

POSIX Trace Based Behavioural Reflection

Filipe Valpereiro
Miguel Pinho

www.hurray.isep.ipp.pt

Technical Report

TR-060203

Version: 1.0

Date: February 2006

POSIX Trace Based Behavioural Reflection
Filipe VALPEREIRO, Miguel PINHO

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail: {fvalpereiro, lpinho}@dei.isep.ipp.pt

http://www.hurray.isep.ipp.pt

Abstract
Traditional Real-Time Operating Systems (RTOS) are not designed to accommodate application specific
requirements. They address a general case and the application must co-exist with any limitations imposed by
such design. For modern real-time applications this limits the quality of services offered to the end-user.
Research in this field has shown that it is possible to develop dynamic systems where adaptation is the key
for success. However, adaptation requires full knowledge of the system state. To overcome this we propose a

framework to gather data, and interact with the operating system, extending the traditional POSIX trace
model with a partial reflective model. Such combination still preserves the trace mechanism semantics while
creating a powerful platform to develop new dynamic systems, with little impact in the system and avoiding
complex changes in the kernel source code.

POSIX Trace Based Behavioural Reflection

Filipe Valpereiro, Luís Miguel Pinho

Polytechnic Institute of Porto, Porto, Portugal
{fvalpereiro, lpinho}@dei.isep.ipp.pt

Abstract. Traditional Real-Time Operating Systems (RTOS) are not designed
to accommodate application specific requirements. They address a general case
and the application must co-exist with any limitations imposed by such design.
For modern real-time applications this limits the quality of services offered to
the end-user. Research in this field has shown that it is possible to develop
dynamic systems where adaptation is the key for success. However, adaptation
requires full knowledge of the system state. To overcome this we propose a
framework to gather data, and interact with the operating system, extending the
traditional POSIX trace model with a partial reflective model. Such
combination still preserves the trace mechanism semantics while creating a
powerful platform to develop new dynamic systems, with little impact in the
system and avoiding complex changes in the kernel source code.

1 Introduction

Traditional Real-Time Operating Systems (RTOS) are designed to support a generic
real-time environment. In this scenario, a priori assumptions are made on the tasks
characteristics, resource utilization requirements and platform. Consequently, the
decisions made in the RTOS design narrow the range of possible applications.
However, the need to support a new rich set of applications, maybe running on
embedded devices, such as multimedia and real-time telecommunication, introduce
more stringent requirements on the dynamicity of the underlying operating system.

Although these applications still present real-time requirements, the characteristics
of tasks and resource utilisation patterns vary considerably. Typically, multimedia
applications demand resources in a non-deterministic way. Under such scenario, the
application should deliver the best possible service while respecting the real-time
requirements. To achieve such functionality, the application may need to change its
own behaviour, for which it is important to be perceptive of the system’s current state.

One particular strategy that fits well with dynamic behaviour is Reflection [1], a
well know technique in the object-oriented world. Nevertheless, the use of the
reflection paradigm to acquire (and control) the state of the system is hindered by the
lack of support for reflection in current RTOS. In this scenario we present a flexible
framework to reify operating system data using the POSIX trace [2] as a meta-object
protocol. Research in the field has already addressed the problem of adapting a
reflective approach to an RTOS kernel. Systems like ApertOS [3]; the Spring kernel
[4] and more recently DAMROS [5] are attempts to provide reflective capabilities to

operating systems. Our approach differs from previous works, since it is intended to
be used in general purpose RTOS.

We consider the use of a partial reflection model [6] to establish behavioural
reflection, integrating this model with the POSIX trace mechanism to achieve an
efficient reflective framework. It is our belief that such combination can create a
powerful tool on non-reflective RTOS, giving the developer freedom to implement
new dynamic support on current and well know systems. This will allow providing
feedback from the operating system to applications running in parallel with the
system application. By providing such feedback, it will then be possible to support
quality of service requirements evaluation [7] using real data from the system and to
collect valuable metrics on the overall system behaviour.

In this paper, we focus on the reification of data through the use of the POSIX
trace mechanism [2] and on its implementation in the MarteOS operating system [8],
to validate its usefulness and analyse its impact in the latency and determinism of the
system. The paper is structured as follows. Section 2 presents a brief notation on
computational reflection and previous approaches on using this paradigm in RTOS.
Section 3 presents a brief discussion of the POSIX tracing mechanism, and on the
benefits of its use, whilst Section 4 presents the proposed framework and discusses
some of the strategies used to reify data using the POSIX trace mechanism. Finally,
Section 5 presents some conclusions and future work.

2 Computational Reflection

Reflection can be described as the ability of a program to become 'self-aware'. Self-
aware programs can inspect themselves and possibly modify their behaviour, using a
representation of themselves [1] (the meta-model). The meta-model is said to be
causally connected with the real system in such a way that any changes in the meta-
model will be reflected in the system behaviour. In the same way, any changes in the
system are reflected in the meta-model. This “inter-model connection” is performed
through the use of a meta-interface (often termed as meta-object protocol: MOP).

A reflective system is thus composed by the meta-interface and two levels: a base
level where normal computation takes place and a meta-level where abstract aspects
of the system are being computed. Through the use of a meta-interface the meta-level
can gather information from the base-level (a process termed reification) and compute
the non-functional aspects of the system, eventually interfering in the system and
changing the behaviour (a process termed reflection). This principle clearly separates
the normal system computation from non-functional aspects of the system.

There are mainly two models of computational reflection [1]. The structural
reflection model is focused on the structural aspects of a program (e.g. data types and
classes). In contrast, behavioural reflection exposes the behaviour and state of the
system (e.g. methods call execution). These models can also be classified as being
partial if any form of selection can be performed on the entities being reflected.
Partial behavioural reflection [6] is an efficient approach that balances flexibility vs.
efficiency by allowing a tight control over the spatial and/or temporal selection of
entities that need reification. While spatial control can be applied at compile time by

selecting the objects and methods to be reflected, temporal selection requires an
efficient runtime support which goes beyond the scope of our framework.

Reification

Reflection

Meta-interfaces

MK

Z A

A’ C’ X’

C0 C1 X

Meta-level

Base-level

Fig. 1. A reflective system

Figure 1 illustrates a partial behavioural reflective system. Entities can be reflective
as A, C, and X and non-reflective as Z. Not all entities may need to reflect into a
unique meta-object. C0 and C1 have a common base class and thus in this example
are reflected by a single meta-object C’ which represents a generalization of class C.
Entities A, C0 and C1 belong to a group with related functionality (or behaviour) and
thus the meta-model may explore that relation.

2.1 Reflection in Real-Time Operating Systems

RTOS systems are usually designed to support a wide range of applications. It is
common for such design to assume no specific knowledge on the target application.
However, this approach is not suitable for some class of applications. Some
applications may require a real-time response yet they present factors of non-
deterministic behaviour. Thus, the dynamic behaviour must adapt to new system (or
functional) constraints. It is clear that an interface between the OS and the application
needs to exist. The system must allow the application to be aware of system
constraints and resources, eventually it may even allow valuable data to be accessed
(read only) by the application. In return, the application is responsible to determine
the best strategy for its behaviour, and ask the system to incorporate this new strategy.
It is also clear that this interface should allow different strategies to be available
simultaneously in the target OS.

Computational reflection is a promising solution since it allows us to expose key
OS data and computational behaviour into the meta-level where the application non-
functional concerns can be expressed and evaluated [9]. Early works on reflective
RTOS (such as ApertOS [3] and Spring [4]) have addressed these concerns,
incorporating the reflection mechanism in the design and programming language. In
Spring, reflection has been used for task management and scheduling, and to support

on-line timing requirements analysis, exposing tasks requirements data. The ApertOS
approach relies heavily in the object-oriented model and proposed a complete
reflective kernel. While these approaches certainly offer some advantages, they rely
on the development of completely new operating systems.

 A more recent approach has been done in DAMROS [5] which augments a
µ-kernel with a reflection mechanism. This approach allows the application to install
user-defined policies in the form of executable source code under certain restrictions.
Applications, for example, may not access certain data from the kernel. This limits the
implementation of some functionality exclusively in the application space.

3 POSIX Trace

The POSIX trace [2] is a mechanism to collect information on a running system and
related process through the use of events. The standard defines a portable set of
interfaces whose purpose is to collect and present trace logs over selected
functionality in the OS such as: internal kernel activities or faults, system calls, I/O
activity and user defined events. A major advantage on the POSIX trace is the ability
to monitor (or debug) the kernel and applications during execution.

Another important feature in the trace mechanism is the ability to record events as
a stream, allowing the OS to store the traced data on a file system or upload it to a
remote server via a network link. The ability to read this stream back again gives the
developer a powerful tool to monitor, analyse and understand the application
behaviour in a post-mortem analysis. There are few restrictions on standard usage;
applications are free to use the trace streams for any particular purposes. Trace
streams can be shared across the operating system, with each traced system call
placing trace events in one or more streams. It is up to the developer to choose the
event calls/stream configuration used in the operating system. For example, several
trace streams can be used simultaneously and shared by the operating system and
running applications. It is easy to think of an application that can take simultaneous
advantage of this architecture to log data into a server while performing system
metrics and do some self-monitoring using the trace mechanism.

3.1 The Trace Mechanism

The trace mechanism is composed by two main data types: the trace event and the
trace stream. The trace activity is defined as the period between stream activation and
deactivation where events are recorded/processed from the trace stream. Traces events
are a convenient way to encapsulate data with meta-attributes that refer to the actual
instance, conditions and event record status within the trace stream. This information
defines (up to some time resolution) the exact moment where the trace event has
occurred in the traced process. During this activity, the standard identifies three
different roles [2]: the trace controller process, the traced process and the analyser
process (also called monitor process). The trace stream establish a link (eventually
controlled) that connects the traced process and the analyser process.

There are no restrictions in the standard forbidding a merge between the trace
controller process and the analyser process and thus we can view the traced system as
being composed by two levels: the observed level where the trace occurs, and the
observer level where the streams are controlled and data is analysed. It is also clear
that no auto-feedback should occur in the observer level which could influence the
actual observation.

Output interface

Trace Stream

...En E2E3 E1

Analyser
process

Controller
processA B C0 C1 D

Observed Level Observer Level
Fig. 2. A system with the trace mechanism

Figure 2 exemplifies the different roles that take part in the traced system. Not all
objects in the system may be traced (or needed to be traced). The analyser process
presents an output interface which can be used by the application (or system) to
obtain information derived from the traced data. As an example, the quality of server
managers of [7] requires access to information concerning the actual resource
utilization of the system. This information can be provided by analysing the events
generated by the operating system.

3.2 Flexibility

The POSIX standard defines the trace mechanism as a monolithic component. There
is no room for customization, and thus, this component can not be used with the
RTOS targeted for the Minimum Real-time System Profile (MRSP) [10].
Nevertheless, features required by the standard such as filesystem and process
inheritance are of no use in this profile and do not compromise the trace functionality.
Our work intends to supply a flexible, customizable trace implementation with a small
memory footprint, toward the application requirements, in a way that only the
necessary trace functionality will be present in the final application.

4 Framework Design

Several techniques have emerged in the RTOS research to address the lack of proper
support for dynamic applications behaviour. Our main motivation for the
development of this framework is the need of a common, portable platform for data
collection and system actuation where these and future techniques can be evaluated.

The goal is to support reflection on static application-oriented RTOS, allowing soft
real-time applications to change behaviour in response to the system’s state, therefore
becoming more adaptive. Moreover, the framework will allow to separate the
application development from the development of system state analysis mechanisms,
and to minimize the system interference.

The need of a portable interface to collect and reify system data led us to consider
the POSIX trace mechanism [2] as the basis component of our framework. However,
the standard requires the operating system to support functionality which is not
required for the role played by the trace mechanism in our framework. The standard
rationale defines a monolithic trace mechanism, creating dependencies between the
individual trace components. To overcome this limitation we consider a trace
mechanism based on modular components, avoiding unnecessary code dependencies
while preserving the functional semantics.

We do not consider the use of computational reflection as a whole. Instead a partial
reflection model [6] is used; where data is reified without direct transfer of control to
the meta-level (an asynchronous reflection model). Traditionally, computational
reflection belongs to the language domain, usually implemented into the language
run-time environment. This approach does not explore the advantages of concurrent
systems and thus reflection occurs as a linear transition between the base-level to the
meta-level and vice-versa. The framework takes direct advantage of our problem
domain, redefining the transition between the base and meta-level. This is supported
by extending the controller and analyser process roles within the POSIX trace
mechanism. We also introduce a third process to reify data from the trace streams and
create/modify the meta-objects (see figure 3). Under this extended model, the meta-
objects act as a “consciousness memory” of the system state, while the analyser
process performs some “consciousness” analysis. Eventually, the analyser process
may intercede asynchronously in the system, introducing non-functional aspects.

In this paper we focus on the data reification and meta-objects construction; the
analyser interface and intercede mechanism (necessary to complete the framework
model) will be the focus of further work.

4.1 Modular POSIX trace

The main reason why the trace standard is not available in the MRSP profile is the
lack of filesystem support which is a required feature for the implementation of the
POSIX trace interface. The organization of the tracing rationale text for the trace
interface defines the trace as a monolithic component, thus leaving no flexibility in
the usage. Yet, there are distinct individual components composing the trace
mechanism.

A detailed examination of the standard and the trace use cases show us that
filesystem support is only useful for offline analysis, a feature used by the trace logs
to record data into a permanent storage (a use case not addressed in this paper). On
contrast, online analysis is a useful tool to reason on the current system state and does
not require filesystem support. This component works as an extension to the main
trace functionality, adding new features that support other trace scenarios.

We can explore the inter-component relations to avoid non-functional and
unnecessary code in the final binary image, thus reducing the application memory
footprint and minimizing the impact on the traced system. Modularity can be achieved
if each component is implemented as a separate package in such a way that the main
tracer component does not require linking against other component packages. All the
remaining trace components must depend strictly on the main package which contains
the base definitions, unless a dependency exists between different modules.

The modularity goal is to preserve the functional semantics while eliminating inter-
component dependencies. To break these dependencies we need to work on the trace
implementation. The application may not use some of the trace components; however
the existence of these code dependencies will create a link between the application
code and the implementation code. An example of a usage scenario for the trace
mechanism is the ability to perform system metrics. Such example may not require
the filtering or trace log features. Consider the steps performed on every call to the
posix_trace_event function to successfully trace an event:

− Find an available trace stream or return.
− Discards the event and return if the event does not pass the filter.
− If it is a user event and data is larger than maximum value, truncate the data.
− Store the event
− Adjust the stream properties (trace policy).
− Flush the stream into the trace log if required.

The function semantics will require the filter component due to the existence of a
function call, even if it the function result is irrelevant for the usage scenario, thus a
link to this code will be established at compile time. To implement the desired
modularity we are currently using a dispatch table that invokes the requested function
if the table entry is not null. This solution minimizes the amount of compiler work,
since it only needs to recompile the main component. It introduces a new indirection
level, but that does not generate any measurable delay in the trace execution.

4.2 The extended trace model

In this extended model, we introduce some principles of partial reflection using the
POSIX trace. In the model, the trace streams are used as the meta-interface that
allows the meta-level to reify information from the base-level. We also introduced a
new process in the trace observer level (the meta-level), the reify process, that acts
upon instructions from the controller process. Its main role is to read events from the
trace stream and to create and modify the corresponding meta-objects. These objects
will be used by the analyser process to perform some “consciousness” analysis, thus
the analyser process works exclusively with reified data. The amount of data and
analysis type depends only on the developer purpose. For this reason the framework
defines the task type but not the task body and properties, giving the developer the
freedom to manage the meta-objects.

To avoid possible data inconsistencies any meta-object access is performed using a
protected type and the associated interface (see figure 5). The base interface for meta-
objects is a procedure to replace a meta-object, a procedure to commit changes in the
meta-object and a function to obtain a full copy of the meta-object. However it might

be useful to extend this interface with specialized read functions to access some data
in the meta-object, improving the access time by avoiding a full object copy. Figure 3
illustrates the extended trace model and the relation between the various entities.

A B C0 C1 D

Trace Stream

...En E2E3 E1...En E2E3 E1

Observed Level

Observer Level

Reify
process

Controller
process

Output Interface

B’ C’D’

KK

Meta-objects

Analyzer
process

Fig. 3. The extended trace model

To use the framework the developer must define the analyser task body,
completing the meta-model. This activates the framework, triggering the code
inclusion in the application; otherwise the compiled code will be trace free. Note that
from the traced call point of view no transfer of control from the base-level to the
meta-level takes place during the traced call execution; hence the reflection model
behaves asynchronously. This is a powerful property, since the meta-level will behave
as a central state of the operating system that can be queried by higher abstract
concerns that can not be expressed with traditional reflection. Note that at present we
do not define the output interface which is beyond the scope of this paper.

4.3 Implementation details

The first step to implement the extended model is to determine which functionality
offers interesting data to be reified. Examples of possible information to reify are:
memory usage per process (or task), mutex operations including some internal details
(accessing task ID, blocked task list, mutex policy …) and CPU bandwidth used, but
different types of information can be also be gathered. Figure 4 presents some
simplified examples of event definitions used to reify data from the mutex functions.
The Data_Envelop type as been defined to ensure that trace events with size larger
than the maximum data size allowed in the trace stream can flow without loosing
information. However, this option pays heavily and must be avoided whenever
possible. Note that we omitted some type info just for clarity’s sake.

Some of the reified information exhibits patterns of similarity and thus we can
group it, creating a convenient way of express the application “reflective”
requirements. With this purpose, we define four sets of functionality that can also be
expressed in terms of sub-sets for convenience and further fine-grain control over the

data. The sets of functionality are: internal kernel structures; scheduler, locking
mechanism and signals; system calls; and I/O triggering (data transmitted/received).

 package Trace_Events_Data is

 type Data_Envelop is record
 Info : Data_Info;
 Data : Data_Buffer;
 end record;

 type Mutex_Init_Event is record
 Op : Op_Code;
 Mutex_Id : Integer;
 Policy : Locking_Policy;
 Prio : Task_Priority;
 Preemption_Level : Task_Preemption_Level;
 end record;

 type Mutex_Event is record
 Op : Op_Code;
 Mutex_Id : Integer;
 Task_Id : Integer;
 Task_Status : Task_Status;
 Prio : Task_Priority;
 end record;

 -- ...
 end Trace_Events_Data;

Fig. 4. Events definition

Each set of functionality is also connected to a unique trace stream, leaving the
remaining streams free to other purposes. This simplifies the data reification process,
avoiding intersection of data events from different functionality sets which would
result in a larger and complex decoding task. We also define the events used for each
functional unit in each traced set and the corresponding meta-objects and the event(s)
associated, creating a map that links the reified units and the meta-objects. This
information is vital to the “reify process”, to create the meta-objects whenever a
related event is received. A second map is created dynamically that binds the created
meta-objects to the meta-object ID and type. This step ensures that any update
information arriving in further events is committed to the corresponding meta-object.

Figure 5 present a simplified meta-object definition and the protected object used
to ensure that no data inconsistency occurs whenever an update operation is
performed in the meta-object. The protected interface was kept simple, but can be
extended to support faster access to individual fields on the meta-object to improve
the access time. This option might be useful for testing some properties without
requiring access to the whole object.

Figure 6 presents some maps definitions and task types. This package also defines
the controller, the reify and the analyser tasks. Bodies for the first two tasks will be
defined within the framework. The third task must be defined by the application
developer to perform the desired analysis using the meta-objects.

 with Trace_Events_Data;
 package Meta_Objects is

 type Meta_Mutex is record
 Owner : Integer;
 Mutex_ID : Integer;
 Policy : Locking_Policy;
 Preemption_Level : Task_Preemption_Level;
 Blocked_Tasks : Tasks_Lists;
 Status : Boolean;
 end record;

 procedure Init_Meta_Object (Event : in Mutex_Init_Event);

 protected type Meta_Mutex_Access is
 procedure Store_Object (Mutex : in Meta_Mutex);
 procedure Commit_Changes (Event : in Mutex_Event);
 function Get_Copy return Meta_Mutex;

 private
 Mutex : Meta_Mutex;
 end Meta_Mutex_Access;

 -- ...
 end Meta_Objects;

Fig. 5. Meta-objects definition

 with Trace_Events_Data;
 with Meta_Objects;
 package Meta_Level is

 type Mutex_ID is Integer;
 type Mutex_List_Access is
 new Map (Mutex_ID, Meta_Mutex_Access);

 Mutex_List : Mutex_List_Access;

 task type Controller_Task (Prio : Task_Priority);
 task type Reify_Task (Prio : Task_Priority);
 task type Analyser_Task (Prio : Task_Priority);

 -- ...

 end Meta_Level;

Fig. 6. Meta-level definition

4.4 Performance metrics and results

We have done some experiments in order to find the impact of the framework both on
the size of the code and on the execution times of the traced functions. Table 1
presents the overhead on the code size of a traced system. The results allow
determining that, depending in the number and type of trace events embedded in the
traced unit, an overhead of approximately 10% is created in the overall code size.

This presents a considerable impact, but it is an expected side effect of the increased
functionality.

Table 1. Comparison of code size

Description Size in Bytes
Simple procedure (sum of one integer) 480
Simple procedure with a single trace event 780
Mutex unit without trace events 15884
Mutex unit with eight trace events 17692
Scheduler unit without trace events 13032
Scheduler unit with eleven trace events 15088
Trace implementation with all dependable units 38056
Hello World without trace 341936
Hello World with trace unit 379088

Tables 2 and 3 show the execution times for some of the traced functions, with and

without the trace functionality. The tests were performed on a Pentium-III at 930
MHz. The time values are measured by the time-stamp counter (TSC), and mean
values were obtained after 5000 measures. The test application sets up a trace stream
with sufficient space for all the events generated during the simulation.

Table 2 presents the results of a test setup, where events related to the mutex unit
were generated by a loop performing several calls to obtain a lock on the mutex. The
results show an increase of execution time by a factor of approximately 0.8 µs for
each traced function. The last test also shows the average trace time for regular events
versus events using the data envelop capability. As expected they are heavier but offer
a more flexible solution to trace large amounts of data.

Table 2. Execution times for the mutex unit

Mean
Function Trace Min Max cycles µs

No 137 221 179 0.19 Pthread_Mutex_Lock
Yes 840 1031 900 0.97
No 251 362 296 0.32 Pthread_Mutex_Unlock
Yes 931 1133 1024 1.1

Event Trace 699 962 740 0.8
Event Trace with envelop 1317 1640 1396 1.5

Table 3 shows the execution times for the scheduler unit. They were performed

with the same configuration, except that the events generated by the scheduler unit
were obtained using four simultaneous tasks with different periods, execution time
and priority, to create some scheduler activity.

In this case, the experiments showed an increase of approximately 0.7 µs for each
traced function, which is in the same order of magnitude of other kernel to user
mechanisms available in the MarteOS kernel [11,12]. Considering the gained
functionality, this overhead is more than acceptable, since it allows applications to
have access to “fresh” kernel data.

Table 3. Execution times for the scheduler unit

 Mean
Function Trace Min Max cycles µs

No 124 286 156 0.17 Ready_Task_Reduces_Active_Priority
Yes 741 983 833 0.90
No 92 167 118 0.13 Running_Task_Gets_Blocked
Yes 702 1242 774 0.83
No 174 494 270 0.29 Running_Task_Gets_Suspended
Yes 612 1624 821 0.88
No 100 305 130 0.20 Task_Gets_Ready
Yes 739 2108 825 0.89
No 116 573 202 0.22 Do_Scheduling
Yes 744 1286 853 0.92

Event Trace 495 958 650 0.7

5 Conclusion

Soft real-time multimedia applications tend to present factors of non-deterministic
behaviour. Developing applications in this domain requires the study and
development of dynamic strategies which allow the system and application to adapt,
improving the quality of the output generated by the application. This requires,
however, applications to have access to the current state of the system, particularly in
what resource availability (CPU included) is concerned.

In this paper we present a framework, which uses the POSIX trace mechanism as a
Meta-Object Protocol, to implement a partial asynchronous reflection model. Using
this framework, applications can query the system state by accessing a meta-level
which presents reified information of the system. The design requirement for the
framework is the use of standard functionality available (or easily incorporated) in
current real-time operating systems. The framework is not tied to any particular
operating system, thus making further ports straightforward. We hope that this work
can open new perspectives into the use of reflection in real-time operating systems.

Acknowledgements

The authors would like to thank the anonymous reviewers for their helpful comments
and suggestions. This work was partially supported by FCT, through the CISTER
Research Unit (FCT UI 608) and the Reflect project (POSI/EIA/60797/2004).

References

1. P. Maes. “Concepts and Experiments in Computational Reflection”, in. Proceedings
of the 2nd Conference on Object-Oriented Programming Systems, Languages and
Applications (OOPSLA’87), Orlando USA, 1987, pp. 147–155.

2. IEEE Std. 1003.1, Information technology – Portable Operating System Interface
(POSIX), Section 4.17 – Tracing, 2003.

3. Y. Yokote, “The ApertOS Reflective Operating System: The concept and its
implementation”, in Proceedings of the 7th Conference on Object-Oriented
Programming Systems, Languages and Applications (OOPSLA’92). ACM Press,
1992, pp. 414–434.

4. J. A. Stankovic, “Reflective Real-Time Systems”, University of Massachusetts,
Technical Report 93-56, June 28, 1993.

5. A. Patil, N. Audsley, “Implementing Application Specific RTOS Policies using
Reflection”, Proceedings of the 11th IEEE Real-Time and Embedded Technology
and Applications Symposium, San Francisco, USA, 2005, pp. 438–447.

6. E. Tanter, J. Noye, D. Caromel, and P. Cointe, “Partial behavioural reflection: Spatial
and temporal selection of reification” Proceedings of the 18th Conference on Object-
Oriented Programming Systems, Languages and Applications (OOPSLA 2003),
October 26-30, 2003, Anaheim, USA, pp. 27–46.

7. Luís M. Pinho, Luís Nogueira and Ricardo Barbosa, “An Ada Framework for QoS-
Aware Applications”, Proceedings of the 10th International Conference on Reliable
Software Technologies (Ada-Europe 2005), York, UK, June 2005, pp. 25–38.

8. M. Aldea and M. González. “MaRTE OS: An Ada Kernel for Real-Time Embedded
Applications”. Proceedings of the 6th International Conference on Reliable Software
Technologies (Ada-Europe-2001), Leuven, Belgium, May, 2001, pp. 305–316.

9. S. Mitchell, A. Wellings, A. Burns, "Developing a Real-Time Metaobject Protocol",
Proc. of the 3rd IEEE Workshop on Object-Oriented Real-Time Dependable
Systems, Newport Beach, USA, February 1997, pp. 323–330.

10. IEEE Std. 1003.13, Standardized Application Environment Profile – POSIX Realtime
and Embedded Application Support, 2003

11. M. Aldea and M. González, “Evaluation of New POSIX Real-Time Operating
Systems Services for Small Embedded Platforms”, Proc. of the 15th Euromicro
Conference on Real-Time Systems, ECRTS 2003, Porto, Portugal, July, 2003, pp.
161–168.

12. M. Aldea and J. Miranda and M. González , “Integrating Application-Defined
Scheduling with the New Dispatching Policies”, Proceedings of the 10th International
Conference on Reliable Software Technologies (Ada-Europe 2005), York, UK, June
2005, pp. 220–235.

