluster Qk, only bins

b
(q)
1 to b

(q)
k of Qq have tasks already assigned to them, we then need only test

bins b
(q)
1 to (at most) b

(q)
k+1 as assignment targets for τi. If it cannot be assigned

to b
(q)
k+1 (as the only task there) while also satisfying Inequality 16, this would

also hold for b
(q)
k+2 onwards. We can thus move on to Qq+1.

Our description of (non-clustered) NPS-F, did not rely on any particular
ordering of tasks during bin-packing. However, for the clustered variant, we
assume that tasks with utilisation 2·δ+1

2·δ+2 · µ
µ+1 or higher (i) are indexed in

order of decreasing utilisation and (ii) precede all tasks with utilisation below
2·δ+1
2·δ+2 · µ

µ+1 . This allows for a higher utilisation bound than would be possible

if task ordering were arbitrary (as will be seen in the proof of Theorem 4).

We use the notation NPS-Fm:µ for the clustered algorithm, meaning that
we have m

µ
clusters of µ processors each, with each cluster scheduled by NPS-

F. Non-clustered NPS-F can thus be described as NPS-Fm:m. By UBm:µ, we
denote the utilisation bound of NPS-Fm:µ. In notation, we can also use fixed
values in place of m and µ.
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1. for i:=1 to n do //tasks already ordered
2. unassigned:=TRUE;
3. q:=1;
4. while (unassigned==TRUE) do

5. assign τi First-Fit over b
(q)
1 , b

(q)
2 , b

(q)
3 , . . .

so that Ineq. 16 is satisfied.

6. if (task was assigned in line 5 ) then
7. unassigned:=FALSE;
9. else

10. if (q==m/µ) then //last cluster
11. exit(FAILURE);
12. else
13. q:=q+1; //next cluster
14. end if
15. end if
16. end while
17. end for

Fig. 7 Bin-packing over clusters

4.3 Utilisation bound

Theorem 4 UBm:µ ,≤ 2·δ+1
2·δ+2 · µ

µ+1 ∀µ ≥ 2

Proof We will prove the claim by showing that every task set with Uτ ≤
2·δ+1
2·δ+2 · µ

µ+1 is schedulable.

Assume that an unschedulable task set with Uτ ≤ 2·δ+1
2·δ+2 ·

µ
µ+1 exists. Then,

some task τf with utilisation uf will fail to be assigned to some cluster, subject
to existing assignments. We explore two mutually exclusive cases:

– uf > 2·δ+1
2·δ+2 · µ

µ+1 :
Then, due to the task ordering, all tasks previously assigned had utilisa-
tions no less than uf> 2·δ+1

2·δ+2 ·
µ

µ+1≥
1
2 – and each is the only task in its bin.

Moreover, on every cluster at least µ such tasks are already assigned (or,
from Inequality 5 the assignment of τf would not have failed). Thus, on ev-
ery cluster Qq the cumulative utilisation of tasks already assigned exceeds
µ · 2·δ+1

2·δ+2 · µ
µ+1 before attempting to assign τf .

– uf ≤ 2·δ+1
2·δ+2 · µ

µ+1 :
Since τf could not be assigned, we deduce that, on every cluster Qq, the
cumulative utilisation of tasks already assigned exceeds µ · UBµ:µ, if in-
cremented by uf (or τf would have been assigned). Therefore (from The-
orem 3) the cumulative utilisation of tasks already assigned before the
attempt to assign τf exceeds

µ ·
2 · δ + 1

2 · δ + 2
− uf ≥ µ ·

2 · δ + 1

2 · δ + 2
−

2 · δ + 1

2 · δ + 2
·

µ

µ + 1
= µ ·

2 · δ + 1

2 · δ + 2
·

µ

µ + 1

In any case, for every cluster Qq, the cumulative utilisation of tasks already
assigned to Qq exceeds µ · 2·δ+1

2·δ+2 · µ
µ+1 . Therefore, the entire system is utilised

by more than 2·δ+1
2·δ+2 ·

µ
µ+1 even before attempting to assign τf . This contradicts

the initial assumption that Uτ ≤ 2·δ+1
2·δ+2 · µ

µ+1 . '(
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UB δ = 1 δ = 2 δ = 3 δ = 4 δ→∞

UBm:2 50% 55.5̄% 58.3̄% 60% →66.6̄%
UBm:3 56.25% 62.5% 65.625% 67.5% →75%
UBm:4 60% 66.6̄% 70% 72% →80%
UBm:6 64.2% 71.4% 75% 77.1% →85.7%
UBm:8 66.6̄% 74.0% 77.7̄% 80% →88.8̄%
UBm:16 70.5% 78.4% 82.3% 84.7% →94.1̄%
UBm:m 75% 83.3̄% 87.5% 90% →100%
UB2008 65.7% 79.8% 85.6% 88.9% →100%

Table 2 Utilisation bounds of NPSm:µ (for various µ) vs non-clustered NPS-F and (An-
dersson and Bletsas, 2008)

By inspection, the utilisation bounds of NPS-Fm:µ and non-clustered NPS-
F converge, as µ increases. Therefore, as cores per chip increase in the near
future, NPS-Fm:µ becomes increasingly practical and attractive. Table 2 com-
pares the utilisation bound of NPS-Fm:µ for different µ and δ with that of
non-clustered NPS-F and the algorithm by Andersson and Bletsas (2008) (also
suffering from off-chip task migrations).

At present, we view µ = 4 as the most relevant cluster size (given current
chip offerings). This motivates one optimisation to the algorithm, which raises
its utilisation bound for δ = 1 (the most interesting setting, in our view, by
virtue of being the most preemption-light) to 5

8 = 62.5% (up from 60%). This
is achieved merely by a more restrictive task ordering, wherein tasks with
utilisation 1

2 or higher (i) are indexed in order of decreasing utilisation and
(ii) precede all other tasks. For proof, see the Appendix (Theorem 7).

4.4 Upper bound on preemptions

Each of the m
µ

clusters is independently scheduled under (non-clustered) NPS-
F. Therefore, preemptions on cluster Qq within an interval of ∆t time units
are bounded by

N q
pr(∆t) = N q

arr +

⌈
∆t

TMIN

⌉

· 3 · µ · δ (17)

from Equation 15 (via substitution of m by µ). Over the entire system, pre-
emptions are thus bounded by

Nm:µ
pr =

m
µ

∑

q=1

N q
pr(∆t) =

m
µ

∑

q=1

N q
arr(∆t) +

m
µ

∑

q=1

(⌈
∆t

TMIN

⌉

· 3 · µ · δ

)

= Narr(∆t) +

⌈
∆t

TMIN

⌉

· 3 · µ · δ ·
m

µ
= Narr(∆t) +

⌈
∆t

TMIN

⌉

3 · m · δ (18)

This bound is the same as that for non-clustered NPS-F (Equation 15) and
is not dependent on µ. In reality though, we need not use the same timeslot
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length on all clusters. Each cluster Qq could use a (hopefully longer) timeslot

Sq =
1

δ
· min

τi assign-
ed to Qq

Ti

instead of 1
δ · TMIN. This optimisation has no downside and will reduce pre-

emptions in most cases. In fact, it cures another weakness of NPS-F, also
present in (Andersson and Bletsas, 2008): that, a single task with too short an
interarrival time would force an accordingly short timeslot (leading to numer-
ous preemptions). With per-cluster timeslot selection, the effect is localised to
one cluster.

5 Omega Optimisation

According to our definitions so far, if a notional processor uses multiple phys-
ical processors, then it employs temporally adjacent reserves on these proces-
sors. It is possible however, to relax this definition so that a notional processor
can be mapped to temporally non-adjacent reserves (which, however, still have
to be temporally non-overlapping). The rationale for such an implementation
is to allow more efficient use of processing capacity in the average case (without
compromising the utilisation bound we proved earlier). We formulate this op-
timisation in the context of non-clustered NPS-F; its propagation to clustered
NPS-F is straightforward.

5.1 Motivation

Suboptimal use of processing capacity may result from requiring that the re-
serves of a notional processor always be temporally adjacent. This can be
demonstrated via the following example:

Example 1 A set τ of three tasks, with utilisations of 5
9 , 8

17 and 5
9 , is to be

scheduled over two processors, P1 and P2, using NPS-F with δ = 1.

Using NPS-F with δ = 1, each task is assigned (First-Fit) to a different
notional processor. The processing capacity required for implementing notional
processors P̃1 and P̃3 is inflate(5

9 ) = 5
7 , whereas for P̃2 it is inflate( 8

17 ) = 16
25 .

If summed up, these requirements exceed the processing capacity of the two
physical processors – a hypothetical third processor P3 would be required for
schedulability (see Figure 8(a)).

Yet, if the reserve for P̃2 on P3 is shifted to the right, along the time axis,
it can then be shortened so that both (i) the workload of P̃2 is schedulable
(despite utilising less processing capacity) and (ii) P̃2 can be implemented
entirely on processor P̃3. Figure 8(b) depicts the values for this offset and
for the sizes of the reserves. (That P̃2 is schedulable can be seen by the fact
that over any time window of length S or more, P̃2 receives no fewer units
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Fig. 8 The Ω-optimisation can result in more efficient usage of processor capacity.

of processor time than it does during the same interval in the previous case
(Figure 8(b)).

Intuitively, by breaking up the back-to-back execution of the two reserves
for P̃2, we made the supply of processor time more fine-grained, i.e. better
approximating a linear function of time. In turn, this reduced the need for
inflation. Thus we were able to shorten the reserve of P̃2 on P2, using up less
processor capacity.

Our optimisation lies in leveraging this effect.

5.2 Problem formulation

Consider a task set τ
def
= {τ1, τ2, . . . τn} to be scheduled over physical proces-

sors P1 to Pm using NPS-F. We assume flat mapping of notional to physical
processors. However, in a deviation from the original NPS-F algorithm, for any
notional processor that utilises multiple reserves (each on a different physical
processor) we will permit those reserves to not necessarily run back-to-back.
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Fig. 9 Formulation of Ω-optimisation problem.

Under flat mapping, each notional processor is mapped to at most 2 phys-
ical processors. Assume that a notional processor serving tasks of cumulative
utilisation U is split between two processors, Pp and Pp+1. Under the original
algorithm the reserve on Pp+1 starts as soon as the reserve on Pp ends. If the
reserve on Pp is Uy ·S time units long, then the reserve on Pp+1 is dimensioned
to (inflate(U)−Uy)·S time units (see Figure 9(a)), such that the joint duration
of the two adjacent reserves is inflate(U) · S.

However, if we break up the back-to-back execution of the reserves by
introducing an offset of Ω · S time units for the start of the reserve on Pp+1,
relative, to the end of the reserve on Pp+1, the optimal size (Ux · S) of the
reserve on Pp+1 may differ. For the offset, it has to hold that

0 ≤ Ω ≤ 1 − (Uy + Ux) (19)

so as to avoid any temporal overlap of the reserve on Pp+1 with the next
reserve on Pp. The value for Ux has to be adequate for ensuring schedulability.

We will proceed with analysis on how to optimally derive Ux for any no-
tional processor split between two physical processors, serving tasks of cumu-
lative utilisation U , as a function of U and Uy (with Uy · S being the length
of the reserve on the first processor of the two) and a given value for Ω.

Subsequently, we will use this analysis so as to derive the optimal value for
scheduling parameter Ω. Ultimately, this allows us to derive the combination
of Ω, Ux that minimises Ux while still ensuring schedulability.

5.3 Optimal derivation of Ux as a function of U , Uy, Ω

We first present a statement (generalisation of Theorem 5 earlier used and
found in the Appendix) will prove handy later on:

Theorem: It suffices, for a set τ ′ of implicit-deadline tasks with cumu-
lative utilisation U to be schedulable under EDF, if, within any possible time
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Fig. 10 Candidate time windows (among those no shorter than S) for minimal τϕ as a
fraction of their length.

interval of length L ≥ minτi∈τ ′ Ti, the time tϕ available for the execution of τ ′

(possibly in disjoint time intervals) is U · L or greater.

The above claim is proven as Theorem 8 in the Appendix.

Now consider a notional processor serving tasks of cumulative utilisation
U and split between physical processors Pp and Pp+1, via reserves of length
Uy · S and Ux · S respectively, which are temporally separated by an interval
of length Ω · S (see Figure 9).

We wish to determine the lowest value for Ux for which the schedulability
of the tasks assigned to the notional processor in consideration is ensured.
For a time window of length L, let τϕ denote the aggregate length of all
subintervals overlapping with (one of) the two reserves. From Theorem 8 (and
using S = 1

δ · minTi), a sufficient condition for schedulability is:

For every time window of length L ≥ δ · S:
τϕ

L
≥ U (20)

Equivalently, it suffices that τϕ

L
≥ U for the time window of length L ≥ δ ·S

for which the fraction τϕ

L is minimised. By observation, such a time window
would start at the end of some reserve and end at the start of some reserve
for the notional processor in consideration. There are four combinations (de-
pending on which of the two reserves it is, in either case), therefore there are
four candidates for the time window with minimal τϕ

L
. These are shown in Fig-

ure 10, annotated by their lengths (L1 to L4) and respective aggregate overlaps
with reserves (τϕ

1 to τϕ
4 ). Therefore, in any case, it suffices for schedulability,

that the following Inequalities all hold:
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U ≤
δ · (Ux + Uy) + Uy

δ + 1 − Ux
(21)

U ≤
δ · (Ux + Uy)

δ + 1 − (Ux + Uy) −Ω
(22)

U ≤
δ(Ux + Uy) + Ux

δ + 1 − Uy
(23)

U ≤
δ · (Ux + Uy)

δ +Ω
(24)

Inequalities 21 to 24 can be respectively rewritten as:

Ux ≥
(δ + 1) · (U − Uy)

δ + U
(25)

Ux ≥
U · (δ + 1 −Ω)

δ + U
− Uy (26)

Ux ≥ U −
(U + δ) · Uy

δ + 1
(27)

Ux ≥
U · (δ +Ω)

δ
− Uy (28)

Let F1 to F4 denote the right-hand sides of Inequalities 25 to 28 (in that
order). Of these, only F2 and F4 are functions of Ω – strictly increasing/strictly
decreasing, respectively. Therefore max(F2, F2) is minimal when

F2 = F4 ⇔
δ + 1 −Ω

δ + U
=
δ +Ω

δ
⇔ Ω =

δ · (1 − U)

2 · δ + U
(29)

Substituting this optimal Ω and rewriting yields:

Ux ≥ U − Uy + (1 − U) ·
U − Uy

δ + U
(30)

Ux ≥ U − Uy + (1 − U) ·
U

2 · δ + U
(31)

Ux ≥ U − Uy + (1 − U) ·
Uy

δ + 1
(32)

The set of constraints expressed by Inequalities 30 to 32 can be condensed
into Equation 33, giving the optimal Ux as a function of Uy, U (to be used in
combination with the optimal Ω earlier derived as a function of Uy, U).

Ux = U − Uy + (1 − U) · max

(
U − Uy

δ + U
,

U

2 · δ + U
,

Uy

δ + 1

)

(33)
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1. procedure map notional processors() is
2. last h:=1;
3. last β:=0;
4. last ω:=0;
5. //Ω-optimisation assumes flat mapping
6. for np:=1 to m′′ do
7. ω[np]:=(last ω+last β) modulo 1;
8. last ω:=ω[np];
9. a[np][0]:=0;

10. h[np][0]:=last h;
11. if (ω[np]+inflate(U[np])<1) then
12. β[np][0]:=inflate(U[np]);
13. last β:=β[np][1];
14. else //spans two CPUs
15. β[np][1]:=1-ω[np];
16. h[np][1]:=last h+1;
17. last h:=last h+1;
18. Ω:=right-hand side of Eq. 29
19. Ux:=right-hand side of Eq. 33
20. a[np][1]:=β[np][0]+Ω;
21. β[np][1]:=a[np][1]+Ux;
22. last β:=β[np][1];
23. end if
24. end for
25. end procedure

Fig. 11 Ω-optimised notional processor implementation.

5.4 Implementing the optimisation

Having solved the problem of the Ω-optimisation, we next describe how it is
implemented.

A notional processor formed by not necessarily temporally adjacent (but
non-overlapping) reserves can be formally described by the (more general)
notation

(

(a0, a1, ..., az−1), (β0, β1, ..., βz−1), (h0, h1, ..., hz−1), ω
)

with

– 0 = a0 < a1 < . . . < az−1 ≤ 1,
– 0 < β0 < β1 < . . . < βz−1 ≤ 1,
– au < βu ≤ au+1, ∀u ∈ {0, 1, . . . , z − 1}
– hu ∈ {1, 2, . . . , m}, ∀u ∈ {{0, 1, . . . , z − 1}
– 0 ≤ ω < 1.

The semantics are that on time instant t, if ∃u ∈ {0, 1, . . . , z−1} such that
(t − ω · S) modulo S ∈ [au, βu), then the notional processor in consideration
is mapped to processor Phu

. (Note that for notional processors formed by
temporally adjacent reserves, βu = au+1.)

The pseudocode for the mapping of notional processors, updated with the
Ω-optimisation, is presented in Figure 11.
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5.5 Comparison with NPS-F

It can be easily shown that the Ω-optimised NPS-F (denoted NPS-FΩ) domi-
nates unoptimised NPS-F (for the same δ). Indeed, the original NPS-F differs
from NPS-FΩ in that it always (suboptimally) uses Ω=0 whenever splitting a
notional processor between physical processors. Let usage(P̃p) denote the pro-
cessor capacity used for implementing notional processor P̃p under NPS-FΩ.
Then usage(P̃p) equals Uy+Ux for the respective notional processor, if mapped
to two physical processors or inflate(Up), if it uses just one physical processor.

From our analysis, inflate(Up) ≤ usage(P̃p). Thus:

τ schedulable by NPS-F ⇒
m′′

∑

p=1

inflate(Up) ≤ m ⇒

m′′

∑

p=1

usage(P̃p) ≤ m ⇒ τ schedulable by NPS-FΩ (34)

Therefore, the utilisation bound of NPS-FΩ is no less than that of NPS-F.
Regarding preemptions, NPS-FΩ may accommodate on m processors more

notional processors than NPS-F (as in the example of Figure 8). Yet, Corol-
lary 1 still holds for it. Hence the upper bound on preemptions expressed by
Inequality 15 also holds for NPS-FΩ.

6 Experimental evaluation

Earlier, we characterised the performance of NPS-F via utilisation bounds.
This metric accurately reflects performance guarantees in the worst case. We
shall also evaluate (the variants of) NPS-F in terms of the success rate in
scheduling task sets of a given utilisation (i.e. above the utilisation bound).
Therefore, we experimentally evaluate (i) the effect of the various configu-
rations on the performance of NPS-F (i.e. Ω-optimisation, clustering, task
set ordering) and (ii) the performance of NPS-F against other multiproces-
sor scheduling algorithms for implicit-deadline tasks with utilisation bound at
least 50% (including EDF-WM (Kato et al, 2009), which was not yet been
published when the original NPS-F was conceived).

For the experiments we used the task set generator by Ted Baker2. This
generator generates task sets for up to m ≤ 8 processors (we chose m = 2,
m = 4 and m = 8) with task set utilisations generates as pseudo-random
variables conforming to different probability distributions:

Bimodal distribution: With a probability of 1/3, the task utilisation
is chosen as a random variable uniformly distributed in the range [0.5, 1].
With a (complementary) probability of 2/3, it is chosen as a random variable
uniformly distributed in the range [0, 0.05].

2 We are grateful to Prof. Baker for granting us use of this tool.
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Exponential distribution: The task utilisation is an exponentially dis-
tributed random variable with mean 0.5.

Uniform distribution: The task utilisation is a random variable uni-
formly distributed in the range [0,1].

Each task set is put into one of 100 “buckets”, according to its quantised
utilisation (e.g. all task sets with Uτ ∈ [0.77, 0.78) are put in the same bucket).
For each bucket, we plot the fraction of task sets schedulable by each algorithm,
according to the respective offline feasibility test3.

The other algorithms in the performance comparison are: partitioned EDF,
Ehd2-SIP, DM-PM, EDF-WM and the sporadic variant of EKG. The suffix
/DU denotes task ordering by decreasing utilisation (which usually improves
performance). The suffix /opt denotes the optimised partial task ordering for
NPS-Fm:4 described earlier (Theorem 7). Otherwise, the algorithms use the
tasks in whichever order they are to be found (unless they explicitly enforce
some other default ordering).

The results appear as graphs, plotting the fraction of schedulable task
sets for each “bucket” of quantised task set utilisation. For the utilisation
ranges plotted, each bucket contains over 17000 task sets. To relieve visual
congestion, we have separate graphs comparing NPS-F variants with each
other and separate graphs comparing the best-performing configurations with
the other algorithms.

6.1 Experiments for 2 processors

Figure 12 compares different variants/configurations of non-clustered NPS-F
(clustering is not possible on 2 processors). For all three distributions, the Ω-
optimisation offers no noticeable improvement, over 2 processors. Conversely,
task ordering by decreasing utilisation, does. The effect of parameter δ is also
explored (for the best-performing configuration, NPS-FΩ/DU), for small val-
ues of δ (which are the most interesting, due to the lower preemption counts).

Figure 13 shows that, over 2 processors, NPS-FΩ(δ = 1) barely performs
any better than partitioning. EDF-WM/DU clearly outperforms other algo-
rithms, even though it does not have a proven utilisation bound above 50%.
It also involves fewer preemptions than NPS-FΩ(δ = 1).

6.2 Experiments for 4 processors

Figures 14 and 15 present the respective experimental results for 4 processors.

3 We wish to thank Dr Shinpei Kato, for providing us, upon request, with code imple-
menting the schedulability tests for his algorithms, DM-PM and EDF-WM.
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Fig. 12 Fraction of schedulable task sets of a given utilisation range, over 2 processors.
Task utilisations conform to the bimodal/exponential/uniform distribution (left to right).
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Fig. 13 Fraction of schedulable task sets of a given utilisation range, over 2 processors.
Task utilisations conform to the bimodal/exponential/uniform distribution (left to right).
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Fig. 14 Fraction of schedulable task sets of a given utilisation range, over 4 processors.
Task utilisations conform to the bimodal/exponential/uniform distribution (left to right).
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Fig. 15 Fraction of schedulable task sets of a given utilisation range, over 4 processors.
Task utilisations conform to the bimodal/exponential/uniform distribution (left to right).
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Fig. 16 A case where the Ω-optimisation is detrimental to schedulability (using clustering).

6.3 Experiments for 8 processors

The left and middle column of Figure 17 display the effect of the various con-
figuration settings, for NPS-F and NPS-Fm:4 (clustered) respectively. (The
graphs also include a variant, NPS-FΩ+

m:µ, which we will discuss later.) For 8
processors and the non-clustered algorithm, the Ω-optimisation offers notice-
able improvement, whether the task set is ordered or not.

For the clustered algorithm however, we observe a paradox: If the task set
is more ordered than the default partial ordering (i.e. with /opt and /DU or-
derings), the clustered algorithm performs better without the Ω-optimisation.
We confirmed that this is not an error. There exist a few task sets (more than
vice versa) which are schedulable with NPS-Fm:4 but not under NPS-FΩm:4.
The reason is best illustrated via the next example:

Example 2 Assume 4 processors, in clusters of 2. There are 8 tasks to be
scheduled: τ1 to τ4 have utilisation 0.51 and τ5 to τ8 have utilisation 0.4. Using
NPS-FΩ4:2, it is possible to assign τ3 to the first cluster (Figure 16(a)) with
schedulability preserved, unlike when using NPS-F4:2 (Figure 16(a)). However,
hardly any remaining scheduling capacity is then left in that cluster – and the
other cluster cannot accommodate all remaining tasks.

Using NPS-FΩ4:2, τ3 is placed in a newly-opened bin. In the end, the bins
of the first-cluster are “half-empty”, thus their contents require more inflation
overall, than if they could have fitted in fewer (hence fuller) bins. But without
the Ω-optimisation, τ3 ends up on the second cluster and the lower-utilisation
tasks towards the end smooth out the fragmentation in both clusters.
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Fig. 17 Fraction of schedulable task sets of a given utilisation range, over 8 processors.
Task utilisations follow the bimodal/exponential/uniform distribution (top to bottom row).
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Fig. 18 Fraction of schedulable task sets of a given utilisation range, over 8 processors.
Task utilisations follow the bimodal/exponential/uniform distribution (left to right).

This behavior can be remedied by using the non-Ω-optimised schedulabil-
ity condition for assignments on a cluster up until a task cannot be assigned
anywhere with schedulability preserved; then switching toΩ-optimised schedu-
lability test and repeating assignment attempts for the task in consideration.
Assignment attempts for any remaining tasks, would also use the Ω-optimised
schedulability test. This scheme (designated as NPS-FΩ+

m:µ) would strictly
dominate the non-Ω-optimised clustered algorithm. Also, remaining tasks at
that point would have lower utilisations (due to the task ordering), which
would make it likelier for them to be eventually assigned with schedulability
preserved. The graphs for NPS-FΩ+

m:µ in Figure 17 demonstrate the consider-
able resulting improvement. Finally, the right column of Figure 17 presents the
noticeable effect of δ on schedulability. Overall, NPS-FΩ+

m:µ does not perform
much worse than the respective non-clustered variant.

Figure 18 compares the performance of NPS-F (clustered and non-clustered)
with other algorithms. Note that even with δ = 1, NPS-F performs similarly
well to EDF-WM/DU. However, its performance is also more consistent; the
cut-off in performance comes at higher utilisations and it is steeper. Inter-
estinly, even though the utilisation bound for δ = 1 is (only 75%) NPS-FΩ
appears capable of scheduling almost all tasks at up to 90% utilisation in this
experiment and most tasks at even 95% utilisation.

7 Practical considerations

Our discussion so far assumed that, other than the processors themselves, tasks
share no other resources. Such simplifying assumptions, though unrealistic, are
common practice when an algorithm is introduced. In our case, this facilitated
focusing on the core concepts of the approach and also the derivation of its
utilisation bound.
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However, there is no fundamental reason why a shared resource manage-
ment could not work with NPS-F. Given that NPS-F amounts, for all practi-
cal purposes, to partitioned scheduling over notional processors, any resource
management protocol that applies to partitioned multiprocessors would work.

Of course, in the general case, there may exist performance issues. Consider
a task executing on a fractional capacity notional processor P̃p with exclusive
access to a shared resource, which is preempted because the reserve for the
notional processor runs out: the task cannot resume execution until its next
reserve becomes available – which may take too long. In turn, this increases
blocking times for other tasks, mapped to other notional processors, which
request the resource.

In principle, both of these issues could be resolved using an approach sim-
ilar to that suggested by Rajkumar et al (1988): All critical sections could be
executed on one particular physical processor (with the task logically “migrat-
ing” there, during the respective execution). Moreover, this processor need not
necessarily be dedicated for the execution of critical sections; Rajkumar et al
(1988) show how application code (i.e. other tasks) can also be assigned there,
to execute in the background. An approach following these principles would
be practical and easy to implement.

8 Conclusions

In this article, we discussed the multiprocessor real-time scheduling algorithm
NPS-F in two variants: NPS-F “proper” (i.e. non-clustered) and NPS-Fm:µ

(i.e. clustered). Both variants aim for high schedulable utilisation with as few
preemptions as possible. NPS-F, is configurable for a utilisation bound be-
tween 75% and 100%, via a parameter δ. For each configuration, its worst-case
preemption counts are lower than those of any other known scheme match-
ing the respective utilisation bound. Using the bound on preemptions vs the
utilisation bound as a metric, it is the most preemption-light multiprocessor
scheduling scheme, with UB > 50%.

Moreover, although some preemptions under NPS-F may be costly migra-
tions, technological advances, in the form of multicores with shared caches,
offer a way of mitigating this issue. NPS-Fm:µ, which can be described as “per
chip” (rather than “per processor”) partitioning, eliminates migrations across
chip boundaries (which are the costliest). The moderate decrease in the utili-
sation bound, relative to NPS-F, is less pronounced the greater the cluster size
– and cores per chip are bound to increase, in turn permitting greater cluster
sizes. NPS-Fm:µ is a thus a scalable scheduling approach.

The Ω-optimisation, introduced in this paper, reduces processing capacity
requirements for schedulability, thus permiting previously unschedulable tasks
to be scheduled. It can be applied to both non-clustered and the clustered NPS-
F. In the latter case, we had to identify an apparent performance anomaly and
fix this via a heuristic, so as to obtain the same degree of improvement as with
the non-clustered variant.
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Finally, we also evaluated the scheduling potential of our algorithm via ex-
periments. The results showed that NPS-F was capable of scheduling almost
all tasks even for utilisations ranging well above its utilisation bound. Even
with the most preemption-light configuration (δ = 1) with UB=75%, over 8
processors, almost all tasks sets with utilisation up to 90% were schedula-
ble. Thus NPS-F performs even better in practice than its utilisation bound
suggests.
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Appendix

Theorem 5 A periodic reserve can always accommodate implicit-deadline tasks
of cumulative utilisation U ≤ 1, scheduled under EDF, if it measures (δ+1)·U

U+δ
·

S, provided that the timeslot length S does not exceed 1
δ

times the interarrival
time of any task served.

Proof Assume a deadline miss (the earliest one by a task served by the reserve)
at t=tm. Then, let tm − L denote the earliest time before tm such that, all
sub-intervals of [tm − L, tm) which lie within the periodic reserve, will have
been busy. Then, let td denote the cumulative execution requirement, over
[tm − L, tm), of all jobs by tasks served by the reserve which arrived at
t = tm −L or later and whose deadlines lie no later than tm. Additionally, let
tϕ denote the cumulative time available to tasks served by the reserve (i.e. the
time lying inside the reserve). The missed deadline at tm means:

td > tϕ (35)

Regarding td, it follows from (Baruah et al, 1990) that

td ≤
∑

τi∈τ

⌊
L

Ti

⌋

· Ci
(35)
=⇒

∑

τi∈τ

⌊
L

Ti

⌋

· Ci > tϕ (36)
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Fig. 19 Of all time windows of length δ · S or more, which start as a reserve ends and
end as a reserve starts, L0 is the one for which the ratio of time tϕ belonging to the
reserves to the overall interval length, is minimal. This stems from the fact that, ∀k ≥ 1:

δ·x·S
δ·S+(S−x·S) ≤

(δ+k)·x·S
(δ+k)·S+(S−x·S)

At this point we note that

∑

τi∈τ

⌊
L

Ti

⌋

· Ci ≤
∑

τi∈τ

(
L

Ti
· Ci

)

= L ·
∑

τi∈τ

Ci

Ti
= L · U ⇒

(36)
=⇒L · U > tϕ ⇒ U >

tϕ

L
(37)

Inequality 37 states that as long as, within any interval of length L ≥ S, it
holds that tϕ (i.e. the time available for the execution of tasks served by the
reserve), as a fraction of L (i.e. the interval length), is no less than U , then
deadlines by tasks served by the reserve will always be met. Thus, for deadlines
to always be met, a sufficient condition is:

U ≤
tϕ

L
(38)

Time for the execution of tasks served by the reserve is available as periodic
time windows of length x · S ≤ S (corresponding to the reserves), interleaved
by time windows of length S−x ·S (during which, tasks served by the reserve
cannot execute). Then, the most unfavorable selection of an offset, relative to
reserve boundaries, as the start of an interval of a given length (in terms of time
available to tasks served by the reserve, within said interval) is immediately
past the end of a reserve. Then, of all time windows of length L ≥ δ · S, the
one within which, the cumulative time belonging to reserves (i.e. tϕ), divided
by L is minimised, is the one with L = δ ·S + (S − x ·S) (because it ends just
as the next reserve begins). For an intuitive illustration, see Figure 19.

In that case, tϕ = δ · x · S and

tϕ

L
=

δ · x · S

δ · S + (S − x · S)
=

δ · x

δ + 1 − x

(38)
⇒ U ≤

δ · x

δ + 1 − x
⇒ x ≥

(δ + 1) · U

U + δ

which proves the theorem. '(
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Theorem 6 For a given value of δ, the utilisation bound of NPS-F is greater
than that of the algorithm in (Andersson and Bletsas, 2008).

Proof It suffices to show that UBNPS-F − UB 2008 > 0 ∀δ (where UBNPS-F,
UB 2008 denote the respective utilisation bounds, which are functions of δ).
By inspection,

UBNPS-F =
2 · δ + 1

2 · δ + 2
>

2 · δ

2 · δ + 1
= 1 − 2 · α(1

2 ) (39)

and
UB 2008 = 4 · (

√

δ · (δ + 1) − δ) + 1 = 1 − 2 · α(U0) (40)

where U0 =
√

δ · (δ + 1) − δ. Hence

(39), (40) ⇒ UBNPS-F − UB 2008 > 2 ·
(

α(U0) − α(1
2 )

)

But α(U0) > α(1
2 ), because the function α(U) has a maximum at U = U0.

Hence UBNPS-F − UB 2008 > 0. '(

Theorem 7 For δ = 1, if tasks are ordered such that tasks with utilisation 1
2

or higher (i) are indexed in order of decreasing utilisation and (ii) precede all
other tasks, it holds that UBm:4 = 5

8 .

Proof We will first show that every task set τ with Uτ ≤ 5
8 is schedulable.

Suppose that an unschedulable task set existed with Uτ ≤ 5
8 . Then, the bin-

packing algorithm would encounter a task τf with utilisation uf not assignable
to any bin of any cluster (subject to assignments already made) and would exit
declaring failure (Figure 7, line 11). (Recall that m′′(q) denotes the index of the
highest-indexed bin associated with Qq with tasks assigned to it, immediately
before attempting to assign τf .) Regarding τf , one of these mutually exclusive
cases holds:

– Case 1: 5
8 < uf ≤ 1

Then, due to the task ordering, all previously assigned tasks had utilisations
above uf > 5

8 . Also, every cluster has no fewer than µ = 4 tasks assigned
to it, (or else τf would have been assigned). Therefore every one of the m

4
clusters has tasks assigned to it of cumulative utilisation above 4 · 5

8 = 5
2 .

– Case 2: 1
2 < uf ≤ 5

8
Then, due to the task ordering, all previously assigned tasks had utilisations
above uf > 1

2 . This also means that each assigned task is the single task

assigned to its bin. Thus, in every cluster Qq, bins b
(q)
1 to b

(q)
m′′(q) are all

utilised above 1
2 . Also, from Inequality 16, it holds for every cluster Qq

that m′′(q)>3 (or the assignment of τf would not have failed). Thus, for
each cluster Qq, two complementary possibilities remain:
– Case 2a: m′′(q) = 4

The assignment of τf failed, thus it could not be assigned neither

to some bin among b
(q)
1 to b

(q)
m′′(q) (together with other tasks) nor to
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b
(q)
m′′(q)+1

(on its own), while also satisfying Inequality 16. In particu-

lar, from the failed assignment attempt on b
(q)
m′′(q)+1

, we deduce from
Inequality 16 that

inflate(uf ) +
m′′(q)
∑

p=1

inflate(U (q)
p ) > µ

m′′(q)=4
µ=4
=⇒

4
∑

p=1

inflate(U (q)
p ) > 4 − inflate(uf ) ≥ 4 − inflate

(
5

8

)

=
42

13
Th. 2
⇒

4 · inflate(Ū (q)) >
42

13
⇒ inflate(Ū (q)) >

21

26
⇒ Ū (q) >

21

31

But then, Qq has tasks of cumulative utilisation above 4 · 21
31 = 84

31 > 5
2

already assigned to it prior to the attempt to assign τf .
– Case 2b: m′′(q) ≥ 5

Then, bins b
(q)
1 to b

(q)
5 , each have a task assigned to them, prior to the

attempted assignment of τf . Due to the task ordering, these tasks all
have utilisations no less than uf (which in turn exceeds 1

2 , as per the
assumption of Case 2b). Thus, Qq has tasks already assigned to it of
cumulative utilisation above 5 · 1

2 = 5
2 , before attempting to assign τf .

In either Case 2a/b, the cumulative utilisation of tasks assigned to Qq

exceeds 5
2 before trying to assign τf .

– Case 3: 0 < uf ≤ 1
2

The utilisation bound of (non-clustered) NPS-F is 3
4 . Therefore, on a 4-

processor cluster, tasks of cumulative utilisation up to 3
4 ·4=3 are always

schedulable under NPS-F. Hence, if the cumulative utilisation of tasks al-
ready assigned to some cluster Qq before attempting to assign τf did not
exceed 5

2 , then it would have been possible to assign τf (of utilisation
uf < 1

2 ) to Qq. But τf could not be assigned, subject to previous assign-
ments, hence, on every cluster, the cumulative utilisation of tasks already
assigned before the attempt to assign τf exceeds 5

2 .

In any case, if some task cannot be assigned, subject to prior assignments,
then every one of the m

4 clusters already has tasks assigned to it of cumulative
utilisation above 5

2 , before attempting to assign τf . This would mean that the
cumulative utilisation of tasks assigned to any of the m

4 clusters (a subset of
τ) exceeds m

4 · 5
2 = 5

8 ·m. Therefore, τ cannot be unschedulable unless Uτ > 5
8

– which contradicts the assumption that Uτ ≤ 5
8 . Therefore UBm:4 ,< 5

8 . To
show that, in fact, UBm:4 = 5

8 , it suffices to find an unschedulable task set
with Uτ arbitrarily close to 5

8 . This is the case for a set of 5 · k + 1 tasks, each
of utilisation 1

2 + ε, if m = 4 · k and k → ∞ and ε→ 0+. '(

Theorem 8 It suffices, for a set τ ′ of implicit-deadline tasks with cumulative
utilisation U to be schedulable under EDF, if, within any possible time interval
of length L ≥ minτi∈τ ′ Ti, the time tϕ available for the execution of τ ′ (possibly
in disjoint time intervals) is U · L or greater.
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Proof Assume a deadline miss (the earliest one to occur) at t = tm. Then, let
tm −Λ denote the earliest time before tm such that, during all sub-intervals of
[tm − Λ, tm) available for the execution of τ ′, some task from τ ′ is executing.
Then, let td denote the cumulative execution requirement, over [tm − Λ, tm),
of all jobs by τ ′ which arrived at t = tm − L or later and whose deadlines lie
no later than tm. The missed deadline at tm means:

td > tϕ (41)

Regarding td, it follows from (Baruah et al, 1990) that

td ≤
∑

τi∈τ ′

⌊
Λ

Ti

⌋

· Ci
(41)
=⇒

∑

τi∈τ ′

⌊
Λ

Ti

⌋

· Ci > tϕ (42)

At this point we note that

∑

τi∈τ ′

⌊
Λ

Ti

⌋

· Ci ≤
∑

τi∈τ ′

(
Λ

Ti
· Ci

)

= Λ ·
∑

τi∈τ ′

Ci

Ti
= Λ · U

(42)
=⇒Λ · U > tϕ

⇒ U >
tϕ

Λ
(43)

If then it is somehow ensured that, for any possible interval of length L ≥
min
τi∈τ ′

Ti, it holds that tϕ

L
≥ U , this condition suffices for the schedulability of

τ ′ under EDF. '(
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