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Abstract 
Most of the industrial community is very reluctant to integrate new technologies in their consolidated automation 
systems, either by preconception or by the lack of matureness of these technologies. When addressing communication 
systems for control applications, these fears become even more acute. Usually, these communication systems are based 
on fieldbus networks, which provide adequate levels of performance, dependability, timeliness and maintainability. The 
PROFIBUS (PROcess FIeldBUS) is the most widely used fieldbus, with over 15 million nodes worldwide, in 
applications ranging from discrete-part automation to process control. 

During the cellular phone and WLAN boom of the last decade, soon it became evident that wireless (radio-based) 
communications could leverage a whole new set of potentialities in field level and control applications. Moving parts in 
machinery, hand-held equipment, wearable computers, transportation equipment and autonomous vehicles are just a 
few examples requiring wireless/mobilecommunications.  

However, the requirements of real-time systems, usually served by fieldbuses, impose the use of predictable and reliable 
communication services, which provide certain guarantees on eventual delivery of packets and delivery times. 
Therefore, running real-time applications using wireless technology can be especially challenging, because the real-time 
and reliability requirements are more likely to be jeopardized than they would be over a wired channel. 

The RFieldbus architecture, driven by the European Project IST-1999-11316 consortium has provided a complete 
solution where multiple segments and multiple wireless cells are interconnected via Physical Layer (PhL) Intermediate 
Systems (operating as repeaters). This solution is compatible with standard PROFIBUS, but the fact that all messages 
are broadcast throughout the network leads tosome problems, namely no error containment between different segments 
and low responsiveness to failures. Additionally, it is also necessary to set the network parameters in a particular way 
which guarantees the operation of the network and leads to a lower performance. 

These facts triggered the analysis and proposal of an alternative approach where the Intermediate Systems (ISs) operate 
at the Data Link Layer (DLL) level as bridges. This approach required two new protocols, one for supporting the 
communication between stations in different network segments – the Inter Domain Protocol (IDP), and another to 
support the mobility of wireless stations between different wireless segments – the Inter-Domain Mobility Procedure 
(IDMP). 

The main objective of this dissertation is to compare the timing behaviour of the bridge and repeater-based approaches 
over error free and error prone environments. Additionally, we also intended to show that the bridge-based approach 
implementation is feasible and propose additional error detection and correction mechanisms which would improve its 
performance over error proneenvironments. To achieve these objectives two simulation tools have been developed, one 
for the repeater-based approach and another to the bridge-based approach, and a set of result analysis tools. 
Additionally, we have also developed another tool to simulate the mobility of wireless stations. 
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Performance Analysis of Wireless-enabled PROFIBUS Networks 
 

Abstract 
Most of the industrial community is very reluctant to integrate new technologies in their consolidated 
automation systems, either by preconception or by the lack of matureness of these technologies. When 
addressing communication systems for control applications, these fears become even more acute.  
Usually, these communication systems are based on fieldbus networks, which provide adequate levels 
of performance, dependability, timeliness and maintainability. The PROFIBUS (PROcess FIeldBUS) 
is the most widely used fieldbus, with over 15 million nodes worldwide, in applications ranging from 
discrete-part automation to process control.  

During the cellular phone and WLAN boom of the last decade, soon it became evident that 
wireless (radio-based) communications could leverage a whole new set of potentialities in field level 
and control applications. Moving parts in machinery, hand-held equipment, wearable computers, 
transportation equipment and autonomous vehicles are just a few examples requiring wireless/mobile 
communications. 

However, the requirements of real-time systems, usually served by fieldbuses, impose the use of 
predictable and reliable communication services, which provide certain guarantees on eventual 
delivery of packets and delivery times. Therefore, running real-time applications using wireless 
technology can be especially challenging, because the real-time and reliability requirements are more 
likely to be jeopardized than they would be over a wired channel.  

The RFieldbus architecture, driven by the European Project IST-1999-11316 consortium has 
provided a complete solution where multiple segments and multiple wireless cells are interconnected 
via Physical Layer (PhL) Intermediate Systems (operating as repeaters). This solution is compatible 
with standard PROFIBUS, but the fact that all messages are broadcast throughout the network leads to 
some problems, namely no error containment between different segments and low responsiveness to 
failures. Additionally, it is also necessary to set the network parameters in a particular way which 
guarantees the operation of the network and leads to a lower performance. 

These facts triggered the analysis and proposal of an alternative approach where the Intermediate 
Systems (ISs) operate at the Data Link Layer (DLL) level as bridges. This approach required two new 
protocols, one for supporting the communication between stations in different network segments – the 
Inter Domain Protocol (IDP), and another to support the mobility of wireless stations between different 
wireless segments – the Inter-Domain Mobility Procedure (IDMP). 

The main objective of this dissertation is to compare the timing behaviour of the bridge and 
repeater-based approaches over error free and error prone environments. Additionally, we also 
intended to show that the bridge-based approach implementation is feasible and propose additional 
error detection and correction mechanisms which would improve its performance over error prone 
environments. To achieve these objectives two simulation tools have been developed, one for the 
repeater-based approach and another to the bridge-based approach, and a set of result analysis tools. 
Additionally, we have also developed another tool to simulate the mobility of wireless stations. 

 
 
 
Keywords: Hybrid wired/wireless networks; Network simulation; Real-time systems; Real-time 

communications; Fieldbus networks. 





Análise de Performance para Redes PROFIBUS Sem Fios 
 

Resumo 
A maioria da comunidade industrial apenas integra novas tecnologias nos seus sistemas de automação, 
após estas terem sido extensivamente testadas e amadurecidas. No caso dos sistemas de comunicação 
usados por aplicações de controlo esta tendência é ainda mais exacerbada devido à sua criticalidade 
para o funcionamento de qualquer planta fabril. Geralmente, estes sistemas de comunicação são 
baseados em redes de campo (fieldbus), dado que estas disponibilizam níveis adequados de 
desempenho, confiança de funcionamento, comportamento temporal e capacidade de manutenção. As 
redes baseadas na tecnologia PROFIBUS (acrónimo de PROcess FIeld BUS) são o tipo fieldbus mais 
utilizado em todo o mundo em aplicações de automação e controlo. 

Durante a última década assistiu-se ao aumento exponencial da utilização de sistemas de 
comunicação sem fios (wireless communications), quer através do telefone celular (vulgo telemóvel) 
quer através das redes locais sem fios (wireless local area network), cedo ficou evidente que a 
tecnologia de comunicação sem fios poderia impulsionar um novo conjunto de potencialidades nas 
aplicações de automação e controlo. Veículos auto guiados, sensores em partes móveis de maquinaria e 
terminais portáteis, são alguns dos exemplos que requerem comunicação sem fios. 

Todavia, os requisitos dos sistemas de tempo real, geralmente servidos por fieldbuses, impõem a 
utilização de serviços de comunicação previsíveis e confiáveis, que proporcionem certas garantias 
relativas à entrega de mensagens e do respectivo tempo em que são entregues. Consequentemente, o 
uso de comunicações sem fios em aplicações de tempo real pode ser um desafio, dado que a 
probabilidade dos requisitos de tempo real não serem cumpridos é maior do que usando sistemas de 
comunicação cablados. 

O projecto Europeu RFieldbus, executado entre os anos de 2000 e 2002, foi uma importante 
iniciativa no sentido da concepção de um sistema de comunicação industrial do tipo fieldbus híbrido 
suportado pela tecnologia PROFIBUS. Num sistema RFieldbus, a ligação entre componentes cablados 
e componentes sem fios é feita através de dispositivos de interligação que operam ao nível da Camada 
Física (como repetidores). Esta solução é compatível com o standard PROFIBUS, mas o facto de todas 
as mensagens serem enviadas para todos os nós da rede, a não contenção de erros entre os diferentes 
segmentos e a necessidade de se efectuar uma configuração especial dos parâmetros da rede, levam a 
uma diminuição do seu desempenho. 

Estes factos levaram à análise e proposta de uma nova abordagem, na qual os dispositivos de 
interligação operam como pontes (bridges, em inglês), e por isso ao nível da Camada de Ligação de 
Dados. Esta abordagem define dois novos protocolos, um para processar transacções entre estações 
pertencentes a meios de comunicação diferentes – o Inter Domain Protocol –, e outro para processar a 
mobilidade das estações móveis entre os segmentos sem fios – o Inter Domain Mobility Procedure. 

O principal objectivo desta dissertação é comparar o comportamento temporal destas duas 
abordagens em ambientes sem e com erros. Adicionalmente, também se quer mostrar que a abordagem 
baseada em bridges é possível de ser implementado num sistema real. Para tal, foram desenvolvidas 
duas ferramentas de simulação, uma para a arquitectura baseada em bridges e outras para arquitectura 
baseada em repetidores, assim como um conjunto de ferramentas auxiliares de análise de resultados. 
Foi também desenvolvida uma outra ferramenta que permite simular a mobilidade das estações 
móveis. 
 
Palavras-chave: Redes de comunicação híbridas cabladas e sem fios; Simulação de redes de 

comunicação; Sistemas de Tempo-Real; Comunicações de Tempo-Real; Redes Industriais. 



 



Chapter 1 

Overview 

Fieldbus communications are now the most common way of interconnecting sensors, actuators and 
control devices in manufacturing and process control applications. The widespread use of wireless 
communication systems in the information technology industry and the availability of mature 
technology has triggered the appearance of fieldbus solutions which operate based on wireless 
technologies. This dissertation compares two of those approaches, based in results extracted from 
simulation. One approach extends PROFIBUS fieldbus technology by the use of repeaters, which 
interconnect, wired and wireless network segments and the other approach uses bridges for the same 
purpose. 

1.1. Introduction 

Most of the industrial community is very reluctant to integrate new technologies in their consolidated 
automation systems, either by preconception or by the lack of matureness of these technologies. When 
addressing communication systems for control applications, these fears become even more acute. That 
is why only a few fieldbus communication systems consolidated their market position, due to their 
technical features and also to big enterprise lobbies. From these, PROFIBUS (PROcess FIeldBUS) 
(IEC, 2000) is the most widely used, with over 15 million nodes worldwide (Weber, 2006), in 
applications ranging from discrete-part automation to process control.  

During the cellular phone and WLAN boom of the last decade, soon it became evident that 
wireless (radio-based) communications could leverage a whole new set of potentialities in the field 
level and control applications. Moving parts in machinery, hand-held equipment, wearable computers, 
transportation equipment and autonomous vehicles are just a few examples requiring wireless/mobile 
communications. 

However, the requirements of real-time systems, usually served by fieldbuses, impose the use of 
predictable and reliable communication services, which provide certain guarantees on eventual 
delivery of packets and delivery times. According to (Stankovic, 1989) a real-time computing system 
is a system in which its correctness depends not only on the logical results of computation, but also on 
the time at which results are produced. Therefore, running real-time applications using wireless 
technology can be especially challenging, because the real-time and reliability requirements are more 
likely to be jeopardized than they would be over a wired channel.  

Traditionally, real-time systems are classified as being either hard or soft (Burns and Wellings, 
2001 ). For hard real-time systems, it is imperative that no deadline is missed, whilst in soft real-time 
systems it is acceptable to miss some of them occasionally. In practical engineering contexts, the 
occasional loss of some deadline can be tolerated. This is either because the consequences of the loss 
can be negligible (i.e. one defectuous part per thousand) or because the robustness of the involved 
control algorithms imply the ability to react properly at the next invocation step without serious 
consequences. 

Within this context, some commercial (Siemens, 2005) and research solutions (Lee and Lee, 
2001; Willig, 2002; Miorandi and Vitturi, 2004) for providing the traditional PROFIBUS with wireless 
extensions have been proposed. Nevertheless, these solutions are quite limited either in terms of 
number of segments or wireless cells and in the support of mobility.  

The RFieldbus architecture (RFieldbus, 2000; RFieldbus, 2000a), driven by the European Project 
IST-1999-11316 consortium has provided a complete solution where multiple segments and multiple 
wireless cells (hereafter, segments and wireless cells will be referred as domains) are interconnected 
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via Physical Layer (PhL) Intermediate Systems (operating as repeaters). This solution (henceforth 
referred as repeater-based) is compatible with standard PROFIBUS, but the fact that all messages are 
broadcast throughout the network leads to some problems, namely no error containment between 
different domains and low responsiveness to failures.  

These facts triggered the analysis and proposal of an alternative approach where the Intermediate 
Systems (ISs) operate at the Data Link Layer (DLL) level as bridges (Ferreira, Alves et al., 2002; 
Ferreira, Alves et al., 2003; Ferreira, Tovar et al., 2003). This approach (henceforth referred as bridge-
based) required two new protocols, one for supporting the communication between stations in different 
domains – the Inter Domain Protocol (IDP), and another to support the mobility of wireless stations 
between different wireless domains – the Inter-Domain Mobility Procedure (IDMP). 

1.2. Research Context 

PROFIBUS was standardised in 1996 as an European standard (CENELEC, 1996). It is based on the 
International Standards Organisation (ISO) Open System Interconnection (OSI) reference model, 
however collapsed to just three layers: Physical Layer (PhL), Data Link Layer (DLL) and Application 
Layer (AL). 

It is designed to provide different qualities of service in terms of timeliness, providing intrinsic 
mechanisms that distinguish the way high and low priority messages are transmitted. Its DLL employs 
a token passing mechanism to grant the medium access. Moreover, the PROFIBUS Medium Access 
Control (MAC) protocol, being based on the measurement of the real token rotation time, induces a 
well-defined timing behaviour to the worst-case message response time, since the upper bound for the 
actual token rotation time can be know a priori (Tovar and Vasques, 1999). Therefore, the PROFIBUS 
protocol is able to support guaranteed real-time traffic. 

There are two kinds of stations: master and slaves. Only masters have access to the medium and 
slaves only have access to the medium when they reply to a master request.  

The benefits of using wireless technologies are manifold. The ease of equipment installation, the 
systems configuration flexibility, the ability to evolve and the cuts in cabling and maintenance costs 
just to mention some. However, wireless channels are prone to more transmission errors caused by 
either channel outages (which occur when the received signal strength drops below a critical threshold) 
and/or interference. Therefore, the use of wireless technologies in a real-time system can jeopardize the 
timing requirements and reliability of this kind of system.  

To integrate wired and wireless technologies in the same network system, there is the need of a 
special purpose device that is able to interconnect the different mediums systems, called Intermediate 
System (IS). The behaviour of the ISs is very important in this context. Within the context of this 
dissertation only IS operating as repeaters and as bridges are considered. 

Traditionally, a repeater act as signal regenerator, but it can also interconnect communication 
systems with different Physical Layer (PhL) protocols. For that purpose, a repeater may require the 
implementation of more than bit-by-bit repeating functionality. This is the case when it interconnects 
communication systems with different frame formats or different bit rates, for instance. A repeater 
does not perform any address filtering, thus a “broadcast” network is created. Consequently, the use of 
repeaters implies a single MAC address space.  

To give a better intuition of the interconnection of wired and wireless communication systems, a 
repeater-based hybrid wired/wireless network example is presented in Figure 1.1. The network 
comprises four domains. Two are wired domains (D2 and D4) and the other two are wireless domains 
(D1 and D3). Three intermediate systems operating as repeaters (R1, R2 and R3) interconnect the wired 
and wireless domains. The network comprises two wired masters (M1 and M2), five wired slaves (S1, 
S2, S3, S4 and S5) and three wireless mobile stations, two masters (M3 and M4) and one slave (S6). 

Wireless communications are relayed through Base Stations (BSs). A BS operates using two 
wireless channels: one to receive frames from wireless stations (uplink channel) and other to transmit 
frames to wireless stations (downlink channel). The network comprises two BSs, BS1 and BS2, which 
relay the wireless communications of wireless domains D1 and D3, respectively. 
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Figure 1.1 – Repeater-based network example  

In this approach, all messages transmitted either by the masters (e.g., the token or request 
messages) or by the slaves (e.g., responses to masters’ requests) are broadcasted throughout the overall 
network. Moreover, all masters in the network belong to the same logical ring. For this particular 
example, the token rotation can have the following sequence: … → M1 → M2 → M3 → M4→M1… . 

In the repeater-based approach, inter-domain mobility is supported, and is implemented in a very 
simple and efficient way. Periodically, one specific master in the system (denoted as Mobility Master) 
emits a special non-acknowledged request: the Beacon Trigger. This message is received by all BSs 
in the system, which in turn start to transmit Beacon frames in their respective radio channels. When 
the wireless stations receive the Beacon frames, they start assessing the quality of the different radio 
channels operating in the network. At the end of this assessment phase, wireless stations switch to the 
channel with the best quality. Due to the broadcast nature of the network, other timing parameters must 
also be properly set for the system to work correctly.  

Bridges operate at DLL level. Assuming, a two-port bridge interconnecting two different network 
segments, frames arriving to one bridge port are only relayed to the other port if the destination address 
embedded in the frame corresponds to the MAC address of a station physically reachable through that 
other port.  

With a MAC protocol as the one used in PROFIBUS (timed token passing), a bridge needs to 
have two network interfaces, both supporting the same DLL and specifically the same MAC protocols. 
This means that such a dual-port PROFIBUS bridge would contain two master stations. 

Figure 1.2 presents a bridge-based hybrid network example similar to the repeater-based hybrid 
network example presented in Figure 1.1. The network is composed by two structured wireless 
domains D1 and D3, and two wired domains D2 and D4. In the system there are two wired masters (M1 
and M2), two wireless mobile masters (M3 and M4), five wired slaves (S1, S2, S3, S4 and S5) and one 
wireless mobile slave (S6). Three bridge devices are considered (B1 (M8:M5), B2 (M6:M9), B3 
(M10:M7)).  

Network operation is based on the Multiple Logical Ring (MLR) approach (Ferreira and Tovar, 
2004). Therefore, each wired/wireless domain has its own logical ring. In this example, four different 
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logical rings exist, one for each domain: (D1 (M3 → M8), D2 (M1 → M5 → M6), D3 (M4 → M9 → 
M10) and D4 (M2 → M7)). 
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Figure 1.2 – Bridge-based network example 

As a consequence of the MLR, this approach requires two new protocols, one for supporting the 
communication between stations in different domains – the Inter Domain Protocol (IDP), and another 
to support the mobility of wireless stations between different wireless domains – the Inter-Domain 
Mobility Procedure (IDMP). 

1.3. Research Objectives 

The main objective of this dissertation is to compare the timing behaviour of the repeater and bridge-
based approaches over error free and error prone environments. Additionally, we also intended to show 
that the bridge-based approach implementation is feasible and propose additional error detection and 
correction mechanisms which would improve its performance over error prone environments. To 
achieve these objectives two simulation tools have been developed, one to the repeater-based approach 
and another to the bridge-based approach, and a set of result analysis tools. Additionally, we have also 
developed another tool to simulate the mobility of wireless stations. 

1.4. Contributions of this Dissertation 

The main research contributions of this dissertation are the following:  
– An analysis of the timing behaviour of the repeater and bridge-based approaches based on 

simulation results; 
– The proposal of error correction and detection protocol for the bridge-based approach; 
– A comparative performance analysis between repeater and bridge-based approach considering 

communications over error free medium (Sousa, Ferreira et al., 2006); 
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– A comparative performance analysis between repeater and bridge-based approach considering 
communications over error prone medium (Sousa and Ferreira, 2007). 

The above research contributions were based on a set of tools which have been developed within 
the objectives of this dissertation: 

– The Bridge-Based Hybrid Wired/Wireless PROFIBUS Network Simulator. 
– The Repeater-Based Hybrid Wired/Wireless PROFIBUS Network Simulator. 
– The Mobility Simulator. 
– Tools for simulation output analysis, which have been used to validate the simulation models 

and to extract information from the output data files generated by the simulators: 
– Timeline Visualization Tool; 
– Output data Analysis Tool 

– Message Stream Response Time Analysis 
– Central Limit Theorem  
– State Machine Statistical Analysis 
– Frame Accounting 

1.5. Structure of the Dissertation 

The structure of this dissertation is as follows.  
Chapter 2, presents an overview of the PROFIBUS protocol and the most relevant aspects of the 

repeater and bridge-based architectures. In Chapter 3, some problems of the bridge-based architecture 
related to the management of errors are identified and a new set of mechanisms to overcome these 
problems is proposed.  

Chapter 4 surveys some of the existing simulation tools for the development of network simulation 
models and describes in more detail the adopted simulation environment.  

The repeater and the bridge-based architectures are both compatible with standard PROFIBUS, 
therefore their simulation model implementation share the same standard PROFIBUS modules. 
Chapter 5 describes the entities which enable the simulation of a standard PROFIBUS network which 
are common to both architectures. 

The simulation model implementation by the Repeater-Based Hybrid Wired/Wireless PROFIBUS 
Network Simulator is detailed in Chapter 6 and Chapter 7 describes the simulation model implemented 
by the Bridge-Based Hybrid Wired/Wireless PROFIBUS Network Simulator. 

In the approaches analysed in this dissertation, wireless stations are able to move between different 
domains. Therefore, in order to achieve more realistic simulation results, it is necessary to know, at 
which points in time a wireless mobile station moves between different wireless domains. To obtain 
this information, a tool was developed which simulates the mobility of wireless stations over a factory 
floor and the radio signal quality of different wireless domains at station location – the Mobility 
Simulator. This tool is described in Chapter 8. 

A comparative performance analysis between the repeater and bridge-based architectures is 
performed in Chapter 9 which evaluates the influence of varying some network parameters in the 
timing behaviour of each approach.  

In order to evaluate the performance of both architectures considering transmission over an error 
prone medium, Chapter 10 presents simulation results in which the transmission errors are modelled 
according to the Gilbert-Elliot Channel Model. Additionally, the changes proposed, in Chapter 3 for 
the bridge-based architecture of this dissertation are evaluated. 

Finally, Chapter 11 summarises the contributions of this dissertation, provides conclusions, and 
describes some lines of work that can potentially be explored as a natural sequence of the work 
described in this dissertation. 



 



Chapter 2 

Technological Context: Communication Infrastructure 

This chapter presents an overview of the PROFIBUS protocol as also the most relevant aspects of the 
repeater and bridge-based architectures. 

2.1. Introduction 

The repeater and bridge-based architectures extend the PROFIBUS protocol to support wireless 
communications and mobility of the stations between wireless domains. Both approaches are 
compatible with PROFIBUS protocol. 

In this chapter, we describe the most relevant characteristics of PROFIBUS protocol (Section 
2.2). The chapter continues by presenting the most relevant issues of the repeater (Section 2.3) and 
bridge-based architectures (Section 2.4). The objective is to provide the reader with the necessary 
background and intuition for tackling the remaining chapters of this dissertation.  

2.2. Relevant Details on PROFIBUS 

2.2.1. General Features 

PROFIBUS was standardised in 1996 as an European standard (CENELEC, 1996). It is based on the 
International Standards Organisation (ISO) Open System Interconnection (OSI) reference model, 
however collapsed to just three layers: Physical Layer (PhL), Data Link Layer (DLL) and Application 
Layer (AL). There is also a transversal management functionality called Fieldbus Management 
(FMA1/2), which is responsible for the management of the layers 1 and 2, the PhL and the DLL, 
respectively. 

The PROFIBUS PhL can use the RS-485 standard over twisted pair or coaxial cable for the 
transfer of data, with bit rates up to 12 Mbit/s. For special applications, it is also possible to use other 
types of physical media, like optical fibre, power cable or RS-485-IS (for intrinsically safe 
applications). 

The PROFIBUS DLL uses a token passing procedure to grant bus access to masters, and a 
master-slave procedure used by masters to communicate with slaves (or other masters). Slaves do not 
have communication initiative. They are only capable of transmitting a response (or an 
acknowledgement) upon master request. The token is passed between masters in ascending Medium 
Access Control (MAC) address order, thus the masters organise network access in a logical ring 
fashion.  

The PROFIBUS standard considers two different types of Application Layer profiles: 
PROFIBUS-FMS (Fieldbus Message Specification), which is being abandoned due to design 
complexity and cost, and PROFIBUS-DP (Decentralised Peripherals), which is being increasingly 
adopted for industrial automation and process control applications. PROFIBUS-DP is particularly 
suited for the cyclic exchange of data between master (Programmable Controllers, PC, etc.) and slave 
devices (valves, I/O devices, drives, etc.). In this dissertation DP is assumed to be used in master and 
slave devices. 
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2.2.2. Data Link Layer (DLL) 

Message Cycle 

In PROFIBUS, only master stations may initiate transactions, whereas slave stations do not transmit on 
their own initiative, but only upon (master) requests. The station that sends an Action Frame (the first 
frame transmitted in each transaction) is the initiator of the transaction, while the addressed one is the 
responder. A transaction (or message cycle) consists on the request or a send/request frame from the 
initiator (always a master station) and the associated acknowledgement or response frame from the 
responder (either a master station or a slave station, but typically a slave station). 

All stations monitor all the requests but will only acknowledge or respond if, and only if, they are 
the addressees in the initiator’s request. Moreover, the acknowledgement or response frame must 
arrive before the expiration of the Slot Time (TSL), which is a master DLL parameter otherwise the 
initiator repeats the request a number of times defined by the max_retry_limit, another master’s 
DLL parameter.  

Token Passing 

The token is passed between masters in ascending address order. The only exception is that in order to 
close the logical ring, the master with the highest address must pass the token to the master with the 
lowest one. Each master knows the address of the previous station (PS – Previous Station address), 
the address of the following station (NS – Next Station address) and, obviously, its own address (TS 
– This Station address). 

If a master station receives a token addressed to itself from a station (Source address (SA) of 
the token frame, a frame format description is presented latter) registered in the List of Active 
Stations (LAS) as its predecessor (PS = SA) then this master becomes the token owner, and may 
start processing message cycles. On the other hand, if a master receives a token frame from a station 
which is not its PS, it assumes that an error has occurred, and it will not accept the token frame. 
However, if it receives a subsequent token from the same station, it accepts the token and assumes that 
the logical ring has changed. In this case, it updates the original PS value by the new one in its LAS 
table. 

If after transmitting the token frame and within the Slot Time, the master detects bus activity, it 
assumes that its successor owns the token. Therefore, it ceases monitoring the activity on the bus. In 
case the master does not recognise any bus activity within the TSL, it repeats the token frame and waits 
another TSL. If it recognises bus activity within the second TSL, it stops working as an active master, 
assuming a correct token transmission. Otherwise, it repeats the token transmission to its NS for the 
last time. If after the second retry there is no bus activity, the token transmitter tries to pass the token to 
the next successor. It continues repeating this procedure until it finds a successor from its List of 
Active Stations (LAS). 

Token Cycle 

After receiving the token, a master station is allowed to execute message cycles during Token 
Holding Time (TTH) that is computed as follows:  

RRTRTH TTT −=  (2.1) 

TTH is equal to the difference, if positive, between the Target Rotation Time (TTR) and the Real 
Rotation Time (TRR) of the token. TTR is a parameter common to all masters in the network, which 
must be set to the expected time for the token cycle. TRR is the time measured between two consecutive 
token receptions – the token cycle. 

PROFIBUS defines two main categories of messages: high-priority and low-priority, each using 
a different transmission queue that is handled differently by the DLL. At the arrival of the token, the 
TTH timer is loaded with the value corresponding to the difference between TTR and TRR. If the token is 
delayed, then TTH is set to zero and the master is only allowed to perform, at most, one high-priority 
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message transaction. Otherwise, the master is allowed to perform high-priority message transactions 
until the value of the TTH timer becomes negative. Low-priority messages are only transmitted when 
the high-priority queue is empty and TTH is still positive. Note that once a message cycle is started it is 
always completed, including any retries, even if in meanwhile TTH expires. 

(Re)Initializing the Logical Ring 

The logical ring of PROFIBUS is supported by two tables: the Gap List (GAPL) and the LAS. It may 
also optionally maintain a Live List (LL) table. 

The GAPL consists on the address range from address TS until NS. This includes all possible 
addresses, except the address range between Highest Station Address (HSA), which cannot be a 
master’s address, and 127, which does not belong to the Gap.  

Initialization is primarily a special case of updating the LAS and the GAPL. If after power on of 
a master station in the LISTEN_TOKEN state a time-out is encountered, i.e., no bus activity within 
Time-Out Time (TTO), it shall claim the token in the CLAIM_TOKEN state and it starts initializing 
the logical ring.  

The master station with the lowest station address starts initialization by transmitting two token 
frames addressed to itself (Destination Address (DA) = SA = TS) it informs any other master 
stations (entering a NS into the LAS) that it is now the only station in the logical token ring. Then it 
transmits an FDL_Request_Status frame to each station in an incrementing address sequence, in 
order to register other stations. The first master station to answer with Ready_to_Enter_Logical_ 
Ring is registered as NS in the LAS and thus closes the Gap range of the token holder. Then the token 
holder passes the token to its NS. 

When a master station is in the LISTEN_TOKEN state, it shall monitor the bus activity in order 
to identify those master stations which are already in the logical token ring. For that purpose token 
frames are analyzed and the station addresses contained in them are used to generate the LAS.  

After listening to two complete identical token rotations, the master must remain in the LISTEN_ 
TOKEN state until it is addressed by an FDL_Request_Status transmitted by its predecessor (PS). If 
it succeed, it must respond with Ready_to_Enter_Logical_Ring and waits for the token frame 
addressed to it in the ACTIVE_IDLE state.  

When a master station is in the LISTEN_TOKEN state all frames are neither acknowledged nor 
answered. 

Ring Maintenance 

The ring maintenance mechanism is distributed by all master stations. As mentioned, each PROFIBUS 
master maintains two tables: the GAPL and the LAS. 

Each master station when holds the token frame checks its Gap addresses every time its Gap 
Update Timer (TGUD) expires. If a station acknowledges positively to the GAP request (an 
FDL_Request_Status frame), with the state Not_Ready_to_Enter_Logical_Ring or Slave_ 
Station, it is accordingly marked in the GAPL and the next address is checked. If a station answers 
with the state Ready_to_Enter_Logical_Ring, the token holder changes its GAPL and passes the 
token to the new NS. This (master) station, which has newly been admitted to the logical ring, has 
already built up its LAS when it was in the LISTEN_TOKEN state, so it is able to determine its GAPL 
and its NS. This mechanism allows masters to track changes in the logical ring due to the addition 
(joining) and removal (leaving) of stations. This is accomplished by examining (at most) one Gap 
address per token visit, using an FDL_Request_Status frame after the execution of all high-priority 
transactions, and if the value of TTH, is still positive. 

Error Handling 

Additionally, in order to enhance the communication system’s reliability, PROFIBUS handles some 
operational or error states, concerning logical ring management. In (Carvalho, Carvalho et al., 2005) 
and (Willig and Wolisz, 2001) is presented which fault-tolerant mechanisms are activated and their 
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effects on the network behaviour. The most important error situations within the context of this 
document are the token lost, “heardback removal” and error skipping: 

– Token lost. This abnormal situation is clearly recovered by means of a continuous monitoring 
activity performed by each master in the logical ring. If a period of inactivity longer than the 
TTO is detected, then the token is claimed by the master with the lowest address in the logical 
ring, and the logical ring is re-initialised.  

– Heardback removal. Whenever a master is sending a token frame it must hear from the 
medium all transmitted bits in order to detect a defective transceiver. If the token frame sender 
detects differences between the transmitted and the received token frame in two consecutive 
transmissions then it must remove itself from the logical ring. 

– Error skipping. A master station must remove itself from the logical ring when a token frame is 
transmitted, in which its address is “skipped” (i.e., the address of TS lies within the address 
range spanned by the sender and the receiver of the token frame). 

DLL Frame Formats 

PROFIBUS DLL defines three types of request/response frames, which are the Fixed Length with 
no Data Field, the Fixed Length with Data Field and the Variable Data Field Length, as 
illustrated in Figure 2.1 a), c) and d), respectively. 

Each of these three types includes the following fields: Destination Address (DA), Source 
Address (SA) and Frame Control (FC). The FC field is an octet where the frame type is specified 
and the function code (for more details the reader is referred to Section 4.7.3 of (CENELEC, 1996)). 
These frames also include the Start Delimiter (SDx), Frame Check Sequence (FCS) and the End 
Delimiter (ED). 

Variable data field length frames additionally contain two Data Length fields (LE and LEr) and 
they can optionally include the Destination Address Extension (DAE) and Source Address 
Extension (SAE), in the Data field. These extension fields can be used to identify the AL service 
which originated the frame, as well as the destination service. 

PROFIBUS also defines the Short aCknowledgement frame (SC) and the Token frame, 
illustrated in Figure 2.1 b) and e), respectively. The first consists of a single byte frame, and it is used 
as positive acknowledgement to a request.  

SD1 DA SA FC FCS ED 

SD3 DA SA FC FCS ED Data (8 Bytes) 

SD2 DA SA FC FCS ED Data (max 246 Bytes) LEr LE SD2

SD4 DA SA 

SC 

a) Fixed length frame w/ no data field b) Short acknowledgement frame 

d) Variable data field length frame 

e) Token frame 

c) Fixed length frame w/ data field 

 

 
Figure 2.1 – PROFIBUS DLL frame formats 

Data Link Layer Services 

PROFIBUS defines 4 types of data transfer services: Send Data with Acknowledge (SDA); Send 
Data with No acknowledge (SDN); Send and Request Data (SRD) and Cyclic Send and 
Request Data (CSRD).  

The SDA service allows a user to transmit data to another station and receive a Short 
Acknowledge confirming its reception by the responder station. The SDN service permits to transfer 
data to a single station, to a group of stations (multicast) or to all stations (broadcast). The SRD service 
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allows the transmission of a message to another station and the retrieval of a response. This service can 
be used, for example, to send the output settings for an I/O device and retrieve the state of the device’s 
input ports. The CSRD builds upon the SRD service adding the capability of transferring data 
periodically, according to the user requirements. The CSRD service is usually not implemented in 
current commercial hardware platforms. 

Timing Parameters 

The PROFIBUS standard defines several timing parameters, some of which are relevant in the context 
of this document, such as the Idle Time (TID), the Slot Time (TSL) and Time-Out Time (TTO) 
parameters, which are briefly explained next. 

There are two Idle Time (TID) parameters - TID1 and TID2. TID1 is a period of inactivity, inserted 
by a master station, after an acknowledgment, response or token frame. This parameter must be set as 
follows: 

{ }SDISDRSMSYNID TTTTT ,min,max1 +=  (2.2) 

where, TSYN (Synchronisation Time) is the minimum time interval for an idle bus state before a 
station may accept the beginning of an action or token frame. TSM (Safety Margin Time) is the time 
that elapses after the end of the TSYN which is required by the receiver circuitry to be ready to start 
receiving a frame. minTSDR is the minimum Station Delay of a Responder Time. TSDI is the 
Station Delay of the Initiator Time, after which the initiator is ready to start receiving a 
frame from the responder. Figure 2.2 depicts an example where the Transmission Delay Time (TTD) 
due to the network propagation delay is also illustrated. 

TID2 is the idle time inserted by a master station after transmitting an unacknowledged request 
frame. TID2 must be set as follows: 

{ }SDRSMSYNID TTTT max,max2 +=  (2.3) 

where, maxTSDR is the maximum Station Delay of a Responder Time. 
The Slot Time (TSL) is used by a master station to detect if a transaction with a slave (or with its 

successor, in the token passing) has failed. A timer is loaded with TSL at the end of the transmission of 
a request frame. Upon its expiration, the master station may execute another retry for the same request, 
if the number of retries executed is smaller than the max_retry_limit parameter, or it may inform the 
upper layers of a transmission failure. A timer is also loaded with TSL after transmitting the token 
frame. If it expires before a master has detected any activity in the bus then it signals the MAC layer in 
order to take the appropriate actions according to the token passing procedure. 

 

TID1 

Resp 

Ack/Resp/token frame 

t 

  Req/Token Frame 

Initiator 

Responder 

TTD 

 Idle Time 

TTD 

 

Resp Req 

Req 

 
Figure 2.2 – Idle Time parameter – TID1 

The Slot Time parameter (TSL) must be set to the maximum between two values – TSL1 and TSL2. 
TSL1 can be calculated as follows: 

SMSDRTDSL TbitTTT +++×= 11max21  (2.4) 

where bit is the time duration of a bit. TSL2 can be calculated as follows: 

SMIDTDSL TbitTTT +++×= 11max2 12  (2.5) 
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Note that all masters in the network must hold the same TSL value, due to the token passing 
mechanism. 

The Time-Out Time (TTO) controls the token passage, in PROFIBUS, a token lost is detected 
when a master does not detect any network activity for a time period defined by its TTO, which is set to 
as follows: 

SLSLTO TnTT **2*6 +=  
(2.6) 

where n is the master address. In Eq. 2.6, the first term makes sure that there is sufficient difference to 
the maximum possible TID between two frames (recall Eq. 2.4 and Eq. 2.5). The second term ensures 
that the master stations start their token claiming procedure in different moments after an error has 
occurred. 

2.2.3.  Application Layer (AL): PROFIBUS-DP 

The PROFIBUS-DP (DP for short) protocol (IEC, 2000) is specially suited for the exchange of data 
between controllers (typically masters) and field devices like I/O, drives or valves (typically slaves). 
DP provides the functionalities to configure field devices and to perform cyclic exchange of data 
between the controller and the field devices. 

The main functionalities of PROFIBUS-DP are related to the reading and writing of variables 
from/to slave devices. The retrieval of data is made cyclically by the DP protocol, according to the 
timing parameters configured by the user. This is an important feature of this protocol, since it enables 
the communication between stations in different domains in the Bridge-based solution.  

2.3.  Relevant Details on the Repeater-Based Hybrid Wired/Wireless 
PROFIBUS Architecture  

A hybrid wired/wireless fieldbus network is composed of wired and wireless stations. A wired domain 
is a set of stations physically connected through a wired bus. A wireless domain is composed by a set 
of wireless stations that intercommunicate either directly or indirectly via wireless (e.g., radio) 
channels. Wireless communications may be achieved by two ways: in a direct way or via Base Station 
(BS). If wireless stations are able to intercommunicate directly, the wireless domain is called an ad-hoc 
domain. Otherwise, if messages are relayed by a BS the wireless domain is usually called a structured 
domain. In this dissertation we always assume that we are using the structured approach since this is 
the only one that permits the mobility of wireless stations. 

A BS operates as a wireless repeater using two radio channels, one to receive frames from the 
wireless stations (the uplink channel), and another to transmit frames to wireless stations (the downlink 
channel). The interconnection between wireless and wired domains is done through a special device 
designed as Intermediate Systems (IS). This device has to be provided with two communication 
interfaces: one to connect to the wired domain (wired communication interface) and another to connect 
to the wireless domain (wireless communication interface). 

In the Repeater-Based Hybrid Wired/Wireless PROFIBUS approach (Alves, 2003), the ISs 
operate essentially as repeaters, that is, they receive frames from one communication interface and 
retransmit those frames using the other communication interface.  

Figure 2.3 depicts a wired/wireless fieldbus network scenario. The ISs (operating as repeaters) 
may include the BS functionalities in their wireless communication interfaces. This network scenario 
comprises four domains, two wired domains (D2 and D4) and two structured wireless domains (D1 and 
D3). Three repeaters (R1, R2 and R3) interconnect the domains. The wireless communications are 
relayed by two BSs (BS1 and BS2), included in the repeaters. The network also comprises three wired 
masters (M1, M2 and MM), two wireless mobile masters (M3 and M4), five wired slaves (S1, S2, S3, 
S4 and S5) and one wireless mobile slave (S6).  

In order to guarantee the operation and interoperability of the hybrid wired/wireless fieldbus 
network there can be no more than one possible path between any two domains (tree-like topology), 
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i.e., no closed loops can exist. The mobility procedure only makes sense when there are more than one 
wireless domain and when these domains are structured. The mobility procedure will be detailed later. 

 S1  M1  S2  S3

  R2 

 M2  S4  S5

BS2

 M3 

 S6

 M4

D2 

D1

D3 

D4 
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  R1 

Uplink Downlink 
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Wired communication 
interface

Base Station 

Wireles communication 
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Radio coverage area 
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Figure 2.3 – Repeater-based hybrid wired/wireless PROFIBUS network example 

2.3.1. Repeater Operation 

As mentioned, in this approach the interconnection between domains is done by ISs operating as 
repeaters. Traditionally operating just as a signal regenerator, a repeater can also interconnect two 
networks with different PhL protocols (e.g., different bit rates). 

A repeater is classified according to its relaying behaviour: store-and-forward, when a PhL frame 
must be completely received from one port before being transmitted to the other port; cut-through, 
when a repeater starts relaying a PhL frame which has not been completely received yet.  

A repeater does not perform any address filtering. This result in a broadcast network, i.e., every 
station listens to every frame transmitted by any other station in the network. The use of repeaters 
implies a single MAC address space and that only one logical ring exists in the network. For that the 
network operation is based on the Single Logical Ring (SLR).  

2.3.2. Wired/Wireless Domains Interconnection 

A repeater may need to implement more than a bit-by-bit repeating functionality. This is the case when 
it interconnects communication media with different PhL frame formats. In order to encompass the 
functionalities referred, each repeater has an associated internal relaying delay time (trd). It is 
assumed that the repeaters always introduce a minimum inactivity period – minimum idle time 
(TIDm) – between any consecutive PhL frames.  

When a repeater receives a PhL frame from one port it must start the transmission in an instant, 
the start relaying instant (ti→j

sr), that guarantees that the retransmission is done without time gaps. 
ti→j

sr is defined as the earliest time instant for start relaying a specific PhL frame from domain Di to 
domain Dj, counted since the beginning of the reception of the PhL frame in domain Di. The ti→j

sr 
instant for a specific repeater depends on its operation mode – either store-and-forward or cut-through. 
For a cut-through repeater, the following is assumed: 
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– When relaying a frame from Di to Dj, it cannot start being relayed while the first char of the 
DLL frame of Di is not completely received by the repeater; 

– The PhL frame cannot start being relayed while the length of the DLL frame is not known (by 
the repeater); 

– When relaying a frame from Di to Dj, the instant for start relaying the PhL frame must take into 
account that the repeater cannot run out of bits to relay from Di to Dj, i.e., the transmission of a 
PhL frame in Dj must be continuous, without time gaps. 

Taking these assumptions into account, which are illustrated in Figure 2.4, the start relaying 
instant for a cut-through operation mode repeater is defined as: 

{ }ng
ji

lk
i

dr
i

sr
ji tttt →→ = ,,max  (2.7) 

where: 
– ti

dr, the data ready instant, is the instant at which a predefined amount of DLL data has been 
received from Di (ready to be relayed), counted since the beginning of the PhL frame in Di. For 
the cut-through behaviour, it is considered that it is the instant at which the first DLL character 
is completely received; 

– ti
lk, the length known instant, is the instant at which the length of the DLL frame in Di is 

known, counted since the beginning of the PhL frame in Di; 
– ti→j

ng, the no gaps instant, is the earliest instant to start relaying the PhL frame from Di to Dj in 
a way that guarantees that the transmission in Dj is continuous.  

Consider the example depicted in Figure 2.4. The first time instant is the data ready (ti
dr), 

followed by the time instant when the length of the frame is known (ti
lk). The last instant (thus the 

maximum of the three) is the time instant that guarantees a continuous retransmission of the PhL frame 
(ti→j

ng). This situation usually happens when the duration of the PhL frame in Dj is smaller than in Di. 

 

R 

Dj 

Di 

tidr tilk ti? j
ng

ti? j
sr tird

t=0

 

 

 
Figure 2.4 – Timing behaviour of a repeater 

2.3.3. Traffic Adaptation  

Network interconnection often brings up the problem of network congestion. Generally, if for any time 
interval, the total sum of demands on a resource is more than its available capacity, the resource is said 
to be congested for that interval. In the case of computer networks, resources include buffer space and 
processing capacity in the ISs and for example, if during a short interval, the buffer space of an IS is 
smaller than the one required for the arriving traffic, frame loss may occur (dropped frames) and the IS 
is said to be congested. 

It is also true that the congestion problems depend dramatically on the type of IS used in the 
interconnection. Particularly if the ISs act as repeater, traffic congestion may occur as a result of the 
heterogeneous characteristics of the interconnected physical media. The heterogeneity in bit rates and 
in PhL frame formats in a broadcast network imposes the consideration of some kind of traffic 
adaptation scheme.  

The timing diagram depicted in Figure 2.5 illustrates a sequence of transactions where one 
repeater interconnects the two domains and it is assumed that the PhL frame duration in Dj is twice the 
PhL frame duration in Di and that ti→j

sr is constant (for the sake of simplicity). Note that since the idle 
time is defined as the duration of a predefined number of (idle) bits separating consecutive frames in 
the network, its duration is assumed to be different for the two domains. 
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Figure 2.5 illustrates an increasing queuing delay (q1 < q2 < q3), caused by the different physical 
media, that will impact on the system turnaround time (tst) for certain transactions. The tst for a 
message transaction is the time elapsed since an initiator ends transmitting a request frame until it 
starts receiving the correspondent response frame. For example, in the case of the request that 
corresponds to transaction 3, which is addressed to a responder in domain Dj, the system turnaround 
time for this transaction (tst3) will be affected by the cumulative queuing delay (q3) in the repeater.  
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Figure 2.5 – Increasing queuing delay by a repeater 

Traffic congestion in a repeater can be avoided through the insertion of additional inactivity 
(idle) intervals before issuing a message transactions (Alves, Tovar et al., 2002). Obviously, the 
insertion of this additional idle time reduces the number of transactions per time unit when the 
responder is not in the same domain as the initiator. The PROFIBUS MAC mechanism allows only 
one station (master or slave) to transmit at a given moment in time.  

Every master in PROFIBUS has two different Idle Time parameters – TID1 and TID2. As 
mentioned in Section 2.2.2, a master always waits TID1 after receiving a response/acknowledgement or 
a token frame, before transmitting another frame. It must also wait TID2 after transmitting an 
unacknowledged request frame, and before transmitting another frame (request or token). For a 
traditional wired network all masters may set their TID1 and TID2 parameters to the minimum default 
value, which is usually adequate to cope with bit synchronisation requirements.  

In this approach, the traffic adaptation is based on the computation of the additional idle time that 
must be inserted by each master, in order to properly encompass the interconnection of heterogeneous 
physical media. The timing diagram depicted in Figure 2.6 illustrates a sequence of transactions where 
queuing delay is zero for all transactions, on the first repeater. This is due to the additional extra idle 
time. 
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Figure 2.6 – Using additional idle time for media adaptation 

Another consequence of using ISs that act as repeaters is related to the master PROFIBUS DLL 
parameter, the Slot Time (TSL). Within the context of this approach, TSL assumes a particular 
importance. On one hand, TSL must be set large enough to cope with the extra latencies introduced by 
the repeaters. On the other hand, TSL must be set as small as possible such as the system responsiveness 
to failures does not decrease dramatically, that is, a master must detect a message/token loss or a 
station failure within a reasonably small time. The timing diagram depicted in Figure 2.7 illustrates a 
transaction sequence that is relayed by two repeaters. One interconnects domains Di and Dj and another 
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interconnects domains Dj and Dk. It is assumed that the PhL frame duration in Di and Dk is half the PhL 
frame duration in Dj and that tx→y

sr is constant (for the sake of simplicity). 
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Figure 2.7 – Slot Time (TSL) 

The setting of these parameters must be performed according to the procedures described in 
(Alves, 2003). 

2.3.4. The Mobility Procedure 

The mobility procedure (Alves, Bangemann et al., 1999) provides a seamless handoff for all kinds of 
wireless mobile stations (master/slave).  

Due to the broadcast nature of the network, the mobility procedure just encompasses a 
mechanism for radio channel assessment and switching. The basics of this procedure are outlined next. 

The Mobility Master (MM) (i.e., the master that has the responsibility of triggering the 
mobility procedure) sends periodically a special (unacknowledged) frame – the Beacon Trigger 
(BT). This BT frame is broadcast to the entire network and causes each BS to start transmitting a pre-
defined number of Beacon frames in its downlink radio channel. Wireless mobile stations receive these 
Beacon frames, assess the signal quality of all (downlink) radio channels and switch to the radio 
channel set with best quality. Figure 2.8 shows the simplified operation of the mobility mechanism 
considering the network scenario depicted in Figure 2.3, in which master MM is operating as 
Mobility Master.  
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Figure 2.8 – Mobility procedure 

In (Alves, 2003) the author shows how to calculate the number of beacons to be transmitted in 
each domain which guarantees that every wireless station is capable of evaluating the signal quality of 
each radio channel set. The setting of this parameter is different between each repeater and it must be 
set prior to runtime as well as the mobility period (i.e., the time interval between the queuing of each 
BT by the MM). 
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2.4. Relevant Details on the Bridge-Based Hybrid Wired/Wireless PROFIBUS 
Architecture 

A Bridge-Based Hybrid Wired/Wireless PROFIBUS Network is composed by wired and wireless 
stations. The wireless stations have a wireless interface as defined in RFieldbus (Alves, Tovar et al., 
2002; Rauchhaupt, 2002). The communication between stations is based on the PROFIBUS protocol 
with specific extensions to support wireless communications and mobility. In this approach, the IS 
operate as bridges. A bridge is a network device capable of relaying PROFIBUS DLL frames between 
the domains to which the bridge is connected. Although, a bridge can interconnect more than two 
different domains, for the sake of simplicity it is assumed that a bridge only interconnects two different 
domains.  

The bridge relaying decision is based on a Routing Table (RT) which determines whether an 
incoming frame is to be relayed to the other port or not. A bridge is constituted by two Bridge 
Masters (BMs). A BM is a modified PROFIBUS master capable of receiving all frames arriving to its 
physical interface, and forwarding them to the other BM of the bridge according to the routing 
information contained on RT. These BMs operate almost as standard PROFIBUS masters and are 
assigned a PROFIBUS DLL address. Consequently, they take part of the domain’s logical ring to 
which they are connected. For the sake of simplicity, it is assumed that BMs do not support any AL 
functionalities. Figure 2.9 presents a bridge (B3) with two BMs (M7 and M10). Wireless domains in 
the bridge-based architecture are structured. Therefore, in each wireless domain there is the need of a 
BS, which can be included in the bridge wireless front-end. Bridge B2 depicted in Figure 2.9 is such 
kind of bridge. 
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Figure 2.9 – Basic components of a bridge 

Figure 2.10 illustrates an example network that comprises two structured wireless domains D1 
and D3, and two wired domains D2 and D4. In the system there are two wired masters (M1 and M2), 
two wireless mobile masters (M3 and M4), five wired slaves (S1, S2, S3, S4 and S5) and one wireless 
mobile slave (S6). Three bridge devices are considered (B1 (M8:M5), B2 (M6:M9), B3 (M10:M7)).  

Network operation is based on the Multiple Logical Ring (MLR) approach described in (Ferreira, 
Alves et al., 2002). Therefore, each wired/wireless domain has its own logical ring. In this example, 
four different logical rings exist: (D1 (M3 → M8), D2 (M1 → M5 → M6), D3 (M4 → M9 → M10) and 
D4 (M2 → M7)). 

This approach requires two new protocols, one for supporting the communication between 
stations in different domains – the Inter Domain Protocol (IDP), and another to support the mobility of 
wireless stations between different wireless domains – the Inter-Domain Mobility Procedure (IDMP). 
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Figure 2.10 – Bridge-based hybrid wired/wireless PROFIBUS network example (IDP) 

2.4.1. Supporting Inter-Domain Transactions 

Definitions and Concepts 

In PROFIBUS, a message transaction involves a request by the initiator and an “immediate” response 
by the responder station. In a bridge-based network, when a transaction involves stations in two 
different domains (which is a consequence of the MLR), that sequence of events is not possible, since 
the request frame must be relayed by the bridge(s) until reaching the responder. Similarly, the response 
must be relayed by the bridge(s) until reaching the initiator. Thus, three types of transactions must be 
considered: Intra-Domain, Inter-Domain and Intra/Inter-Domain transactions. 

An IntrA-Domain Transaction (IADT) is a transaction that involves stations in the same domain. 
In this case, the initiator and responder stations operate according to the rules defined by the standard 
PROFIBUS protocol.  

An Inter-Domain Transaction (IDT) is a transaction which involves stations in different domains. 
In such type of transaction, the request and response frames are relayed by the bridge(s) and their 
respective BMs using a specific protocol: the Inter-Domain Protocol (IDP). The frames involved in 
IDTs (both the standard PROFIBUS frames and the frames exchanged between the BMs) are referred 
to as Inter-Domain Frames (IDFs). IDFs conveying the request are called Inter-Domain Request 
(IDreq) frames and, equivalently, the frames which convey the response are called Inter-Domain 
Response (IDres) frames.  

An Intra/Inter-Domain Transaction (IIDT) is a transaction that can be either an IADT or an IDT, 
depending if the involved stations are either in the same domain or in different domains. The stations 
involved in this kind of transactions are the wireless mobile stations.  

Bridges perform routing based on the MAC addresses contained in the frames and on the RT 
entries of the incoming side. 

The Inter-Domain Protocol 

The IDP explores some PROFIBUS protocol features at the DLL and AL level, which enable a master 
to repeat the same request until receiving a response from the responder station. It defines the 
behaviour of the bridges and the codification of the frames exchanged between them, related to a 
specific IDT.  
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When a master starts a transaction with a station belonging to another domain (an IDT), it starts 
by transmitting a request frame addressed to the responder station (an IDreq frame). This frame is then 
relayed by only one of the BMs (denoted as BMini – ini stands for initiator) belonging to the initiator 
domain. BMini receives the IDreq frame, codes it according to the IDP (the frame format of IDP is 
presented in Table 2.1), and stores internally information about the transaction, in a structure called 
List of Open Transactions (LOT). Meanwhile, the PROFIBUS DLL of the initiator retries 
transmitting the same request since the BMini does not respond before the expiration of the TSL. The 
DLL retries are executed by the initiator a number of times specified by the max_retry_limit, a DLL 
parameter.  

The IDreq frame is relayed by the bridges until reaching the last BM, which belongs to the 
responder domain (denoted as BMres – res stands for responder). BMres decodes the original request 
frame and transmits it to the responder, which can be a standard PROFIBUS station (for example a 
wired PROFIBUS slave). When decoding the frame, the BMres reconstructs the original frame as 
transmitted by the initiator (it even puts the initiator address (SA) on the request frame). Thus, from the 
responder’s perspective the initiator seems to belong to the same domain. When the BMres receives the 
response to that request, it codes that frame using the IDP and forwards it through the reverse path 
until reaching the BMini, where it will be decoded and properly stored.  

Since for an IDT the response to the original request takes longer than for an IADT, the initiator 
AL must periodically repeat the same request until receiving the related response. After BMini having 
received (and stored) the correspondent response frame, it is ready to respond to a new (repeated) 
request from the initiator. The response frame is exactly equal to the frame transmitted by the IDT 
responder.  

Considering the network scenario illustrated in Figure 2.10, Figure 2.11 represents a simplified 
timeline regarding a transaction between master M3 and slave S6. Figure 2.11 assumes the typical 
behaviour of PROFIBUS-DP, where the slaves read their inputs periodically, placing their image on 
the DLL by using the generic Service_upd.req primitive. The image of the input values is placed in 
a buffer, which is used by the protocol to build a response to a specific request. An indication can be 
transmitted to the higher layers every time a slave receives a request. This type of procedure is usually 
referred to as buffered operation.   
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Figure 2.11 – Example timeline for an Inter-Domain Transaction (IDT) between master M3 and 

slave S6 

The initiator also uses a buffered communication mode, where the user and the initiator’s 
protocol stack interface with the PROFIBUS-DP through a memory area, which allows reading and 
writing variables that, represent the state of local or remote variables. It is the responsibility of 
PROFIBUS-DP to periodically update the variables using primitives of the type Service.req. 
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Inter-Domain Frame Formats 

IDFs are used by the IDP for proper transmission of frames between bridges. These frames must 
contain information that enables decoding the embedded original request/response and matching the 
information stored in the BMini LOT and the respective response. 

The PROFIBUS protocol allows a request using a variable data field length frame with DAE, to 
be answered by a fixed length response frame without data field (thus not supporting DAE). Therefore, 
BMini would not be capable of matching two different requests from the same initiator, addressed to the 
same responder, but with different DAE. The PROFIBUS DLL protocol also defines that requests 
using variable data field length frames can be replied with a SC frame. Obviously, if no special IDF 
format was used, the bridges would be unable to route the SC frame back to the initiator station, since 
that type of frame does not have a DA field. Therefore, the first problem can be solved by using a 
Transaction Identifier (TI), which enables matching the request and the respective response, 
while to solve the second problem it is required that every IDF must have a destination address field. 
The TI is a sequence number, assigned by the BMini, which must also be included in the response frame 
(similar to a TCP/IP sequence number). This field is used by the BMini to distinguish between response 
frames related to different pending transactions. The IDF is a new frame that embeds the original 
frame. Therefore, to reconstruct the original frame, one of the fields that must be stored in the IDF 
frame is the original frame function code (which is stored as Embedded Function Code (EFC)) and 
an identifier which enables BMini and BMres to identify the type of the embedded frame – the Embedded 
Frame Type (EFT).  

Considering the three types of data frames defined in PROFIBUS, the IDP converts Frames of 
Fixed Length with no Data Field to Frames of Fixed Length with Data Field, and both 
Frames of Fixed Length with Data Field and Frames with Variable Length Data Field 
to Frames with Variable Length Data Field.  

Table 2.1 illustrates the proposed mapping between standard PROFIBUS frames and the IDFs. In 
the table, a rectangle with a dash means that the field is not used in the IDF because it is not present in 
the original frame. A rectangle with diagonal stripes means that the field is not available to the IDF (in 
this specific case, fixed length frames with no data are mapped into frames of fixed length with data 
field). The equal symbol means that the field must the equal to the original embedded frame field.  

Table 2.1 – Mapping between standard PROFIBUS frames and IDFs 

Frame Header (PROFIBUS 
defined) 

Frame Data 
(IDP defined) Original Type of 

Frame 
LE SD DA SA FC DAE SAE TI EFT EFC Data 

Unit 

Req  SD3 = = 10 - - TI 1 EFC - 

Ack  SD3 = = 10 - - TI 2 EFC - 
Fixed length 

no data 
Short 
ack  SD3 Req. 

SA 
Req. 
DA 10 - - TI 3 EFC - 

Req Data 
len SD2 = = 10 = = TI 4 EFC = Fixed length 

w/ data Res Data 
len SD2 = = 10 = = TI 5 EFC = 

Req Data 
len SD2 = = 10 = = TI 6 EFC = 

Var. length 
Res Data 

len SD2 = = 10 = = TI 7 EFC = 

 
In the conversion, the IDFs preserve the same DA and SA, except in the case of the SC frame, 

which does not have DA or SA. In this case, the IDF includes the DA and SA obtained from the 
request frame. To distinguish IDFs from other frame types, the Function code of the FC field must 
be equal to 10 (note that this feature also imposes a non standard behaviour by the BMs DLL). And its 
remaining sub-fields should be filled with the appropriate values (for a PROFIBUS frame). Note that 
all frames defined in Table 2.1 are transmitted as individual requests. Finally, SDN frames do not need 
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any conversion, so they can be relayed by the bridges as received (without being coded). Note that 
response frames are transformed into request frames by the IDP. 

2.4.2. Supporting Inter-Domain Mobility 

The Inter-Domain Mobility Procedure (IDMP) is a hierarchically managed procedure, where one 
master in the overall network – the Global Mobility Manager (GMM) – is responsible for 
periodically starting the IDMP and controlling some of its phases. Additionally, in each domain, one 
master controls the mobility of stations belonging to that domain – the Domain Mobility Manager 
(DMM). Finally, the BMs must implement specific mobility services. The GMM must know the 
addresses of all BMs and DMMs in the system. Each DMM must know the addresses of the BMs that 
belong to its domain as well as of the wireless mobile stations.  

The wireless mobile stations implement specific services which enable them to evaluate the 
quality of the radio channels. These services are assumed to be similar to the ones used in the repeater-
based approach. 

For example, and concerning the network scenario illustrated in Figure 2.12, M6 assumes the 
role of GMM and DMM for wired domain D2. BMs M5, M9 and M7 assume the role of DMMs for 
wireless domain D1, wireless domain D3 and wired domain D4, respectively. 

The role of the management agents and the different phases of the proposed handoff mechanism 
will be described next. 

 M1  S2  S3 

 M2  S4  S5

 M3 S6

 M4

D2 

D1

D3 

D4

  

B1 

M5 

M8 

  

B2 

M6 

M9 

  

B3 

M10 

M7 

 S1 
GMM 
DMM 

DMM DMM 

DMM 

 

Figure 2.12 – Bridge-based hybrid wired/wireless PROFIBUS network example (IDMP) 

Phases of the IDMP 

The IDMP evolves through 4 phases, as shown in Figure 2.13. The objective of these phases is to 
insure that the procedure will not generate errors, that the inaccessibility periods are minimal 
(especially in the case of IADTs) and that the wireless mobile stations are able to evaluate all wireless 
radio channels and switch to the best one.  

The proposed mechanism is synchronous in some of its phases: Phase 1 and Phase 2 as well as 
the beginning of Phase 3. But in the case of Phase 3, the ending of it in the domains is not 
synchronised, and Phase 4 runs asynchronously for each domain. 
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Figure 2.13 – Phases of the Inter-Domain Mobility Procedure 

 Phase 1 
Phase 1 starts with a Start_Mobility_Procedure (SMP) message sent by the GMM. This message is 
sent periodically according to the mobility requirements of the wireless mobile stations involved in the 
application. When the BMs receive a SMP message, they stop processing new IDTs from the masters 
belonging to their domains. Nonetheless, they keep handling pending IDTs (still present in their LOTs) 
and, importantly, they keep relaying IDF originated in other domains. After completing all pending 
IDTs (those from their LOT), the BMs transmit a Ready_to_Start_Mobility_Procedure (RSMP) 
message to the GMM. When the GMM has received RSMP messages from all BMs in network, the 
Phase 1 ends.  

Figure 2.14 shows a simplified timeline related to IDMP Phase 1 assuming the network scenario 
presented in Figure 2.12. For the sake of simplicity, it is assumed that when a BM receives a SMP 
message there is no open transaction in its LOT. 
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Figure 2.14 – Simplified timeline of IDMP Phase 1 

 Phase 2 
Phase 2 is triggered by the GMM broadcasting the Prepare_for_Beacon_Transmission (PBT) 
message. After receiving the PBT message, a DMM retains the token (after token reception, 
obviously), starting the inquiry sub-phase. When receiving a PBT message all BMs in the network 
clear their RT entries related to wireless mobile stations.  

On the inquiry sub-phase, the DMMs start by transmitting a Ready_for_Beacon_Transmission 
(RBT) message to the GMM signalling that they are on the inquiry sub-phase, ready for Beacon 
transmission. Then, every DMM sequentially sends Inquiry frames addressed to the BMs belonging 
to its domain. The BMs use the response message to transmit any mobility-related message that they 
require to transmit. 

Wireless terminating domains (i.e., wireless domains connecting to only one bridge) emit Void 
frames in order to maintain network activity. Note that in this kind of domains, a DMM does not have 
to retrieve any mobility-related message from the other bridges. This procedure allows a faster 
communication between the GMM and the DMMs, while at the same time the inaccessibility period of 
the wired stations is kept small. Phase 2 ends when all Ready_for_Beacon_Transmission (RBT) 
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messages are received by the GMM. Figure 2.15 shows a simplified timeline related to IDMP Phase 2 
assuming the network scenario presented in Figure 2.12.  
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Figure 2.15 – Simplified timeline of IDMP Phase 2 

 Phase 3 
After collecting all Ready_for_Beacon_Transmission messages from all the DMMs, the GMM 
starts the Beacon transmission sub-phase by broadcasting the Start_Beacon_Transmission (SBT) 
message. Upon reception of this message, the DMMs start emitting Beacon frames. The wireless 
mobile stations use the Beacon frames to evaluate the quality of the different radio channels and to 
decide if they want to handoff (or not). So, before the end of the Beacon transmission, every wireless 
mobile station that wants to handoff must switch to the new radio channel.  

Note that all wired domains that evolved to the inquiry sub-phase may resume IADTs, after the 
correspondent DMM has received the SBT message, since their intervention is not required on the 
remaining phases of the IDMP. Note also that, IDTs can be relayed if the neighbouring domains have 
already their IDTs enabled. IDTs involving wireless mobile stations are only resumed when the BMs 
receive Route_Update (RU) messages specifying the location of the wireless mobile stations.  

Figure 2.16 shows a simplified timeline related to IDMP Phase 3 assuming the network scenario 
presented in Figure 2.12. Phase 3 is started by GMM but is finished by DMM of each wireless domain. 
The mobility procedure is finished at reception of the SBT message for wired domains. 

 Phase 4 
After the end of the Beacon transmission, every wireless DMM (still holding the token) inquires all 
wireless mobile stations in order to detect if they are present in its domain, using Discovery messages. 
This period can also be referred to as the discovery sub-phase. 

From this instant onwards, wireless mobile slaves are already capable of answering requests, but 
wireless mobile masters must still enter the new logical ring, using the standard PROFIBUS ring 
management mechanisms. Since the RT entries related to wireless mobile stations have been cleared, 
only when the BMs receive updated routing information (embedded on RU messages), at the end of 
the IDMP, they may restart routing IDTs related to wireless mobile stations. 

The RU messages are transmitted by the DMMs whenever they detect that a wireless mobile 
station is ready to start operating, that is, after the entry of a master into the logical ring or after the 
detection of wireless mobile slave using Discovery messages. 

When a wireless mobile station continues in the same domain, its presence is detected by a 
Discovery message and a RU message is transmitted by the DMM before releasing the token frame. 
When a wireless mobile slave changes to another domain, the detection in the new domain is also 
made by a Discovery message.  

When a wireless mobile master changes to another domain, its detection is made by the update of 
the LAS and/or GAPL of the DMM of the new domain. After detecting the presence of wireless 
mobile stations, the DMM broadcasts a RU message. When a RU message is received by a BM, it 
updates its RT according to the information contained in the message. 
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In Figure 2.16 is shown a simplified timeline related to IDMP Phase 4 assuming the network 
scenario presented in Figure 2.12. Phase 4 is started independently by each DMM and ends also 
independently after the discovery sub-phase. 
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Figure 2.16 – Simplified timeline of IDMP Phase 3 and Phase 4 

Inter-Domain Mobility Procedure Messages 

To reduce the cost and complexity of implementing the IDMP, this procedure is based on standard 
features offered by PROFIBUS. Therefore all mobility-related messages use standard Frames of Fixed 
Length with Data Field, addressed to a specific Source Address Extension (SAE), e.g., 55, that 
handles the IDMP. Table 2.2, synthesizes these messages.  

Table 2.2 – Format of the IDMP messages (requests) 

Frame Header Frame Data Frame 
SD DA SA FC DAE SAE MC Data 

Start Mobility Procedure SD3 127 GMM 6 55 55 1 - 

Ready to Start Mobility Procedure SD3 GMM Bri. 6 55 55 2 - 

Prepare for Beacon Transmission SD3 127 GMM 6 55 55 3 - 

Ready for Beacon Transmission SD3 GMM DMM 6 55 55 4 - 

Start Beacon Transmission SD3 127 GMM 6 55 55 5 - 

Route Update SD3 127 Bri. 6 55 55 6 Station 
Addrs 

Inquiry SD3 Bri. DMM 13 55 55 7 - 

Void SD1 DMM DMM 6     

 
Since most of the messages are sent in broadcast mode, thus not requiring any response, the 

frames are coded using high priority SDN frames. Therefore the FC code value, of most protocol 
message, is set to 6. The field Mobility Code (MC) codes the type of operation that must be 
performed when the destination station receives the frame. 

For the Beacon message is used the same type of message used in the RFieldbus system, which is 
described in (Rauchhaupt, 2002). This message must have a specific format which allows the wireless 
mobile station to evaluate the radio channel quality. 

The Inquiry message request may have a response from the addressed BM, thus it is coded as a 
SRD high service. In that case, the response to that service can only contain a mobility related message 
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from the output queue of the addressed BM. Finally, when a wireless domain has only one BM, and 
the bridge is also the DMM, it must transmit a Void message (to maintain the network activity). 

2.5. Summary 

This chapter presented an overview of the most relevant features of the PROFIBUS protocol necessary 
to tackle the remainder of the dissertation, it also highlighted the main architectural features of the 
repeater and bridge-based approaches. The objective was to provide the reader with the necessary 
background and intuition for tackling the remainder chapters of this document. 

In this chapter, the mobility procedure for the repeater-based architecture was described. It is 
very simple and errors occurring during its execution can be tackled by native PROFIBUS error 
handling mechanisms. But, the mobility mechanism used on the bridge-based architecture is more 
complex and involves the exchange of many messages between the intervening stations. Errors during 
the execution of the IDMP must be tackled by specific mechanisms implemented in the bridges. The 
next chapter will analyse those error situations and propose solutions for the error handling problem of 
the IDMP.  



 



Chapter 3 

Error Handling Improvements for the Bridge-based 
Architecture 

The original IDMP protocol did not define any error handling mechanisms, regardless of the 
mechanism used in PROFIBUS. The IDP also relies on a simple timeout timer to control the success 
of an IDT. As a consequence, these error handling mechanisms could lead to fault situations and to 
situations in which the protocol state machines can be blocked. In this chapter, the error situations 
which can occur during the evolution of the IDP and the IDMP are analysed and solutions to the 
problems are proposed. 

3.1. Introduction 

Wired fieldbus networks usually exhibit a low Bit Error Rate (BER), however the integration of 
wireless communications (radio based) in such kind of network may increase the BER, since a wireless 
transmission medium can not be shielded from the influence of noise sources. Nevertheless, this 
increase can be somewhat reduced by the use of more robust modulation technologies like spread 
spectrum and frequency hopping, and by the use of more sophisticated error detection and correction 
mechanisms. 

The IDP relies on a timeout timer to control the success of an IDT. This timer is started by the 
BMini when the IDT is initialised and cleared if it receives a response. The IDMP has been originally 
developed without error handling mechanisms, but in this protocol if a frame is lost or corrupted due to 
transmission errors the evolution of the mobility procedure could be blocked. Consequently, one of the 
main objectives of this chapter is to propose improved error handling mechanism for the IDP and for 
IDMP. 

This chapter is organised as follows. In Section 3.2 we analyse the error handling mechanism 
used by the IDP protocol and propose some improvements. Then, in Section 3.3 the error situations 
which can occur during the evolution of the IDMP are analysed and the section continues by 
discussing two alternative mechanisms which support the error handling. Section 3.4 presents the 
reasons which supported the error handling mechanism implemented in our simulator.  

3.2. Error Handling in the IDP 

3.2.1. Possible IDP Error Situations 

As outlined in Chapter 2, the bridge-based approach requires a new kind of transaction – Inter-Domain 
Transaction (IDT) – in which the involved stations do not belong to the same domain. The IDP error 
handling mechanism is a simple mechanism based on timers which are handled by the IDT’s BMini. 
Therefore, whenever a new transaction is opened at the BMini LOT a timer, the BM_IDT_Abort_Timer 
(TBM-IDTAbort), is loaded with the worst-case time required by the BMini to complete a transaction (for 
additional details about how to obtain these values see (Ferreira, 2005)). If the timer expires before the 
completion of the transaction then the entry at the LOT is deleted and the IDT can be reinitialised by 
the next initiator’s request. 

In order to illustrate the influence of transmission errors in the IDP, consider the network 
example presented in Figure 2.10, Figure 3.1 presents a simplified timeline regarding a transaction 
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between master M3 and slave S6. When master M3 is holding the token frame it sends a PROFIBUS 
request addressed to slave S6. Using the information contained in its RT and List of Active 
Stations in Domain (LASD), BM M8 RT (which operates as BMini for this transaction) opens a new 
entry in its LOT related to this transaction. After coding an IDF, BM M8 transmits the frame to BM 
M5. When BM M5 has the right to access the medium it transmits the IDF, but assuming that a 
transmission error occurs in domain D2, the frame is discarded by all stations belonging to domain D2. 
Since IDF frames are coded using standard non-acknowledge PROFIBUS frames there is no 
retransmission by BM M5, and consequently the frame is lost and the IDT can only be recovered when 
the BM_IDT_Abort_Timer expires. 
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Figure 3.1 – Example timeline for an IDT between M3 and S6 considering transmission errors 

3.2.2. Improving Error Handling in the IDP 

The main reason for the original protocol was mainly related to provide simple functionalities capable 
of being implemented, in resource constrained devices, since the receiving BM would only process the 
received IDF when it had available resources. An obvious improvement to this protocol would be to 
use the SDA service instead of SDN. Nevertheless, this change requires that the BM must receive the 
frame, decode its content, consult its RT and send a confirmation to the initiator station. These 
operations must be done within the time allowed for the transmission of a confirmation frame, which is 
defined by the TSDR parameter. 

Using the SDA service all IDFs, either embedding a request or a response, are acknowledged. 
Figure 3.2 presents a simplified timeline of an IDT where IDFs are transmitted using the SDA service. 
In this case a transmission error occurs when the IDF embedding the response is transmitted between 
BM M6 and BM M5. Since the frame has not been acknowledge by BM M5, the BM M6 retransmits 
the frame after the expiration of TSL. Although, this mechanism adds some overhead to the network, it 
improves the error handling in error prone environments as it will be shown in Chapter 10. As 
illustrated in Figure 3.2, if a transmission error occurs the IDF will be retransmitted. The number of 
retransmission is defined by max_retry_limit DLL parameter.   

This mechanism can cause duplication of IDFs, when the acknowledge frame is corrupted. 
Therefore, the BM has to check for IDFs duplication and it has to assure that only one IDF of each IDT 
is relayed by the BMs. 

 



Error Handling Improvements for the Bridge-based Architecture 29 

 
 

PROFIBUS
request 

Initiator  
M3 

Bridge 1 
M8 | M5 

Bridge 2 
M6 | M9 

Responder 
S6 

IDF 

Token 

Token 

Token 

Token 

D1 D2 D3 

Token 

Token 

Service.req 

Service.con 
(No_Data) 

Service.req 

Service.con 
(No_Data) 

Service.req 

Service_upd.req 

DLL AL(DP) DLL Codes the frame using 
IDP and open a 
transaction in LOT 

Decodes the IDF and 
close the transaction in 
LOT  

Decodes the IDF 
originating a 
PROFIBUS frame 

Open transaction  Close transaction  

PROFIBUS
request 

PROFIBUS
request 

PROFIBUS
response 

PROFIBUS
request 

PROFIBUS
response 

AL(DP) 

Service.con 
(Data) 

Codes the response 
frame using IDP  

Transmission error  

IDF 
Transmission 
error 

PROFIBUS ack 

IDF 

PROFIBUS ack 

TSL 

expiration  

TSL 

 
Figure 3.2 – Example timeline for an IDT between M3 and S6 considering transmission errors 

and using SDA service 

3.3. Handling IDMP Errors 

The original IDMP version is also prone to errors, similarly to the IDP case. In this section the 
vulnerabilities of the IDMP are identified and solutions to those problems are outlined.  

3.3.1. Possible IDMP Error Situations 

Figure 3.3 presents an error scenario for possible IDMP errors. This scenario assumes the network 
configuration presented in Figure 2.12, where BM M6 assumes both roles, of GMM and DMM of 
wired domain D2. BMs M8, M9 and M7 assume the role of DMMs for wireless domain D1, wireless 
domain D3 and wired domain D4, respectively. 

The GMM M6 starts the IDMP by broadcasting a SMP message. After that, it waits for RSMP 
messages from all BMs in the network. Assuming that a transmission error occurs when BM M9 is 
sending a SMP message to BM M10, then BM M10 and BM M7 will not receive the SMP message. If 
they do not receive a SMP message, they will not reply with a RSMP message. Consequently, the 
IDMP will not evolve because the GMM M6 is expecting RSMP messages from all BMs. Further, the 
BMs that have replied stop accepting new IDTs, therefore blocking the evolution of the IDMP. 
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To overcome such problems, we propose two mechanisms, the Tree-like Topology Based and the 
Timer-Based. These mechanisms respect the main features of the IDMP, they simply add error control 
and correction detection capabilities to the protocol. The IDMP agents are the same and maintain the 
same functionalities. The meaning and the purpose of each message is also the same. 

3.3.2. Tree-like Topology Based Mechanism 

Due to the routing mechanism a bridge-based network can be represented by a tree, since there is no 
close path between any two stations.  

Usually, a tree data structure: places one node (called the root), then, proceeds down connecting 
one or more nodes beneath each node on the previous level, until n nodes have been placed. The nodes 
below each node are called its sons; the node above each node is called its father. The sons are 
themselves the roots of trees, called the sub-tree. A leaf node is one which is not a root of any tree or 
sub-tree.  

Figure 3.4 shows the above concepts. Node 0 is the root of the tree and has two sons, nodes 1 and 
2, consequently it is the father of these nodes. Since node 1 is not a leaf node then it is a root of a sub-
tree. 
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Figure 3.4 –Tree data structure example 

This error handling proposal requires some adaptations to the original IDMP. For Phase 1 the tree 
is composed by the GMM, as root, and the network BMs. Phase 1 is started by the GMM when it sends 
a SMP message and finishes when all BMs reply with a RSMP message. To handle transmission 
errors, each root node, of every sub-tree, periodically sends SMP messages until receiving a RSMP 
message from its son nodes. When all son nodes have replied with a RSMP message, which means that 
their LOTs are empty, then the root node stops sending SMP message. After, when its LOT is empty, it 
replies with a RSMP message to its father node. Therefore, Phase 1 ends when the GMM has received 
a RSMP message from its son nodes. This procedure supports errors on the transmission of the SMP 
message and on its reply message. 

Figure 3.5 illustrates this mechanism considering the network example presented in Figure 2.12. 
GMM M6 repeatedly sends a SMP message to BMs M6 and M9 until receiving a RSMP message from 
them. BMs M6 and M9 stop accepting new IDTs and repeatedly send a SMP message until receiving a 
RSMP message from BMs M5 and M10, respectively. When leaf nodes (BMs M8 and M7) have their 
LOTs empty, they reply with a RSMP message to their father nodes. Phase 1 ends when the GMM 
receives a RSMP message from all of its son nodes, BMs M6 and M9. 

Note that the occasional transmission errors are overcome by periodic message re-transmissions. 
In Figure 3.5 a transmission error occurs when BM M10 is sending a RSMP message, consequently 
BM M9 does not receive a RSMP message from BM M10. In order to receive a RSMP message from 
BM M10, BM M9 re-transmits the SMP message until receiving a RSMP message.  

The mechanism concerning to Phase 2 is very similar to the mechanism used in Phase 1, but now 
the tree is composed by the GMM, as root, and the DMMs as leafs 
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Figure 3.5 – Simplified timeline of the Tree-like topology mechanism for Phase 1 

Phase 2 starts when the GMM sends a PBT message to its son nodes. In this schema, the GMM 
periodically sends a PBT message until receiving a RBT message from all its son nodes. The same 
mechanism is used by the sub-tree root nodes. They periodically send a PBT message until receiving a 
RBT message from its son nodes. When all son nodes have replied with a RBT message, then the root 
node of each sub-tree stops sending PBT messages and, if it is holding the token frame, replies with a 
RBT message to its father node. When a DMM replies with a RBT it starts the inquiry sub-phase. The 
BMs at reception of PBT message clear all entries of their RT concerning wireless mobile stations. 

Figure 3.6 illustrates this mechanism considering the network example presented in Figure 2.12.  
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Figure 3.6 – Simplified timeline of the Tree-like topology mechanism for Phase 2 

When all DMMs are holding the token frame, the GMM starts Phase 3 by sending a SBT 
message. This procedure requires the use of a new kind message, the Emitting_Beacon_Frame (EBF) 
message, which signals that a son node is transmitting Beacon frames. Contrarily to the IDMP outlined 
in Section 2.4.2, the GMM will wait for EBF message from its node sons. The mechanism is similar to 
the previous. When a leaf node receives a SBT message it sends an EBF message to its father. And, in 
order to assure that its father node receives the transmitted EBF message, it waits during some time for 
a repeated SBT message. If it does not receive a SBT message it means that its father node received 
correctly the transmitted EBF message. After, if the domain is wireless it starts emitting Beacon 
frames, otherwise it starts processing message cycles. 

This mechanism is illustrated in Figure 3.7, where the GMM repeatedly sends a SBT message 
until receiving an EBF message from its son nodes, at this point its role in the IDMP ends. However, 
the IDMP continues in wireless domains controlled by DMMs. Each wireless DMM emits Beacon 
frames during a predefined time. 

After the end of the Beacon transmission, that is when Phase 3 ends, Phase 4 starts (Figure 3.8). 
Every wireless DMM (still holding the token) inquires all wireless mobile stations in order to detect if 
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they are present in its domain, using Discovery messages. After the discovery sub-phase finish, a RU 
message is transmitted by the DMMs whenever they detect that a wireless mobile station is in their 
domain. These messages are used by the BMs to update their RTs. 
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Figure 3.7 – Simplified timeline of the Tree-like topology mechanism for Phase 3 

Note that if a wireless mobile station is not discovered during the discovery sub-phase due to 
transmission errors or if a RU message is corrupted by a transmission error, the transactions with these 
stations would not possible until the next mobility procedure. In order to handle with problem, the 
DMMs must periodically send Discovery messages addressed to the wireless mobile stations, if such 
stations are found, the DMMs broadcast RU message. 
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Figure 3.8 – Simplified timeline of the Tree-like topology mechanism for Phase 4 

3.3.3. Timer-Based Mechanism 

A solution to handle errors in the IDMP can also be based in a set of timers, enabling the error 
detection and handling during the evolution of the IDMP.  

This error handling procedure is based in four timers which are assigned to the GMM, one to 
each BM and one to each DMM present in the network. Two of the timers associated to the GMM are 
used to detect and handle the errors during Phase 1, while the other two are related to Phase 2. The 
timers associated to Phase 1 are designated as GMM_Phase_1_Alert_Timer (TGMM-P1Alert) and GMM_ 
Phase_1_Abort_Timer (TGMM-P1Abort). The timers associated to Phase 2 are designated as GMM_ 
Phase_2_Alert_Timer (TGMM-P2Alert) and GMM_Phase_2_Abort_Timer (TGMM-P2Abort). The timers 
associated to BMs and DMMs are designated as BM_IDMP_Abort_Timer (TBM-IDMPAbort) and DMM_IDMP 
_Abort_Timer (TDMM-IDMPAbort), respectively. The purpose of each timer is detailed next.  

The TGMM-P1Alert and TGMM-P1Abort are started (the TGMM-P1Alert < TGMM-P1Abort) when the GMM sends 
the SMP message. If the GMM receives a RSMP message from all BMs in the network before the 
expiration of the TGMM-P1Alert it stops both timers. If TGMM-P1Alert expires, i.e., if it did not receive a 
RSMP message from all BMs, it sends again a SMP message and waits for the reception of a RSMP 
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message from all BMs in lack. If it receives a RSMP from the BMs in lack before the expiration of the 
TGMM-P1Abort it evolves to Phase 2. Otherwise, the IDMP is aborted. 

Each BM starts its TBM-IDMPAbort when it receives the first SMP message. The BM will reply with a 
RSMP message when its LOT is empty. If a BM has already sent a RSMP message and it receives 
again a SMP message it also replies again with a RSMP message. If the IDMP takes longer than TBM-

IDMPAbort, the BM aborts the IDMP and starts accepting new IDTs. Otherwise, the TBM-IDMPAbort is 
stopped at the end of Phase 2. 

Considering the system scenario illustrated in Figure 2.12, Figure 3.9 represents a simplified 
timeline of IDMP Phase 1. For the sake of simplicity, it is assumed that there are no open transactions 
in the LOTs of the BMs in the network.  

When the IDMP is triggered the GMM M6 starts TGMM-P1Alert and TGMM-P1Abort and a SMP message 
is broadcasted by network. As soon as the BMs receive a SMP message they start the TBM-IDMPAbort and 
no new IDTs are accepted. In this example, it is assumed that there are no open transactions in their 
LOTs, therefore the BMs reply with a RSMP message. However, a transmission error occurs when a 
RSMP message from BM M7 is transmitted by BM M10. As no retries are performed by BM M10, the 
GMM will not receive all RSMP messages. Consequently, the TGMM-P1Alert expires. Then the GMM 
broadcasts again a SMP message. All BMs reply with a RSMP message even the BMs that had already 
replied. Assuming, that no transmission errors occurred, the GMM receives all RSMP messages from 
all BMs in the network and then it stops the TGMM-P1Abort. 
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Figure 3.9 – Simplified timeline of the Timer-Based mechanism for Phase 1 

A similar mechanism is used to control the Phase 2. When the GMM broadcasts a PBT message, 
Phase 2 starts and the TGMM-P2Alert and TGMM-P2Abort timers are started (the duration of the TGMM-P2Alert 
must be smaller than TGMM-P2Abort). At reception of the PBT message, the DMMs start the TDMM-

IDMPAbort, and a RBT message is transmitted when it holds the token frame. 
The GMM stops the TGMM-P2Alert and TGMM-P2Abort if it receives a RBT message from all DMMs in 

the network and the IDMP evolves to Phase 3. Otherwise, the GMM broadcasts again a PBT message 
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at expiration of the TGMM-P2Alert. If the TGMM-P2Abort expires before the reception of all RBT messages, 
then the IDMP is aborted. Otherwise, the TGMM-P2Abort is stopped and the IDMP evolves to Phase 3. 

Considering the system scenario illustrated in Figure 2.12, Figure 3.10 represents a simplified 
timeline regarding Phase 2. 

Assuming that DMM M9 is holding the token frame a RBT message is immediately sent to the 
GMM and the PBT message is forward to domain D3 (at the start of Phase 3).  

Supposing a transmission error when DMM M9 is sending the PBT message to domain D3, this 
means that the DMM M10 will not receive the PBT message. When DMM M6 receives the token 
frame it replies with an RBT message to the GMM, and forwards the PBT message to domain D2. As 
soon as the DMM M8 receives the token frame it replies with an RBT message and the GMM receives 
the RBT message from DMM M5, i.e., the RBT message is forwarded by BM M5 as a response to an 
inquiry request from DMM M6 without transmission errors.  

At reception of the first PBT message the DMMs start TDMM-IDMPAbort and the BMs clear all RT 
entries related to mobile stations. 

As DMM M7 did not reply with an RBT message, the TGMM-P2Alert expires. Therefore the GMM 
broadcasts again a PBT message and the DMMs reply with an RBT message. Assuming that, at this 
time no transmission errors occur, then the GMM M6 receives all RBT messages from all DMMs. 
Thus, Phase 2 ends and the GMM stops the TGMM-P2Abort. 
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Figure 3.10 – Simplified timeline of the Timer-Based mechanism for Phase 2 

After collecting all RBT messages from the DMMs, the GMM broadcasts a SBT message and its 
role in the IDMP ends. 

For the wireless mobile stations to assess the quality of the radio channel in all domains, Phase 3 
must occur almost simultaneously in all wireless domains. If a transmission error occurs at the 
transmission of the SBT message some DMMs will not transmit Beacon messages.  

If a DMM of a wireless domain does not transmit Beacon messages the wireless mobile stations 
present in its wireless domain are not able to perform radio channel assessment and consequently they 
stay in the same domain. On the other hand, other wireless mobile stations are not able to evaluate the 
radio quality of the domain where an error occurred. The IDMP ends when the TDMM-IDMPAbort expires. 
But, at the expiration of the TDMM-IDMPAbort the DMMs send RU messages related to the wireless mobile 
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stations present in its domain. In this way the BMs, which have cleared all entries related to the 
wireless mobile stations from their RT at the reception of the PBT message, update its RT.  

Figure 3.11 presents an example timeline of Phase 3 and Phase 4. In this example, a transmission 
error occurs when the SBT message is forwarded by DMM M6 and consequently the BM M5, DMM 
M8 and BM M8 will not receive the SBT. Since domain D2 is a wired domain, no further IDMP-
related action will be taken in this domain. Stations in this domain may start performing message 
cycles. However, BM M5 will not accept new IDTs, since it did not receive a SBT message. But, when 
the TBM-IDMPAbort expires it will accept new IDTs.  

Since DMM M8 did not receive a SBT message it did not transmit Beacon messages and no 
wireless mobile stations entered to or left from its domain. Thus, to update the BMs RT, DMM M8 
sends a RU message containing the information about wireless mobile station that still belong to its 
domain when TDMM-IDMPAbort had expired. 
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Figure 3.11 –Timeline example for Phase 3 and Phase 4 

Due to transmission errors a wireless mobile station may not be discovered during the discovery 
sub-phase or a RU message may not arrive to all BMs in network. A mechanism similar to the GAP 
Update mechanism is triggered on the DMMs in order to detect wireless mobile stations. To perform 
this objective the DMMs periodically send Discovery messages to all wireless mobile stations and 
broadcast RU messages containing information about wireless mobile stations. Obviously, this 
mechanism introduces a small overhead to the network. 

3.3.4. The Adopted Mechanism 

The Tree-Like Topology mechanism assures that the four phases of IDMP will always take place. 
However, this mechanism increases the network traffic in each domain, i.e., some kind of messages are 
periodically transmitted. Therefore, there is the need to define the periodicity of each repetition. And, 
in order to minimize the IDMP latencies, this period must take in attention the message’s kind. For 
example, a SMP message takes longer to reach a leaf node than a SBT message, because when a SMP 
message is transmitted the network is in normal operation, i.e., the token frame is rotating by domain’s 
masters and the IADTs and IDTs are both enabled. When a SBT is transmitted the domains are in 
inquiry sub-phase, the DMMs are holding the token frame, IADTs and also the IDTs are both disable 
and therefore these messages are relayed faster. 

The Timer-Based mechanism does not assure that the four phases of the IDMP will always take 
place. It is possible that some wireless mobile stations are not able to assess the quality of the radio 
channel, because there is no emission of Beacon frames in their domains. As a consequence, these 
wireless mobile stations will continue on same domain.  



36 Error Handling Improvements for the Bridge-based Architecture  

However, the Timer-Based mechanism was adopted. The reasons for the choice are outlined 
next. First, the network traffic does not increase as in the Tree-Like Topology mechanism. Second, this 
mechanism is more similar to the original IDMP than the Tree-Like Topology. Therefore, less 
implementation effort is required in the Timer-Based solution. Third, the station parameterization is 
less labour in the Timer-Based than in the Tree-Like Topology mechanism. Fourth and the most 
important, the Tree-Like Topology implies that the real time analyses proposed in (Ferreira, 2005) for 
the IDMP to be invalid. On the other hand, the formulations proposed in (Ferreira, 2005) can be used 
to set the timers according to that worst-case analysis. 

3.4. Summary 

In this chapter we identified some weaknesses of the error handling capabilities of the original IDP 
which used the unacknowledged SDN service to transmit IDFs between bridges. To improve the error 
handling capabilities of the IDP, we had proposed to use, instead of the SDN service, the SDA service 
which allows the retransmission of faulty frames.  

Additionally, the original IDMP had very limited error handling capabilities. In an error prone 
environment this protocol could lead to blocking situations, therefore we had proposed an error 
handling mechanism which permits to solve the problems detected. In Chapter 10, we will analyse the 
behaviour of these enhancements to the original protocols in error prone environments.  



Chapter 4 

Technological Context: Simulation Software 

This chapter gives a description of how a simulation study should be performed and it presents the 
main characteristics of the simulation environment framework used as a basis for the developed of 
the simulators used within this dissertation.  

4.1. Introduction 

A simulation is the imitation of the operation of a real-world process or system over time (Banks, 
Nelson et al., 2001). For the study of any system, it is necessary to develop a model that represents the 
system. Since a system is a collection of entities, e.g., people or machines, that act and interact together 
toward the accomplishment of some logical end, the details and behaviour of these entities must be 
represented in that model.  

A simulation model can be classified along three different dimensions. A simulation model can 
be static or dynamic, discrete or continuous and deterministic or stochastic. A static simulation model 
is a representation of a system at a particular time while dynamic simulation model represents a system 
as it evolves over the time. If a simulation model does not contain any random components, it is called 
deterministic, otherwise, is called stochastic. A discrete model is one for which the state variables 
change instantaneously at separated points in time. A continuous model is one for which the state 
variables change continuously according to time. In practice, very few systems are strictly discrete or 
strictly continuous, but since one type predominates for most systems, it is usually acceptable to 
classify a system as either being discrete or continuous (Law and Kelton, 2000).  

Several aspects have made simulation one of the most widely used and accepted tools in 
operations research and systems analysis (Banks, Nelson et al., 2001). Particularity, the availability of 
special-purpose simulation languages, massive computing capabilities at a decreasing cost per 
operation, and advances in simulation methodologies are some of these aspects.  

This chapter starts by presenting the basic steps of a simulation study (Section 4.2). Section 4.3 
presents a survey of the simulation tools for the development of network simulation models as well as 
the reasons that sustained the choice for the OMNeT++ simulation package, to which some further 
details are provided in Section 4.4. 

4.2. The Basic Steps of a Simulation Study 

The development of a simulation study involves several steps. Usually, a simulation study is not a 
simple sequential process but often there is the need to go back to a previous step.  

In (Law and Kelton, 2000), the authors divide the simulation study in ten steps. However, in 
(Banks, Nelson et al., 2001) the development of a simulation study evolves through 12 steps.  

Figure 4.1 shows the steps that compose a typical simulation study based on the methodology 
proposed by (Law and Kelton, 2000). The first step involves defining the goals of the study and 
determining what needs to be solved. The problem is further defined through objective observations of 
the process to be studied. Care should be taken to determine if simulation is the appropriate tool for the 
problem under investigation. 

If simulation is the appropriate tool for the problem, then the simulation study evolves to a 
second step. The goal of this step is to collect data about the system under study and delineates the 
conceptual simulation model. Information must be collect about system layout, operating procedures, 
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model parameters, input probability functions and performance measures to be analyzed. These tasks 
must be carefully done because sometimes the information is inaccurate and the operating procedures 
are not formalized. After collecting information of the system under study the conceptual model can be 
developed. It is not necessary to do one-to-one correspondence between each element of the 
conceptual model and the corresponding element of the system. Additionally, the conceptual model 
must also define the model assumptions. The degree of detail of the conceptual model must be as fine 
as possible according to the simulation study objectives.  

 Formulate problem and plan the study 

Collect data and define a model 

Construct a computer program and verify 

Conceptual 
model valid? 

Make pilot runs 

Programmed 
model valid? 

Design experiments 

Make production runs 

Document, present, and use results 

Analyze output data 

No 

Yes 

Yes 

No 

 
Figure 4.1 – Simulation study steps. Source (Law and Kelton, 2000) 

The third step is to validate the conceptual model, which must occur before programming begins. 
In order to validate the conceptual model a structured walk-through of the conceptual model and 
simulation objectives must be performed. If the conceptual model is valid, then the simulation study 
evolves to the next step. Otherwise the simulation study must return to the previous step.  

After validating the conceptual model, it must be translated to a computer program (fourth step). 
The choice of the tools used on the development of the computer program is crucial for the next steps. 
More details about this will be given later.  

After the development of a computer program that implements the conceptual model, there is the 
need to make pilot simulation runs with the purpose of validating the implemented model.  

The sixth step is to verify if the computer program is valid. Validation ensures that no significant 
difference exists between the programmed conceptual model and the real system. If it is an invalid 
program the simulation study must return to step 2, otherwise the simulation study evolves to step 7. 

After the implemented model has been validated it must be specified for each system 
configuration the length of each simulation run and the number of independent simulation runs, each 
run must use different seed numbers for random number generation (step 7).  

The following step is to make simulation runs (step 8) and analyze the output data produced by 
the simulation runs. In the last step documentation must be produced about the simulation runs as well 
as about the simulation system and simulation implementation.  
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4.3. Simulator Implementation 

One of the most important decisions in a simulation study concerns to the choice of the simulation 
software. Simulation software can be divided into three categories. The first category includes all 
general-purpose programming languages such as C, C++ and Java, just to mention some. The second 
category includes simulation programming languages, such as PARSEC (Meyer and Bagrodia, 1998) , 
SIMSCRIPT II.5 (Russell, 1999) and SimPy (Vignaux and Muller, 2006). The third category is related 
to simulation environments, such as OPNET (Chang, 1999), ns-2 (Fall and Varadhan, 2006) and 
OMNeT++ (Varga, 2004). 

Nowadays, the use of the general-purpose languages is considered not appropriate for the 
development of simulation models with some level of complexity. However, understanding how to 
develop a simulation model in a general-purpose language helps to understand the basic concepts of 
the simulation. On the other hand, if the execution speed of the simulation is an important feature, then 
general-purpose languages can be a good choice. 

Simulation languages provide more flexibility for the simulation developer than the general-
purpose programming languages. The simulation developer has greater flexibility in designing and 
implementing the simulation model, since much work has been done at the simulation language level, 
usually as function libraries.  

Network simulation packages can provide a more comprehensive support than simulation 
languages. They include the basic constructs for the development of network simulations, typically 
require less programming effort and have a smoother learning curve, when compared to simulation 
languages. Many network simulation packages include some type of pre-built and reusable models of 
networking protocols, devices and applications. Additionally, they also provide means for using and 
creating user interfaces to the simulation models, facilitating the development, debugging and 
understanding of the code. 

Three simulation packages have been evaluated in this dissertation: OPNET, ns-2 and 
OMNeT++.  

OPNET is widely held as the state-of-art in network simulation. It is a suite of products that 
combines predictive modelling and a comprehensive understanding of networking technologies to 
enable design, deployment, and management of network infrastructures, network equipments, and 
networked applications. In particular, OPNET Modeller is a development environment, allowing to 
design and study communication networks, devices, protocols, and applications. However, OPNET is a 
commercial product, with some limited academic licensing programmes.  

ns-2 (Network Simulator 2) is a discrete event simulator targeted at networking research. ns-2 
provides substantial support for simulation of TCP, routing, and multicast protocols over wired and 
wireless (local and satellite) networks. The full source code of ns-2 can be downloaded from the 
Internet and it can be compiled for multiple platforms, including the most popular Linux flavours and 
Windows.  

OMNeT++ (Objective Modular Network Testbed in C++), is a public-source, object-oriented 
modular discrete event simulation package that can be used for modelling communication protocols, 
computer networks, traffic modelling, multiprocessors and distributed systems. OMNeT++ also 
supports animation and interactive execution.  

The OPNET simulation package was discarded because it was a commercial product at the 
moment when this choice was made. Therefore, only ns-2 and OMNeT++ were assessed has possible 
solutions for the implementation of the simulation models in this dissertation. While ns-2 is a network 
simulation classic, it has many drawbacks, when compared with OMNeT++, which is a more modern 
and structured simulation package. The following summarises a number of advantages of OMNeT++ 
over ns-2:  

– The OMNeT++ simulation kernel is a class library: the components are developed as any other 
class library, and then linked with the executable library. There is no need to modify 
OMNeT++ sources anywhere. In contrast, ns-2 tends to be a bit monolithic: to add 
implementations to it, it is necessary to download the full source and modify it in several 
places;  
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– OMNeT++ follows a modular approach: the model is assembled from self-contained building 
blocks. These components are reusable in other simulations;  

– ns-2 has some considerably detailed built-in concepts about nodes, agents, protocols, links, 
packet representation, network addresses, etc. This often increases the difficulty in developing 
models that include even slightly different concepts. OMNeT++ is completely flexible and 
generic: it is possible to simulate anything that can be mapped to active components that 
communicate by passing messages;  

– In OMNeT++, it is possible to fight model complexity by using hierarchical design: any 
complex component can be implemented as one unit or built out of several smaller 
components. In ns-2, models are “flat”;  

– OMNeT++ has a powerful interactive graphical environment, where it is possible to examine 
nearly everything during execution. ns-2 only includes Network AniMator (NAM), which is a 
playback tool.  

For the reasons presented above OMNeT++ has been chosen. 

4.4. OMNeT++ (Objective Modular Network Testbed in C++) 

OMNeT++ (Varga, 2004) is an object oriented modular discrete event simulator, which provides a 
reusable component framework, where the system components can be independently built, 
characterized and assembled into larger components and models. The basic system components are 
built using the C++ programming language and then assembled into larger components and models 
using a high level language, named NED (an OMNeT++ specific scripting language).  

An OMNeT++ model consists of hierarchically nested modules which communicate between 
them using messages. OMNeT++ models are often referred to as networks. The top level module is the 
system module. The system module contains sub-modules, which can also contain sub-modules 
themselves. The depth of module nesting is not limited, consequently providing a useful way to reflect 
the logical structure of the system in the model structure (Figure 4.2). 

System module 

Compound module 

Simple module Simple module Simple module 

 
Figure 4.2 – Simple and compound modules 

Modules that contain sub-modules are termed compound modules, in opposite to simple modules 
which are at the lowest level of the module hierarchy. The simple modules of a model contain the 
algorithms coded using C++ programming language. The full flexibility and power of the C++ 
programming language can be used, in conjunction with the OMNeT++ simulation class library. 
Further, OMNeT++ has a consistent object-oriented design. Thus, Object-Oriented Programming 
concepts (like inheritance and polymorphism) can be used to extend the basic functionality of the 
simulator. 

4.4.1. Messages, Gates and Links 

Modules communicate by exchanging messages which represent frames or packets in a computer 
network. These messages can contain arbitrarily complex data structures. Simple modules send 
messages through gates or directly based on their unique identifier. Messages can arrive from another 
module or from the same module (self-messages are used to implement timers). 

Gates are the input and output interfaces of modules. Messages are sent out through output gates 
and arrive through input gates. Each connection (also called a link) is created within a single level of 
the module hierarchy and is composed by two gates. Within a compound module, one can connect the 
corresponding gates of two sub-modules, or a gate of one sub-module and a gate of the compound 
module (Figure 4.3).  
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Due to the hierarchical structure of the model, messages typically travel through a series of 
connections, but these messages are sent and received by simple modules. Such series of connections, 
which go from simple module to simple module, are called routes. Compound modules act as 
“cardboard boxes” in the model, transparently relaying messages between their inside and their outside 
world, i.e., they are used to aggregate other modules relaying messages from inside to the outside and 
vice-versa without any processing. 

 Compound module 

Simple module Simple module 

Gate Connection  
Figure 4.3 – Module’s gates and connections 

4.4.2. Modelling Delays, Bit Error Rate and Data Rate 

Connections can be assigned three parameters which facilitate the modelling of communication 
networks: propagation delay (sec), bit error rate (errors/bit) and data rate (bits/sec). Each of these 
parameters is optional. One can specify link parameters individually for each connection, or define link 
types (also called channel types) once and use them throughout the whole model. 

The propagation delay is the amount of time the arrival of a message is delayed when it travels 
through a communication channel. The bit error rate has influence on the transmission of messages 
through the channel. The bit error rate is the probability that a bit is incorrectly transmitted. The data 
rate is specified in bits/second, and it is used for transmission delay calculation. The sending time of a 
message normally corresponds to the transmission of its first bit, and the arrival time of the message 
corresponds to the reception of the last bit (Figure 4.4). 

 A B 

tA tB Message transmission 

Message arrival

Transmission delay 

Propagation delay 

 
Figure 4.4 – Message transmission 

In OMNeT++, the length of a message does not depend of its data structure composition, but on 
the length attribute. This attribute is used to compute the transmission delay when the message travels 
through a connection with an assigned data rate.  

4.4.3. An OMNeT++ Example Model 

An OMNeT++ model consists of the following parts: 
– NED language topology description(s) which describes the module structure and respective 

parameters, gates, etc. These are files with .ned suffix. NED files can be written with any text 
editor or using the GNED graphical editor. 

– Simple modules are C++ sources files, with .h/.cc/.cpp suffix. 
The simulation system provides the following components: 

– Simulation kernel, which contains the code that manages the simulation and the simulation 
class library. It is written in C++, compiled and put together to form a library. 
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– User interfaces. OMNeT++ user interfaces are used with simulation execution, to facilitate 
debugging, demonstration, or batch execution of simulations. There are several user interfaces, 
written in C++. 

– Simulation programs are built from the above components. First, the NED files are compiled 
into C++ source code, using the NEDC compiler which is part of OMNeT++. Then all C++ 
sources are compiled and linked with the simulation kernel and a user interface to form a 
simulation executable. 

The simulation executable is a standalone program, which can be run in any machine. When the 
program is started, it reads from a configuration file (usually omnetpp.ini) settings that control how the 
simulation is run and values for model parameters. The configuration file can also specify several 
simulation runs; in the simplest case, they will be executed by the simulation program one after 
another or executed on a parallel environment. 

4.4.4. Event-Based Simulation 

As mentioned, an OMNeT++ model consists of hierarchically nested modules which communicate 
between them using messages. Each message can be exchanged directly between simple modules or 
via a series of gates and connections. The local simulation time advances when a module receives 
messages from another module or from itself. Self-messages are used by a module to schedule events 
at a later time.  

In the initialization step, OMNeT++ builds the network: it creates the necessary simple and 
compound modules and connects them according to the NED definitions. OMNeT++ calls the 
initialize()functions of all simple modules, which is usually used to initialize the data members. 
The handleMessage()function is called during event processing. This means that the behaviour of 
each module is coded in this function. The finish() function is called when the simulation terminates 
successfully, it is usually used to write statistics at the end of a simulation run.  

In order to clarify these concepts, Figure 4.5 presents a typical PROFIBUS network transaction, 
which consists on the request frame from the initiator (master M1) and the associated response frame 
by the responder (slave S1). The initiator has to wait an Idle Time (TID) before sending a request 
frame and the responder has to wait Station Delay Responder Time (TSDR) before sending a 
response frame. 

 

M1 

DA=M1 

 

Response Frame  Request Frame  

Station Delay Responder  Idle Time  

S1  

DA=S1 

 

e1 e2 e3 e4 e5 

t1 t2 t3 t4 t5 

Frame Reception 

Token Reception 

 
Figure 4.5 – PROFIBUS transactions events 

Assuming that master M1 (initiator) has just received the token (event e0 at the instant t0), then it 
will schedule a self message for instant t1, which marks the beginning of a request frame transmission 
and the end of the TID (event e1).  

Event e2, at instant t2 represents the reception of the request frame’s last bit by slave S1. This 
instant is calculated as function of the request frame’s length and the data rate of the connection. As 
soon as the slave S1 receives the request frame’s last bit it schedules a self message to simulate the end 
of the TSDR and begin of the response frame transmission (event e3 at the instant t3). Event e4 
corresponds to the reception of the response frame’s last bit by master M1.  
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In order to model the system described above two simple modules can be used, one to model the 
master station (hereafter called MasterStation module) and another to model the slave station 
(hereafter called SlaveStation module).  

Figure 4.6 shows part of the handleMessage(cMessage *msg) function (or method) of the 
MasterStation module. This function is automatically invoked at reception of every message. 
Therefore, the arriving of the token frame to the MasterStation module instance called M1 is 
handled by this function. This message is a PROFIBUS message where the DA and SA are equal to TS 
and PS (line 20), respectively. M1 computes the TTH (line 22) and in order to wait TID before sending a 
frame it schedules a self message to arrive at instant TID counted from the current instant (the current 
simulation time is given by simTime() function) (line 24).  When M1 receives a self message (line 6) 
that marks the end of the inactivity time (TID), it removes a message from its message output queue 
(line 10) and starts transmitting the request frame addressed to the SlaveStation module instance 
called S1(line 11).  

 
1. void MasterStation::handleMessage(cMessage *msg) 
2. { 
3.  cMSG_Profibus *msg_profibus=NULL; 
4.  cMSG_Self *msg_self=NULL; 
5.  // handle the message according to the simple module algorithm 
6.  if (msg->isSelfMessage()) { //usually used as timer 
7.   msg_self=(cMSG_Self s *) msg; 
8.   switch(msg_self->getAction()){ 
9.    case SEND_MESSAGE: 
10.     dequeueMessage(&msg_profibus); 
11.     send(msg_profibus, "out"); 
12.    } 
13.    ... 
14.   } 
15.  } 
16.  else{ 
17.   msg_profibus=(cMSG_Profibus *) msg; 
18.   switch(msg_profibus->getType()){ 
19.    case TOKEN_FRAME: //if it is a token frame 
20.     if(msg_profibus->getDA()==TS &&msg_profibus->getSA()==PS){ 
21.      ... 
22.      computeTHT(); 
23.       msg_self->setAction(SEND_MESSAGE); 
24.      scheduleAt(simTime()+TID, msg_self); 
25.     } 
26.    break; 
27.    case RESPONSE_FRAME: //if it is a response frame 
28.     if(msg_profibus->getDA()==TS && ...){ 
29.      scheduleAt(simTime()+TID, msg_self); 
30.     } 
31.    break; 
32.    ... 
33.     
34.   } 
35.  } 
36. } 

Figure 4.6 – handleMessage(cMessage *msg) function, C++ code (MasterStation) 

Figure 4.7 presents handleMessage(cMessage *msg) function of the SlaveStation module. 
In same way this function is automatically invoked as soon as a SlaveStation module instance 
receives a message. At reception of the message, slave S1 checks if the received frame is addressed to 
it (line 20). It schedules the sending of the response (line 23) if it is. Otherwise, no action is taken. 
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1.  void SlaveStation::handleMessage(cMessage *msg) 
2. { 
3. cMSG_Profibus *msg_profibus=NULL; 
4. cMSG_Self *msg_self=NULL; 
5. // handle the message according to the simple module algorithm 
6. if (msg->isSelfMessage()) { //usually used as timer 
7.   msg_self=(cMSG_Self s *) msg; 
8.   switch(msg_profibus->getAction()){ 
9.    case REPLY_MESSAGE: 
10.     buildResponseMessage(&msg_profibus); 
11.     send(msg_profibus, "out"); 
12.    } 
13.    ... 
14.   } 
15.  } 
16. else{ 
17.   msg_profibus=(cMSG_Profibus *) msg; 
18.   switch(msg_self->getType()){ 
19.    case REQUEST_FRAME: //if it is a request frame 
20.     if(msg_profibus->getDA()==TS && ...){ 
21.       
22.       msg_self->setAction(REPLY_MESSAGE); 
23.       scheduleAt(simTime()+TSDR, msg_self); 
24.      } 
25.      .... 
26.     } 
27.    break; 
28.    .... 
29.     
30.   } 
31.  } 
32. } 

Figure 4.7 – handleMessage(cMessage *msg) function, C++ code (SlaveStation) 

4.5. Summary 

This chapter discussed the main characteristics of the OMNet++ simulation environment used in this 
dissertation. It described its main characteristics and provides an example of how a PROFIBUS 
message cycle can be modelled in such architecture.  

 



Chapter 5 

PROFIBUS Simulation Model 

The repeater and the bridge-based approaches are both compatible with standard PROFIBUS, 
therefore their simulation software share the same standard PROFIBUS modules. This chapter 
describes the entities which enable the simulation of a standard PROFIBUS network. 

5.1. Introduction 

The repeater (Alves, 2003) and bridge-based (Ferreira, 2005) approaches are both compatible with 
standard PROFIBUS and both extend the PROFIBUS protocol in order to support wireless 
communication.  

This chapter describes the architecture of the standard PROFIBUS simulation model (Section 
5.2) which is used by the Repeater-Based Hybrid Wired/Wireless PROFIBUS Network Simulator 
(RHW2PNetSim) and the Bridge-Based Hybrid Wired/Wireless PROFIBUS Network Simulator 
(BHW2PNetSim) for the simulation of repeater and bridge-based approaches, respectively. These 
modules implement most of the relevant features of the PROFIBUS protocol. For each module this 
chapter also presents its main parameters which can be configured by the use of NED files. This kind 
of text file allows the definition of the network configuration and the setting of the module parameters. 
The chapter continues by presenting the implementation of the PROFIBUS DLL simulation model 
(Section 5.3). 

5.2. PROFIBUS Basic Architecture 

The PROFIBUS functions are implemented in the HW2PNet, Controller, Domain, Master and Slave 
OMNeT++ modules. The left side of Figure 5.1 shows the main OMNeT++ modules used in both 
simulation models. The HW2PNet module represents the entire network, that is, the system module in 
the context of the OMNeT++ framework. The Controller is the module that coordinates the 
simulation and performs several tasks, such as, parameterization, configuration of the other module 
instances and it is also responsible for the setup of the simulation run. The Domain module models a 
network domain and interconnects all components in a single network domain. The Master and Slave 
modules model a master or slave standard PROFIBUS network device.  

On the left side, Figure 5.1 shows how the main modules are interconnected. There are 2 kinds of 
the connections: ctrl_con and domain_con connections. The ctrl_con connections are used to 
establish the connections between the Controller module instance and all module instances in the 
overall system. This kind of connection has no delay and is used for simulation control and 
configuration purposes. The domain_con connections are used to establish the connections among all 
domain components (between Master and Slave module instances and the Domain module instance). 

On the right side Figure 5.1 there is a connection example between a Master and a Domain 
module instances. The Master instance is called M1 and Domain instance D1. Each of these 
connections is composed of four gates, two for each connected module instance. One gate is for input 
and it is connected to the output gate of the other module instance and vice-versa. 

The messages are sent to D1 from M1 through a gate called domain_gateOut. Consequently D1 
receives messages from M1 through a gate called station_gateInM1. D1 sends messages to M1 
through a gate called station_gateOutM1.  
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Some station parameters, like TSDR or TID are modelled either by Probability Distribution 
Function (PDF) or by a constant value. The PDFs implemented require at most four parameters. One of 
them defines which PDF is used and the other three are the arguments of the PDF. The name of all 
these parameters uses the _pdf prefix. For example, the parameters associated to TSDR are the 
following: _pdf_tsdr_type, _pdf_tsdr_par1, _pdf_tsdr_par2 and _pdf_tsdr_par3. The 
_pdf_tsdr_type indicates which PDF will be used to generate the value of the TSDR and the other 
parameters are the arguments of the PDF. The PDFs supported by both simulators are described in 
detail in Annex A. Additionally the same parameters can also be used to make a configuration using 
constant values. 

HW2PNet 
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Controller Domain 
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domain_con 

domain_con 

ctrl_con 

ctrl_con 
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Domain (D1) 

domain_con  connection 

domain_gateIn domain_gateOut 

station_gateInM1 station_gateOutM1 

Output gate Input gate 
 

Figure 5.1 – Modules, connections and associated gates 

One of the most important steps of a simulation study is to analyze output data generated by the 
simulator (Law and Kelton, 2000). Our simulators enable gathering information about the response 
time of transactions, information about state machine transitions of each module, information about the 
PDFs in use and information about the Bit Error Model (BEM) in use. The name of the parameters 
related to these functions use the _output prefix.  

Master, Slave and Domain modules are all identified by a parameter called _name. The value of 
this parameter must be unique in the overall network, since it identifies a module instance.  

To simplify the parameterization of the module instances, all common parameters to the network 
are associated with the Controller module and all common parameters to the domain are associated 
to the Domain module. These parameters are used by the Controller module instance to do the 
station parameterization. This characteristic makes the simulation configuration less complex and less 
error prone. 

In the next sections, further details are provided concerning model architecture and 
implementation. 

5.2.1. HW2PNet 

In OMNeT++ to actually get a simulation that can be run, it is necessary to write a network definition. 
A network definition declares a simulation model as an instance of the system module, in this case of 
the HW2PNet module. A network definition is declared with keyword network, followed by the network 
instance’s name and ends with the keyword endnetwork. Figure 5.2 presents the network definition in 
which the system module instance is called theProfibusNet. No simulation parameters are assigned 
in the network definition, since they are assigned by the configuration file named omnetpp.ini. 
 

network  
 theProfibusNet: HW2PNet 
Endnetwork   

Figure 5.2 – Network definition 
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HW2PNet module is a compound module that contains all other module instances. An OMNeT++ 
network has at least one instance of each module. The number of module instances is specified in the 
HW2PNet module instance.  

Figure 5.3 presents part of the OMNet++ NED definition of the HW2PNet module. This kind of 
compound module definition must be contained between the keywords module and endmodule. It is 
composed by the module parameters and by its sub-modules. Additionally, in the declaration of the 
compound modules elements, like gates and connections can be specified.  

Parameters are mainly used to define the module behaviours. These parameters can be strings or 
numeric values as well as random values from different PDFs. Within a compound module, parameters 
can define the number of sub-modules as well as the number of gates. In this case, the gates and 
connections are assigned dynamically at run time. 
 

module HW2PNet   
 parameters:   
  _num_domains: numeric, 
  _num_masters: numeric, 
  _num_slaves: numeric, 
  …  
 Submodules:   
  master:   Master[_num_masters]; 
  slave:   Slave[_num_slaves]; 
  domain: Domain[_num_domains]; 
  …  
  controller:  Controller;  
endmodule     

Figure 5.3 – HW2PNet module NED definition 

Figure 5.4 depicts parts of the configuration file with the settings related to the HW2PNet module 
instance, which is the simulation network. This is a typical PROFIBUS network composed by only one 
domain (_num_domains parameter). This network is composed by four masters (_num_masters 
parameter) and six slaves (_num_slaves parameter).  
 

theProfibusNet._num_domains=1 
theProfibusNet._num_masters=4 
theProfibusNet._num_slaves=6 

Figure 5.4 –Configuration file related with HW2PNet module instance (excerpt)  

Figure 5.5 shows a screenshot of the simulator output window for the network configuration 
referred to above. In this figure it is clear that the Controller instance (labelled controller) is able to 
communicate with all module instances. Master and Slave module instances are connected to the 
Domain module instance, symbolized by a rectangle.  

 
Figure 5.5 – Simulator output window screenshot 
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5.2.2. Controller 

The Controller is a simple module that coordinates the simulation and performs several managing 
tasks, acting as the simulation supervisor. Parameters that are specific of one module instance or 
common to all module instances in the network are assigned to the Controller module instance. On 
simulation setup, the Controller module instance makes the parameter setting of the all other module 
instances.  Additionally, due to memory limitations, the Controller module instance is responsible 
for periodically sending commands to other module instances, commanding them to dump the 
information gathered to data files. Finally, whenever a Master or Slave module instance changes 
between domains, this module updates the network configuration and the corresponding connections. 
Note that, OMNeT++ does not provide any native mechanism for mobility. 

A simple module is declared with keywords simple, followed by the modules’ name, and 
endsimple. The parameters and the gates can be specified in the declaration of a simple module. 

Figure 5.6 presents the NED definition of the Controller simple module. Parameter _domain is 
a string which defines the configuration of the domain. It is written using predefined structure based in 
tags. The Controller module instance extracts information from these strings to perform the network 
configuration. 
 

simple Controller   
 parameters:   
  _output_gant_diagram:  numeric, 
  _output_resp_time:  numeric, 
  _output_states:  numeric, 
  _output_pdf:  numeric, 
  _output_bem: numeric, 
  _output_period: numeric, 
  _output_path:  string, 
  …  
endsimple     

Figure 5.6 – Controller module NED definition 

The parameters with the _output prefix are related to the output data files. If one of these 
parameters has a value of one it means that the information referred to, by the parameter, must be 
gathered by the module instances (Table 5.1). A detailed description of the output data files is 
presented in Annex D. 

Figure 5.7 presents a configuration example of the _domain parameter used in BHW2PNetSim 
(there is a slightly difference in the configuration of the parameter of the two simulators) by the 
network showed in Figure 5.5. 

Table 5.1 – Summary of the output data information  

Parameter Information 
_output_gant_diagram Information necessary to build event Gant Diagrams. 
_output_resp_time Information about the response time of each transaction. 
_output_states Information about module instances’ state machine and their transitions.  
_output_pdf Information about the probability distribution functions used. 
_output_bem Information about the bit error model used. 
_output_period Period for dumping the gathered information on to data files. 
_output_path The path of the directory output files 

 
The meaning of the tags used in _domain parameter are the following: <d> and </d> specify a 

domain; the tags <n> and </n> enclose the name of the Domain module instance; <m> and </m> 
enclose the name of the masters belonging to the domain, which are separated by a colon; <s> and 
</s> tags are similar to the previous case but associated with slaves; <dmm> and </dmm> define the 
Master module instance that is the DMM of the domain; <pos> and </pos> indicate the position of 
the domain for graphical representation purposes. Note that coordinate (0, 0) represent the top-left 
corner of the window as shown in Figure 5.5. In this particular case, the first domain 
(“<d><n>D1</n><m>M1:M2:M3:M4</m><s>S1:S2:S3:S4:S5:S6</s><dmm>M1</dmm><pos>
400:300</pos></d>”) is referred to as D1 and is composed by four Master module instances (which 
are named M1, M2, M3 and M4) and six Slave module instances (S1, S2, S3, S4, S5 and S6). Its 
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DMM is Master module instance named M1. The Domain module instance is depicted in the screen at 
position (400, 300).  

This information enables the Controller to set the LAS of all Master module instances as well 
as PS, NS and GAPL parameters. It also assigns the token frame to the master defined as DMM, thus, 
avoiding the need to perform the standard PROFIBUS network initialization procedure. 
 

… 
theProfibusNet.controller._domain=" 
<d><n>D1</n><m>M1:M2:M3:M4</m><s>S1:S2:S3:S4:S5:S6</s><dmm>M1</dmm><pos>100:200</pos></d>” 
…  

Figure 5.7 – Configuration file related to the Controller module instance (excerpt)  

5.2.3. Domain 

In spite of the OMNeT++ capacities, only one-to-one connections are supported. One-to-many and 
many-to-one connections can only be achieved using special purpose simple modules. Therefore, it 
was necessary to develop a simple module – the Domain module which is able to connect all stations in 
a domain and simulate a broadcast network. The connections are created and assigned dynamically 
enabling the support of mobility. In our model we assume that the propagation delay is ignorable. The 
transmission delay is simulated by the Domain module as a function of the Baud_rate parameter and 
the message length. 

The parameters that are common to all modules connected to a domain are assigned to the 
Domain module and the Controller module instance performs the domain configuration and other 
module instance parameterization using this information. 

Figure 5.8 presents the Domain simple module NED definition. The parameter _medium defines 
if the Domain module instance maps into wired (different to zero) or wireless (equal to zero) domain. 
Due to the use of different media in the network, the format of the wired and wireless frames is 
different. As an example, each DLL character can be coded using 8 or 11 bit, for wireless and wired 
frames, respectively. The wireless frames can also include additional preamble and header fields. The 
parameters bitsPerChar, frameHeadLen and frameTailLen are the number of bits per character, the 
number on the bits of the frame head and the number of the bit on the frame tail, respectively.  
 

simple Domain   
 parameters:   
  Baud_rate:  numeric, 
  bitsPerChar: numeric, 
  frameHeadLen: numeric, 
  frameTailLen: numeric, 
  G: numeric, 
  HSA: numeric, 
  TTR: numeric, 
  TSL: numeric, 
  max_retry_limit: numeric, 
  _bem_type: numeric, 
  _bem_par1: numeric, 
  _bem_par2: numeric, 
  _bem_par3: numeric, 
  _bem_par4: numeric, 
  _name: string; 
 gates:   
  in:  ctrl_gateIn; 
  out:  ctrl_gateOut; 
endsimple     

Figure 5.8 – Domain module NED definition 

The parameter G is the Gap Update factor. The HSA parameter defines the Highest Station 
Address in the domain. The TTR parameter is the Target Rotation Time (TTR) of the token and TSL 
is the Slot Time (TSL). The number of retries is defined by the max_retry_limit parameter. The 
parameters with _bem prefix are used to define the channel Bit Error Model (BEM) in use. In Annex B 
we describe the BEM supported by these simulators. 

Figure 5.9 presents part of the configuration file related to one instance of the Domain module. 
This Domain module instance is called D1 and maps a wireless domain operating at 2 MBits/s 
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(Baud_rate parameter). Each frame has a head of 32 bits, no frame tail and each character is coded 
using 8 bits. The G is set to one, therefore the GAP Update mechanism is always active. The HSA can 
be set differently for each domain according to the highest address of the stations that can belong to its 
domain. The TTR and TSL parameters are set in bit times and represent the TTR and TSL PROFIBUS 
parameters, respectively.  

Transmission errors are modelled using the Independent Channel Model (Willig and Wolisz, 
2001) (_bem_type parameter equal to 1) with a bit error probability of 10-5 (0.00001) ( _bem_par1 
parameter). 

theProfibusNet.domain[0]._name="D1" 
theProfibusNet.domain[0]._medium=0 
theProfibusNet.domain[0].Baud_rate=2000000 
theProfibusNet.domain[0].frameHeadLen=32 
theProfibusNet.domain[0].frameTailLen=0 
theProfibusNet.domain[0].bitsPerChar=8 
theProfibusNet.domain[0].G=1 
theProfibusNet.domain[0].HSA=5 
theProfibusNet.domain[0].TTR=300 
theProfibusNet.domain[0].TSL=115 
theProfibusNet.domain[0].max_retry_limit=1 
theProfibusNet.domain[0]._bem_type=1 
theProfibusNet.domain[0]._bem_par1=0.00001 

Figure 5.9 – Configuration file related to Domain module instance (excerpt)  

5.2.4. Master 

A Master module is a compound module that maps a master station. It is composed by three modules: 
Master_PHY, Master_DLL and Msg_Stream. In each Master module instance there is one instance of 
Master_PHY and Master_DLL modules. The number of the Msg_Stream module instances can be from 
1 up to 64. A Master module is connected to the Domain module through gates domain_gateIn and 
domain_gateOut. Master_PHY and Master_DLL model the PhL and DLL of the PROFIBUS protocol, 
respectively. The Msg_Stream module models the operation of the Application Layer (AL), therefore it 
can be configured to periodically request services from the DLL. These modules are hierarchically 
organized as illustrated in Figure 5.10. 

As mentioned, compound modules are modules composed of one or more sub-modules. Any 
module type (simple or compound module) can be used as a sub-module. Further, sub-modules may 
use parameters of the compound module.  

The compound module definition specifies how the gates of the compound module and its 
immediate sub-modules are connected. Connections that span multiple levels of the hierarchy are not 
allowed. This restriction enforces compound modules to be self-contained. These concepts are 
presented in the Master module NED definition depicted in Figure 5.11. In this definition some 
parameters are omitted since its definition is very long.  

The address of the Master module instance is set using the TS parameter. The number of 
message streams is defined by the _num_streams parameter. This parameter is used to define the 
number of Msg_Stream module instances and also to specify the number of gates between the 
Master_DLL module and Msg_Stream module instances. The parameters with _pdf_tid1 prefix are 
related to TID1 PROFIBUS DLL parameter. 

Figure 5.12 shows part of the configuration file related to a Master module instance. The 
parameter _pdf_tid1_type is set to three meaning that the TID1 duration evolves according to a 
Triangular PDF. A Triangular PDF requires three parameters. In this case, the value of TID1 will be 
between 11 bit times (_pdf_tid1_par1 parameter) and 100 bit times (_pdf_tid1_par3 parameter) 
and the mode is 70 bit times (_pdf_tid1_par2 parameter).  
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Master 
Msg_Stream[N] Msg_Stream[0] 

 
 

Master_DLL 
lower_gateOut 

 
 

Master_PHY 

upper_gateIn upper_gateOut 

ctrl_gateOut ctrl_gateIn lower_gateIn lower_gateOut 

lower_gateIn 

upper_gateOut[0] upper_gateIn[0] 

lower_gateIn lower_gateOut 

upper_gateOut[N] 

lower_gateIn lower_gateOut 

ctrl_gateOut ctrl_gateIn domain_gateIn domain_gateOut 

upper_gateIn[N] 

 
Figure 5.10 – OMNeT++ Master module composition 

 
module Master        
 parameters:        
  TS:  numeric,      
  _num_streams: numeric,      
  _name: string,      
  _pdf_tid1_type: numeric,      
  _pdf_tid1_par1: numeric,      
  _pdf_tid1_par2: numeric,      
  _pdf_tid1_par3: numeric,      
  …       
 gates:        
  in:  domain_gateIn,ctrl_gateIn,bridge_gateIn; 
  out:  domain_gateOut,ctrl_gateOut,bridge_gateOut; 
 submodules:        
  phy_layer: Master_PHY;      
  dll_layer:  Master_DLL;      
   parameters:      
   TS=TS,      
   _num_streams=_num_streams,      
   _pdf_tid1_type=_pdf_tid1_type,      
   ..      
   gatesize:      
   upper_gateOut[_num_streams],       
   upper_gateIn[_num_streams];       
         
  stream: Msg_Stream[_num_streams];      
 connections nocheck:       
  
  
  
  
  
  

 phy_layer.upper_gateOut --> dll_layer.lower_gateIn;  
 phy_layer.upper_gateIn <-- dll_layer.lower_gateOut;  
 phy_layer.lower_gateIn <-- domain_gateIn; 
 phy_layer.lower_gateOut -->domain_gateOut; 
 phy_layer.ctrl_gateIn <-- ctrl_gateIn ; 
 phy_layer.ctrl_gateOut --> ctrl_gateOut; 
 dll_layer.bridge_gateIn <-- bridge_gateIn; 
 dll_layer.bridge_gateOut -->bridge_gateOut; 
 for i=0.._num_streams-1 do  
   dll_layer.upper_gateOut[i] --> stream[i].lower_gateIn;  
   dll_layer.upper_gateIn[i] <-- stream[i].lower_gateOut; 
  endfor;    
 

endmodule          

Figure 5.11 – Master module NED definition 
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theProfibusNet.master[2].TS=3 
theProfibusNet.master[2]._name="M3" 
theProfibusNet.master[2]._pdf_tid1_type=3 
theProfibusNet.master[2]._pdf_tid1_par1=11 
theProfibusNet.master[2]._pdf_tid1_par2=70 
theProfibusNet.master[2]._pdf_tid1_par3=100 

Figure 5.12 – Configuration file related to Master module instance (excerpt)  

The following sections describes the implementation of each module that composes a Master 
module instance and their interactions. 

 Master_PHY 

The Master_PHY module models the PhL of the PROFIBUS protocol. It represents the network 
interface of the Master module, it receives messages from a Domain or from a Controller module 
instance and passes the messages to the Master_DLL module and vice-versa. For that reason, this 
module is connected to the Master compound module through four gates (see Figure 5.10): 
domain_gateIn, domain_gateOut, ctrl_gateIn and ctrl_gateOut, the first two are related to 
domain_con connections and the last two are related ctrl_con connections. Figure 5.13 shows the 
Master_PHY NED definition. 
  

simple Master_PHY 
 gates: 
 in: lower_gateIn, ctrl_gateIn, upper_gateIn; 
 out: lower_gateOut, ctrl_gateOut, upper_gateOut; 
endsimple   

Figure 5.13 – Master_PHY module NED definition 

 Master_DLL 

The Master_DLL module is structurally different in RHW2PNetSim and BHW2PNetSim. On the 
RHW2PNetSim it is a simple module, while on the BHW2PNetSim it is a compound module. 
However, the behaviour of the PROFIBUS DLL is the same, as well as the implementation.  

The Master_DLL module is directly connected to the Master_PHY and the Msg_Stream 
modules. It is connected to the Master_PHY module instance through lower_gateIn and lower_ 
gateOut gates and it is connected to N Msg_Stream module instances through 64 gates 
upper_gateIn[x]and upper_gateOut[x], where x is a number between 1 and 64.  

Figure 5.14 presents part of the Master_DLL NED definition used in the RHW2PNetSim. Its 
NED definition is very simple since most of its parameters are dynamically configured by the 
Controller module instance.  

 Msg_Stream 

The Msg_Stream module models the typical behaviour of the AL. It can be configured to periodically 
request services from the Master_DLL module instance through the lower_gateOut gate. Each 
Msg_Stream module instance must be configured with the parameters necessary to build PROFIBUS 
messages. Figure 5.15 shows the Msg_Stream NED definition. The parameters DA and SA refer to 
Destination Address and Source Address, respectively. The local access address to the AL is 
defined in the SAE - Source Address Extension - and the remote access address to the AL is 
defined in the DAE - Destination Address Extension.  

The parameter DATA_UNIT maps the content of a frame data field. For simplification reasons this 
parameter is a numeric data field. Serv_class parameter defines the priority (high or low) for the data 
transfer and the service parameter defines if a message maps into a Send Data with No 
Acknowledge (SDN) or a Send and Request Data with Reply (SRD) PROFIBUS service. If the 
service parameter value is set to 1, it means that it models a SDN service. In the case of being 3, it is 
a SRD service. The PROFIBUS SDA service can be modelled by using a SRD with a one byte 
response frame. 
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simple Master_DLL      
 parameters:      
  TS:  numeric,    
  _pdf_tid1_type: numeric,    
  _pdf_tid1_par1: numeric,    
  …     
  _pdf_tid2_type: numeric,    
  _pdf_tid2_par1: numeric,    
  …     
  _pdf_tsdr_type: numeric,    
  _pdf_tsdr_par1: numeric,    
  …     
 gates:      
  in:  upper_gateIn[],lower_gateIn,bridge_gateIn; 
  out:  upper_gateOut[],lower_gateOut,bridge_gateOut; 
endsimple        

Figure 5.14 – OMNeT++ Master_DLL module NED definition 

The message generation can be active or inactive. If the value of the _active parameter is 0, 
then no messages are generated, otherwise messages are periodically generated. 

 
simple Msg_Stream   
 parameters:   
  DA:  numeric, 
  DAE: numeric, 
  SA: numeric, 
  SAE: numeric, 
  DATA_UNIT: numeric, 
  Serv_class: numeric, 
  service: numeric, 
  _active: numeric, 
  _deadline: numeric, 
  _output_color_red: numeric, 
  _output_color_green: numeric, 
  _output_color_blue: numeric, 
  _pdf_length_type:  
  …  
  _pdf_period_type: numeric, 
  …  
  _pdf_offset_type: numeric, 
  …  
 gates:   
  in:  lower_gateIn; 
  out:  lower_gateOut; 
endsimple     

Figure 5.15 – Msg_Stream NED definition 

Typically, a transaction (or message cycle) consists of the request or a send/request frame from 
the initiator and the associated response frame from the responder, especially for SRD. The response 
time of each transaction is computed from the time in which the request frame is queued on the DLL 
output message queue until it receives the response frame.  

However, the response time of a transaction can be theoretically unlimited in error prone 
environments. In order to deal with transmission medium characteristics, real time systems must be 
provided with mechanisms to detect and handle these error situations (Burns and Wellings, 2001 ). In a 
communication system these mechanisms are implemented at all levels of the communication stack. 

At the AL level the Msg_Stream module is provided with a parameter (the _deadline 
parameter) which is used to detect if a transaction is not concluded before the expiration of the 
deadline. 

In our simulation model we consider that a transaction misses its deadline in two situations. First, 
when the response time of a transaction is higher than its deadline even when a valid response is 
obtained from the IDT BMini, this is illustrated on the left side of Figure 5.16. The second case is the 
most common case in which a deadline is considered missed when the response frame is not received 
within its deadline. This case is illustrated on the right side of Figure 5.16. 

As mentioned, these simulators produce information enabling the display of the Gant diagrams 
concerning message transactions. To distinguish between the different message streams it is possible to 
assign a colour to each message stream using the parameters with _output_color_red, _output 
_color_green and _output_color_blue. 

The length in bits, the period and offset of the first activation of the message streams can be 
assigned either using random or constant values. 
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Figure 5.16 – Deadline missing examples 

Figure 5.17 depicts an example of an Msg_Stream module instance configuration. This message 
stream involves a Master module instance with address 3 (SA) and Slave module instance with 
address 46 (DA). The SAE and DAE have the same value, which is equal to 7. 

 
theProfibusNet.master[2].stream[1].DA=46 
theProfibusNet.master[2].stream[1].SA=3 
theProfibusNet.master[2].stream[1].DAE=7 
theProfibusNet.master[2].stream[1].SAE=7 
theProfibusNet.master[2].stream[1].DATA_UNIT=0 
theProfibusNet.master[2].stream[1].Serv_class=1 
theProfibusNet.master[2].stream[1].service=3 
theProfibusNet.master[2].stream[1]._active=1 
theProfibusNet.master[2].stream[1]._deadline=100ms 
theProfibusNet.master[2].stream[1]._pdf_length_type=0 
theProfibusNet.master[2].stream[1]._pdf_length_par1=15 
theProfibusNet.master[2].stream[1]._pdf_period_type=0 
theProfibusNet.master[2].stream[1]._pdf_period_par1=0.005 
theProfibusNet.master[2].stream[1]._pdf_offset_type=0 
theProfibusNet.master[2].stream[1]._pdf_offset_par1=0.0 
theProfibusNet.master[2].stream[1]._output_color_red=100 
theProfibusNet.master[2].stream[1]._output_color_green=255 
theProfibusNet.master[2].stream[1]._output_color_blue=0 

Figure 5.17 – Msg_Stream configuration parameters of a Master 

As the Serv_class parameter is equal to 1 this is a high priority message stream using the SRD 
service (since the service parameter is equal to 3). 

The period of this message stream is constant (since the _pdf_period_type parameter is equal 
to zero) at 0.005 s (_pdf_period_par1 parameter). The length of the message is also constant (since 
the _pdf_length_type parameter is equal to zero) at 15 bytes (_pdf_length_par1 parameter). The 
first message does not have any initial offset. The colour of this message stream on the Gant diagram is 
(100, 255, 0) in RGB notation.  

5.2.5. Slave 

A Slave is a compound module which maps into a standard PROFIBUS slave station. It is structured 
similarly to the Master module. The Slave_PHY module is equal to the Master_PHY module. The 
Msg_Stream module is the same module used by the Master module and is used for the same purpose, 
although in the case of a Slave module it generates periodical response messages. The Slave_DLL 
module is a simple module, which maps the PROFIBUS DLL of a slave. 

In each Slave module instance there is one instance of Slave_PHY and Slave_DLL modules. 
The number of the Msg_Stream module instances can be from 1 up to 64. As shown in Figure 5.18 the 
Slave module structure is very similar to the Master module structure presented in Figure 5.10. 

Since the Master_PHY and Msg_Stream modules were already described in Section 5.2.4, in this 
sub-section only the Slave_DLL module will be described.  
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Figure 5.18 – OMNeT++ Slave module 

Figure 5.19 presents the Slave_DLL NED definition. The address of This Station is set on its 
TS parameter. The TSDR parameter is assigned according to the mode, defined in Section 5.2 for these 
types of parameters (which can receive values from PDF functions).  

 
simple Slave_DLL   
 parameters:   
  TS: numeric, 
  _pdf_tsdr_type: numeric, 
  _pdf_tsdr_par1: numeric, 
  …  
 gates:   
  in:  upper_gateIn[],lower_gateIn; 
  out:  upper_gateOut[],lower_gateOut; 
endsimple     

Figure 5.19 – Slave_DLL module NED definition 

5.3. PROFIBUS DLL Basic Implementation 

In this Section an overview of the PROFIBUS DLL basic implementation in both simulators is 
provided. A more detailed description can be found in Annex C. 

In a standard PROFIBUS a slave state machine is composed by two states: OFFLINE and 
PASSIVE_IDLE. In our implementation of both simulators, the slave state machine only uses one 
state, the PASSIVE_IDLE state. 

A slave does not have initiative, it only responds to requests addressed to it. The Slave_DLL 
behaviour depends on the kind of the received frame. In the implementation of both simulators, a slave 
is only able to receive SDN, SRD and FDL_Request_Status request frames. More details about this 
behaviour can be found in Sections C.1.5 and C.1.6 of Annex C. 

The remainder of this Section will focus on the implementation of the Master_DLL and the DLL 
simple modules of the RHW2PNetSim and of the BHW2PNetSim, respectively. For that purpose, in 
this chapter we use the term Master when referring to the PROFIBUS DLL module. 

The operation mode of a standard master PROFIBUS DLL is supported by a state machine 
composed by 10 states (IEC, 2000). For simplification reasons, in both implementations only 8 states 
are considered. 
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According to the PROFIBUS protocol, after turning on the power of a master station it will go 
into the LISTEN_TOKEN state in order to generate the List of Active Stations (LAS) and GAP 
List (GAPL). However, in RHW2PNetSim and BHW2PNetSim all Master module instances start in 
the ACTIVE_IDLE state with all configurations and parameterization performed by the Controller 
module instance, at the simulation setup. In order to start the network simulation operation, the 
Controller module instance sends a token frame to the Master module instance that acts as a 
Mobility Master (MM), in the case of RHW2PNetSim or sends a token frame to the Domain 
Mobility Manager (DMM) of each domain, in the case of the BHW2PNetSim. Then the state 
machine of the Master module instances evolves to the USE_TOKEN state.  

Figure 5.20 presents the Master state machine diagram related to the implementation of the 
PROFIBUS DLL in both simulators. 

In this state machine diagram an oval shape represents a state and an arrow a transition. For 
better identification, within of the oval shape the state identification is written and each transition is 
identified by a number. 

In the description of the Master state machine diagram it is assumed that the Time-Out Time 
(TTO) and the Slot Time (TSL) related timers are automatically started and stopped in the following 
situations. The PROFIBUS protocol, defines that when a master frame’s last bit is transmitted or when 
a master frame’s last bit is received a timer is loaded with the TTO value and is started (hereafter 
referred to as TTO timer). The TTO timer is stopped after receiving the first bit of the following frame. 
The value of this timer is set according to the Eq. 2.2. Whenever a request frame’s last bit is 
transmitted by an initiator that requires either a response or an acknowledgement a timer is loaded with 
TSL parameter value and is started (hereafter referred to as TSL timer). 

When a Master is in the ACTIVE_IDLE state, 3 transitions (1, 19 and 13) are possible. 
Transition 1 is triggered either by the reception of a valid token frame from its Previous Station 
(PS) (see Section C.1.2 for more details), or when TTO expires.  

Transition 19 occurs when a Master receives either a valid frame (without bit errors) not 
addressed to it or if the frame is valid and addressed to it but is not a token frame, for example an 
FDL_Request_Status frame (more details are given in Section C.1.5). If the received frame is an 
invalid frame (containing bit errors) the Master continues in the same state. 

A Master in the ACTIVE_IDLE state continually analyses all received frames. If a token frame 
is received when This Station (TS) is “skipped“ (i.e., the address of TS lies within the address range 
spanned from the sender address to the receiver address in the token frame), then it removes itself from 
the logical ring and evolves to the LISTEN_TOKEN state (transition 13).  

When the Master is in the USE_TOKEN state, i.e., when it holds the token frame, it behaves 
according to the message dispatching procedure (a detailed description of this procedure is presented in 
Section C.1.3). A Master in the USE_TOKEN state can perform one of 4 transitions (2, 3, 5 and 7). 
The Master stays on the same state (transition 2) if it transmits a frame that does not need to receive a 
response frame (e.g., when using the SDN service, see Section C.1.6 for more details). It changes to 
the AWAIT_DATA_RESPONSE state (transition 3) if it sends a message that requires a response 
frame (e.g., when using the SRD service, see Section C.1.6) and returns to the USE_TOKEN state 
when it receives a response frame or the Slot Time (TSL) expires (transition 4).  

Transition 5 occurs, when the Master transmits an FDL_Request_Status frame and evolves to 
the AWAIT_STATUS_RESPONSE state. The Master returns to the USE_TOKEN state (transition 6) 
when it receives either a response frame or the TSL expires (in Section C.1.5 the Gap update procedure 
is described in detail). 

From the USE_TOKEN state it changes to the PASS_TOKEN state (transition 7) when its Token 
Holding Time (THT) expires. The THT is computed at token frame reception according to Eq. 2.1.  

The transitions 8, 9, 10 and 11 are handled by the pass token procedure (a detailed description of 
this procedure is presented in Section C.1.4).  

From the PASS_TOKEN state it evolves to the CHECK_TOKEN_PASS state (transition 8) after 
transmitting a token frame to its Next Station (NS). In the CHECK_TOKEN_PASS state 2 
transitions (9 and 12) can occur. If it detects a valid frame in its domain then it changes to the 
ACTIVE_IDLE state (transition 12). Otherwise, if after expiring TSL no activity is detected it returns to 
the PASS_TOKEN state (transition 9) and stays into these two states (PASS_TOKEN and 
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CHECK_TOKEN_PASS) until passing the token to another station in its LAS or to itself (transition 
11).  
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Figure 5.20 – Master state machine diagram 

In order to detect a defective transceiver when a Master is transmitting a token frame, in the 
TOKEN_PASS state, it also receives the token frame. If it detects a difference between the transmitted 
and received frame it waits, in the CHECK_TOKEN_PASS state, TSL for activity from its NS. If no 
activity is detected after expiring TSL, it again transmits the token frame, if it again detects a difference 
between the transmitted and received frames its state machine evolves to the LISTEN_TOKEN state 
(transition 10). This process is designated as “heardback removal” in (Willig and Wolisz, 2001). 

Whenever a Master evolves to the LISTEN_TOKEN state the LAS is cleared and it starts 
listening on the medium for at least two successive identical token cycles. During this time it is not 
allowed to send or respond to data frames or to accept the token, but it builds the LAS. After that, its 
state machine evolves to the ACTIVE_IDLE state (transition 14).  

The Master state machine evolves to the CLAIM_TOKEN state from the LISTEN_TOKEN 
state when the TTO timer expires (transition 16). In this case there is the need to recover the token 
(Section C.1.1 presents more details about this procedure). In this procedure it transmits two token 
frames addressed to itself and if no difference between transmitted and received frames occur its state 
machine evolves to the USE_TOKEN state (transition 18). Otherwise, the state machine evolves to the 
LISTEN_TOKEN state (transition 17) as a consequence of “heardback removal”.  

5.4. Summary 

This chapter provided a high level overview about the implementation of the main PROFIBUS 
standard functionalities available in both the Repeater and Bridge-based simulators. For details about 
the implementation of these modules the reader is referred to the Annex C.  

The next two chapters describe the implementation of the specific functions required by the 
repeater and bridge-based approaches. 



 



Chapter 6 

Repeater-Based Hybrid Wired/Wireless PROFIBUS 
Architecture Simulation Model 

This chapter describes how the repeater-based approach has been implemented in the Repeater-
Based Hybrid Wired/Wireless PROFIBUS Network Simulator by presenting the main architectural 
modules and its configuration parameters. 

6.1. Introduction 

The Repeater-Based Hybrid Wired/Wireless PROFIBUS Network Simulator (RHW2PNetSim) is 
based on the network model developed within the aims of the RFieldbus project (RFieldbus, 2000a) 
and particularly on the architecture detailed in (Alves, 2003). It has been developed using the 
OMNeT++ discrete event simulation platform, described in the Chapter 4. The RHW2PNetSim is 
composed by 7 main components (modules): HW2PNet, Controller, Master, Slave, Domain, 
ComFunc and Connection_Point.  

The modules HW2PNet, Controller, Master, Slave and Domain control the main PROFIBUS 
functionalities, and they were already detailed in Chapter 5. Therefore in this chapter, only the modules 
which implement the repeater functionalities are described, the ComFunc and Connection_Point 
modules. For the sake of simplicity, the functionalities of the Base Stations (BSs) are incorporated into 
the repeaters and the repeaters are only able to operate in cut-through mode.  

This chapter starts by describing the main architectural components of the RHW2PNetSim and 
its configuration parameters (Section 6.2). Details regarding the implementation of the RHW2PNetSim 
are discussed in Section 6.3. 

6.2. Simulator: Architecture 

In order to model a repeater, two simple modules were developed the Connection_Point and 
ComFunc modules, Figure 6.1 illustrates these modules. 

The Connection_Point is a simple module that establishes the connection with the Domain 
module. A repeater must include at least two of these module instances. The ComFunc is also a simple 
module that links Connection_Point module instances of the same repeater.  

In addition to the ctrl_con and domain_con connections, already referred to in Chapter 5, there 
is another kind of connection: the repeater_con. This kind of connection is used to connect a repeater 
to a Domain module instance. For that purpose the Domain module is provided with a set of input and 
output gates, whose names use the repeater_gate prefix. 

Figure 6.2 depicts a graphical representation of the network presented in Figure 2.3. In this figure 
it is clear that the Controller instance (labeled controller) is able to communicate with all module 
instances, for parameterization and control purposes. Master and Slave module instances are 
connected to their correspondent Domain module instances, symbolized by a rectangle or a cloud for 
the case of wired or wireless domains, respectively. Each repeater is composed by two Connection_ 
Point module instances (labeled cp[x], where x is a number between 0 and 5) and one ComFunc 
module instance (labeled repeater[x], where x can be 0, 1 or 2). Note that, the Connection_Point 
module instance, which is symbolized by a large ball, also models the BS functions. 
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Figure 6.1 – Modules and connections of the RHW2PNetSim 

 

 
Figure 6.2 – Screenshot of the output window of the RHW2PNetSim 

6.2.1. Controller 

The configuration mode used by the Controller assumes that all Master, Slave, Connection_ 
Point and ComFunc module instances have a unique identifier in the overall network. Therefore, each 
module has a parameter called _name. 

Figure 6.3 presents part of the NED definition of the Controller module related to the 
configuration of repeater-based networks. To define the Mobility Master (MM) of the network it is 
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necessary to assign the name of the Master module instance to the _mm parameter. The mobility 
procedure period is defined by the _tmob parameter.  

The parameters _domain and _inter_domain are strings, which define the configuration of the 
network domains and repeaters. Both of them are written using predefined structure based in tags. The 
Controller module instance extracts information from these strings to perform the network 
configuration.  

simple Controller   
 parameters:   
  _mm: string, 
  _tmob: numeric, 
  …  
  _domain:  string, 
  _inter_domain: String; 
endsimple    

Figure 6.3 – Controller module NED definition of the RHW2PNetSim 

Figure 6.4 presents the parameter values related to the Controller module instance, assuming 
the network depicted in Figure 2.3. This file also includes information about MM (Master module 
instance named M5) and about the periodicity (_tmob). 
 

theRHW2PNet.controller._mm="M5" 
theRHW2PNet.controller._tmob=200ms 
… 
theRHW2PNet.controller._domain="\ 
<d><n>D1</n><m></m><s>S6</s><cp>CP8</cp><bs>CP8</bs><pos>400:300</pos></d>\ 
<d><n>D2</n><m>M1:M5</m><s>S1:S2:S3</s><cp>CP6:CP5</cp><bs></bs><pos>200:150</pos></d>\ 
<d><n>D3</n><m>M3:M4</m><s></s><cp>CP9:CP10</cp><bs>CP9</bs><pos>50:300</pos></d>\ 
<d><n>D4</n><m>M2</m><s>S4:S5</s><cp>CP7</cp><bs></bs><pos>250:450</pos></d>" 
 
theRHW2PNet.controller._inter_domain="\ 
<l><n>R1</n><cp>CP5:CP8</cp><pos>400:150</pos></l>\ 
<l><n>R2</n><cp>CP9:CP6</cp><pos>50:150</pos></l>\ 
<l><n>R3</n><cp>CP10:CP7</cp><pos>120:400</pos></l>" 

Figure 6.4 – Configuration file related to the Controller module instance of the RHW2PNetSim 
(excerpt) 

The meaning of most of the tags used on the _domain string has been described in Chapter 5. 
<cp> and </cp> tags enclose the names of the Connection_Point module instances that are 
connected to the Domain module instance, the names must be separated by colon; <bs> and </bs> tags 
enclose the name of the Connection_Point module instance, which operates as a BS of a wireless 
domain. In the particular case of Figure 6.4, the second domain D2, is described by: 
(“<d><n>D2</n><m>M1:M5</m><s>S1:S2:S3</s><cp>CP6:CP5</cp><bs></bs><pos>200:1
50</pos></d>”), it is composed by two Master module instance (M1 and M5), and three Slave 
module instances (S1, S2 and S3) and this Domain module instance is connected to two Connection_ 
Point module instances (CP6 and CP5). The Domain module instance is depicted in the screen at 
position (200,150).  

The parameter _inter_domain is a string that is similar to the _domain string. This string 
defines the repeater configuration, and the meaning of the tags is the following: <r> and </r> define a 
repeater; <n> and </n> enclose the name of the ComFunc module instance; between tags <cp> and 
</cp> and separated by a colon appear the names of the Connection_Point module instances; <pos> 
and </pos> are used to define the location of the repeater. The first repeater presented in Figure 6.4 
(“<r><n>R1</n> <cp>CP5:CP8</cp><pos>400:150 </pos></r>”) is referred to as R1, it is 
composed by two Connection_Point module instances (CP5 and CP8) and is positioned at (400,150). 
Note that, this repeater interconnects domains D1 and D2. 

The Controller module instance stores into internal variables, the structure of the network. By 
manipulating this information it changes the network configuration when wireless mobile stations 
(Master and Slave module instances) move between domains. 
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6.2.2. Domain 

Figure 6.5 presents the Domain simple module NED definition. The length of the Beacon frame is set 
by beacon_len parameter. n_beacon parameter is used to define the number of the Beacon frames 
relayed in the mobility procedure. The time interval between two consecutive Beacon transmissions is 
set on the beacon_gap parameter (tbgap parameter referred to in Section 2.3.3). These parameters are 
used by the Controller module instance to parameterize the Connection_Point module instance 
which is operating as a BS. 

 
simple Domain   
 parameters:   
  _beacon_len: numeric, 
  n_beacon: numeric, 
  beacon_gap: numeric, 
  …  
  _name: string; 
endsimple     

Figure 6.5 – Domain module NED definition of the RHW2PNetSim 

During the mobility procedure a BS will transmit 14 Beacon frames with an interval of 25 µs 
between them and the length of each Beacon frame is equal to 10 bytes (Figure 6.6). 

 
theRHW2PNet.domain[0].beacon_len=10

  
theRHW2PNet.domain[0].n_beacon=14 
theRHW2PNet.domain[0].beacon_gap=25us 
… 
theRHW2PNet.domain[0]._name=”D1” 

Figure 6.6 – Configuration file related to the Domain module instance of the RHW2PNetSim 
(excerpt) 

6.2.3. Parameters _location_vector and _is_mobile_station 

Besides the parameters referred in Chapter 5, Master and Slave modules have two more parameters. 
One called _location_vector and the other called _is_mobile_station, these parameters are 
highlighted in Figure 6.7. The _location_vector is a string which defines the location of each 
Master and Slave module instance during time. In order to limit the size of the configuration files 
used, the _location_vector parameter is written in a compact format. Each location is represented 
by a tuple (n_mob,Dx), where n_mob represents the number of mobility procedures during which the 
Master or Slave module instance will stay on domain Dx.  

The _is_mobile_station parameter is used to define if a Master or a Slave module instance 
models a mobile station (assigned with one) or not (assigned with zero).  

Figure 6.7 depicts part of the configuration file related to a Master module instance, which 
models a wireless mobile station called M3. This station stays in domain D1 for five mobility 
procedures, and then it changes to domain D3 where it will stay for another 10 mobility procedures. 
This sequence of events repeats itself until the end of the simulation. 

 
theRHW2PNet.master[2]._name="M3" 
theRHW2PNet.master[2]._is_mobile_station=1 
theRHW2PNet.master[2]._vector_location="5,D1:10,D3:" 

Figure 6.7 – Configuration file related to the Master module instance of the RHW2PNetSim 
(excerpt) 

In order to set the _location_vector parameter according to the radio channel quality and the 
mobility of wireless mobile station the Mobility Simulator (MSim) has been developed. This simulator 
models the radio wave propagation according to the Log-normal Shadowing model (Rappaport, 1996) 
and the mobility of wireless mobile stations. A detailed description of this simulator is found in 
Chapter 8. 
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6.2.4. Repeater Architecture 

There is no module called repeater, the repeater is in fact an abstraction, since its operation is 
supported by three module instances, one instance of the ComFunc module and two of 
Connection_Point module (Figure 6.8). 

The ComFunc module instance establishes connections between the Connection_Point 
module instances that belong to the repeater through the com_func_con connections. The 
Connection_Point module instances establish the connections to the Domain module instances by 
the repeater_con connections.  
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Figure 6.8 – Repeater’s module instances and their connections 

 ComFunc 

ComFunc is a simple OMNeT++ module. The NED definition of the ComFunc module is given in 
Figure 6.9. The main function of this module is to model the internal relaying delay – trd (see 
Section 2.3.2). 

Frames relayed by the repeater are delayed by this module. The delay value is assigned to the 
parameters with the prefix _pdf_delay.  
 

simple ComFunc   
 parameters:   
  _pdf_delay_type: numeric, 
  _pdf_delay_par1: numeric, 
  _pdf_delay_par2: numeric, 
  _pdf_delay_par3: numeric, 
  _name: string; 
 gates:   
  in:  ctrl_gateIn; 
  out:  ctrl_gateOut; 
endsimple    

Figure 6.9 – ComFunc module NED definition 

Figure 6.10 presents part of a configuration file related to a ComFunc module instance. This 
instance is called R1 and the delay introduced is equal to 30 µs. The parameter _pdf_delay_type 
defines if the delay is constant (0) or random according to a PDF, see Annex A for details. 
  

theRHW2PNet.repeater[0]._name="R1" 
theRHW2PNet.repeater[0]._pdf_delay_type=0 
theRHW2PNet.repeater [0]._pdf_delay_par1=0.00003 

Figure 6.10 – Configuration file related to one ComFunc module instance (excerpt) 

 Connection_Point 

Connection_Point is a simple OMNeT++ module. This module establishes the connections between 
the Domain module instances and assures that a frame is transmitted without time gaps. Additionally, 
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the BS functions are also modelled in this module like for instance, sending Beacon frames during the 
mobility procedure. Figure 6.11 shows the Connection_Point connections.  

Figure 6.12 presents the NED configuration of the Connection_Point module. The inactivity 
time between two consecutive frames (TIDm described in Section 2.3.4) can be assigned in a stochastic 
way. For this reason, the timing delay can be assigned by four parameters. The parameters related to 
the TIDm have the _pdf_tidm prefix. 
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Figure 6.11 – Connection_Point module connections 

simple Connection_Point   
 parameters:   
  _pdf_tidm_type: numeric, 
  _pdf_tidm_par1: numeric, 
  _pdf_tidm_par2: numeric, 
  _pdf_tidm_par3: numeric, 
  _name: string; 
 gates:   
  in:  com_func_gateIn,domain_gateIn; 
  out:  com_func_gateOut,domain_gateOut; 
endsimple     

Figure 6.12 – Connection_Point module NED definition 

Figure 6.13 presents part of a configuration file related to a Connection_Point module instance. 
This instance is called CP8. Since the parameter _pdf_tidm_type is set to zero, then the inactivity 
period between the two consecutive frames is constant and equal to 100 bit times. 

 
theRHW2PNet.cp[3]._name="CP8" 
theRHW2PNet.cp[3]._pdf_tidm_type=0 
theRHW2PNet.cp[3]._pdf_tidm_par1=100 

Figure 6.13 – Configuration file related to the Connection_Point module instance (excerpt) 

6.3. Simulator Implementation 

This simulator encompasses the functions concerning the PROFIBUS (described in Chapter 5), related 
to the domains interconnection and to the mobility procedure. 

As previously mentioned, the repeater model is made up of two simple modules, ComFunc and 
Connection_Point. In our simulator implementation IS and BS functions are supported by the 
modules that model a repeater. It is assumed that the operation mode of the repeater is cut-through.  

6.3.1. Interconnection 

To interconnect different domains it is necessary to convert the received frame to the format of the 
destination domain and transmit the frame with a precise timing which guarantees minimal delays. For 
that purpose, there is the need to know the length of the DLL frame, the Baud_rate parameter value of 
the interconnected domains and how each frame is coded. 

Figure 6.14 and Figure 6.15 illustrate a transaction between a Master module instance named 
M2 and a Slave module instance named S6, according to the network configuration presented in 
Figure 6.4, where M2 belongs to domain D4 and S6 belongs to domain D3. 

In order to simulate bit by bit reception, Connection_Point module instance named CP7 delays 
the frame just enough time for it to know its length. Note that, the number of bits necessary to know 
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the frame length depends on the PhL frame format and the PROFIBUS DLL frame type. For instance, 
wireless PhL frames include a head, tail fields and each DLL character is coded using 8 bits. Wired 
PhL frames do not include any head or tail fields, but each DLL character is coded using 11 bits. 
Concerning the frame length, PROFIBUS DLL has two kinds of frames: fixed and variable length 
frame. In order to know the length, in the first case, the first DLL character (SD field) is enough, but in 
the second case there is the need to receive the second DLL character, the LE field. 
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Figure 6.14 – Wired/wireless interconnection example 
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Figure 6.15 – Simplified timing behaviour of the module instances that model a repeater 

After delaying the frame, CP7 passes the frame to the ComFunc module instance named R3. The 
frame is delayed by R3 during the time defined by a PDF configured by its parameters using the 
_pdf_delay prefix, after that, it passes the frame to the Connection_Point module instance named 
CP10. CP10 computes the frame last bit reception instant and the frame last bit transmission instant in 
order to determine the first bit transmission frame instant in its domain. In this calculation the CP10 
has to respect the idle time (defined by parameters that use _pdf_tidm prefix) between two 
consecutive transmissions.  

The frame is transmitted to the Domain module instance named D3 by CP10 through repeater_ 
con connection. D3 delays the frame according to the frame length and then the frame is transmitted 
through domain_con connections arriving at S6. 

All these delays had been implemented according to the principles presented in (Alves, 2003) 
which guarantees that there is no need to queue a frame in the first repeater which relays a frame. 
Nevertheless, in the following repeaters the queuing of frames might occur. For that reason, each 
Connection_Point module instance is provided with a queue. 

6.3.2. Mobility Procedure 

The mobility procedure is triggered in a periodical fashion. The periodicity is defined by the _tmob 
parameter. In this implementation we assume that the MM is a dedicated master, i.e., it only controls 
the mobility procedure. For that reason, a mobility-related timer is loaded, with a value defined by the 
_tmob parameter, which is started when it starts operating.  

After the mobility-related timer expires and when it holds the token frame, it broadcasts a 
Beacon Trigger (BT) frame. The BT is an unacknowledged frame, therefore after sending the BT 
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frame it waits TID2 to schedule the next action according to the message dispatching procedure 
presented in C.1.3. Usually, it passes the token frame to its Next Station (NS). After sending the BT 
the mobility-related timer is reloaded. 

Connection_Point module instances that are operating as BSs receive a BT frame and after 
relaying the received BT frame they start sending a pre-defined number (defined by n_beacon 
parameter) of Beacon frames (see Section C.2.1 for more details). The BS waits for TIDm before 
transmitting a Beacon frame. 

Wireless mobile stations receive these Beacon frames and changes to domain according to the 
_location_vector parameter, which defines the domain location for each wireless mobile station 
(more details in Section C.2.2). 

6.4. Summary 

This chapter presented the main architectural components used on RHW2PNetSim and some 
implementation details. Additionally, we had also described the format of the NED files required for 
the configuration of the modules used in this simulator. 



Chapter 7 

Bridge-Based Hybrid Wired/Wireless PROFIBUS Network 
Architecture Model 

This chapter describes how the bridge-based approach has been implemented in the Bridge-Based 
Hybrid Wired/Wireless PROFIBUS Network Simulator. It presents the main architectural modules 
and the main configuration parameters. 

7.1. Introduction 

As mentioned in Chapter 2 the Intermediate Systems (IS) of the bridge-based approach operate at Data 
Link Layer (DLL) level as bridges. A bridge can interconnect two or more domains. Although, it is 
assumed that a bridge only interconnects two domains.  

Each bridge is composed by two modified PROFIBUS masters, called Bridge Master (BM). A 
BM is capable of receiving all frames arriving at its physical interface, and forwards them to the other 
BM of the bridge according to the routing information. These BMs operate almost as standard 
PROFIBUS masters and are assigned a PROFIBUS DLL address. Consequently, they take part on their 
domain logical ring. 

This chapter presents the main architectural components of the Bridge-Based Hybrid 
Wired/Wireless PROFIBUS Network Simulator (BHW2PNetSim) in Section 7.2. In Section 7.3, some 
relevant details of the implementation of the BHW2PNetSim are described. 

7.2. Bridge Architecture 

Figure 7.1 illustrates the main building blocks of a two-port bridge. In order to support the required 
functions, there must be a set of mechanisms related to the Inter-Domain Protocol (IDP) and to the 
Inter-Domain Mobility Procedure (IDMP). These mechanisms operate at DLL level and consequently 
the existing PROFIBUS DLL must be adapted. The operation of the IDP and IDMP are managed by 
three components: Bridge Master (BM), Global Mobility Manager (GMM) and Domain 
Mobility Manager (DMM).  

The BM component, which gives the device its name and is mandatory, contains the routing and 
the IDF handling functions which are crucial to the IDP and to the IDMP. These two functions are 
associated with three data structures: the Routing Table (RT), the List of Open Transactions 
(LOT) and the List of Active Stations in Domain (LASD).  

Frames are relayed by a BM according to the information contained in its RT. The LOT is used 
to store information about on going IDT in which the BM assumes the role of BMini (see Chapter 2 for 
details). For the BM which operates as BMres i.e., the last BM in the transaction path, it has to know 
which masters and slaves belong to its domain. Therefore, the LASD is a list of all masters and slaves 
that belong to the domain. 

The other two components, GMM and DMM, are optional and their functions are related to the 
IDMP. The DMM functionalities require two data structures: the List of Bridge Masters in the 
Domain (LBMD) and the List of Wireless Mobile Stations in the Network (LWMSN). The 
LBMD is a list that contains the domain’s BMs addresses and is used in the IDMP inquiry sub phase. 
The LWMSN is list of address of all wireless mobile stations present in the network and is used in the 
IDMP discovery sub-phase. 
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The GMM must also be provided with two data structures: the List of Bridge Masters in 
the Network (LBMN) and the List of Domain Mobility Managers in the Network 
(LDMMN). The LBMN is a list of address of all BMs present in the network and is used to control the 
received RSMP messages during the IDMP Phase 1. The LDMMN contains all network DMM 
addresses and is used to control the received RBT messages during the IDMP Phase 2. 
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Figure 7.1 – Bridge architecture 

Figure 7.1 also shows the Common Functionalities box, which is supported by a shared 
memory area and is responsible for the communication between the two BMs of a bridge. 

7.3. Simulator Architecture  

The BHW2PNetSim was developed using the OMNeT++ discrete event simulation platform. It is 
composed by six main components (modules): HW2PNet, Domain, ComFunc, Slave, Master and 
Controller. Except for the HW2PNet and Controller modules the others can be clearly mapped on 
the main devices of the bridge-based architecture. 

The main features of the HW2PNet, Controller, Master, Slave and Domain modules were 
already detailed in Chapter 5 and the ComFunc module was detailed in Chapter 6. Therefore, only the 
differences and extensions to these modules will be described in this chapter.  

Figure 7.2 shows how the main modules are interconnected. Besides the domain_con and ctrl_ 
con connections (described in Chapter 5), there is another kind of connection called bridge_con. This 
connection is used to model a bridge. In this simulator architecture, there is no module called bridge. A 
bridge is an abstraction which is composed by two Master module instances connected by a ComFunc 
module instance.  

Figure 7.3 shows a graphical representation used by the simulator to represent the network 
scenario shown in Figure 2.12. This network scenario is composed by three bridges. The ComFunc 
module instance of each bridge is labelled bridge[x], where x can be 0, 1 or 2.  

7.3.1. Controller 

Figure 7.4 presents the NED definition of the Controller simple module. To define the GMM it is 
necessary to assign the name of the Master module instance to the _gmm parameter. The parameter 
_tmob is used to define the period of the IDMP. The duration of the GMM_Phase_1_Alert_Timer 
(TGMM-P1Alert), GMM_Phase_1_Abort_Timer (TGMM-P1Abort), GMM_Phase_2_Alert_Timer (TGMM-P2Alert), 
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GMM_Phase_2_Abort_Timer (TGMM-P2Abort), described in Chapter 3, are set by _gmm_phase1_ 
alert_timer, _gmm_phase1_abort_timer, _gmm_phase2_alert_timer and _gmm_phase2_abort_ 
timer parameters, respectively. These parameters are only configured on the Master module instance 
that acts as GMM. 

 

Bridge 

Controller Domain 

Slave 

ctrl_con 

domain_con 

ctrl_con Domain 

Slave 

domain_con 

ctrl_con ctrl_con 

ComFunc bridge_con Master 

domain_con 

Master 

domain_con ctrl_con 
ctrl_con ctrl_con 

bridge_con 

HW2PNet 

 
Figure 7.2 – Modules and connections of the BHW2PNetSim 

 
Figure 7.3 – Screenshot of the output window of the BHW2PNetSim 

 In order to gather the output data files information about aborted IDT and IDMP the 
Controller module is provided with two more parameters (_output_timeout_idt and 
_output_timeout_idmp) apart from the parameters described in Chapter 5. A detailed description of 
the output data files generated by both simulators (the RHW2PNetSim and BHW2PNetSim) is 
presented in Annex D as well as some tools used to extract information from them. 
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If _output_timeout_idt parameter is set equal to one, it means that the BM module instance 
will be configured to gather information about which IDT transactions were aborted. In the same way, 
if _output_timeout_idmp parameter is set equal to one the BMs, DMMs and GMM will be 
configured to gather information about IDMP timers expiration. 
  

simple Controller   
 parameters:   
  _gmm: string, 
  _tmob: numeric, 
  _gmm_phase1_alert_timer: numeric, 
  _gmm_phase1_abort_timer: numeric, 
  _gmm_phase2_alert_timer: numeric, 
  _gmm_phase2_abort_timer: numeric, 
  …  
  _output_timeout_idt:   numeric, 
  _output_timeout_idmp: numeric, 
  …  
  _domain: string, 
  _inter_domain: string; 
endsimple     

Figure 7.4 – Controller module NED definition of the BHW2PNetSim 

The parameters _domain and _inter_domain (bold lines in Figure 7.5) are strings, which define 
the configuration of domains and bridges. Both of them are written using a predefined structure based 
in tags. Figure 7.5 presents an example of the parameter values related to the Controller module 
instance for the network depicted in Figure 2.12.  
 

theBHW2PNet.controller._gmm="M6" 
theBHW2PNet.controller._tmob=200ms 
theBHW2PNet.controller. _gmm_phase1_alert_timer =20ms 
theBHW2PNet.controller. _gmm_phase1_abort_timer =30ms 
theBHW2PNet.controller. _gmm_phase2_alert_timer =10ms 
theBHW2PNet.controller. _gmm_phase2_abort_timer =20ms 
 
theBHW2PNet.controller. _output_timeout_idt =1 
theBHW2PNet.controller. _output_timeout_idtmp=1 
… 
theBHW2PNet.controller._domain="\ 
<d><n>D1</n><m>M8:M3</m><s></s><dmm>M8</dmm><pos>400:300</pos></d>\ 
<d><n>D2</n><m>M6:M1:M5</m><s>S1:S2:S3</s><dmm>M6</dmm><pos>200:150</pos></d>\ 
<d><n>D3</n><m>M9:M10:M4</m><s>S6</s><dmm>M9</dmm><pos>50:300</pos></d>\ 
<d><n>D4</n><m>M7:M2</m><s>S4:S5</s><dmm>M7</dmm><pos>250:450</pos></d>" 
 
theBHW2PNet.controller._inter_domain="\ 
<b><n>B1</n><m>M8:M5</m><pos>350:150</pos></b>\ 
<b><n>B2</n><m>M6:M9</m><pos>50:150</pos></b>\ 
<b><n>B3</n><m>M10:M7</m><pos>120:400</pos></b>" 

Figure 7.5 – Configuration file related to the Controller module instance of the BHW2PNetSim 
(excerpt) 

The meaning of the tags used in the _domain parameter was already defined in Chapter 5. The 
parameter _inter_domain defines the configuration of a bridge. The meaning of the tags is similar to 
that described in Chapter 6 for the repeaters. Tags <b> and </b> define a bridge; <n> and </n> are 
used to set the name of the ComFunc module instance; between tags <m> and </m> enclose the names 
of the Master module instances composing a bridge separated by colon; <pos> and </pos> indicate 
the position of the ComFunc module instance for graphical representation purposes.  

The first bridge presented in Figure 7.5 (“<b><n>B1</n><m>M5:M8</m><pos>350:150 
</pos></b>”) is referred to as B1 and it is composed by two Master module instances (M5 and M8), 
which are depicted at position (350,150). This bridge interconnects two domains D1 and D2. 

The Controller module instance use the _domain and _inter_domain parameters information 
to perform the parameterization of the module instances, such as the RT of each BM, LBMD of each 
DMM and LDMMN of a GMM, just to mention some parameters. It also stores, in internal variables, 
the structure of the network. Using this information the network configuration can be changed when a 
Master or Slave module instance moves between wireless domains.  



Bridge-Based Hybrid Wired/Wireless PROFIBUS Architecture Simulation Model 71 

7.3.2. Domain 

Figure 7.6 presents the Domain module NED definition. The _dmm_idmp_abort_timer parameter is 
used to set the duration of the DMM DMM_IDMP_Abort_Timer (TDMM-IDMPAbort) of this domain. The 
number of Beacon frames that are transmitted by DMM during the IDMP and its length are defined in 
the n_beacon and beacon_len parameters, respectively. 
 

simple Domain   
 Parameters:   
  _dmm_idmp_abort_timer: numeric, 
  _n_beacon: numeric, 
  _beacon_len: numeric, 
  …  
  _name: string; 
endsimple     

Figure 7.6 – Domain module NED definition of the BHW2PNetSim 

Figure 7.7 shows a configuration example of a domain in which the IDMP must end after 40 ms 
since the DMM receives a PBT message from the GMM and the DMM has to transmit 14 Beacon frames 
during Phase 3 of the IDMP. The length of each of Beacon frame is 10 bytes. 
 

… 
theBHW2PNet.domain[0]._dmm_idmp_abort_timer=40ms 
theBHW2PNet.domain[0]._n_beacon=14 
theBHW2PNet.domain[0]._beacon_len=10 
… 
theBHW2PNet.domain[0]._name=”D1” 

Figure 7.7 – Configuration file related to the Domain module instance of the BHW2PNetSim 
(excerpt) 

7.3.3. Master 

On the Bridge-based Hybrid Wired/Wireless PROFIBUS simulator a Master module can be used to 
simulate a PROFIBUS master (wired or wireless) or a BM. It is composed by three modules. Two of 
them are simple modules (Master_PHY and Msg_Stream) and the other is a compound module 
(Master_DLL). As described in Section 5.2.4, each Master module instance is composed by one 
instance of Master_PHY and Master_DLL modules and at most 64 Msg_Stream module instances.  

This kind of Master module (Figure 7.2 and Figure 7.8) is connected to the Domain module 
(through gates domain_gateIn and domain_gateOut) and it can be connected to the ComFunc module 
(through gates bridge_gateIn and bridge_gateOut), when it operates as a BM.  

Master_PHY and Master_DLL model the PhL and DLL of the PROFIBUS protocol, respectively. 
Additionally, the Master_DLL also implements the IDP and IDMP functions, namely the ones related 
to the BM, the DMM and the GMM as well as the necessary extension to the PROFIBUS DLL. These 
modules are hierarchically organized as illustrated in Figure 7.8.  

Figure 7.9 presents part of a Master module NED definition (the omitted parameters were 
defined in Chapter 5). Concerning the parameters presented some were described in Chapter 5 like TS, 
_name and _num_streams parameters, while _is_mobile_station and _location_vector 
parameters were detailed in Section 6.2.3 of the Chapter 6. 

When a Master module instance is a BM there is the need to assign two timers. One related to 
the entries in its LOT (_bm_idt_abort_timer parameter) and the other one related to the duration of 
the IDMP (_bm_idmp_abort_timer parameter). See Section 3.2.1 and Section 3.3.3 for details.  

Figure 7.10 shows part of the configuration file related to one Master module instance named 
M10. If this Master module instance acts as a BM all IDTs opened in its LOT must be finalized within 
20 ms after being created (_bm_idt_abort_timer parameter) and the IDMP must end 40 ms after a 
Start_Mobility_Procedure (SMP) message has been received (defined by the _bm_idmp_abort_ 
timer parameter). 
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In the following section a description of the Master_DLL module and its interactions are 
presented. In Chapter 5, a detailed description of the Master_PHY and Msg_Stream modules can be 
found. 
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Msg_Stream[N] Msg_Stream[0] 
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Figure 7.8 – OMNeT++ Master module composition of the BHW2PNetSim 

 
module Master   
 parameters:   
  TS:  numeric, 
  _station_mobile: string, 
  _vector_location: string, 
  _bm_idt_abort_timer: numeric, 
  _bm_idmp_abort_timer: Numeric, 
  …  
  _name: string; 
 submodules:   
  …  
  dll_layer:  Master_DLL; 
   parameters: 
   TS=TS, 
   _vector_location_location_vector, 
   _bm_idt_abort_timer _bm_idt_abort_timer 
   _bm_idmp_abort_timer=_bm_idmp_abort_timer 
   gatesize: 
   upper_gateOut[_num_streams],  
   upper_gateIn[_num_streams];  
  …  
 …   
endmodule     

Figure 7.9 – Master module NED definition of the BHW2PNetSim 

Master_DLL 

As mentioned a Master_DLL module models the PROFIBUS DLL and the necessary functions to 
support part of the IDP and IDMP functionalities. Consequently, in the BHW2PNetSim a Master 
module, besides modelling a simple PROFIBUS DLL master, can also operate as a BM and/or as a 
DMM and/or as a GMM. For that reason, the Master_DLL module is a compound module composed 
by 4 simple modules: DLL, BM, DMM and GMM, as shown in Figure 7.11. 
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The DLL module models the PROFIBUS DLL as well as the required adaptations in order to 
support the IDP and the IDMP. BM, DMM and GMM modules model IDP and IDMP agents. 

  
theBHW2PNet.master[9].TS=10 
theBHW2PNet.master[9]._name="M10" 
theBHW2PNet.master[9]._idt_error_timer=20ms 
theBHW2PNet.master[9]._idmp_error_timer=40ms 

Figure 7.10 – Part of configuration file related to Master module instance 

The DLL module (Figure 7.8 and Figure 7.11) is directly connected to every module that 
composes a Master_DLL module, and also to the Master_PHY and the Msg_Stream modules through 
the gates of the Master_DLL. It is connected to the Master_PHY module instance through 
lower_gateIn and lower_gateOut gates and it is connected to N Msg_Stream module instances 
through gates upper_ gateIn[x]and upper_gateOut[x]. Similarly, The BM module is connected to 
ComFunc module instance through gates bridge_gateIn and bridge_gateOut. 
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Figure 7.11 – OMNeT++ Master_DLL module composition 

Figure 7.12 presents the DLL NED definition. Its NED definition is very simple and is very 
similar to the definition of the Master_DLL module presented in Chapter 5, except for the definition of 
the bridge gates. 
 

simple DLL      
 parameters:      
  TS:  numeric,    
  _pdf_tid1_type: numeric,    
  _pdf_tid1_par1: numeric,    
  …     
  _pdf_tid2_type: numeric,    
  _pdf_tid2_par1: numeric,    
  …     
  _pdf_tsdr_type: numeric,    
  _pdf_tsdr_par1: numeric,    
  …     
 gates:      
  in:  upper_gateIn[],lower_gateIn,bridge_gateIn; 
  out:  upper_gateOut[],lower_gateOut,bridge_gateOut; 
endsimple        

Figure 7.12 – OMNeT++ DLL module NED definition 
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The BM module is a simple module that models the mechanisms necessary for the IDP and the 
IDMP-related functions. Figure 7.13 presents the BM NED definition. The address of the BM (the same 
of the Master module) module instance is set by the TS parameter.  
 

simple BM   
 parameters:   
  TS:  numeric, 
  _bm_idt_timer: numeric, 
  _bm_idmp_abort_timer: numeric, 
 gates:   
  in:  bridge_gateIn,dll_gateIn; 
  out:  bridge_gateOut,dll_gateOut; 
endsimple     

Figure 7.13 – OMNeT++ BM module NED definition 

Whenever a new transaction is open in the LOT, an IDT-related timer is started, which is used to 
clear the transaction from the LOT when it expires. The value of this timer is assigned by the 
_bm_idt_timer parameter. In the same way, at the reception of a SMP message the 
BM_IDMP_Abort_Timer (TBM-IDMPAbort) is loaded and started. This timer is used to detect errors during 
the evolution of the IDMP. The value of this timer is assigned by _bm_idmp_abort_timer parameter.  

The BM operation depends on its Routing Table (RT) and on its List of Active Stations 
in Domain (LASD). These elements are generated by the Controller module instance at simulation 
initialisation and are updated in run time. 

The DMM module is a simple module that models the DMM functions required by the IDMP. This 
module is responsible for controlling Phase 3 and Phase 4 of the IDMP 

Figure 7.14 depicts the DMM module NED definition in which there is only one parameter (TS 
parameter). The LBMD and LWMSD are generated by the Controller module instance at simulation 
initialisation and are updated in run time. There are other parameters that must be assigned to the DMM 
module like _dmm_idmp_abort_timer, _n_beacon and _beacon_len parameters for instance, but to 
simplify the configuration procedures, they are assigned to the Domain module, instead. 

 
simple DMM   
 parameters:   
  TS:  numeric, 
 gates:   
  in:  dll_gateIn; 
  out:  dll_gateOut; 
endsimple     

Figure 7.14 – OMNeT++ DMM module NED definition 

The GMM module is a simple module that models the GMM required functionalities. This module 
is responsible for the control of Phase 1 and Phase 2 and also the beginning of Phase 3 of the IDMP. 
For its operation, the GMM must be provided with the LBMN and also with the LDMMN. These lists are 
also generated by the Controller module instance at simulation initialisation.  

The IDMP is triggered in a periodical fashion. The value for this period is assigned to the 
Controller module through the _tmob parameter. Figure 7.15 depicts the GMM module NED definition 
in which there is only one parameter (TS parameter).  

 
simple GMM   
 parameters:   
  TS:  numeric, 
 gates:   
  in:  dll_gateIn; 
  out:  dll_gateOut; 
endsimple     

Figure 7.15 – OMNeT++ GMM module NED definition 
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7.4. Simulator Implementation 

7.4.1. Bridge IDP Functionalities 

When a frame is received by a BM it tests if the addressed station (using the Destination Address 
(DA) of the frame and its RT) is reached by forwarding the frame to the other BM of the bridge. If the 
test succeeds then the frame is forwarded to the ComFunc module instance. The ComFunc module relays 
the frame to the other BM that composes the bridge. The frame received from the ComFunc is passed by 
the BM to the DLL which queues the message. Figure 7.16 illustrates the interconnection schema 
between two BMs.  

In Section C.3.1 a detailed description of the IDP procedures can be found, namely: the receive 
frame (from ComFunc) procedure; the receive frame (from Domain) procedure and the send IDF 
procedure. 
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Figure 7.16 – Interconnection schema between two BMs 

7.4.2. Operation of the IDMP related Agents 

 Global Mobility Manager (GMM) 

The operation mode of the GMM is based on the state machine diagram illustrated in Figure 7.17. The 
state machine of the GMM is composed by three states: INACTIVE, WRSMP (Wait Ready to Start 
Mobility Procedure) and WRBT (Wait Ready for Beacon Transmission).  

The state machine diagrams shown in this chapter use an oval shape representing a state and an 
arrow for a transition. For better identification, the name of each state is written within the oval shape 
and each transition is identified by a number. 

The IDMP is triggered in a periodic a fashion. At power on, the GMM enters into the INACTIVE 
state, and the IDMP-related timer is loaded with a time defined by the _tmob parameter. When the 
IDMP-related timer reaches zero the GMM sends a Start_Mobility_Procedure (SMP) message 
(starting IDMP Phase 1) and the state machine evolves to the WRSMP state (transition 1). In order to 
detect and handle IDMP errors two timers are started: TGMM-P1Alert and TGMM-P1Abort. The duration of each 
timer is defined by the _gmm_phase1_alert_timer and _gmm_phase1_abort_timer parameters, 
respectively.  

It stays in the WRSMP state until it receives a Ready_to_Start_Mobility_Procedure (RSMP) 
message from every BM (transition 2) in the network. However, if the TGMM-P1Alert expires before the 
GMM receives a RSMP from every BM in the network, then it re-sends a SMP message and waits in the 
WRSMP state until it receives RSMP messages from BMs which had not replied. If it receives the 
remaining RSMP messages before the expiration of the TGMM-P1Abort then it sends a Prepare_for_ 
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Beacon_Transmission (PBT) message and evolves to the WRBT state (transition 3). Otherwise, it 
aborts the IDMP and returns to the INACTIVE state (transition 6). 

When the GMM sends a PBT message, Phase 2 starts and it evolves to the WRBT state. In the same 
way, to detect and handle errors during Phase 2 two timers are loaded and started: TGMM-P2Alert and 
TGMM-P2Abort. The timer TGMM-P2Alert is loaded with a time defined by the _gmm_phase2_alert_timer 
parameter while the TGMM-P2Abort is loaded with a time defined by the _gmm_phase2_abort_timer 
parameter. It stays in this state until it receives a Ready_for_Beacon_Transmission (RBT) message 
from every DMM in the network. If TGMM-P2Alert expires before the GMM receives a RBT from every DMM in 
network, then it re-sends a PBT message and waits in WRBT state for the reception of RBT messages 
from the DMMs in lack. If TGMM-P2Abort expires before the GMM receives a RBT from the remainder DMMs, 
then it aborts the IDMP and evolves to INACTIVE state (transition 5). Otherwise, it sends the Start_ 
Beacon_Transmission (SBT) message and evolves to INACTIVE state (transition 5). 
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Figure 7.17 – GMM state machine 

A detailed description of the procedures related to the GMM operation can be found in Section 
C.3.2. 

 Bridge Master (BM) 

The role of a BM in the IDMP is based on the state machine, presented in Figure 7.18. The state 
machine of the BM is composed of the 3 states: INACTIVE, WIDT_END (Wait Inter-Domain 
Transactions End) and WINQUIRY (Wait Inquiry). 

The BM role during the evolution of the IDMP is essential in ensuring the finalization of pending 
IDTs and in the relaying of IDMP-related messages. When the IDMP is not active the BM is in the 
INACTIVE state. In this state, a BM can update its RT according to the information contained into 
Route_Update (RU) messages (transition 1).  

When a BM receives a SMP message the timer BM_IDMP_Abort_Timer (TBM-IDMPAbort) is loaded 
with the value of the _bm_idmp_abort_timer parameter and is started. It evolves to either 
WIDT_END state (transition 2) or WINQUIRY state (transition 3), depending if its LOT is empty or 
not, respectively. 

In the WIDT_END state a BM waits until all open IDTs contained in its LOT are finalized 
(transition 4). In this state, if it receives a duplicated SMP message, then it replies with a RSMP 
message. After this, the BM will not accept new IDTs. When all IDTs have been completed, it sends a 
RSMP message to the GMM and enters into the WINQUIRY state (transition 5).  

In the WINQUIRY state BM only communicates with its domain DMM using the Inquiry service. 
In this state, when a BM receives an Inquiry request (IQ_REQ) message (transition 6) and if there is a 
IDMP-related message on the DLL high priority output message queue, then it commands the DLL to 
transmit that message as a response, otherwise no response is transmitted. In this state, if it receives 
another SMP message, then it will reply with another RSMP message (transition 6). 

When a BM receives a PBT message it clears all wireless mobile station related entries in its RT 
and stays in the same state. When it receives a SBT message it changes into INACTIVE state 
(transition 7) and the TBM-IDMPAbort is stopped.  

If the TBM-IDMPAbort expires the BM evolves to the INACTIVE state from either the WIDT_END 
state (transition 8) or WINQUIRY state (transition 7). 
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A more detailed description of the procedures that support this transition is presented in Section 
C.3.2. 
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Figure 7.18 – BM state machine 

 Domain Mobility Manager (DMM) 

The operation mode of the DMM is based on the state machine diagram presented in Figure 7.19. The 
state machine of the DMM is composed of five states: INACTIVE, WTOKEN (Wait Token), 
INQUIRY, BEACON_TX (Beacon Transmission) and IDENT (Identification). 

The DMM goes into the INACTIVE state after power-on. When the DMM receives a PBT message, 
the DMM_IDMP_Abort_Timer (TDMM-IDMPAbort) is loaded with _dmm_idmp_abort_timer parameter 
value and is started. Then, it evolves to either WTOKEN state (transition 2) or INQUIRY state 
(transition 3), if the DLL is holding the token or not, respectively. If the DLL is holding the token at 
reception of a PBT message, it sends a RBT to the GMM and its state machine evolves to the INQUIRY 
state (transition 2), otherwise it evolves to the WTOKEN state (transition 1) and waits for the token 
frame reception. As soon as its DLL receives the token frame, it sends a RBT message to the GMM and 
evolves to the INQUIRY state (transition 3).  
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Figure 7.19 – DMM state machine 

Thereafter, the DMM uses the Inquiry service in order to exchange IDMP-related messages with 
the BMs present in its domain (transition 5). If a DMM does not have any other BM belonging to its 
domain, then it transmits Void frames in order to maintain the network activity. When it is in the 
WTOKEN state or in the INQUIRY state, a DMM may again receive a PBT message, transition 4 and 5, 
respectively. If a DMM is in the WTOKEN state then it again checks if the DLL is holding the token. If it 
is, it sends again a RBT message and evolves to INQUIRY state (transition 3). It also sends another 
RBT message if it is already in the INQUIRY state (transition 5). 

 When a DMM receives a SBT message from the GMM two transitions may occur (transition 6 or 
13). The DMM evolves either to INACTIVE state, if it is a wired domain (transition 13), or to the 
BEACON_TX state (transition 6), if is a wireless domain. The TDMM-IDMPAbort is stopped in both cases.  

In the BEACON_TX state it transmits (transition 7) a predefined number of Beacon frames 
(defined by the _n_beacon parameter). It is in this Beacon frame transmission period that wireless 
mobile stations may change to a new domain. When this period ends (transition 8) the DMM evolves to 
the IDENT state and the DMM tries to detect if wireless mobile stations are present in its domain by 
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inquiring them using Discovery request (D_REQ) messages (transition 9). If wireless mobile stations 
are detected then it broadcasts a RU message and its state machine evolves to the INACTIVE state 
(transition 10). 

If the TDMM-IDMPAbort timer expires its state machine evolves to the INACTIVE state from either 
WTOKEN or INQUIRY states. This event is supported by transitions 12 and 14, respectively. When 
the TDMM-IDMPAbort expires it means that no wireless mobile stations have entered or left of domain, and 
in order to update the RT of the BMs, a RU message is broadcasted by the DMM with information about 
which wireless mobile stations continue in its domain. 

Section C.3.2 presents a detailed description of the DMM procedures that support it state machine 
transitions. 

 PROFIBUS master DLL 

The IDMP has been designed in order to keep the number of protocol modifications low, therefore 
most of the functions can be implemented as an independent module above the DLL or at PhL level 
(like channel assessment functionalities required by the mobile wireless stations). However, some 
functionality related to the DMM must be implemented at the DLL level. Figure 7.20 depicts the 
changes required in the state machine of the DLL of a Master to support the functions required by a 
DMM.  

The operation of the DLL is based on the state machine diagram present in Figure 7.20. There is 
the need for five more states: INQUIRY_MODE, WAIT_INQUIRY_RESPONSE, BEACON_TX 
(Beacon Transmission), DISCOVERY and AWAIT_DISCOVERY_RESPONSE.  

After beginning the IDMP the DLL state machine of a BM which also operates as a DMM, evolves 
according to the IDMP message received and the current state of the DMM state machine. In this case, 
i.e., when a Master is also acting as a DMM then it repeatedly sends messages. During the mobility 
procedure IDMP-related messages have more priority than other messages, even the PROFIBUS high 
priority messages. 

After the DMM state machine has left the INACTIVE state, the DLL enters into the 
INQUIRY_MODE state at the reception of the token (transition 20) or after completing any task when 
it is holding the token (transition 21).  

In the INQUIRY_MODE state four transitions may occur (transition 22, 23, 25 and 26). If it 
sends an Inquiry request (IQ_REQ) message then the DLL evolves to the WAIT_INQUIRY_ 
RESPONSE state (transition 19) and when it detects a valid frame or the TSL expires its state machine 
evolves to the INQUIRY_MODE state (transition 24). At this moment the DLL notifies the DMM about 
what happened.  

In the INQUIRY state, the DMM commands its domain BMs (if it is the case) to send messages. For 
that purpose, it sends IQ_REQ messages to its domain BMs in sequence, allowing them to transmit any 
mobility–related messages on their output message queue (transition 22). 

From the INQUIRY_MODE state the DLL state machine can evolve to the USE_TOKEN state 
(transition 25) or to the BEACON_TX state (transition 26). If the domain’s type is wired the DLL state 
machine evolves to the USE_TOKEN state and the DMM state machine evolves to the INACTIVE state. 
Therefore, the IDMP ends and the DLL performs another action according to the message dispatching 
procedure presented in Section C.1.3. If the domain is wireless, then the DLL evolves to the 
BEACON_TX state and the DMM state machine also evolves to the BEACON_TX state. 

When the DMM is in the BEACON_TX state it passes to the DLL a number of Beacon messages 
defined by _n_beacon parameter (transition 27). 

At the end of the Beacon messages transmission the DMM state machine evolves to the IDENT 
state and the DLL state machine evolves to the DISCOVERY state (transition 28). When the DMM is in 
the IDENT state it sends Discovery messages (D_REQ) addressed to the wireless mobile stations to 
the DLL, in order to detect which stations belong to its domain. When the DLL sends D_REQ message 
its state machine evolves to the AWAIT_DISCOVERY_RESPONSE state (transition 29) and, as soon 
as, it receives a response or when TSL expires, it returns to the DISCOVERY state (transition 30). 
Whenever this happens, the DMM is notified and in case it has received a message, it passes it to the DMM. 
When this operation ends, the DMM builds and broadcasts RU messages 
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Figure 7.20 – DLL state machine (IDMP) 

After that, the DMM state machine evolves to the INACTIVE state and the DLL state machine 
enters into the USE_TOKEN state (transition 31). Therefore, the IDMP ends and DLL perform another 
action according to the dispatching message procedure presented in Section C.1.3. 

In order to handle transmission errors of the RU message, when the IDMP is not active, the DMM 
sends in a periodical fashion D_REQ messages to wireless mobile stations and if the wireless mobile 
stations acknowledge positively the DMM sends a RU message containing information about the new 
stations in a domain. When the DLL sends the D_REQ message its state machine evolves to the 
AWAIT_DISCOVERY_RESPONSE state (transition 32) and returns to USE_TOKEN state (transition 
33) when it receives a response or TSL expires. 

Section C.3.2 presents a detailed description of the DLL procedures that these transitions. 

7.5. Summary 

This chapter presented the main architectural components of a bridge and the implementation of the 
Bridge-Based Hybrid Wired/Wireless PROFIBUS Network Simulator. Additionally, we have also 
described the format of the NED files required for the configuration of the modules used in this 
simulator. 

The following chapters will present the mobility simulator, used to simulate the physical 
displacement of the wireless mobile station and results obtained by the simulators. 



 



Chapter 8 

Mobility Simulator 

In order to achieve more realistic simulation results it is necessary to know, at which points in time 
a wireless mobile station moves between different wireless domains. To obtain this information a 
tool was developed which simulates the mobility of wireless stations over a factory floor and the 
signal quality of the different wireless domains at station location – the Mobility Simulator. This 
chapter describes this tool. 

8.1. Introduction 

Every radio technology has a limited physical coverage area within which radio communications can 
be performed in acceptable conditions. The area characteristics depend on several aspects such as the 
dimensions and layout of obstacles, the existence of electromagnetic interference and the radio 
technology (including its antenna type) in use. Therefore, to cover wider areas it is necessary to divide 
the application area into several radio cells, each one operating at its own radio channel.  

While moving wireless mobile stations will always try to use the best radio cell signal to 
communicate, therefore these stations will belong to different radio cells, also called domains within 
the context of this dissertation. The domain, to which a wireless mobile station belongs, depends on its 
location over time and on the signal strength in that location. In a simplified model the signal strength 
depends on the distance to the wireless cell base station. 

There are several models to estimate the radio signal strength (Rappaport, 1996). Simple models 
estimate radio signal strength between a transmitter and a receiver based solely on the distance 
between them. More sophisticated models use environment information, such as buildings, mountains, 
wall materials and location of obstacles. These models require a very detailed representation of the 
objects in the environment and are computationally very demanding.  

This chapter describes the Mobility Simulator (MSim) which simulates the mobility of wireless 
mobile stations and the radio signal strength on the current wireless mobile station location. With this 
information it is possible to generate a vector containing the wireless domains to which the wireless 
mobile station belongs. That information is used by the Repeater-Based Hybrid Wired/Wireless 
PROFIBUS Network Simulator (RHW2PNetSim) and in the Bridge-Based Hybrid Wired/Wireless 
PROFIBUS Network Simulator (BHW2PNetSim), in order to determine the points in time at which the 
stations must move to another domain. The results from this simulator are feed into the other 
simulators on the content of the _location_vector parameter. 

The MSim has been developed using an open source high performance 3D graphics toolkit called 
OpenSceneGraph (Barros, 2005) and the C++ programming language.  

This chapter is structured as follows. A brief description of the simulation environment used to 
develop the MSim is presented in Section 8.2. A detailed description of the adopted radio signal model 
is given in Section 8.3. Section 8.4 presents a description of the simulation model of the MSim. The 
architecture of the MSim and the simulator configuration are presented in Section 8.5 and Section 8.6, 
respectively. The output data files generated by this simulator are presented and described in Section 
8.7. 



82  Mobility Simulator 

8.2. OpenSceneGraph 

The OpenSceneGraph  is an open source cross platform graphical toolkit for the development of high 
performance graphical applications such as visual simulation, flight simulation games, virtual reality, 
scientific visualization and modelling. Based around the concept of scene graph (detailed below), it 
provides an object oriented framework on top of OpenGL freeing the developer from implementing 
and optimizing low level graphics calls, and provides many additional utilities for rapid development 
of graphics applications. 

Written entirely in standard C++ and OpenGL, it makes full use of the Standard Template 
Library and it runs on all Windows platforms, OSX, GNU/Linux, IRIX, Solaris and FreeBSD 
operating systems. 

8.2.1. Scene Graph Concept 

The scene graph concept is tree-like. It starts with a top-most root node which encompasses the whole 
virtual world, be it 2D or 3D. The world is then broken down into a hierarchy of nodes representing 
spatial groupings of objects, object positions, object animations, or definitions of logical relationships 
between objects. The leaves of the graph represent the physical objects themselves, the drawable 
geometry and their material properties.  

A scene graph is not a complete game or simulation engine, although it may be one of the main 
components of such an engine. Its primary focus is the representation of 3D worlds, and efficient 
rendering. Physics models, collision detection and audio are left to other development libraries that a 
user may integrate with it, like Open Dynamics Engine (Smith, 2004). 

8.2.2. OpenGL 

OpenGL (Shreiner, Woo et al., 2005) is a software interface to the graphical hardware. This API 
consists of about 150 distinct commands that developers use to specify the objects and operations 
needed to produce interactive 2D and 3D applications.  

OpenGL is designed as a streamlined, hardware-independent interface to be implemented on 
many different hardware platforms. In order to achieve these qualities, no commands for performing 
windowing tasks or obtaining user input are included in OpenGL.  

OpenGL does not provide high-level commands for describing models of 2D and 3D objects. 
With OpenGL, models must be built from a small set of geometric primitives (points, lines, and 
polygons). 

8.3. Wireless Communications: Radio Signal Propagation  

In wireless communication the information is delivered to the transmitter and modulated into radio 
waves. The radio wave is radiated through the air, using a radio channel, to the receiving antenna. At 
the receiving antenna, the radio wave is demodulated and the transmitted information is extracted 
(Figure 8.1). 

In a wireless communication based on Base Station (BS), the coverage area is divided into small 
coverage areas (called cells) in which wireless communications are all relayed by a BS. In such 
systems, all stations transmit on one channel (uplink) and listen on a second channel (downlink). The 
BS functions are to receive a frame from one station through its uplink channel and retransmit the 
frame on its downlink channel.  

Several aspects have influence in the quality of wireless communications. The transmission path 
between transmitter and receiver can vary from a simple line-of-sight to one severely obstructed by 
objects, like buildings, mountains and other surrounding objects. These objects can cause reflection, 
diffraction and scattering of the radio waves.  

Reflection of the radio waves occurs when the radio wave impinges upon an object which has 
very large dimensions compared to the wavelength. Diffraction occurs when a radio wave encounters 
obstructions and propagates around the edges, corners and behind the obstruction causing secondary 
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radio waves to form behind the obstruction. Scattering, results from rough surfaces whose dimensions 
are of the order of the wavelength, which causes the reflected energy to scatter in all directions.  

Information source 

Transmitter 

Information destination 

Receiver 

Channel 

 
Figure 8.1 – Wireless communication model 

Additionally, the objects could be perfect dielectric, perfect conductor or in-between. A dielectric 
object absorbs some of the radio wave energy, while the remainder is reflected back to the medium. A 
perfect dielectric object absorbs all radio wave energy without reflection. A perfect conductor reflects 
all radio wave energy. As a consequence, a radio wave breaks into several parts so that the received 
signal is a multiple delayed copy of the transmitted signal. This phenomenon is known as multipath 
propagation.  

Radio wave quality depends on the type of antennas, the frequency and the bandwidth. On the 
other hand, the strength of a radio wave decreases as the distance between transmitter and receiver 
increases (fading) and a radio wave may be altered due to electromagnetic interference and noise.  

Another aspect is, the Doppler spread. Doppler spread results when radio waves transmitted to or 
from a moving device undergo a shift in frequency if transmit-receive distance changes with time. The 
difference in frequency of the received signal and the transmitted signal is called the Doppler shift. In a 
multipath propagation the angles of arrival of the multipath components are different and each has a 
different Doppler shift.  

Consequently, the wave propagation is very difficult to characterize, because it requires a very 
detailed representation of the objects in the environment, and is computationally very complex to treat. 

In (Tranter, Shanmugan et al., 2003) several simulation models for radio wave propagation are 
presented. In (Rappaport, 1996) the author presents the main wireless communication principles and 
more specifically it also presents some models for radio wave propagation. According to this author 
the Log-normal Shadowing is a more general and widely-used model. In this models the power at the 
receiver (Pr(d)) can be calculated as follows: 

rttr GdPLGPdP +−+= )()(
 

(8.1) 

where Pt is the transmitted power, Gt is the transmitter antenna gain, Gr is the receiver antenna gain, d 
is the distance between transmitter and receiver in meters. PL(d) is the average path loss at distance d 
between transmitter and receiver and is given by: 
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where n is the path loss exponent which indicates the rate at which the path loss increases with 
distance. Xσ is the shadowing term (the zero-mean Gaussian random variable in dB with standard 
deviation of σ). PL0(d0) is the free-space path loss distance d0 (d0 is the close-in reference distance 
which is determined from measurements close to the transmitter) and is given by: 
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where λ is the wavelength in meters and is related to the carrier frequency by: 
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(8.4) 

where f is the carrier frequency in Hertz and c is the speed of the light (3*108m/s). 
Table 8.1 and Table 8.2 list some typical path loss values exponents and the standard deviation 

on specific environments, respectively.  

Table 8.1 – Path Loss Exponents for Different Environments. Source (Vignaux and Muller, 2006) 

Environment Path Loss Exponent, n(dB) 
Free space 2 Outdoor 
Shadowed Urban area 2.7 to 5 
line-of-sight 1.6 to 1.8 In building Obstructed  4 to 6 

Table 8.2 – Standard Deviation for Different Environments. Source (Vignaux and Muller, 2006) 

Environment Standard deviation , σ (dB) 
Outdoor 4 to 12 
Office, hard partition 7 
Office, soft partition 9.6 
Factory, line-of-sight 3 to 6 
Factory, obstructed 6.8 

 
It is important to select a free space reference distance that is appropriate for the propagation 

environment. Usually, in large coverage cellular systems, a 1 km reference distance is commonly used, 
in microcellular systems, much smaller distances (such as 100 m or 1 m) are used. The reference 
distance should always be in the far field of the antenna so that near-field effects do not alter the 
reference path loss. 

8.4. Simulation Model 

This simulator models the radio signal strength using the Log-normal Shadowing model. Since, this 
model takes into account, not only, the distance between the transmitter and receiver, but also, the 
empirical characteristics of the environment.  

The station mobility is calculated according to the wireless mobile station velocity and its path on 
the plant floor. In order to illustrate the simulation model, Figure 8.2 presents an example, with the 
same topology as the scenarios presented in Figure 2.3 and Figure 2.12.  

The network comprises four domains, two wired domains (D2 and D4) and two wireless domains 
(D1 and D3). Three intermediate systems (IS1, IS2 and IS3) interconnect the wired and wireless 
domains. The network also comprises seven wired stations (S1, S2, S3, S4, S5, M1 and M2), three 
mobile wireless stations (M3, M4 and S6). 

The wireless communications are relayed by two base stations (BSs), which are included in the 
ISs. Wireless mobile stations (M3, M4 and S6) move in a specific path, consequently the radio signal 
quality varies according to the propagation model. Further, in the mobility model of the wireless 
mobile station it is possible define stop points. 

The handoff procedure is triggered in a periodic fashion and the BSs transmit a special purpose 
frame (the Beacon frame) during a pre-configured amount of time, which the wireless mobile stations 
use to assess the radio signal quality and change to the radio frequency of the BS with the strongest 
radio signal. 
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Figure 8.2 – Network scenario 

8.5. Simulator Architecture 

The following modules compose the MSim: bs, agv, box, pc, antenna, camera, nhp and ground. All 
these modules are implemented as C++ classes. There are two kinds of modules, the modules used for 
simulation and the modules used to compose the scenario. The first group includes the modules: 
antenna (which models a radio antenna), bs (which models a BS), agv (which models a wireless 
mobile station) and nhp (which models the handoff procedure). The second group includes: box, pc 
and camera. The box can be used to model a wall or a machine, the pc is used to model a personal 
computer or similar device. The camera is used on the agv module with esthetical purpose. 

The main parameters (or attributes in the context of object-oriented programming) of the 
antenna module are: frequency; Pt; Gt and Gr. The frequency parameter contains the main radio 
frequency in use. Pt, Gt and Gr parameters are the transmitted power, the transmitter gain and the 
receiver gain of the antenna, respectively. 

The bs module includes an instance of the antenna module. Each bs module instances is 
characterized by the parameters name, domain_name, position and color. The parameter name 
identifies a BS instance in the overall network, its value should be equal to the domain name (defined 
by domain_name parameter) in which it is operating. The position parameter specifies the bs module 
instance position and is used to calculate the distance between bs and agv module instances and the 
correspondent signal quality at the wireless mobile station location. The color parameter permits the 
assignment of a colour for easy visual identification of the wireless domain. 

The agv module also includes an instance of the antenna module. The main parameters of the 
agv module are: name, path, velocity and color. The parameters name and color have the same 
purpose as in the bs module. The parameter path is used to assign a path to the agv module instance, 
using a list of points in Cartesian notation. Additionally, it is possible to define stop points by defining 
the stop duration together with path point coordinates.  

To network handoff procedure is modelled by the nhp module. This module has the following 
parameters: period, duration, exponent, std_dev and d0. The period parameter is used to define 
the periodicity of the mobility procedure and the parameter duration the respective duration. The 
exponent, std_dev and d0 are related to the Log-normal Shadowing model used in this simulator. 
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The values of path loss exponent, standard deviation and close-in reference distance are assigned to the 
parameters exponent, std_dev and d0, respectively. 

Each simulation run has a predefined duration which is set in global simulation parameter called 
sim_duration. 

The MSim is composed by two components, one is the front end and the other one is the 
simulator engine. The front end component can show two graphical 3D views of the simulation. It is 
useful to validate the simulation configuration. Figure 8.3 and Figure 8.4 present a screenshot of the 
simulator views.  

In the view presented in Figure 8.3 the user is able to zoom and rotate of the simulation 
environment. The other view (Figure 8.4) shows a top level view of the simulator execution. This 
component allows checking the position and the radio frequency of bs instances, the path and the stop 
points of the agv instances. When these screenshot were taken, the agv instances M4 and S6 were 
operating at the same frequency as bs instance BS2 (at 2.3GHz) and agv instance M3 was operating at 
the same frequency of BS1 (at 2.4GHz). This means that M4 and S6 belong to domain D3 and M3 
belongs to domain D3. 

 
Figure 8.3 – View of the MSim front end component 

 
Figure 8.4 – Top view of the MSim front end component  

It is also possible to interact with this simulator using the keyboard. The ‘Esc’ key finishes the 
simulation run, The ‘f’ key allows increasing the simulation clock and in opposite the ‘s’ key decreases 
the clock. The goal of this component is not to run a simulation, but to validate the simulation 
environment. The ‘r’ key allows running simulation runs in a background process (which was referred 
as the simulation engine module). Since this component does not have any graphics output, then the 
simulation runs can be performed in much less time. 
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8.6. Simulator Configuration 

The simulation configuration is done through two text files. One of them specifies the parameter values 
of all components and the other specifies the seed number for the generation of random values used in 
the Log-normal Shadowing model. For each seed number a simulation run is done. Therefore, the 
number of simulation runs depends on the number of text lines.  

Figure 8.5 presents part of configuration file. The duration of each simulation run (defined by the 
sim.duration parameter) is equal to two minutes. The network mobility procedure is triggered every 
0.2 s (defined by the nhp.period parameter). The duration of each network handoff procedure is equal 
to 0.005 s (defined by the nhp.duration parameter).  

The path loss exponent (defined by nhp.exponent parameter) is set to five and the standard 
deviation (defined by nhp.std_dev parameter) is set to 6.8. The close-in reference distance (defined 
by nhp.d0 parameter) is set equal to one meter. 

The simulated factory floor dimensions are 100 m per 200 m (defined by ground.width and 
ground.length parameters). The output directory for the simulation output files is called 
“output_files” (defined by the output.dir parameter). 

 
sim.duration=2 
nhp.period=0.2; 
nhp.duration=0.005; 
nhp.exponent=5 
bnp.std_dev=6.8 
bmp.d0=1 
ground.width=100 
ground.length=200 
output.dir=../output_files; 

Figure 8.5 – Configuration file related to global simulation parameters (excerpt) 

Figure 8.6 presents part of a configuration file related to the bs module instance parameters. The 
system is composed by two bs instances (defined by the sim.bs_num parameter). One is called BS1 
and the other is called BS2 (defined by the bs[x].name parameter). Wireless communications in 
domains D1 and D3 are done through BS1 and BS2, respectively (bs[x].domain parameter).  

 
sim.bs_num=2; 
 
bs[0].name=BS1; 
bs[0].domain=D1; 
bs[0].position=80.0,37,5.0,5.0; 
bs[0].color=1.0,0.0,0.0,1.0; 
bs[0].ant.freq=2.4; 
bs[0].ant.pt=1; 
bs[0].ant.gt=1; 
bs[0].ant.gr=1; 
 
 
 bs[1]. name =BS2; 
 bs[1]. domain =D3; 
 bs[1].position=-80.0,37,5.0,5.0; 
 bs[1]. color =0.0,1.0,0.0,1.0; 
 bs[1]. ant.freq =2.3; 
 bs[1]. ant.pt =1; 
 bs[1]. ant.gt =1; 
 bs[1]. ant.gr =1; 

Figure 8.6 – Configuration file related to the bs parameters (excerpt) 

The definition of the bs module instance position (defined by bs[x].position parameter) is 
done by Cartesian coordinate (x,y,z) with origin at the centre of the ground. In this case, BS1 is located 
at position (50.0, 0.0, 5.0) and BS2 is located on the opposite side, at (-50, 0.0, 5.0). The colour of the 
bs module instances is defined by bs[x].color parameter and is set by four values (all in the range 
between 0.0 to 1.0). The first three are the RGB values and the fourth is the transparency. 

Each bs module instance operates at different radio channel, BS1 operates on the 2.4GHz 
bandwidth and BS2 on the 2.3GHz bandwidth (defined by bs[x].ant.freq parameter). The 
transmitted power of each antenna module instance is defined by bs[x].ant.pt parameters, the 
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transmitter gain is defined by the bs[x].ant.gt parameters and the receiver gain is defined by 
bs[x].ant.gr parameters, which have been set equal to one in all bs module instances. 

Figure 8.7 shows part of the configuration file related to an agv module. In this example there are 
two agv module instances (defined by sim.agv_num parameter). One is called M3 and the other S6 
(defined by the agv[x].name parameter). Their velocity is set to 8 m/s and 6 m/s for M3 and S6, 
respectively.  

The path and the stop points are defined by the agv[x].path parameter. This parameter is a 
string that is written using a pre-defined structure as follows. Each point of the path is defined using 
the coordinates x, y and z. The path is a set of points separated by colons. When a point is also a stop 
point, the stop time is defined after character ‘$’. For example, M3 starts at point (90, 10, 0), it follows 
in the direction of point (80, 20, 0), then goes to point (70, 30, 0). As soon as it arrives to the last point 
it follows to the next point in the path (40, 30, 0) where it stops for 0.125 seconds. After that, it follows 
to the next point (-40, 30, 0) and it again stops for 0.125 seconds. The path definition is cyclical, 
therefore when it reaches the last point it continues to the first.  

The parameter freq of the agv antenna module instance changes during the simulation run, its 
value depends on the domain to which the agv module belongs to. 
 

sim.agv_num=3; 
 
agv[0].anme=M3; 
agv[0].vel=8; 
agv[0].path=90,10,0:80,20,0:70,30,0:40,30,0$0.125:-40,30,0$0.125:-70,30,0:-80,20,0:-90,10,0:-90,-10,0:-80,-20,0:-70,-30,0:-40,-

30,0$0.125:40,-30,0$0.125:70,-30,0:80,-20,0:90,-10,0; 
agv[0].color= 0.6,0.5,0.1,1.0; 
agv[0].ant.freq=2.4; 
agv[0].ant.pt=1; 
agv[0].ant.gt=1; 
agv[0].ant.gr=1; 
 
agv[1].name=M4; 
agv[1].vel=6; 
agv[1].path= -50,0,0$0.250:0,0,0$0.250:50,0,0$0.25; 
agv[1].color= 0.2,0.6,0.3,1.0; 
agv[1].ant.freq=2.3; 
agv[1].ant.pt=1; 
agv[1].ant.gt=1; 
agv[1].ant.gr=1; 
 
agv[2].name=S6; 
agv[2].vel=6; 
agv[2].path=-80,-10,0:-70,-20,0:-40,-20,0$0.125:40,-20,0$0.125:70,-20,0:80,-10,0:80,10,0:70,20,0:40,20,0$0.125:-40,20,0$0.125:-

70,20,0:-80,10,0; 
agv[2].color= 0.1,0.5,0.6,1.0; 
agv[2].ant.freq=2.3; 
agv[2].ant.pt=1; 
agv[2].ant.gt=1; 
agv[2].ant.gr=1; 

Figure 8.7 – Configuration file related to the agv parameters (excerpt) 

8.7. Output Data Files 

This simulator produces two kinds of output files. One contains information about the timings when 
the network handoff procedure was active, the domains to which the stations belong to and additional 
information (these files use the extension “.li”). The other type of file contains a text file with the 
information required to set the _location_vector parameter used in the RHW2PNetSim and 
BHW2PNetSim (these files use the extension “.sd”). 

Figure 8.8 presents part of the output file related to the agv module instance named M3 using the 
network configuration presented in Figure 8.2.  

The first column (Time) refers the timestamp when the radio signal quality was evaluated. The 
second column (SHandProc) indicates the instant in time when the handoff procedure started and the 
third column (EHandProc) refers to the end of the handoff procedure. The radio frequency value, the 
BS name and domain name are in fourth (Freq), fifth (BS) and sixth (D) columns, respectively. The 
seventh column (Position(x,y,z)) contains data related to the agv position. The distance between the 
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agv instance and the bs instance with the best radio quality is presented in the eighth column (Dist). 
The signal power at the receiver location appears in the last column (Pr).  

 
Time SHandProc EHandProc Freq BS D Position(x,y,z) Dist Pr 
…         
0.200000 0.200000 0.205000 2.30 BS2 D3 -49.17,0.00,0.00 48.80 -104.40 
0.400500 0.400000 0.405000 2.30 BS2 D3 -48.33,0.00,0.00 49.34 -120.04 
0.600500 0.600000 0.605000 2.30 BS2 D3 -47.50,0.00,0.00 49.87 -117.47 
0.800500 0.800000 0.805000 2.30 BS2 D3 -46.67,0.00,0.00 50.42 -127.38 
1.000.000 1.000.000 1.005.000 2.30 BS2 D3 -45.84,0.00,0.00 50.97 -120.68 
1.200.500 1.200.000 1.205.000 2.30 BS2 D3 -45.00,0.00,0.00 51.54 -120.72 
1.400.500 1.400.000 1.405.000 2.30 BS2 D3 -44.17,0.00,0.00 52.11 -117.13 
1.600.500 1.600.000 1.605.000 2.30 BS2 D3 -43.33,0.00,0.00 52.68 -128.74 
1.800.500 1.800.000 1.805.000 2.30 BS2 D3 -42.50,0.00,0.00 53.27 -128.30 
2.000.500 2.000.000 2.005.000 2.30 BS2 D3 -41.67,0.00,0.00 53.86 -115.78 
2.200.500 2.200.000 2.205.000 2.30 BS2 D3 -40.84,0.00,0.00 54.45 -124.12 
2.400.500 2.400.000 2.405.000 2.30 BS2 D3 -40.00,0.00,0.00 55.06 -123.01 
2.600.500 2.600.000 2.605.000 2.30 BS2 D3 -39.17,0.00,0.00 55.66 -126.10 
2.800.500 2.800.000 2.805.000 2.30 BS2 D3 -38.34,0.00,0.00 56.28 -118.07 
0.200000 0.200000 0.205000 2.30 BS2 D3 -49.17,0.00,0.00 48.80 -104.40 
0.400500 0.400000 0.405000 2.30 BS2 D3 -48.33,0.00,0.00 49.34 -120.04 
0.600500 0.600000 0.605000 2.30 BS2 D3 -47.50,0.00,0.00 49.87 -117.47 
0.800500 0.800000 0.805000 2.30 BS2 D3 -46.67,0.00,0.00 50.42 -127.38 
…          

Figure 8.8 – Output file of wireless mobile station M3 (excerpt) 

Figure 8.9 presents part of the output file related to the agv module instance M3, which contains 
the domain sequence to which a wireless mobile station belongs to during the simulation runs. In this 
file the information is organized as tuples separated by a colon. The first element indicates during how 
many handoff procedures the agv module instance stays in the domain referred in the second element. 
In this example, the agv module instance M3 stays in domain D1 for 43 network handoff procedures, 
and then it changes to the domain D3 where it stays for another 10 handoff procedures. 

The information contained in this file can be assigned to the _location_vector parameter (see 
Section 6.2.3 for details) which determines to which domain a Master or a Slave module instance 
belongs to. 

 
43,D1:10,D3:29,D1:1,D3:12,D1:2,D3:3,D1:3,D3:3,D1: 

Figure 8.9 – Output location file of wireless mobile station M3 (excerpt) 

8.8. Summary 

This chapter describes the Mobility Simulator, which permits to determine to which domain a wireless 
mobile station belongs to at a specific point in time. That information is then feed into the 
RHW2PNetSim and BHW2PNetSim through the setting of the _location_vector parameter. The 
information produced by this simulator is very important for the quality of the simulation results since 
it provides a way to determine the domain to which a station belongs through time.  



 



 

 

Chapter 9 

Comparative Performance Analysis in an Error Free 
Environment 

This chapter provides a comparative performance analysis between the repeater and bridge-based 
architectures. In this comparison study we studied the influence of varying certain network 
parameters on the response time and throughput of message streams existing in a network scenario. 
Additionally, we also present several response time histograms which characterize the network 
behaviour of both architectures. 

9.1. Introduction 

This chapter provides a comparative performance analysis between the repeater and bridge-based 
architectures. For that purpose, we performed a set of simulation runs varying several important 
network parameters on the network performance, like bit rate, internal delay of the Intermediate 
Systems (ISs) and the frame size. 

This comparative performance analysis is based on the message stream response time and on the 
number of transactions of each message stream. These comparative metrics were chosen because the 
response time of the message streams reflect the timing behaviour of the entire network. The number 
of transactions gives us an idea of the throughput which can be achieved by the network.  

This chapter starts by presenting, in Section 9.2, the network scenario and respective parameters 
to be used on the comparison study. Section 9.3 presents simulation results upon variation of the some 
network parameters. Finally, in Section 9.4 we summarize our comparative study. 

9.2. Network Scenario Configuration 

The network scenarios presented in the Figure 9.1 and Figure 9.2 were used to compare the 
performance of the two approaches. In the remainder of this chapter these scenarios are referred to as 
network base configuration.  

The network comprises four domains: two wired domains (D2 and D4) and two wireless domains 
(D1 and D3). These domains are interconnected by three Intermediate Systems (ISs), which act either as 
a repeater or as a bridge according to the correspondent network scenario.  

It is assumed that the wireless domains, D1 and D3, use the 802.11b Direct Sequence Spread 
Spectrum (DSSS) PhL at 2.0 Mbit/s, coding every character using 8 bits. The frames have a head of 32 
bits and no tail. The reason for the use of a frame head is related to the specific requirements of the 
DSSS modulation schema used by 802.11b. These bits are used by the receiver to acquire the incoming 
signal and to synchronise the demodulator. 

The wired domains, D2 and D4, use a standard PROFIBUS Physical Layer (PhL) operating at 
1.5 Mbit/s and 0.5 Mbit/s, for domains D2 and D4, respectively. Since these domains use the RS-485 
standard for the transmission of the PhL frames, each character is coded using 11 bits. The three 
additional bits are related to one start, one stop, and one parity check bit. In wired domains, the PhL 
frames do not have a head or a tail sequence of bits. Table 9.1 shows for each domain the bit rate, the 
length (in bits) of the frame head and of the frame tail as well as the number of bits used to code a 
character. 
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We have assumed that the time required by a slave to answer a request frame (TSDR) can be 
modelled stochastically using a triangular distribution function with apex at 70 bit times and extremes 
at 11 and 100 bit times (triang(11, 70, 100)). This distribution has been chosen since the triangular 
distribution function is a rough model when there is no data available about the real distribution 
function (Law and Kelton, 2000). Henceforth the following notation, for the triangular distribution 
function, triang(minimum, apex, maximum) will be used. 

Table 9.1 – Physical media parameters 

Domain Parameters 
D1 and D3 (2000000, 32, 0, 8) 

D2 (1500000, 0, 0, 11) 
D4 (500000, 0 , 0, 11) 

 
The internal delay of the ISs is equal to 30 µs and the maximum number of master DLL retries 

(max_retry_limit) parameter has been set to one.  
The mobility procedure is triggered every 200 ms and it is assumed that the wireless mobile 

stations move in the simulated environment according to pre-defined path. In this path there are several 
stop points at specific locations (see Figure 9.1 and Figure 9.2).  

The domain location of each wireless mobile station was set according to the results provided by 
the Mobility Simulator (MSim) described in Chapter 8.  

Another important detail concerns the Gap Update factor (G), which is set to 1 in all domains, in 
order to have the GAP Update mechanism always active. This feature effectively increases the network 
load, but since the FDL_Request_Status frames used by the GAP Update mechanism have low-
priority, the response time of the high-priority message streams is only minimally affected.  

9.2.1. Repeater-Based Scenario 

The repeater-based network scenario (Figure 9.1) is comprised of three wired masters (M1, M2 and 
MM), two mobile wireless master (M3 and M4), five wired slaves (S1, S2, S3, S4 and S5), and one 
mobile wireless slave (S6). Master MM is the Mobility Master (MM).  
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Figure 9.1 – Repeater-based hybrid wired/wireless PROFIBUS network  
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Table 9.2 presents the station’s address used in this network scenario. The Highest Station 
Address (HSA) master parameter was set equal to five in all masters. The repeater-based approach 
requires the specific setting of the TID and TSL parameters, which depend on the maximum size of the 
frames relayed by the repeaters, the number of repeaters in cascade, the bit rate in each medium and 
the delays in each repeater. These parameters and the parameters related to the Beacon message were 
calculated with the help of the RFieldbus System Planning application, which is described in 
(Behaeghel, Nieuwenhuyse et al., 2003).  

Table 9.2 – Station’s address 

Master Address Slave Address 
M1 1 S1 41 
M2 2 S2 42 
M3 3 S3 43 
M4 4 S4 44 
MM 5 S5 45 

  S6 46 
 
In this approach the setting of the TID2 parameter on the MM (2677 bit times) must be made 

differently in relation to the remaining stations in the network. This is because after transmitting the 
Beacon Trigger message this master enters into an inactivity period for the duration of the channel 
assessment period, which allows the wireless mobile stations to assess the quality of the other radio 
channels. 

Additionally, a repeater always introduces a minimum inactivity period between two consecutive 
frames being forwarded. This value, the minimum idle time (TIDm), has been set to 100 bit times.  

In order to guarantee that, at the token arrival, there will always be enough time to execute all 
pending high-priority traffic the master TTR parameter has been set according to the formulations 
proposed in (Tovar and Vasques, 1999), assuming no errors. However, the TTR parameter has to be 
equal to all masters in each domain, therefore the TTR parameter was set considering the high value 
computed of each domain. Table 9.3 presents the settings of the TID1, TID2, TSL and TTR master DLL 
parameters for each domain. 

Table 9.3 – Repeater-based domain parameters 

Domain TID1 TID2 TSL TTR 
D1 and D3 2132 1088 2856 39712 

D2 1447 740 2142 27520 
D4 100 100 714 4858 

9.2.2. Bridge-Based Scenario 

The bridge-based network scenario (Figure 9.2) comprises two wired master (M1 and M2), two mobile 
wireless master (M3 and M4), five wired slaves (S1, S2, S3, S4 and S5), and one mobile wireless slave 
(S6). Domains are interconnected by three bridges (B1, B2 and B3) and each of them is composed by 
two Bridge Masters (BMs) - B1 (M8, M5), B2 (M6, M9) and B3 (M10, M7).  

Each wired/wireless domain has its own logical ring. In this example, four different logical rings 
exist: (D1 (M8 →M3→ M5), D2 (M1 → M5 → M6), D3 (M9 →M4→ M10) and D4 (M2 → M7)). 
Note that, the wireless mobile stations M3 and M4 can belong to wireless domains D1and D3. 

Concerning the IDMP, M6 assumes both the role of GMM and the DMM of wired domain D2. 
BMs M5, M9 and M7 assume the role of DMMs for wireless domain D1, wireless domain D3 and 
wired domain D4, respectively. 

Table 9.4 presents the addresses of the master stations. The slave addresses are equal to those 
addresses used in the repeater-based scenario, presented in Table 9.2.  

The timing parameters have been set according to the recommendation of the PROFIBUS 
standard (IEC, 2000), therefore the TID and the TSL parameter have been set to 100 and 115 bit times, 
respectively. The TTR parameter has been set according to the formulations proposed in (Tovar and 
Vasques, 1999) in order to guarantee that, at token arrival, there will be enough time to execute all 
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pending high-priority messages. The HSA was set differently for each domain according to the highest 
address for all stations belonging to that domain. This setting reduces the impact of the GAP Update 
mechanism, since in this way the master with the highest address has a minimum number of station 
addresses to inquiry (from 0 to the station with the lowest address in the logical ring). Table 9.5 
presents the settings of the TID1, TID2, TSL, TTR and HSA master DLL parameters for each domain. 

Table 9.4 – Master’s address  

Master Address Master Address 
M1 1 M6 6 
M2 2 M7 7 

M3 3 M8 8 

M4 4 M9 9 

M5 5 M10 10 
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Figure 9.2 – Bridge-based hybrid wired/wireless PROFIBUS network  

Table 9.5 – Bridge-based domain parameters 

Domain TID1 TID2 TSL TTR has 
D1 and D3 100 100 115 2076 8/10 

D2 100 100 115 2046 7 
D4 100 100 115 1306 6 

9.2.3. Message Streams 

A message stream is a periodic sequence of message cycles, related for instance, to the reading of a 
sensor. Each message stream associates an initiator (a master) with a responder (usually a slave). The 
notation Si

x is used to identify a message stream i from an initiator station x (e.g. S1
M1 is the first 

message stream of master M1). 
The set of message streams presented in Table 9.6 tries to illustrate some probable transaction 

scenarios in the network. The message streams are specified as tuples (destination address, request 
frame length (in bytes), response frame length (in bytes) and priority). 
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As an example, S1
M1 and S2

M1 are IADTs between master M1 and slaves S1 and S2, respectively. 
S3

M1 is an IDT between master M1 and slave S5. S2
M3 is a transaction between two wireless mobile 

stations: master (M3) and slave S6. When both are in same domain this transaction is an IADT, but if 
they are in different domains the system handles it as an IDT. To simplify, we will refer to this 
transaction as an Intra/Inter Domain Transaction (IIDT). 

Table 9.6 – Message streams 

Stream Parameters Stream Parameters Stream Parameters 

S1
M1 (S1, 15, 20, high) S1

M2 (S3, 15, 20, high) S2
M3 (S6, 15, 20, high) 

S2
M1 (S2, 15, 20, high) S2

M2 (S6, 15, 20, high) S3
M3 (S3, 15, 20, high) 

S3
M1 (S5, 15, 20, high) S1

M3 (S4, 15, 20, high) S1
M4 (S6, 15, 20, high) 

 
A PROFIBUS standard master is usually a dedicated device composed by a communication 

module (mostly in hardware) and a CPU module running the control software. Therefore, master 
stations used in our simulation have been modelled according to the following operational 
characteristic assumptions: 

− The variability of the master timing parameters is usually reduced, as confirmed by some 
experimental measurements (Behaeghel, Nieuwenhuyse et al., 2003); 

− It is expected that the clocks of the master stations in the system may have some drift between 
them; 

− The masters are not synchronised between them.  
These assumptions were applied to the simulation models of both approaches by setting the offset 

of the message streams and its period using probabilistic variables. However, the response time 
depends on the message stream period (particularly in the Bridge-based approach), for that reason the 
simulation runs have been made independently for each master’s message stream set:  

− For the master to which we want to perform the measurements, the message stream periods 
were set to a constant value;  

− For the other masters, the message streams parameters were set using a triangular distribution 
function. 

In the repeater-based approach, the period of the message streams being measured has been set to 
40 ms with no initial offset. The period and the initial offset of the other message streams has been set 
using triang(38, 40, 42) and triang(0, 38, 40), respectively. Similar rules are used in the bridge-based 
approach, the period of the message streams being measured has been set to 8 ms with no initial offset 
and the period and the initial offset of the other message streams has been set using triang(7.8, 8, 8.2) 
and triang(0, 7.8, 8), respectively  

In the following section a performance analysis based in simulation results is presented. The 
results for each master message stream set have been obtained as the aggregate result of 100 runs, each 
with 120 s of duration, using a different seed value, in order to improve the randomness of the data. It 
is interesting to note that the results presented in this chapter are equivalent to the aggregate of the 170 
hours of real operation. 

According to the Central Limit Theorem (Law and Kelton, 2000), the simulation results 
presented in the next section presents a confidence level higher then 99.95%. The largest confidence 
interval for a message stream response time has a range of +/- 8% of the mean response time value. 

9.3. Performance Analysis 

In this section, we present and analyse some simulation results upon variation of some network 
parameters: bit rate, ISs internal delay and maximum frame size. 

The message streams used on the comparison between these two approaches were S1
M1, S1

M2 and 
S3

M3, one IADT and two IDTs, respectively, where S3
M3 involves mobile stations.  
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In the repeater-based scenario there was the need to adjust the period of the message streams, 
because with some parameter setting, the network enters into saturation since the network is used 
beyond its maximum throughput. 

9.3.1. Base Configuration Results 

This subsection discusses the results obtained using the base configuration described in Section 9.2. 
Figure 9.3 shows a histogram of the measured response time values for S1

M1 in both scenarios. Note 
that, in the subtitle of this figure and on the remaining figures in this chapter, a R or a B before the 
message stream symbol (RSi

k and BSi
k) specify that the values are related to the repeater-based or to the 

bridge-based architecture, respectively.  
In the repeater-based scenario, the minimum response time (MinRT) value is equal to 1.23 ms 

and the maximum response time (MaxRT) value to 16.09 ms.  

 
Figure 9.3 – Response time histogram for the message stream S1

M1 

In the bridge-based scenario, the MinRT value and the MaxRT value of message stream S1
M1 are 

0.27 and 4.27 ms, respectively. Nevertheless, it is important to note that 96.20% of the transactions 
present a response time smaller or equal to 1 ms (see Table 9.7) and 98.25% of the transactions have a 
response time value smaller than 1.23 ms, which is the MinRT of the repeater-based scenario. In this 
scenario, S1

M1 benefits from the smaller setting of the TID parameters as well as from the traffic 
segmentation resulting from the use of the bridges. The first reduces the message cycle duration, while 
the second reduces the traffic within domain D1. 

Table 9.7 – Response time of the message stream S1
M1 

Interval 
 (ms) 

R S1
M1 

(%) 
B S1

M1 

(%) 
Interval 

 (ms) 
R S1

M1 

(%) 
B S1

M 

(%)1 
Interval  

(ms) 
R S1

M1 

(%) 
B S1

M 

(%)1 

]0-1] 0 96,20190 ]6-7] 12,43433 0 ]12-13] 0,34800 0 
]1-2] 10,06433 3,65463 ]7-8] 9,87200 0 ]13-14] 0, 12200 0 
]2-3] 11,88800 0,13480 ]8-9] 6,67867 0 ]14-15] 0, 04700 0 
]3-4] 12,65600 0,00840 ]9-10] 3,76400 0 ]15-16] 0,01000 0 
]4-5] 14,38667 0, 00027 ]10-11] 1,92033 0 ]16-17] 0,00033 0 

]5-6] 14,93633 0 ]11-12] 0,87200 0    
 
Figure 9.4 depicts a response time histogram for message stream S1

M2 in both scenarios. The 
repeater-based scenario presents the MinRT (1.22 ms) and MaxRT (18.49 ms) values smaller than in 
the bridge-based scenario. The MinRT and MaxRT values, in the bridge-based scenario, are 8.80 ms 
and 26.80 ms, respectively.  

In the repeater-based scenario, the histogram for S1
M2 is similar to the histogram of S1

M1 as it 
would be expected, since the use of repeaters creates a broadcast network. 
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Figure 9.4 – Response time of the message stream S1

M2 

In the bridge-based scenario, the timing behaviour of message stream S1
M2 is different than for 

S1
M1, since S1

M2 is an IDT. Therefore, such kind of transaction requires that the initiator performs at 
least one Application Layer (AL) retry before obtaining a response (meanwhile stored at the BMini (BM 
M7)). The period of this message stream is equal to 8 ms, and consequently the MinRT value in the 
bridge-based scenario is greater than 8 ms. It is noticeable that 94.23% (which is sum of the percentage  
or results in the intervals ]8-9]…]11-12]) of the transactions require only one AL retry and 4.13% 
(which is sum of the percentage in the intervals ]16-17]…]19-20]) of the transactions required two AL 
retries and the remaining (1.64%) three AL retries. The mean response time (MeanRT) value is equal 
to 10.02 ms on bridge-based scenario. 

Table 9.8 – Response time histogram for the message stream S1
M2 

Interval 
(ms) 

R S1
M2 

(%) 
B S1

M2 

(%) 
Interval 

(ms) 
R S1

M2 

(%) 
B S1

M2 

(%) 
Interval 

(ms) 
R S1

M2 

(%) 
B S1

M2 

(%) 

]1-2] 10,55100 0 ]10-11] 3,18733 8,15101 ]19-20] 0 0, 01120 
]2-3] 13,25933 0 ]11-12] 1,76800 0, 28249 ]20-21] 0 0 
]3-4] 12,34733 0 ]12-13] 0, 92533 0 ]21-22] 0 0 
]4-5] 11,97600 0 ]13-14] 0, 48300 0 ]22-23] 0 0 
]5-6] 12,60500 0 ]14-15] 0, 09400 0 ]23-24] 0 0 
]6-7] 10,97600 0 ]15-16] 0, 03367 0 ]24-25] 0 0, 14035 
]7-8] 9,55333 0 ]16-17] 0,00767 0, 18625 ]25-26] 0 1,47371 
]8-9] 7,21067 6,13680 ]17-18] 0,00233 3,09011 ]26-27] 0 0,02337 

]9-10] 4,84000 79,66181 ]18-19] 0 0, 84291    
 
The response time histogram of message stream S3

M3 is shown in Figure 9.5 and Table 9.9. The 
results are very similar to message stream S1

M2. However, in the repeater-based scenario the MinRT 
(4.61 ms) and MaxRT (19.85 ms) values are higher than the MinRT and MaxRT of the message 
streams S1

M1 and S1
M2. 

The main reason for these results is due to the simulation model in which message stream S3
M3 is 

always queued in third place on M3 output queue. Therefore, frames related to message stream S3
M3 

have to wait for the transmission of frames related to the other two message streams in which the 
initiator is M3. This operation mode is similar to the typical behaviour of a Programmable Logical 
Controller (PLC) running PROFIBUS. 

In the bridge-based scenario, the MinRT and MaxRT values for message stream S3
M3 are 8.66 ms 

and 26.08 ms, respectively. These results are similar to the results presented by message stream S1
M2 as 

would be expected since both are IDT.  
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Figure 9.5 – Response time histogram for the message stream S3

M3 

Table 9.9 – Response time of the message stream S3
M3 

Interval 
(ms) 

R S3
M3 

(%) 
B S3

M3 

(%) 
Interval 

(ms) 
R S3

M 

(%) 
B S3

M3 

(%) 
Interval 

(ms) 
R S3

M3 

(%) 
B S3

M 

(%)3 

]4-5] 1,28067 0 ]12-13] 5,47100 0 ]20-21] 0 0 
]5-6] 14,19700 0 ]13-14] 3,19200 0 ]21-22] 0 0 
]6-7] 14,40467 0 ]14-15] 1,65500 0 ]22-23] 0 0 
]7-8] 13,35167 0 ]15-16] 0, 68300 0 ]23-24] 0 0 
]8-9] 13,15400 75,89062 ]16-17] 0, 26800 0,75880 ]24-25] 0 2,60896 

]9-10] 12,97300 19,69454 ]17-18] 0,07233 0, 31097 ]25-26] 0 0, 64214 
]10-11] 11,11733 0, 08483 ]18-19] 0,02233 0,00858 ]26-27] 0 0,00028 

]11-12] 8,15633 0,00014 ]19-20] 0,00167 0,00014    
 
It is important to note that, if message stream S3

M3 had been queued in first place instead of third, 
the results obtained, in the repeater-based scenario, would be equal to 1.41 ms and 16.30 ms, for 
MinRT and MaxRT, respectively. In the bridge-based scenario the results would be equal to 8.18 ms 
and 25.05 ms, for MinRT and MaxRT, respectively. From this results we conclude that the message 
streams queuing order has higher influence in the repeater-based scenario than in the bridge-based 
scenario, due to the fact of a single transaction in the repeater-based scenario takes much more time. 

It is also important to note that the bridge-based scenario presents a much higher throughput than 
the repeater-based scenario. Figure 9.6 shows a histogram of the number of transaction for each 
message stream.  

 
Figure 9.6 – Number of message stream transactions 

In the bridge-based scenario the number transactions for message stream S1
M1 is approximately 

500% more, for message streams S1
M2 and S3

M3 the ratio drops to 240% more since these are IDTs. The 
main reason to this disparity in results is due to the traffic segmentation provided by the MLR 
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approach, the lower overhead caused by the IDTs, smaller settings of TID parameter and additionally 
the message stream period is much lower (8 ms and 40 ms for the bridge and repeater-based scenarios, 
respectively). 

In the following subsections, we will analyse the network timing behaviour when certain network 
parameters are varied. 

9.3.2. Variability of the Message Stream Response Time as a Function of the Bit Rate 

This subsection analyses how the setting of different bit rates in some network domains affects the 
timing behaviour of the two approaches. For this purpose, the results presented were obtained by 
varying the bit rate in domain D4.  

Figure 9.7 compares the MinRT, MeanRT and MaxRT values of the two scenarios for messages 
streams S1

M1 and S3
M3, assuming the base configuration described in Section 9.2 and by varying the bit 

rate in domain D4 from 0.5 Mbit/s to 5 Mbit/s.  
In these conditions, parameters TSL, TID1 and TID2 must be recalculated for every bit rate in the 

repeater-based approach and these changes are applied to all domains. In the bridge-based scenario the 
parameter changes only affect domain D4. 

In Figure 9.7 and in the following figures of this section the MinRT, MeanRT and MaxRT values 
are identified by a dash. The MinRT and MaxRT values are placed on the lower and upper extremes of 
the line and the MeanRT is placed between MinRT and MaxRT using a wider dash. 

 
Figure 9.7 – Influence of D4 bit rate on the message stream response time values 

From the observation of Figure 9.7, we can conclude that in the repeater-based scenario the 
variability of the bit rate in domain D4 has a strong influence on response time of these message 
streams. In this scenario, the lower MaxRT occurs when D4 is operating at 1.5 MBit/s but it keeps 
increasing afterwards. The main reason for this behaviour is due to the need of inserting an additional 
idle time to compensate the dissimilarities of the bit rates. 

In the bridge-based scenario the bit rate variation in domain D4 has a small influence on the 
response time values of message streams S1

M1and S3
M3, since these message streams are not relayed by 

domain D4. The decrease verified in the MaxRTs value when the bit rate increases is mainly due to a 
reduction of the IDMP–related latencies.  
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Again in this case, in the bridge-based scenario the number of concluded transaction is almost 
more 500% for IADTs, and 240% for IDTs than in the repeater-based scenario. For instance, the 
number of transactions for message streams S1

M1and S3
M3 in the bridge-based scenario, considering a 

bit rate in domain D4 of 5 MBit/s is 1500000 and 722900, respectively. In the repeater-based scenario, 
the number of transactions is 300000 for both message streams. 

9.3.3. Variability of the Message Stream Response Time as a Function of the ISs Delays  

The ISs delay is the time required by an IS to relay a frame between the domains which it connects, 
either a bridge or a repeater. In the repeater-based approach it is the time required by the repeater to 
convert between frame formats. In the bridge-based approach it is the time required for the routing 
decisions, for the conversion of frame formats and for its queuing on the output queue of the other BM 
of a Bridge. 

In order to analyze the ISs internal delay influence on the network timing behaviour we 
performed six simulations in which the internal delay varied between 30 and 1000 µs.  

In the repeater-based scenario, there was the need to increase the message streams period to 80 
ms since with higher values of the internal delay (500 and 1000 µs) the network entered into 
saturation. The period for the other messages streams has been set using triang(78, 80, 82) and the 
offset has been set using triang(0, 78, 80).  

Figure 9.8 presents the MinRT, MeanRT and MaxRT values for message streams S1
M1 and S3

M3as 
a function of the ISs delays. 

 
Figure 9.8 – Influence of the IS delay on MaxRT 

In the repeater-based scenario, the internal delay of the repeater has a stronger influence on the 
MeanRT and MaxRT values, due to the increase on the message cycle latencies. Additionally, the 
internal delay of the repeater requires a new setting of the TID2 parameter of the MM, and consequently, 
the mobility procedure takes longer. 

In the case of the bridge-based scenario, the internal delay of the bridge has a small influence on 
the response time values of message stream S1

M1 (an IADT), since the frames exchanged in these kind 
of transactions are not relayed by bridges. The small MaxRT value increase is mainly due to the 
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increase of the IDMP-related latencies. The effect on message stream S3
M3 (an IDT) is attenuated due 

to several repetitions performed by the initiator until retrieving a response from the IDT BMini. 
It is also important to note that the internal delay of the ISs has a strong influence in the repeater-

based scenario throughput. As mentioned, there was the need to increase the message stream period to 
80 ms, which is twice the message stream period of the base configuration. Consequently, the number 
of transaction decreased for half. For this reason, in the bridge-based scenario the number of concluded 
transaction is 1000% more for IADTs, and 480% more for IDTs.  

9.3.4. Variability of the Message Stream Response Time as a Function of the Maximum Frame Size  

The variation of the frame size impacts the duration of message transactions not only due to the 
increase on the message cycle time, but also, in the case of the repeater-based approach, due to the 
need to increase some network timing parameters. 

To perform this comparison we have chosen to vary the frame size of message stream S1
M3. This 

message stream is the first message stream of master M3, a wireless mobile station and the responder 
is slave S4, which belongs to domain D4. The size of the request and response frames varies between 
15 and 250 bytes. Figure 9.9 depicts those results.  

 
Figure 9.9 – Influence of the maximum frame size on response time 

Once again, in the repeater-based scenario there was the need to increase the period to 160 ms 
and to adjust the TSL, TID1 and TID2 parameters for every frame size. The period for the others messages 
streams was set using triang(140, 160, 180) and the offset was set using triang(0, 140, 160).  

All message streams are affected by the increase of the maximum frame size. In the bridge-based 
scenario, this influence is stronger for message streams which are routed through the same domains as 
S1

M3, which is the case of message stream S1
M2. But for S1

M1 that influence is ignorable, contrarily, in 
the repeater-based scenario all message streams are severely affected. 

It was necessary to increase the message stream period in the repeater-based scenario to 160 ms, 
consequently, the number of transaction performed in the bridge-based scenario is 2000% more for 
IADTs, and 943% more for IDTs. As an example, the number of transactions for message streams 
S1

M1and S1
M2 in the bridge-based scenario considering a frame size of 250 Bytes is 1500000 and 
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707809, respectively, in the repeater-based scenario the number of transactions is 75000 for both 
message streams. 

9.4. Summary 

In this chapter, we have performed a performance comparison between the repeater and the bridge-
based architectures based on simulations results in an error free environment. We have carried out 
experiments which showed the influence of varying certain network parameters in message response 
times. 

From these experiments, we noted that in the bridge-based approach the variability of the 
response time histograms is smaller than in the repeater-based approach. Although, in some cases, the 
maximum response time for IDTs can be superior.  

The bridge-based approach benefits from the multiple logical ring segmentation, which isolates 
the traffic between domains permitting lower response times for IADTs. Additionally, the network 
segmentation permits the independent setting of the network parameters (e.g. TID and TSL) in every 
domain. Contrarily, in the repeater-based approach, the parameter setting depends on the network 
parameters and configuration, resulting on higher duration for a message cycle. The segmentation also 
permits a better responsiveness to errors (transmission and token loss) in the bridge-based approach 
since TSL can be set to smaller values.  

Additionally, the segmentation operated by the bridges permits a higher throughput of the overall 
network, which can be confirmed in our experiments, since in the bridge-based case the number of 
message transaction performed is in all cases much higher. 

It is also noticeable that the messages queuing order has practically no influence in the maximum 
response time of a message stream in the bridge-based approach, contrarily to the repeater-based 
approach. 

From the experiments in which the network parameters have been varied, it can be concluded 
that the repeater-based approach is more influenced by these changes especially when the maximum 
frame size in the network is increased. Nevertheless, the use of repeaters leads to a simpler solution 
since the repeater devices only operate at the PhL level, contrarily to the bridge-based approach which 
requires a more complex set of protocols – the IDP and the IDMP – implemented at the DLL level. 
Additionally, the mobility procedure used in the bridge-based approach leads to higher inaccessibility 
times for the wireless mobile stations, since these stations must deregister from the original domain 
and register in the destination domain.  

The results in this chapter were obtained considering the inexistence of errors in message 
transactions in the following chapter we will present some results which characterise the behaviour of 
both networks in the error prone environments. 



Chapter 10 

Comparative Performance Analysis in an Error Prone 
Environment 

This chapter provides a comparative performance analysis between the repeater and bridge-based 
architectures considering its operation over error prone mediums. In this comparison study, we 
analysed the influence of transmission errors on the network performance of both architectures. 
Additionally, a set of rules are proposed, which try to reduce the impact of the PROFIBUS token 
recovery mechanism in the bridge-based approach. 

10.1. Introduction 

When considering communications over an error prone and lossy medium, performance degradations 
mainly stem from two sources: one, is the loss of data, making retransmissions necessary, the other is 
the station outage (i.e., when a master station is out of the logical ring), as a consequence of the fault-
recovery mechanisms used by the PROFIBUS protocol to handle and detect errors. 

The simulation models used in this study, considers that a frame is corrupted if it contains a bit 
error, independently of which bit or bits are wrong. Three stations outage situations can occur: 
“heardback” removal, token lost and error skipping.  

A master leaves the logical ring, i.e., its state machine evolves to the LISTEN_TOKEN state, if it 
transmits two consecutive corrupted token frames (“heardback” removal). A consequence of the 
“heardback” removal is the token loss. When the token is lost there is the need to reinitialize the 
logical ring. 

Error skipping occurs when a master in the logical ring receives a token frame in which its 
address is skipped, after detecting such event it removes itself from the logical ring. Note that, in 
PROFIBUS networks every station in the logical ring receives all transmitted messages. 

In this chapter, we present simulation results considering transmission over error prone mediums 
These simulation results were obtained using the Gilbert-Elliot Channel Model (Gilbert, 1960; Elliot, 
1963) to model the transmission errors, a brief description of this model is presented in Section 10.2. 
Error detection and correction algorithms were not previously considered in the bridge-based approach 
proposed in (Ferreira, 2005). Therefore, this approach has been enhanced with the mechanisms 
proposed in Chapter 3, enabling operation over error prone mediums. The proposed mechanisms are 
based on timers. Section 10.3 shows how to set these timers.  

We have also proposed an enhancement to the IDP, in which the IDFs are transmitted using the 
SDA PROFIBUS service instead of using the SDN PROFIBUS service. In Section 10.4 we present a 
comparative performance analysis of both alternatives.  

Section 10.5 presents a comparative performance analysis between the repeater and bridge-based 
architectures considering transmission over error prone mediums. Additionally, in Section 10.6 we also 
propose a set of rules for MAC address distribution which tries to reduce the impact of the PROFIBUS 
token recovery mechanism in the bridge-based approach. Finally, in Section 10.7 we summarize our 
comparative study 

The metrics used in these comparisons were the following: response time, number of transactions 
and percentage of concluded transactions. The response time of a message streams reflect the timing 
behaviour of the entire network. The number of transactions gives us an idea of the throughput of the 
network and the percentage of concluded transactions shows how the network recovers from errors. In 
both the simulation models a transaction can miss the deadline in two situations: when the response 
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time of a transaction is higher than its deadline and when, due to queuing delays, the action frame (the 
first request frame of a transaction) is sent after its deadline (see Section 5.2.4 for details).  

The simulation results presented in this chapter were obtained as the aggregate result of 100 runs, 
each using a different seed value for random value generation. It is interesting to note that the results 
presented in this chapter are equivalent to the aggregate of the 130 hours of real operation. 

According to the Central Limit Theorem (Law and Kelton, 2000), the simulation results 
presented in the next sections present a confidence level higher then 99.95%. The largest confidence 
interval for a message stream response time has a range of +/- 5% of the mean response time value. 

10.2. Gilbert-Elliot Channel Model 

It is well known that transmission errors occur in bursts (Willig and Wolisz, 2001), i.e., there is a 
correlation between consecutive errors. The Gilbert-Elliot model takes into account this correlation. 
This model is a two-state discrete-time Markov chain as illustrated in Figure 10.1.  

One state represents good channel conditions and the other bad channel conditions. To each state 
is assigned a steady state Bit Error Rate (BER) probability. In this model we define pg|g as the 
probability of continuing in the good state, pb|b the probability of continuing in the bad state. Each of 
these states has a BER probability, pg and pb, for good and bad state, respectively. Consequently 1- pg|g 
is the probability of evolving from good to bad state, and 1- pb|b is the probability of evolving from bad 
to good state. 

The algorithm works by generating, for each bit in a frame a random number and compares it to 
the respective BER. A second random number is generated to determine whether the model stays in the 
actual state or changes into the other state for the next bit. It is assumed that bit errors occur 
independently from each other. A detailed description of this model is found in Annex B. 

Good 
pg 

Bad 
pb 

1-pg|g pg|g pb|b 

1-pb|b  
Figure 10.1 – State machine for the Gilbert-Elliot error model 

Table 10.1 summarizes the Gilbert-Elliot Channel Model parameters according to each mean 
BER (MeanBER) probability used in the comparative analysis presented in this chapter (see Section 
B.3 for more details).  

Table 10.1 – Parameters for Gilbert-Elliot Channel Model 

MeanBER Pg|g Pb|b pg pb 
10-5 0.925074102 0.074925898 0.00000082 0.00012334105 
10-4 0.925074102 0.074925898 0.0000082 0.0012334105 
10-3 0.925074102 0.074925898 0.000082 0.012334105 

 
The bad and good steady state probabilities are set to 7.5% and 92.5%, respectively. The BER 

probability for each state varies according to the MeanBER probability. For instance, the bad state 
BER probability (pb) is 1.23*10-4 and the BER probability in good state (pg) is 8.2*10-7, for a 
MeanBER probability equal to 10-5 and for the MeanBER probability equal to 10-4, pb increases to 
1.23*10-3 and pg increases to 8.2*10-6. These parameters are set according to the work of (Willig and 
Wolisz, 2001). 
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10.3. Network Scenario Configuration 

Error detection and correction algorithms were not previously considered for the IDMP in the bridge-
based approach proposed in (Ferreira, 2005). Therefore, in Chapter 3 an enhanced version of the 
IDMP, with error correction and detection mechanisms was proposed. The enhanced version of the 
IDMP uses a set of timers to detect and handle errors in its messages. Four timers are assigned to the 
GMM, two timers are used to detect and handle errors during the Phase 1 (GMM_Phase_1_Alert_ 
Timer (TGMM-P1Alert) and GMM_Phase_1_Abort_Timer (TGMM-P1Abort)) and the other two are related to 
the Phase 2 (Phase_2_Alert_Timer (TGMM-P2Alert) and GMM_Phase_2_Abort_Timer (TGMM-P2Abort)). 
Additionally, each BM and each DMM also controls a timer, the BM_IDMP_Abort_Timer (TBM-

IDMPAbort) and the DMM_IDMP_Abort_Timer (TDMM-IDMPAbort), respectively. For a detailed description of 
this mechanism the reader is referred to Section 3.3.3. The setting of these timers can be based on the 
Worst Case Response Time (WCRT) analysis proposed in (Ferreira and Tovar, 2004), but that would 
probably lead to a very low network performance. Therefore, we based our setting on simulation 
results 

According to our simulation results, the maximum duration of IDMP Phase 1 and IDMP Phase 2 
are 11.156 ms and 4.090 ms, respectively. Since these results were obtained considering an error free 
medium, these values can be used to set the alert and the abort timers. Therefore, the TGMM-P1Alert was 
set to 11.156 ms and the TGMM-P1Abort was set to 22.311 (2*TGMM-P1Alert). The abort timer was set to the 
double of the alert timer, since this setting permits the completion of Phase 1, even when the SMP 
message is not received by any BM. The same rules were used to set the TGMM-P2Alert and the TGMM-

P2Abort, equal to 4.090 ms and 8.181 ms respectively. 
The TBM-IDMPAbort was set equal to 30.490 ms, which is the sum of TGMM-P1Abort and TGMM-P2Abort. 

The TDMM-IDMPAbort was set equal to TGMM-P2Abort (8.181 ms) because this timer is started at the begining 
of Phase 2 and finishes at the end of Phase 2. The relation between the IDMP timers is illustrated in 
Figure 10.2.  

DMM 

TGMM-P1Alert 

TGMM-P2Alert 

TGMM-P1Abort 

TGMM-P2Abort 

TBM-IDMPAbort 

TDMM-IDMPAbort 

BM GMM 

 
Figure 10.2 – IDMP timer’s settings 

To detect and handle errors during the execution of an IDT, a BMini assigns to every entry in its 
List of Open Transaction (LOT) a timer, called BM_IDT_Abort_Timer (TBM-IDTAbort). If an entry is 
still in the LOT when the associated timer expires, then the entry is deleted from the LOT.  

TBM-IDTAbort timer must be set with a value which allows the execution of a transaction. Two 
approaches were possible to set this timer, one based in the WCRT presented in (Ferreira, 2005) and 
the other based on simulation results. Obviously, the first mechanism is much more pessimist. 
Therefore we have set the TBM-IDTAbort equal to 33.022 ms, which is the MaxRT of all message streams 
provided by the simulation results presented in Section 9.2.  



106 Comparative Performance Analysis in an Error Prone Environment 

In an error prone environment a message stream response time can potentially be unlimited, since 
errors can occurs in all frames related to a transaction. Therefore, the Application Layer (AL) handles 
these events by assigning a timer to each message stream. This timer is loaded using the _deadline 
parameter of the Msg_Stream module, and it is reloaded every time a variable related to a transaction 
is updated. The simulations in this chapter were performed using a _deadline parameter of 100 ms, 
which is higher than the WCRT of all message streams, calculated according to the formulations 
presented in (Ferreira, 2005). 

In this chapter we assume the same parameter setting and the same message streams as used in 
Chapter 9.  

10.4. IDP Performance using SDA Frames 

In Section 3.2.2 we proposed changes to the IDP protocol which can improve its performance in error 
prone environments. In the original IDP, IDF frames were transmitted using the SDN unconfirmed 
service. One possible improvement is to use the SDA service which permits, for a BM receiving an 
IDF to transmit a confirmation, and in case of error the initiator can repeat the request 

The left side of Figure 10.3 shows a SDN message cycle example. The initiator (I) sends a 
request frame to the responder (R), which receives and processes the frame, after waiting TID, a new 
message cycle can be initiated. The right side of Figure 10.3 shows a SDA message cycle example. 
The initiator sends a request frame and waits for the acknowledge frame from the responder 
confirming the correct reception of the request. After receiving the acknowledge frame, the initiator 
prepares the next message cycle. Otherwise, it performs a number of retries according to the setting of 
the max_retry_limit parameter. 

These changes are expected to improve the error correction characteristics of the IDP, since the 
protocol can now recover from frame errors faster than using the timer associated with each LOT 
entry. In the remainder of this section we show a comparative analysis between both services. 
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Figure 10.3 – Message cycle using the SDN or the SDA service 

For both cases, the MeanRT, the number of transactions and the percentage of transactions that 
do not miss the deadline are presented in Figure 10.4, Figure 10.5 and Figure 10.6, respectively. In 
these figures the simulation results which were obtained using the SDN service are identified by the 
SDN tag and the SDA tag for simulation results obtained using the SDA service.  

Using the SDA service the MeanRT is globally smaller for all message streams than using the 
SDN service, except for message stream S1

M1, an IADT. The reason for these results is that there are 
less failed transactions, therefore IDTs errors are recovered using PROFIBUS retries, instead of using 
the timer on the BMini LOT. The exception is the message stream S1

M1, which is affected by the 
increase on the network traffic. 

Globally, the number of transactions is higher using the SDA service than using the SDN service. 
The exception is message stream S3

M3 when the MeanBER probability is equal to 10-3. 
Concerning the percentage of transaction that do not miss the deadline, using the SDA service the 

percentage is higher than using the SDN service, once again the exception is message stream S3
M3 

which has a value somewhat worst when considering the MeanBER probability equal to 10-5 and 10-3.  
Although the results for message stream S3

M3 were not very interesting, globally, the results using 
the SDA service are better than using the SDN service. Nevertheless, we show in Section 10.6.1 that 
these results can be improved by the proper setting of master stations MAC addresses. 
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Figure 10.4 – MeanRT using the SDN and the SDA services 

 
Figure 10.5 – Number of transactions using the SDN and the SDA services 

 
Figure 10.6 – Percentage of transactions that do not miss its deadline using the SDN and the SDA 

services  

10.5. Performance Comparison between Repeater and Bridge-based 
Architectures 

In this section we use the network scenarios described in Section 9.2 to compare both approaches. For 
that purpose, we performed two sets of simulation runs. On the first set, the MeanBER probability 
varies from 10-5 to 10-3 in all domains, independently of its type. On the second set, the MeanBER 
probability of the wired domains was set to 10-5 while the MeanBER probability of wireless domains 
varies from 10-4 to 10-3. This second set emulates a scenario in which the BER in a wireless domain is 
different from the BER in a wired domain. 

10.5.1. Comparison Using the same BER in All Domains 

In this section we present the simulation results considering the MeanBER probability equal for all 
domains. Figure 10.7, Figure 10.8 and Figure 10.9 show the response time, the number of transactions 
and the percentage of transaction that do not miss the deadline for the message streams set used in this 
study. In the legend of these figures an R or a B specifies that the values are related to the repeater or 
to the bridge-based architecture, respectively.  
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Figure 10.7 shows the response time graphics where the MinRT, MeanRT and MaxRT values are 
signalled. However, we focus on the MeanRT to do the comparative analysis. Since, it reflects more 
adequately the timing behaviour of the network. In this set of figures, it is also shown the message 
stream response times obtained in an error free environment (the simulation results presented in 
Section 9.3.1), these results are identified by the tag “EF”.  

Using the MeanBER probability equal to 10-5 or to 10-4 the influence of transmission errors on 
the MeanRT is smaller, since these results are very similar to the results provided from the simulation 
runs considering an error free medium. But the effects of errors are clearly visible on the MaxRT for 
all message streams. 

As expected, the simulation results in the repeater-based scenario are very similar for all message 
streams. The simulation results in the bridge-based scenario show that the MeanRT values appear very 
close to the MinRT values and the influence of the transmission errors on the MeanRT is smaller than 
in the repeater-based scenario. Further, it is noticeable that MeanRT increases much more in the 
repeater-based scenario than in the bridge-based scenario when the MeanBER probability is equal to 
10-3. 

 
Figure 10.7 – Message stream response time considering the MeanBER probability equal for all 

domains 

As it would be expected the number of transactions (Figure 10.8) is much higher for the bridge-
based scenario than for the repeater-based scenario. 

The AL deadline for each message stream was set according to the WCRT analysis considering 
an error free transmission. In both scenarios the percentage of concluded transactions for message 
stream S1

M1 is 100% considering the MeanBER probability equal to 10-5 and equal 10-4. With 
MeanBER probability equal to 10-3 the percentage of concluded transactions is slightly lower in the 
repeater-based scenario than in the bridge-based scenario. Additionally, in the bridge-based scenario 
the number of transactions is approximately 500% more than in the repeater-based scenario. 

In both scenarios, message stream S1
M2 presents basically the same percentage of concluded 

transactions considering a MeanBER probability of 10-5 and 10-4. However, with a MeanBER 
probability equal to 10-3 the percentage of concluded transaction is significantly lower in the repeater-
based scenario than in the bridge-based scenario. Further, the number of transactions is approximately 
250% more in the bridge-based scenario than in the repeater-based scenario. 

The percentage of concluded transactions for message streams S2
M3 and S3

M3 considering the 
MeanBER probability equal to 10-5 and equal 10-4 are slightly smaller in the bridge-based scenario than 
in the repeater-based scenario. The main reason is that the initiator of these message streams is a 
wireless mobile master, which must use the IDMP service (also affected by errors) to move between 
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wireless domains. However, with MeanBER probability equal to 10-3 the roles are inverted and the 
bridge-based approach has a higher number of successful transactions. 

 
Figure 10.8 – Number of transactions considering the MeanBER probability equal for all 

domains 

 
Figure 10.9 – Percentage of transactions that do no miss its deadline considering the MeanBER 

probability equal for all domains 

10.5.2. Comparison using different BERs in Each Domain 

Usually a wired medium has a lower BER than a wireless medium. Therefore we have also performed 
a comparative analysis where we fixed the MeanBER probability of wired domains equal to 10-5 and 
varied the MeanBER probability of wireless domains between 10-4 and 10-3.  

Figure 10.10, Figure 10.11 and Figure 10.12 present the response time values, the number of 
transactions and the percentage of transactions that do not miss its deadline. On the left side of these 
figures the MeanBER probability used was set to 10-4 for wireless domains and on the right side the 
wireless domains BER was modelled using a MeanBER probability equal to 10-3.  

The results presented in Figure 10.10 show that in the repeater-based scenario the MeanRT is 
more affected by the increase of the BER than in the bridge-based scenario. 

 

 
Figure 10.10 – Response time using different MeanBER probability in wired and wireless 

domains 

The number of transactions for each message stream is depicted in Figure 10.11. In the bridge-
based scenario the number of transaction is much higher for all message streams. As would be 
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expected, the number of transactions is smaller when the MeanBER probability is equal to 10-3 on both 
scenarios, especially for IDTs. In the bridge-based scenario the decrease on the number of transactions 
is especially higher for message streams S2

M3 and S3
M3. The larger decrease for both message streams is 

related to the fact that the initiator is a wireless mobile station, which is more influenced by the 
transmission errors, not only on message transmission, but also on the IDMP. 

 
Figure 10.11 – Number of transactions using different MeanBER probability in wired and 

wireless domains 

Figure 10.12 presents the percentage of transactions that do not miss its deadline for each 
message stream. In the repeater-based scenario the percentage of transactions that do not miss the 
deadline is higher than in the bridge-based scenario, especially for message streams S2

M3 and S3
M3. 

 
Figure 10.12 – Percentage of transactions that do not miss its deadline using different MeanBER 

probability in wired and wireless domains 

Although the results seem to be more favourable to the repeater-based architecture (particularly 
in terms of transaction that do not miss its deadline) we will show, in the next section, that using a 
careful setting of master station addresses the performance of the bridge-based architecture can be 
improved. 

10.6. Address Assignment Rules 

In order to handle token loss due to an error on the current token owner: every master listens 
permanently on the medium. Every time the medium goes idle, each master starts the TTO timer which 
is reset when the medium goes busy. If the TTO timer expires (no activity on the medium for some 
time) a master claims the token (always the master with the lowest address), i.e., it starts behaving as if 
it is the current token owner and performs some frame transmissions: it sends data frames or passes the 
token to its current Next Station (NS). If a master was not in the LISTEN_TOKEN state then when 
TTO expires, no changes occur on its parameters, specifically to its List of Active Station (LAS), 
NS, and Previous Station (PS) parameters. If it is in the LISTEN_TOKEN state when the TTO 
expires then it evolves to the CLAIM_TOKEN state and assumes that it is the only station in the 
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logical ring (note that when a master evolves to the LISTEN_TOKEN state it clears all entries from its 
LAS and the NS and the PS parameters are set equal to This Station (TS)).  

In order to recover the token and reinitialize the logical ring the master, which is in the 
CLAIM_TOKEN state, transmits two token frames addressed to itself. After that, every master will be 
joining to the logical ring using the GAP update mechanism. However, when a master transmits a 
token addressed to itself, all masters that are not in the LISTEN_TOKEN state evolve to that state, 
since they are “skipped” of the logical ring. 

When a master station is in the LISTEN_TOKEN state, it shall monitor the bus activity in order 
to identify which master stations already belong to the logical token ring. For that purpose, token 
frames are analyzed and the station addresses contained in them are used to generate the LAS.  

After listening to two complete identical token rotations, the master must remain in the 
LISTEN_TOKEN state until it is addressed by an FDL_Request_Status transmitted by its 
predecessor to which it must respond indicating its readiness to enter into logical ring. When a master 
station is in the LISTEN_TOKEN state all frames are neither acknowledged nor answered, except 
FDL_Request_Status frames. 

In order to clarify the problem of this mechanism, suppose a network situation in which the token 
owner is the station with the lowest address in the logical ring and it loses the token frame, due to two 
consecutive errors in token frame transmissions. Therefore, it evolves to the LISTEN_TOKEN state 
and clears its LAS as well as it NS and PS parameters. As it has the lowest address, its TTO timer 
expires first. Consequently, it evolves to the CLAIM_TOKEN state and starts the token recovery 
mechanism sending a token frame addressed to itself. At this instant, the others masters which were in 
the ACTIVE_IDLE state evolve to the LISTEN_TOKEN state and will stay in this state until two 
identical token rotations were performed.  

The availability of the bridge-based network can be degraded due to this mechanism, since when 
a BM is out of the logical ring, then it is not able to process IDTs. To decrease the impact of the 
PROFIBUS token recovery mechanism we defined a set of rules for the attribution of master station 
addresses. This schema is called Master Station Address Setting Rules (MSASR): 

– The lowest address in each logical ring must be given to a BM; 
– The following addresses should be separated by two or more addresses between them. For 

instance, if the lowest address in a logical ring is 2, the second one must be 4 or more. 
The goal of the first rule is for the token recovery mechanism to be always performed by a BM. 

The second rule is used to reduce the time that a station is out of the logical ring. As mentioned a 
station which address is skipped evolves to the LISTEN_TOKEN state and waits in this state for two 
identical token frame rotations. After that, it waits for an FDL_Request_Status message to enter into 
the logical ring. On the other hand, when a master claims the token, it sends two token frames 
addressed to itself. Therefore, the first transmission leads that the other station evolves to the 
LISTEN_TOKEN state. The second token frame transmission counts as the first token rotation. After 
the second token transmission the token claimer processes message cycles and tries to discovery the 
station with the address following its during its THT. At the expiration of THT usually it did not found 
any station, therefore it passes the token to itself – second token rotation. At this point the other 
stations (particularly the stations whose address differ by two) are ready to enter in logical ring. 

Table 10.2 shows the master’s address considering the network scenario (identified by B) used in 
Section 9.2.2 and the master address assignment according to the MSASR rules (BMSASR). 

Table 10.2 – Master’s address  

 Address  Address 
Master BMSASR B Master BMSASR B 

M1 5 1 M6 2 6 

M2 3 2 M7 1 7 

M3 9 3 M8 7 8 
M4 10 4 M9 6 9 

M5 4 5 M10 8 10 
 
To evaluate the impact of these rules we performed two sets of simulations. First we used a 

MeanBER probability equal in all domains and varied the MeanBER probability between 10-5 and 10-3. 
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These results were compared with the simulation results presented in Section 10.5.1. In the second set, 
we fixed the MeanBER probability of the wired domains to 10-5 and varied the MeanBER probability 
of wireless domains equal between 10-4 and 10-3. These results were also compared with the simulation 
results presented in Section 10.5.2. 

10.6.1. Comparative Performance Analysis using the same BER in All Domains 

Figure 10.13, Figure 10.14 and Figure 10.15 present the MeanRT, the number of transactions and the 
percentage of transactions that do not miss its deadline, respectively.  

These simulation results show that the MeanRT increases using the MSASR. The number of 
transactions is very similar using both network configurations. But with the MSASR the percentage of 
transaction that do not miss its deadline increases, especially for simulation results in which the 
MeanBER probability is equal to 10-3.  

 
Figure 10.13 – MeanRT using equal MeanBER probability in all domains and the MSASR rules 

 
Figure 10.14 – Number of transactions using equal MeanBER probability in all domains and the 

MSASR rules 

 
Figure 10.15 – Percentage of transactions that do not miss its deadline using equal MeanBER 

probability in all domains and the MSASR rules 

The increase on the percentage of transactions that do not miss its deadline is a consequence of 
having a more available network, since the BMs are less time out of the logical ring. However, the 
increase in the MeanRT is related to the fact that transaction initiators (the system masters) are more 
time out of the logical ring than using the MSASR, since the lowest addresses are assigned to the BMs. 
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10.6.2. Comparative Performance Analysis using different BERs in Each Domain  

The MeanRT, the number of transactions and the percentage of transactions that do not miss its 
deadline are presented in Figure 10.16, Figure 10.17 and Figure 10.18, respectively. On the left side of 
these figures the results for both network scenarios in which the MeanBER probability of wired 
domains is equal to 10-5 and of the wireless domains is equal to 10-4 are presented. On the right side of 
these figures, the MeanBER probability of wired domains is equal to 10-5 and on the wireless is equal 
to 10-3 are presented.  

 
Figure 10.16 – MeanRT using different MeanBER probability in wired and wireless domains and 

the MSASR rules 

 
Figure 10.17 – Number of transactions using different MeanBER probability in wired and 

wireless domains and the MSASR rules 

 
Figure 10.18 – Percentage of transactions that do not miss its deadlines using different MeanBER 

probability in wired and wireless domains and the MSASR rules 
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These simulation results show that using the MSASR the MeanRT of message streams is slightly 
higher. However, the number of transaction and the percentage of transactions that do not miss its 
deadlines are higher. The number of transactions increases slightly, especially for message streams 
S2

M3 and S3
M3, using the MSASR. In spite of a small decrease for message stream S1

M1, the other 
messages streams increase the percentage of transactions that do not miss its deadline. 

In Section 10.5.2, we presented a performance comparison between the repeater and bridge-based 
approaches using a MeanBER probability of 10-5 in wired domains and a MeanBER probability of 10-4 
and 10-3 in wireless domains. The percentage of transactions that do not miss its deadline was higher 
for all message streams in the repeater-based scenario than in the bridge-based scenario. Figure 10.19 
shows the percentage of transactions that do not miss its deadline for repeater-based scenario from the 
simulation presented in Section 10.5.2 (which are identified by a R) and the percentage of transaction 
that do not miss its deadline for the bridge-based scenario using the MSASR schema proposed in this 
section. 

 
Figure 10.19 – Percentage of transactions that do not miss its deadline using different MeanBER 

probability in wired and wireless domains 

From these results we can conclude that using the MSASR the percentage of transactions that do 
not miss its deadlines increases significantly, when compared with the results of the repeater-based 
scenario it is shown that for some message streams the bridge-based scenario presents a higher 
percentage of transactions that do not miss its deadline. 

10.7. Summary 

In this chapter we presented set of simulation results where transmission errors were modelled 
according to the Gilbert-Elliot Channel Model.  

These results were used to make three comparative performance analyses. First, we made a 
comparative analysis of the bridge-based approach considering two version of the IDP. Originally, the 
IDP defined that IDFs were transmitted using the unacknowledged SDN service. Therefore, any IDF 
transmission error leads to an error on an IDT, which can only be solved using the LOT timer 
associated with that IDT. In this dissertation we proposed that an IDF should be transmitted using the 
acknowledge SDA service. Our simulation results show that it is possible to achieve a higher 
performance using the SDA service. Globally there is a reduction on the MeanRT and an increase on 
the number of transactions which do not loose its deadline  

In the second comparative analysis, we compared the performance of the repeater-based 
approach and the bridge-based approach considering communications over error prone mediums. Two 
transmission error configurations were used. In the first, we performed simulations in which the 
MeanBER probability was set equal in all domains, either wired or wireless. In the second 
configuration we used a fixed MeanBER probability for the wired domains and varied the MeanBER 
probabilities for wireless domains.  

From the simulation results provided by the first set of simulation runs we conclude that the 
repeater-based approach is much more influenced by transmission errors than the bridge-based 
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approach, since the MeanRT increases considerably with an increase in the MeanBER probability. 
Contrarily, the MeanRT of the bridge-based approach increases less significantly. The decrease on the 
number of transactions is similar in both approaches when the MeanBER probability increases. The 
percentage of transactions that do not miss its deadline is similar for MeanBER equal to 10-5 and 10-4, 
but for MeanBER equal to 10-3, the percentage of transactions that do not miss its deadline is always 
higher for the bridge-based approach than for the repeater-based approach. The results of these last 
experiments were a little surprising. The MeanRT of the bridge-based approach is more constant, the 
number of transactions is also higher, but the percentage of transactions that do not miss its deadline is 
higher for the repeater-based approach than for the bridge-based approach. These results triggered a 
carefully analysis of the results. We realise that the setting of master station addressees should be done 
in a way which permits achieving a higher number of transactions that do not miss its deadline. Since, 
the network availability depends strongly on the BMs we defined a set of rules to assign an address to 
master stations. 

To evaluate the impact of these rules in the bridge-based approach we performed another set of 
simulation runs using two transmission error configurations, one in which the MeanBER probability 
was set equal to all domain and another in which the MeanBER probability is higher for wireless 
domains. From these simulation sets we concluded that the MeanRT increases slightly and that the 
number of transactions is equivalent. But the percentage of transactions that do not miss its deadline 
increase significantly. Also, when comparing with the repeater-based approach the percentage of 
transactions that do not miss its deadline is now higher for the bridge-based approach.  



 



 

 

Chapter 11 

Conclusions and Future Work 

This chapter reviews the research context and objectives of this dissertation, summarizes the most 
relevant contributions and highlights the possible directions of future work. 

11.1. Research Context and Objectives 

Nowadays, industrial automation applications collect large benefits from the use of fieldbuses for the 
interconnection of distributed devices. Usually, these systems are supported by a wired infrastructure. 
But, there is now an increased pressure to extend the capabilities of fieldbuses with wireless 
communication functionalities, in order to support mobile devices. Wireless communication systems 
are of particular interest in supporting mobile machine parts, mobile vehicles and temporary or 
frequently reconfigured production lines, for example.  

The integration of wireless communications in a fieldbus system creates new challenges. It is 
expected that the level of performance of the wireless extensions to be at least similar to those existing 
in wired fieldbus. On the other hand, there is the need to interconnect different media. To sum up, the 
level of throughput, reliability and real-time performance of such hybrid wired/wireless network must 
fulfil the requirements of industrial automation applications. 

In this dissertation, we analysed the performance of two approaches that extend the PROFIBUS 
standard to support wireless communications. One based on repeaters and another based on bridges.  

In the repeater-based approach the interconnection between wired and wireless segments (called 
as domains) is supported by Intermediate Systems (ISs) operating as repeaters, i.e., at Physical Layer 
(PhL) level. The support of repeaters requires a specific settings of some PROFIBUS timing 
parameters (Slot Time and Idle Time), which results in a lower responsiveness to errors and on an 
increased latency of the message cycles. Additionally, the use of repeaters creates a broadcast network.  

The bridge-based approach triggered an alternative approach where the ISs behave as bridges, 
i.e., at Data Link Layer (DLL) level. This approach – the bridge-based approach – solves some of the 
problems of the repeater-based approach. The bridge-based approach creates a Multiple Logical Ring 
(MLR) network and, as consequence, there is the need of two more protocols. One, for supporting the 
communication between stations that belong to different domains – the Inter-Domain Protocol (IDP). 
Another to support the mobility of wireless mobile stations between different wireless domains – the 
Inter Domain Mobility Procedure (IDMP). 

The main objective of this dissertation is to compare the timing behaviour of the repeater and 
bridge-based approaches in an error free and error prone environments. Additionally, we also intended 
to show that the bridge-based approach implementation is feasible and propose additional error 
detection and correction mechanisms which would improve its performance over error prone 
environments. To achieve these objectives two simulation tools have been developed, for the repeater-
based approach and another to the bridge-based approach, and a set of analysis tools. Additionally, we 
have also developed another tool to simulate the mobility of wireless stations. As outlined next, the 
objectives of this dissertation were achieved. 
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11.2. Main Contributions  

11.2.1. Enhancements to the Bridge-Based Approach  

 
Error detection and correction algorithms were not previously considered in the bridge-based approach 
proposed in (Ferreira, 2005). Therefore, this approach has been enhanced with the necessary 
mechanisms to be used over error prone mediums as summarised next. 

Originally, the IDP defined that IDFs were transmitted using the SDN PROFIBUS service. This 
service is an unacknowledged service. Therefore, any IDF transmission error results in a failed IDT. In 
this dissertation we proposed that IDFs must be transmitted using the SDA PROFIBUS service. The 
SDA service is an acknowledge service, i.e., the frame sender receives a special frame (Short 
Acknowledge frame) confirming the reception by the responder. The simulation results presented in 
Section 10. 4 showed that using the SDA service, would lead to a better performance than using the 
SDN service. 

The original IDMP only had very limited error handling capabilities. In an error prone 
environment this protocol could lead to blocking situations, therefore we have proposed an error 
handling mechanism which permits to solve the detected problems. This mechanism is based on 
timers, which control the IDMP phases.  

These enhancements provide the bridge-based approach with the necessary mechanisms to be 
used in an error prone environment.  

11.2.2. Comparison between the Repeater and Bridge-Based Approaches 

In Chapter 9 a performance comparison between the repeater and the bridge-based approaches was 
performed considering an error free medium and by varying some important network parameters. From 
that comparison, it has been shown that the performance of the bridge-based approach is less 
influenced by changes on the network parameters. Additionally, the bridge-based approach is not 
dependent on the network parameters or configuration, i.e., the impact of changes on the network 
parameters or configuration is minimum in relation to the repeater-based approach, in which any 
change on the network parameters or configuration implies changes to the parameters settings in all 
stations. This performance comparison was based on response time and throughput results. From these 
results it was possible conclude that the bridge-based approach presents a better performance. The 
response time of IADTs is much smaller in any case and for the IDTs, if it is not smaller is very close 
of the response time obtained by the repeater-based approach and less influenced by parameter 
settings. The throughput is always higher for all message streams (in same cases 2000% more). 

Another important aspect is that we have also proposed a set of rules for address attribution to all 
master station in the network (BM included), and showed that this set of rules results in performance 
gains, particularly on the number of transactions that do not miss their deadlines. 

Chapter 10 presents a performance comparison between these two approaches considering 
communication over error prone mediums. From the simulation results we can conclude that the 
bridge-based approach presents a better performance. Since, globally, the response time of its message 
streams is smaller, the throughput is always higher and the percentage of transactions that do not miss 
their deadline is higher for most message streams. 

11.2.3. Software Tools 

The software tools developed within this thesis are also a very important contribution for further 
studies on hybrid wired/wireless PROFIBUS networks. These tools are available for free, and they can 
be downloaded from the web site http://www.hurray.isep.ipp.pt/activities/hw2pnetsim/. 

The following list describes a set of tools which were developed: 
– Repeater-Based Hybrid Wired/Wireless PROFIBUS Network Simulator 

(RHW2PNetSim). 
– Bridge-Based Hybrid Wired/Wireless PROFIBUS Network Simulator (BHW2PNetSim). 
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– Mobility Simulator: is a tool which is used to simulate the mobility of wireless mobile 
stations, the radio signal strength at a certain point in space and the wireless domain to 
which the station belong through time. 

– Timeline Visualization: provides a way to show the network events, like frame 
transmissions, using Gant Diagrams. This tool can also be used with any other kind of 
network simulator. 

– Output Data Analysis: this tool provides a set of options to extract information from the 
output data files generated by the RHW2PNetSim and BHW2PNetSim. 

11.3. Future work 

The work performed during this thesis permitted to adequately characterise and compare the timing 
behaviour of the repeater and bridge-based hybrid wired/wireless PROFIBUS networks. However, we 
envision some improvements, mainly in relation to the bridge-based architecture which might 
considerably improve their performance. 

The operation of the bridge-based architecture relies completely on bridge devices, which are 
new components in a PROFIBUS network infrastructure. The BMs defined in this architecture do not 
implement AL functionalities. An obvious add-on would be to include AL functionalities in the 
bridges, as in a standard PROFIBUS-DP master. This would permit to improve the performance of the 
network, and at the same time, reduce the number of devices required.  

In our opinion the token recovery mechanism of the PROFIBUS is not very efficient, therefore 
we think that if the BMs were provided with better mechanisms, then the network performance can be 
improve, particularly over error prone environments. 

The Mobility Simulator used in this thesis assumed that wireless mobile stations always change 
to a new radio channel whenever the quality of the radio channel in another domain is better than the 
actual, this can possibly result in performing more handoffs than necessary. Consequently, a possible 
enhancement to the handoff mechanism is to implement a histeresis mechanism.  Additionally, our 
mobility simulator should also provide results, considering the influence of obstacles in the 
environment and noise sources, like welding machines. 

It is also clear from our results that the IDMP has a high impact on message streams response 
time, therefore a potential improvement would be to develop an enhanced IDMP with a better timing 
performance. 

Most of the work and methodologies developed within context of this thesis can also be applied 
to evaluate other wireless technologies, like IEEE 802.11 or ZigBee network in industrial scenario. 
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Annex A 

Probability Distribution Functions 

The simulators developed within the aim of this dissertation permit the setting of some its parameters 
using probabilistic distribution functions (PDFs). This annex describes the characteristics of the PDFs 
which can be used. 

A.1. Introduction 

Most simulation studies have variables which exhibit a stochastic behaviour. This is also the case of the 
simulators developed within this dissertation, where it is possible to use PDFs in some of its parameters, 
like the message stream period and TID parameters, just to mention two. This annex describes the PDFs 
which have been implemented to model the behaviours of certain parameters of the Repeater-Based Hybrid 
Wired/Wireless PROFIBUS Network Simulator (RHW2PNetSim) and Bridge-Based Hybrid 
Wired/Wireless PROFIBUS Network Simulator (BHW2PNetSim). 

A.2. Parameterization of Continuous Distributions 

For a given family of continuous distributions, e.g., normal or gamma, there are usually several alternative 
ways to define, or parameterize, the probability density function. However, if the parameters are defined 
correctly, they can be classified, on the basis of their physical or geometric interpretation, as being on of 
three basic types: location, scale, or shape parameters. 

A location parameter γ specifies an abscissa (x axis) location point of a distribution’s range of values; 
usually γ is the midpoint or the lower endpoint of the distribution’s range. (in the latter case location 
parameters are sometimes called shift parameters). As γ changes, the associated distribution merely shifts 
left or right without otherwise changing. Also, if the distribution of a random variable X has a location 
parameter of 0, then the distribution of the random variable Y = X + γ  has location parameter of γ. 

A scale parameter β determines the scale (or unit) of measurement of the values in the ranges of the 
distribution. (The standard deviation σ is a scale parameter for the normal distribution). A change in β 
compresses or expands the associated distribution without altering its basic form. Also, if the distribution 
of a random variable X has a scale parameter of 1, then the distribution of the random variable Y = βX has 
a scale parameter of β. 

A shape parameter α determines, distinct from location and scale, the basic form or shape of a 
distribution within the general family of distributions of interest. A change in α generally alters a 
distribution’s properties (e.g. skewness) more fundamentally than a change in location or scale. Some 
distributions (e.g., exponential and normal) do not have shape parameter, while others (e,g., beta) may have 
two. 

The Table A.1 gives the information relevant to the PDFs implemented in both simulators. The range 
indicates the interval where the associated random variable can take on values. Also listed are the mean 
(expected value), variance, and mode, i.e., the value at which the density function is maximized.  
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Table A.1 – Probability Distribution Functions features 
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a , b and apex  real numbers with bapexa << . 
a  is a location parameter. 

ab −  is a scale parameter. 
apex is a shape parameter 
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Variance 
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A.3. Parameterization of Stochastic Parameters in the Simulators  

The RHW2PNetSim and BHW2PNetSim allow setting some parameters using PDFs. The name of all these 
parameters uses the _pdf prefix. For example, the parameters associated to TSDR are the following: _pdf_ 
tsdr_type, _pdf_tsdr_par1, _pdf_tsdr_par2 and _pdf_tsdr_par3. Where the _pdf_tsdr_type 
indicates which PDF will be used to generate the value of the TSDR and the other parameters are the 
arguments of the PDF. Table A.2 presents how the simulator parameters must be set according to the PDF. 
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Table A.2 – Probability Distributions Functions simulators parameters 

  Probability Distribution Functions 
Parameters Constant Normal Exponential Triangular Triangular 

_pdf_..._type 0 1 2 3 4 
_pdf_..._par1 Value μ  β  a  a  

_pdf_..._par2  2σ  – apex  b  

_pdf_..._par3  – – b  – 

 



 



Annex B 

Bit Error Models 

The use of bit error models in communication simulation has been widely studied. In this 
dissertation we had used three models: The Independent Channel Model; the Gilbert-Elliot Model 
and the Burst-Error Periodic Model, which are described in detail in this annex. 

B.1. Introduction 

The purpose of this annex is to describe the Bit Error Model (BEM) supported by the Repeater-Based 
Hybrid Wired/Wireless PROFIBUS Network Simulator (RHW2PNetSim) and Bridge-Based Hybrid 
Wired/Wireless PROFIBUS Network Simulator (BHW2PNetSim). Independent Channel Model 
(Willig and Wolisz, 2001); the Gilbert-Elliot Channel Model (Gilbert, 1960; Elliot, 1963) and the 
Burst-Error Periodic Model (Hazim, 2006). This Annex describes the implemented BEMs. 

B.2. Independent Channel Model 

This model is very simple and determines if a frame is correct or wrong, that is, there is a bit error in a 
frame. As there is no correlation between two consecutive errors, this model is called Independent 
Channel Model.  

The result of this model is obtained using Bernoulli function (Law and Kelton, 2000) with 
parameter Pfr_err . This parameter is computed as follows: 

L
bererrfr pP )1(1_ −−=  (B.1) 

where L is the length (in bits) frame and pber is the Bit Error Rate (BER) probability associated to the 
channel. 

B.3. Gilbert-Elliot Channel Model  

It is well known that transmission errors occur in bursts, that is, there is correlation between 
consecutive errors. The Gilbert-Elliot model (Gilbert, 1960; Elliot, 1963) takes into account this 
correlation. This model is a two-state discrete-time Markov chain as shown Figure B.1. 

Good 
pg 

Bad 
pb 

pg|b pg|g pb|b 

pb|g  
Figure B.1 – Gilbert-Elliot model 
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One state represents a good channel conditions and the other one bad channel conditions. Each 
state is assigned a constant Bit Error Rate (BER) probability, pg in good state and pb in bad state. It is 
assumed that the bit errors occur independently from each other. 

Let tg and tb the mean duration in good state and in bad state, respectively. The steady state 
probability for being in good state can be obtained as follows:  

bg

g
gg tt

t
p

+
=|  (B.2) 

In same way, the steady state probability for being in bad state can be obtained as follows:  

bg

b
bb tt

t
p

+
=|  (B.3) 

The mean BER is given by:  

bbbggg ppppMeanBER ** || +=  (B.4) 

The probability of a transition occurs from good to bad state is computed as: 

gggb pp || 1−=  (B.5) 

The probability of a transition occurs from bad to good state is computed as: 

bbbg pp || 1−=  (B.6) 

The Gilbert-Elliot model is computationally expensive, since for each frame’s bit two uniform 
experiments have to be executed. The algorithm works by generating, for each bit in a frame a random 
number and compares it to the respective BER. A second random number is generated to determine 
whether the model stays in the actual state or changes into the other state for the next bit.  

This will slow down the simulation performance. In order to overcome this drawback a 
simplified Gilbert-Elliot model can be used. This simplification is accomplished by assuming that in 
good state all frame’s bit are correctly transmitted. Therefore, in good state there is the need to 
compute if state transition occurs. In context of this dissertation this model is called Simplified Gilbert-
Elliot Channel Model. 

B.4. Burst-Error Periodic Model 

The Burst-Error Periodic Model assumes that the transmission errors occur in a periodic way. In this 
model it is assumed that there are a lower (Tem) and a higher (TeM) period threshold. The burst length is 
also bounded by a minimum (Nem) and maximum (NeM) number of bits. The Tem and TeM parameters are 
set in milliseconds and the Nem and NeM are set in bits.  

Figure B.2 shows a simplified timeline using this model. The transmission error period is 
computed using the Eq. B.7 and burst length is computed using the Eq. B.8. 

 

 Good channel conditions (no error) Bad channel conditions (burst error) 

     

N1*bit time N2*bit time N3*bit time 

T1 T3 

 
Figure B.2 – Simplified timeline of Burst-Error Periodic Model 
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),( eMemx TTuniformT =  (B.7) 

 

),( eMemy NNuniformN =  (B.8) 

 
To compute the transmission error period and the burst length a uniform probability distribution 

function (Law and Kelton, 2000) is used (Eq. B.8). This function was chosen because this model 
imposes thresholds, i.e., the transmission error period has to be enclosed within of the range [Tem , TeM] 
and burst length has to be enclosed within of the range [Nem, NeM]. On the other hand, is assumed that 
either period or burst lengths are uniformly distributed in their defined ranges.  

B.5. Parameterization of the Bit Error Model Parameters Used in both 
Simulators  

The RHW2PNetSim and BHW2PNetSim define a set of parameters to specify which BEM to use. The 
name of all these parameters uses the _bem prefix. The _bem_type is used to define the BEM and the 
other parameters (_bem_par1, _bem_par2, _bem_par1, _bem_par3 and_bem_par4) are used to set the 
BEM parameter. Table B.1 presents how the simulator parameters must be set according to the BEM to 
be used. 

Table B.1 – Bit Error Model simulators parameters 

  Bit Error Model 

Parameters No errors Independent  
Channel Model 

Gilbert-Elliot  
Channel Model 

Simplified  
Gilbert-Elliot  

Channel Model 

Periodic  
Burst Model 

_bem_type 0 1 2 3 4 

_bem_par1 –  pber bgp |  bgp |  Tem  

_bem_par2 – – gbp |  gbp |  TeM  

_bem_par3 – – gp  bp  Nem 

_bem_par4 – – bp  – NeM  

 



 



Annex C 

Implementation of the Simulation Models  

In Chapter 5, Chapter 6 and Chapter 7 the main architecture of the Repeater-Based Hybrid 
Wired/Wireless Network Simulator and the Bridge-Based Hybrid Wired/Wireless Network 
Simulator were described. In this annex we describe the implementation details of the Repeater-
Based Hybrid Wired/Wireless Network Simulator and the Bridge-Based Hybrid Wired/Wireless 
Network Simulator  

C.1. PROFIBUS DLL 

The goal of this annex is to provide a more detailed description of the implementation of the Repeater-
Based Hybrid Wired/Wireless Network Simulator (RHW2PNetSim) and the Bridge-Based Hybrid 
Wired/Wireless Network Simulator (BHW2PNetSim). In Chapter 5, Chapter 6 and Chapter 7 the 
behaviour of each module was described using the description of its state machine. The particular 
specification of each transition is detailed in this annex. Therefore, this annex is a complement to those 
chapters.  

C.1.1. Token Recovery Procedure 

In the PROFIBUS protocol, a token lost is detected when a master does not detect any network activity 
for a time defined by its Time-Out Time (TTO) parameter (which is set by Eq. 2.2).  

A timer is loaded with TTO parameter value and is started in two situations. First, when the frame 
transmitter transmits the frame’s last bit. Second, when a master receives frame’s last bit. The timer is 
stopped when the first bit of the following frame is received.  

When TTO timer expires and the Master module instance is in the ACTIVE_IDLE state it starts 
performing message cycles according to the message dispatching procedure (described in Section 
C.1.3). But if it is in the LISTEN_TOKEN state, then it evolves to the CLAIM_TOKEN state and the 
token recovery procedure starts. This procedure has two objectives. First, recovering the token frame 
and, second to reinitialize the logical ring.  

Note that, when a Master evolves to LISTEN_TOKEN state all List of Active Stations 
(LAS) entries are deleted (Figure C.1).  

 
1. handleSelfMessage(msg) 
2. { 
3. switch (getAction(msg)) { 
4.   case TTO_TIMEOUT:  
5.    switch (state) { 
6.     case ACTIVE_IDLE:  
7.      messageDispacthing(); 
8.     end; 
9.     case LISTEN_TOKEN:  
10.      state=CLAIM_TOKEN; 
11.      tokenRecovery(); 
12.         
13.     end; 
14.    } 
15.   end; 
16.   ... 
17.  } 
18. } 

Figure C.1 – handleSelfMessage(msg) function, pseudo-code algorithm 
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In order to recover the token and reinitialize the logical ring the Master, which is in the 
CLAIM_TOKEN state, transmits two token frames addressed to itself (Figure C.2). The pass token 
procedure will be described in Section C.1.4. In this way the token frame is recovered. After that, 
every Master will be joining to the logical ring using the GAP update procedure (described in Section 
C.1.3). 

Note that, when a Master transmits a token addressed to itself, all Masters that are not in the 
LISTEN_TOKEN state evolves to that state, since they are “skipped” of the logical ring. 

 
1. tokenRecovery() 
2. { 
3. passToken(TS); 
4. passToken(TS); 
5. state=USE_TOKEN; 
6. messageDispacthing(); 
7. } 

Figure C.2 – tokenRecovery() function, pseudo-code algorithm 

C.1.2. Token Reception Procedure 

The token frame is passed between masters in ascending Medium Access Control (MAC) address 
order. The only exception is that to close the logical ring the master with the Highest Station 
Address (HSA) must pass the token frame to the master with the lowest one. Each master knows the 
address of its Previous Station (PS), the address of the Next Station (NS) and its own address 
(This Station (TS)). 

When a master receives a token frame addressed to itself from a master registered in the LAS as 
its PS then this master is said to be the token owner. On the other hand, if a master receives a token 
frame from a master, which is not its PS, it shall assume an error and will not accept the token frame. 
However, if it receives a second subsequent token frame from the same master, it shall accept the 
token frame and assumes that the logical ring has changed. In this case, it updates the original PS value 
by the new one and updates the LAS and the Live List (LL). 

Figure C.3 illustrates the token reception procedure. A token frame is discarded when it is an 
erroneous frame or if it is not addressed to the Master. If the token frame is addressed to the Master 
and it does not contain bit errors, then the Master behaviour depends on the token frame transmitter 
(i.e., if the token frame Source Address (SA) is registered as its PS).  

If the token frame transmitter is registered as its PS, it evolves to the USE_TOKEN state, 
calculates the Token Holding Time (THT) according to the Eq. 2.1, sets to false GAP_Turn variable 
and then the token reception procedure ends. Otherwise, the received token frame is discarded when a 
Master token frame sender is not its PS. However, if it receives a second token frame from the same 
Master, then it updates the original PS value with the new one and updates its LAS. 

In the same way it evolves to the USE_TOKEN state, calculates the new TTH sets to false the 
GAP_Turn variable and then the token reception procedure ends. According to the PROFIBUS DLL 
only one GAP Update procedure can be performed per token visit, the GAP_Turn variable is used to 
avoid that more than one GAP Update procedure is performed when a Master is holding the token 
frame. 

The execution of the token reception procedure forces the execution of the message dispatching 
procedure described in the Section C.1.3.  

C.1.3. Message Dispatching Procedure 

Figure C.4 presents the message dispatching procedure when a Master holds the token frame. This 
procedure is repeatedly performed until the Master expires TTH and the pass token procedure is 
executed.  

At token frame reception, the period during which the Master is allowed to perform messages 
cycles (TTH) is computed according to the Eq. 2.1. 
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Token Reception Procedure

 
Receive a token frame 

Has bit errors 
? 

Discard the token 
frame 

Is this the 2nd 
token from 

the same SA 
? 

PS=SA 
Update LAS 

state=USE_TOKEN 
TTH=TTR-TRR 

GAP_Turn=false 

No

No

No

Yes

No

YesYes 

Yes 

DA=TS  
? 

SA=PS  
? 

End 

 
Figure C.3 – Token Reception procedure 

Message Dispatching Procedure 

 
one_high_msg=true 

One high  
priority message 

processed 
? 

 

Pass Token 
Procedure 

No

Is the high 
priority message 

queue empty 
? 

TGUD<0 and 
GAP_Turn=false

? 

Is the low  
priority message 

queue empty 
? 

TTH<0 
? 

 

GAP Update 
Procedure 

End 

Yes 

Yes 

Yes

YesYesNo 

No

No
No

 

Send Frame 
Procedure 

 
Figure C.4 – Message dispatching procedure 

Independently of the TTH value a Master is allowed to transmit at least one high priority 
message. After, high priority message will be processed while TTH > 0. When there are no more high 
priority messages to dispatch then low priority messages and GAP update related messages can be 
transmitted.  
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The GAP update procedure is triggered when the Gap Update Timer (TGUD) expires and the TTH 
> 0. If TTH < 0, the GAP update procedure is postponed for the next token holding period. However, 
only one GAP update procedure is performed per token visit. 

It should be pointed out that once a high or low priority message cycle or GAP update procedure 
is started, it is always completed (it is not pre-empted), including any retry (or retries), even if TTH < 0. 
When TTH < 0 or when the output message queues are empties, the Master passes the token frame to 
another station.  

In this section, a high level message dispatching mechanism was described. The pass token, send 
frame and GAP Update procedures are detailed in the following sections. 

C.1.4. Pass Token Procedure  

The PROFIBUS protocol defines that token frames are passed between masters in ascending MAC 
address order. The only exception is that to close the logical ring the master with the HSA must pass 
the token to the master with the lowest one. Each master knows the address of the PS, the address of 
the NS and its address (TS) as well. 

When TTH expires or when no more messages are available on the queues (low and high priority), 
a master passes the token frame. If, after transmitting the token frame and after the expiration of Slot 
Time (TSL) timer the token transmitter detects bus activity, it assumes that its NS owns the token and is 
performing message cycles. Otherwise, if the token transmitter does not recognize any bus activity 
within the TSL, it re-sends the token frame and waits another TSL. It assumes that its NS owns the token 
frame thereafter, if it recognizes bus activity within the second TSL.  

If, after the second retry, there is no bus activity, the token transmitter tries to pass the token to 
the next master on its LAS. It continues repeating this procedure until it has found a successor from its 
LAS. If it does not succeed, the token transmitter assumes that it is the only one left in the logical ring 
and transmits the token frame to itself. 

In order to detect a defective transceiver when a master is transmitting a token frame it reads 
back from medium all transmitted bits. If it detects a difference between the transmitted and received 
bits it waits TSL for any activity from NS. If no activity is detected after expiring TSL, it transmits again 
the token frame, if an error occurs, then it removes itself from the logical ring. 

Figure C.5 depicts the token pass procedure. The first step is to evolve the Master from the 
USE_TOKEN state to the PASS_TOKEN state and sets the retry_counter variable to zero. After 
that, it builds the token frame addressed to its successor (NS) and transmits the token frame. If the 
token frame received is equal to the token frame transmitted then it evolves to the 
CHECK_TOKEN_PASS state. If after transmitting the token frame and before the expiration of the 
TSL, the Master receives a frame, it assumes that its NS owns the token and that it is executing 
message cycles, and evolves to the ACTIVE_IDLE state. If the Master does not receive a frame 
within the TSL, it returns to the PASS_TOKEN state and it repeats the transmission of the token frame 
(its state machine evolves again to the CHECK_TOKEN_PASS state) for the last time 
(retry_counter = 2) and waits another TSL. If it receives a frame within the second TSL, it assumes a 
correct token frame transmission. Otherwise, it continues repeating this procedure until it has found a 
successor from its LAS (getNS()). If it does not succeed, it transmits the token frame to itself.  

At the first time that the received token frame is different from the transmitted frame it transmits 
again the token frame. At the second time it evolves to the LISTEN_TOKEN state. 

C.1.5. GAP Update Procedure  

Each master in the logical ring is responsible for the addition and removal of masters that have 
addresses between TS and NS. This range of addresses in the logical ring is referred as GAP, whereas 
the list containing the status of all stations in the GAP is called GAP List (GAPL).  

Each master in the logical ring examines its GAP periodically in the interval given by the TGUD 
timer. Its expiration indicates the moment for GAP maintenance. GAP addresses are examined in 
ascending order, except the GAP addresses which surpasses the HSA, i.e., the HSA and address 0 are 
not used by a master station. In this case the procedure is continued at address 1 after checking the 
HSA. If a station acknowledges positively with the state Not_Ready_to_Enter_Logical_Ring or 



Simulation Models Implementation  139 

Slave_Station, it is accordingly marked in the GAPL and the next address is checked. If a station 
answers with the state Ready_to_Enter_Logical_Ring, the token frame holder changes its GAPL 
and LAS accordingly, as well as its NS and passes the token frame to the new NS. 

Pass Token Procedure 

state=PASS_TOKEN 
retry_counter=0 

error_frame_counter=0 

 
error_frame_counter=2 

? 

 
retry_counter=2 

? 

 

state=PASS_TOKEN 
retry_counter++ 

 
Get new NS from LAS 

Build token frame (to NS) 
Transmit the token frame 

TSL  expired 
? 

Token frame 
transmitted is equal 

to the received 
? 

 
error_frame_counter++ 

 
state=LISTEN_TOKEN 

 
state=CHECK_PASS_TOKEN 

 
Receive a frame 

? 
End 

No

No 

YesYes 

 
state=ACTIVE_IDLE YesNo

Yes 

No

Yes 

No

 
Figure C.5 – Pass Token Procedure 

This is accomplished by examining at most one address per token cycle by means of sending an 
FDL_Request_Status once TGUD has expired. After a complete GAP check, which may last several 
token rotations, the timer TGUD is loaded with the value resulting from the multiplication of the TTR by 
the GAP Update Factor (G). G represents the number of tokens rounds between GAP maintenance. 
Upon receiving the token, a GAP maintenance cycle starts immediately after all queued high priority 
message cycles have been processed and if there is still TTH available. Otherwise, the GAP 
maintenance is postponed to the next token reception. Note that FDL_Request_Status messages have 
higher priority than low-priority messages used in PROFIBUS, but lower than high priority messages.  

 Send FDL_Request_Status Procedure 

Figure C.6 presents the send FDL_Request_Status procedure. The first step is to evolve the Master 
state machine from the USE_TOKEN to the AWAIT_STATUS_RESPONSE state. After that, it builds 
the FDL_Request_Status frame addressed to the selected station and transmits it. Thereafter, it waits 
for a valid (without bit errors) response frame from the addressed station within the TSL. If either TSL 
expires or the received response frame is an invalid, the Master evolves to the USE_TOKEN state and 
then the procedure ends. 

If a valid response frame was received from the addressed station the message is parsed. If the 
responder is a master and its state is Ready_to_Enter_Logical_Ring the Master changes the NS and 
updates the LAS and GAPL. Otherwise, it updates only the GAPL. In any cases, the Master evolves to 
the USE_TOKEN state. 
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Send FDL_Request_Status Procedure

state=AWAIT_STATUS_RESPONSE 
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Figure C.6 – Send FDL_Request_Status procedure 

 Receive FDL_Request_Status Procedure 

Figure C.7 presents the procedure when a station receives an FDL_Request_Status frame. The frame 
is discarded if it contains bit errors or if is not addressed to it. Otherwise, a response frame containing 
the state of the responder is transmitted. In spite of, PROFIBUS DLL defines three states in our 
simulator only two were implemented: Slave_Station, if it is a slave station, and Ready_to_Enter_ 
Logical_Ring, for the master stations. 

 

Receive FDL_Request_Status Procedure

 
Discard the frame 

 

Build response frame 
Send response frame End 

DA=TS 
? 

Has bit errors 
? 

Receive a 
FDL_Request_Status 

frame 

No Yes

Yes No

 
Figure C.7 – Receive FDL_Request_Status procedure 
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C.1.6. Send Frame Procedure 

The PROFIBUS DLL protocol defines four data transfer services. The Send Data with 
Acknowledge (SDA) service, which allows an initiator to send a message and immediately receive the 
confirmation. The Send Data with No Acknowledge (SDN) is an unacknowledged service. The 
Send and Request Data with Reply (SRD) is based on a reciprocal connection between an 
initiator and a responder and requires either an acknowledgement or a response. The Send and 
Request Data with Reply (CSRD) is a cyclic service (based on the acyclic SRD). In this simulator 
only the SDN and SRD services were implemented. The SDA service was implemented based on SDR 
service, just by adequate the setting of the request and response frame sizes. 

The Msg_Stream module emulates the behaviour of an AL protocol. Periodically it produces 
messages which are passed to the Master_DLL module in case of the RHW2PNetSim or DLL module in 
case of the BHW2PNetSim which stores the message in its output message queues as a function of the 
message priority.  

When a Master has the right to access the medium, i.e., when it holds the token frame, it pops 
messages from its output message queues and it checks which service will be used. If it is a SDN, then 
after transmitting the message, it can schedule a new action according to the message dispatching 
procedure. Otherwise, it has to wait for the response or the TSL expiration (Figure C.8). 

Send Frame Procedure 

 
Send SRD Procedure 

End 

Is a SDN 
? No Yes

 
Pop a message 

 
Send SDN Procedure 

 
Figure C.8 – Send Frame Procedure 

 Send SDN Procedure 

A SDN is an unacknowledged service, therefore when an initiator sends a SDN frame, it will not 
receive a response or acknowledge from the responder.  

Figure C.9 illustrates a SDN transaction between a Master and a Slave. In a Master, the 
Msg_Stream emulates the behaviour of an AL protocol, periodically producing messages which are 
passed to the Master_DLL. The Master_DLL stores the message in its output message queues (high or 
low) according to the message priority. In a Slave, a Msg_Stream has a similar behaviour, but in this 
case, the Slave_DLL only refreshes the content of the variables modelled by the Msg_Stream module.  

When a Master holds the token frame it processes messages cycles according to message 
dispatching procedure described in Section C.1.3. If a Master has messages in its output queues it 
pops a message, builds a frame, passes to the Master_PHY and then sends to the Domain module to 
which it is connected. The Domain broadcasts the frame to every Master and Slave connected to it. 

The Slave_PHY receives the frame from Domain and passes to the Slave_DLL. The Slave_DLL 
matches the frame information (Destination Address (DA), SA Destination Address 
Extension (DAE) and Source Address Extension (SAE)) with its configured message streams. If 
it succeeds then it registers the information about this transaction for output analyses and discards the 
frame. Otherwise, the Slave_DLL discards the frame. 
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Figure C.9 – SDN transaction schema between master and slave 

Figure C.10 presents the send SDN procedure. The Master pops a message from message output 
queues, builds a frame and then transmits it. Thereafter, Master waits TID2 before performing another 
action according to the message dispatching procedure. Note that, it stays on the same state 
(USE_TOKEN). 

Send SDN Procedure 

End 

Build frame 
Send frame 

 
Figure C.10 – Send SDN Procedure 

 Receive SDN Procedure 

Figure C.11 presents the receive SDN procedure. At frame reception the Slave_DLL starts by checking 
if it is a valid frame or not. The frame is discarded if it is an invalid frame. Otherwise, it checks if it is 
addressed to it or not (DA=TS). If not, the frame is discarded. If it is, the information about this 
transaction is stored for output analysis and the frame is discarded. 

 Send SRD Procedure 

The SRD is based on a reciprocal connection between an initiator and a responder and requires either 
an acknowledgement or a response from the responder. Using this service, the initiator is able to send 
data in the request frame and receive data, from the addressed station, in the response frame. 

Figure C.12 illustrates the transaction schema between a Master and a Slave. When a Master 
holds the token frame its Master_DLL pops a message from one of its message output queues, builds a 
frame and passes it to the Master_PHY which sends to the Domain to which it is connected. The 
Domain broadcasts the frame to every Master and Slave connected to it.  

The Slave_DLL receives the frame from Slave_PHY and tries to determine if there is a match 
between the frame and a message stream configuration. If it finds a match, then it builds a response 
frame and passes it to the Slave_PHY that sends it to the initiator through the Domain, otherwise the 
frame is discarded. The Domain broadcasts the frame to all Master and Slave module instances 
connected to it. The Master_PHY passes the response frame to the Master_DLL. If it is the addressed to 
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the Master, it stores the information about this transaction and then discards the frame. If is not 
addressed to it, then the frame is discarded. 
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Figure C.11 – Receive SDN Procedure 
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Figure C.12 – SRD transaction schema between Master and Slave 

Figure C.13 presents the send SDR procedure. The first step is to evolve the Master state 
machine from the USE_TOKEN to the AWAIT_DATA_RESPONSE state and set the retry_ 
counter variable to zero.  

After that, the Master pops a message from its message output queue, builds a frame and 
transmits it. After, it waits for the reception of a response frame. If an invalid response frame is 
received (with bit errors) then it is discarded and the retry_counter variable is increased. The 
retry_counter variable is also increased if no frame is received within the TSL. When the 
retry_counter variable reaches the max_retry_limit (a Master parameter) limit then the Master 
state machine returns to the USE_TOKEN state. 

 Receive SRD Procedure 

Figure C.14 presents the receive SRD procedure. The frame is discarded either if it is an invalid frame 
(with bit errors) or if it is not addressed to it (a master or a slave). Otherwise, if it is a valid frame 
addressed to the station, then it tries to find a match with one pre-configured message stream. If a 
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match is found, then it builds a response frame using the value of the internal variable. After waiting 
TSDR, it transmits the response frame.  
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Figure C.13 – Send SRD Procedure 
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Figure C.14 –Receive SDR Procedure 
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C.2. Repeater-Based Hybrid Wired/Wireless PROFIBUS Architecture 
Simulator 

Following are described the procedures that are specific of the Repeater-Based Hybrid Wired/Wireless 
Network Simulator. This section is a complement of the Section 6.3. 

C.2.1. Send Beacon Procedure 

Figure C.15 presents the send Beacon procedure. The first step is to set the n_beacon_counter 
variable equal to n_beacon, a BS parameter. After that, while n_beacon_counter variable is higher 
than zero, the BS waits TIDm, builds a Beacon frame and then transmits the Beacon frame. 
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Figure C.15 – Send Beacon Procedure 

C.2.2. Stations Mobility 

In order to model the mobility of a station between domains, in the Repeater-Based Hybrid 
Wired/Wireless PROFIBUS Network Simulator (RHW2PNetSim), the Connection_Point, which is 
operating as a BS, at reception of the Beacon Trigger frame from the Mobility Master (MM), 
sends to the Controller (through ctrl_con connection) a message indicating that Beacon frames 
will be transmitted. After ending the transmission of the Beacon frames, according to the procedure 
described in C.2.1, they sends to the Controller a new message indicating that they finish the Beacon 
frames transmission.  

The Master and Slave module instances which model wireless mobile stations, at reception of 
the Beacon frames, send to Controller (through ctrl_con connection) a message indicating which 
domain they want to change, according to their _location_vector parameter. The Controller 
manages this information in order to disconnect the Master or the Slave from Domain to which they 
are connected, and connect to the destination Domain. However, a Master or a Slave can only change 
to a domain where the Beacon frames were transmitted. 

C.3. Bridge-Based Hybrid Wired/Wireless PROFIBUS Architecture Simulator 

In this section are detailed the procedures specific of the BHW2PNetSim. These procedures are 
presented separately and are related to the state machine diagram transitions described in Section 7.4. 
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C.3.1. Inter-Domain Protocol 

 Receive Frame (from Domain) Procedure 

Figure C.16 presents the procedure performed by a BM when it receives a frame from its DLL module 
instance. The BM starts by checking if the frame is addressed to a station in another domain using the 
isRoute() function, which consults its Routing Table (RT). If no match is found the frame is 
discarded. Otherwise the frame is processed. 

Next, the BM verifies if the initiator of the transaction (through the SA of the frame) belongs to its 
domain. If it does not belong, it checks if it is a duplicate frame and if it is the frame is discarded. 
Otherwise, a SC frame is sent and the frame is forwarded to the other BM using the ComFunc.  

If the frame sender belongs to the BM domain, there is the need to check the type of frame. If the 
kind of frame is a response frame (it means that this BM was the last BM in the transaction path – 
BMres), an Inter-Domain Frame (IDF) is coded using the received frame and is forwarded to ComFunc. 
If the frame is a request frame (it means that this is the first BM in the transaction path – BMini) then it 
is necessary to check the service’s type.  

If it is not a SRD service (then it must be a SDN service) the frame is forwarded to ComFunc. 
Otherwise, if it is a SRD service, it matches the received frame with all entries in the List of Open 
Transactions (LOT). Each entry in LOT can be in one of two states: WAITING and FINALISED.  
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Figure C.16 – Receive Frame (from Domain) Procedure 

A LOT entry is in the WAITING state since its creation until receiving a response. At reception 
of the related response frame the LOT entry changes to the FINALISED. It is deleted from LOT when 
the response frame is sent to initiator.  
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 If there is no entry in the LOT associated with this request then a new entry is opened in the 
LOT and a timer loaded with the _bm_idt_timer parameter value is started. After that, an IDF is 
coded and sent to the ComFunc. If there is a match with another LOT entry the frame is discarded.  

If there is a LOT entry with same parameters and its state is FINALISED, then a response frame 
is built and transmitted as a response to the initiator. After that, the associated entry is deleted from 
LOT. 

 Receive Frame (from ComFunc) Procedure 

Figure C.17 shows the procedure when a BM receives a frame (an IDF) from the ComFunc (i.e., from the 
other BM of a bridge). The BM starts by consulting its RT, using the isRoute() function, to 
determine if the frame should be relayed or not.  
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Figure C.17 – Receive frame (from ComFunc) procedure 

If the frame must be relayed, the BM verifies, using the DA frame field, if the addressed station 
belongs to its domain. If it does not belong then the BM queues the frame for transmission without 
changes. If it succeeds then this BM will act as either a BMini or a BMres.  

If it acts as BMini it checks in LOT for an entry related to this transaction, and if it succeeds then 
it changes the entry’s state to finalised, stores the response frame and stops timer associated with this 
LOT entry. Otherwise, it discards the response frame. 

If it acts as BMres, the BM stores information about this transaction, which will enable it to code an 
IDF containing the response. The received IDF is decoded and queued in exactly in its original frame 
format (as transmitted by the transaction initiator). 

 Send IDF Procedure 

Once the SDA service is only implemented to be used by IDP, then the SDA service is presented in 
this section as send IDF procedure (Figure C.18). This procedure is performed by DLL module instance 
of each Master module instance which is operating as BM. As mentioned the SDA service can be 
modelled using the SDR service. 
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Send IDF Procedure 
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Figure C.18 – Send IDF Procedure 

The first step is to evolve the Master state machine from the USE_TOKEN to the 
AWAIT_DATA_ RESPONSE state and set the retry_counter variable to zero. After that, the 
Master pops a message from its message output queue, builds a frame and transmits it. After, it waits 
for the reception of a SC frame. If an invalid SC frame is received (with bit errors) then it is discarded 
and the retry_counter variable is increased. The retry_counter variable is also increased if no 
frame is received within the TSL. When the retry_counter variable reaches the max_retry_limit (a 
Master parameter) limit then the Master state machine evolves to the USE_TOKEN state. 

C.3.2. Inter-Domain Mobility Procedure: Implementation 

 GMM Operation 

In this Section we explain the operation of the GMM with the error handling mechanism described in 
Chapter 3. Figure C.19 presents the procedure that corresponds to Phase 1 of the IDMP. We assume 
that the GMM is configured prior to runtime with the List of Bridge Masters in the Network 
(LBMN) and the List of Domain Mobility Managers in the Network (LDMMN), which are 
the list of all BMs and a list of all DMMs present in the network, respectively. See Section 7.4.2 for more 
details. 

In order to control from which BMs the GMM received a Ready_to_Start_Mobility_Procedure 
(RSMP) message a copy of the LBMN is used, the BMlist. After that it builds a Start_Mobility_ 
Procedure (SMP) message, starts the GMM_Phase_1_Alert_Timer (TGMM-P1Alert) and the GMM_Phase 
_1_Abort_Timer (TGMM-P1Abort) timers, sets the retry variable to false (which is used to control the 
retry of the SMP message), evolves to the WRSMP state and then passes the SMP message to the DLL.  
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After that, it waits for a RSMP message from the BMs in the network. Whenever it receives a 
RSMP message from a BM it removes the corresponding address (SA) from the list. It stays on this state 
until receiving a RSMP form all BMs in network, i.e., until the list of BM address is empty.  

Meanwhile if the TGMM-P1Alert expires, it sends again a SMP message and continues waiting for the 
RSMP from the BMs. However, if TGMM-P1Abort expires, the GMM aborts the IDMP and then evolves to the 
INACTIVE state. 
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Figure C.19 – IDMP Phase 1 procedure 

Figure C.20 presents the IDMP Phase 2 procedure. This procedure is similar to the previous, but 
now the GMM sends a Prepare_for_Beacon_Transmission (PBT) message to all DMMs in the network, 
and they should reply to the GMM using a Ready_for_Beacon_Transmission (RBT) message when 
they are holding the token frame. The reception of the RBT message from a DMM means that it is 
operating in inquiry mode. 

In order to start the IDMP Phase 2, the GMM builds a PBT message, starts the GMM_Phase_2_ 
Alert_Timer (TGMM-P2Alert) and the GMM_Phase_2_Abort_Timer (TGMM-P2Abort) timers, sets the retry 
variable to false (which is used to control the retry of the PBT message), evolves to the WRBT state 
and it sends the PBT message to the DLL.  

After that, it waits for a RBT message from each DMM in the network. Whenever it receives a 
RBT message from a DMM it removes the corresponding Source Address (SA) of the DMM from the 
list. It stays on this state until receiving a RBT from all DMMs in the network, i.e., until the list of DMM 
address is empty. Meanwhile if the TGMM-P2Alert expires, the GMM retransmits a PBT message and 
continues waiting for RBT messages from remaining DMMs. However, if TGMM-P2Abort expires the GMM 
aborts the IDMP and evolves to the INACTIVE state. 
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Figure C.20 – IDMP Phase 2 procedure 

When the GMM receives a RBT from all DMMs in the network it builds a SBT message and passes 
the Start_Beacon_Transmission (SBT) message to the DLL. This message commands the DMMs to 
start emitting Beacon frames. After, the GMM evolves to the INACTIVE state. The remaining actions of 
the IDMP are controlled independently by the DMMs in each domain. 

 BM Operation 

A received message is catalogued by a BM according to the frame format (described in Chapter 2). If it 
is an IDMP-related message, then it is handled by the handleIDMPMessage(msg) function presented 
in Figure C.21.  

A received message is passed to the DLL (using the passToDLL(msg) function) if it is received 
from ComFunc (through bridge_gateIn gate). Otherwise, if a message is received from the DLL it is 
only forwarded to ComFunc (by sendToComFunc(msg) function) if the addressed station (line 6) can be 
reached by forwarding the message through the other BM. In any case the message will be processed by 
processIDMPmessage(msg) function (Figure C.22). 
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1. handleIDMPMessage(msg) 
2. { 
3. if msgArrivalGate(msg)=bridge_gateIn then 
4.   passToDLL(msg); 
5. else 
6.   if isRoute(msg.getDA()) then  
7.    sendToComFunc(msg); 
8. processIDMPmessage(msg); 
9. } 

Figure C.21 – handleIDMPMessage(msg) function, pseudo-code algorithm 

 
1. processIDMPmessage(msg) 
2. { 
3. switch(state){   
4.   case INACTIVE: 
5.    switch(msgKind(msg)){ 
6.     case SMP:  
7.      startIDMPerrortimer(); 
8.      if isLOTempty() then { 
9.       processRSMPmessage(); 
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11.      } 
12.      else 
13.       state=WIDT_END; 
14.      end; 
15.     case RU: 
16.       updateRT(msg); 
17.     end; 
18.    } 
19.   end; 
20.   case WIDT_END: 
21.    if msgKind(msg)=SMP and isLOTempty() then { 
22.     processRSMPmessage(); 
23.     state=WINQUIRY; 
24.    } 
25.   end; 
26.   case WINQUIRY: 
27.    switch(msgKind(msg)){ 
28.     case SMP: 
29.      processRSMPmessage(); 
30.     end; 
31.     case PBT: 
32.      clearWirelessMobileAddrFromRT(); 
33.     end; 
34.     case SBT: 
35.      stopIDMPtimer(); 
36.      state=INACTIVE; 
37.     end; 
38.     case IQ_REQ: 
39.      sendCommandToDLL(); 
40.     end; 
41.     case RU: 
42.      updateRT(msg); 
43.     end; 
44.    } 
45.   end; 
46.  } 
47. } 

Figure C.22 – processIDMPmessage(msg) function, pseudo-code algorithm 

The behaviour of the BM operation executed by the processIDMPmessage(msg) function 
depends on the BM state and the type of the IDMP message received.  

If the BM is in the INACTIVE state, then only SMP or RU messages are processed. The BM RT is 
updated when it receives a Route_Update (RU) message independently of the BM state. If it is a SMP 
message, BM_IDMP_Abort_ Timer (TBM-IDMPAbort) is loaded with the _bm_idmp_abort_timer 
parameter value and is started using startIDMPerrortimer()function (line 7). According to its LOT, 
the BM can evolve to either the WIDT_END state, if the LOT is not empty, or to the WINQUIRY state, 
if the LOT is empty. It stays in the WIDT_END state until all pending transaction are finalised. When 
the LOT is empty the BM evolves to the WINQUIRY state. 

The processRSMPmessage()function (Figure C.23) is called whenever a SMP message is 
received and the LOT is empty. This function builds a RSMP message, which can be forward to the 
other BM of the bridge or queued in its own DLL. 

When a BM is in the WINQUIRY state the DMM controls the message cycles of its domain and a BM 
only responds to Inquiry request (IQ_REQ) message from its DMM. When a BM receives the IQ_REQ 
message from its DMM, it commands its DLL to send IDMP-related messages. If there is any IDMP-
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related message in the output queue then these messages, otherwise it does not respond. In this way all 
IDMP-related message are relayed during inquiry sub-phase. 

 
1. processRSMPmessage() 
2. { 
3. msg=buildIDMPmessage(RSMP,addr_gmm,TS); 
4. if isRoute(msg) then 
5.  sendToComFunc(msg); 
6. else 
7.  sendToDLL(msg); 
8. } 

Figure C.23 – processRSMPmessage() function, pseudo-code algorithm 

When a BM receives the PBT message it clears all entries related to wireless mobile stations 
(using the clearWirelessMobileAddrFromRT() function) from the RT. At the reception of the PBT 
message a BM stops the TBM-IDMPAbort and enters into the INACTIVE state. From this point, forward the 
BM is capable of relaying IDTs, except for the ones related to wireless mobile stations. 

As mentioned in Chapter 3, all LOT entries have an associated timers (BM_IDT_Abort_Timer 
(TBM-IDTAbort)), that is used to avoid endless IDTs. When either of the timer TBM-IDTAbort or the TBM-

IDMPAbort expires the handleTimers(msg) function (see Figure C.23) is automatically invoked. If it is a 
timer related to the LOT entry (IDT_TIMEOUT action (line 6)) its correspondent entry is deleted. If the 
LOT is empty and the BM is in the WIDT_END state then the processRSMPmessage() function is 
called and the BM evolves to the WINQUIRY state.  

In order to recover from IDMP errors the BMs are provided with the TBM-IDMPAbort. When this 
timer expires (IDMP_TIMEOUT action (line 9)) a BM evolves to the INACTIVE state and the IDMP ends. 
 

1. handleTimers(msg) 
2. { 
3. switch (getAction(msg)) {   
4.  case IDT_TIMEOUT: 
5.   removeEntryFromLOT(msg); 
6.   if state=WIDT_END and isLOTempty()then 
7.    processRSMPmessage(); 
8.  end;    
9.  case IDMP_TIMEOUT: 
10.   state=INACTIVE; 
11.  end; 
12. } 
13. } 

Figure C.24 – handleTimers(msg) function, pseudo-code algorithm 

 DMM Operation 

Figure C.25 presents the pseudo-code algorithm of the dllReceiveToken()function which is called 
by the DLL whenever its Master acts as a DMM at the token reception. The dllholdtoken variable is set 
to true and if the DMM is in the WTOKEN state (that means it has already received a SMP message), 
then the DMM evolves to the INQUIRY state and the processRBTmessage()is called (Figure C.26).  

 
1. dllReceiveToken() 
2. { 
3. dllholdtoken=true; 
4. if state=WTOKEN then{ 
5.  state=INQUIRY; 
6.  processRBTmessage(); 
7. } 
8. } 

Figure C.25 – dllReceiveToken() function, pseudo-code algorithm 

The processRBTmessage()function builds a RBT message and sends it to the DLL. If this 
Master is also acting as a BM then the DLL forwards the message to it. The BM forwards the RBT 
message to ComFunc module instance connected to it or passes the RBT message to the DLL (according 
to the routing information).  
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1. processRBTmessage() 
2. { 
3. msg=buildIDMPmessage(RBT,addr_gmm,TS); 
4. passToDLL(msg); 
5. } 

Figure C.26 – processRBTmessage() function, pseudo-code algorithm 

When a DMM receives an IDMP-related message, the processIDMPmessage(msg) function is 
automatically invoked. The pseudo-code algorithm depicted in Figure C.27 is only related to the 
reception of the PBT message. Depending on the DMM state the actions triggered by the PBT reception 
are different.  
 

1. processIDMPmessage(msg) 
2. { 
3. switch(state){   
4.  case INACTIVE: 
5.   switch(msgKind(msg)){ 
6.    case PBT:  
7.     startIDMPaborttimer(); 
8.     if dllholdtoken=true then { 
9.      state=INQUIRY; 
10.      processRBTmessage(); 
11.     } 
12.     else 
13.      state=WTOKEN; 
14.    end; 
15.    … 
16.   } 
17.  end; 
18.  case WTOKEN: 
19.  end; 
20.  case INQUIRY: 
21.   switch(msgKind(msg)){ 
22.    case PBT: 
23.     processRBTmessage(); 
24.    end; 
25.    … 
26.   } 
27.  end; 
28.  … 
29. } 
30.} 

Figure C.27 – processIDMPmessage(msg) function, pseudo-code algorithm 

If it is in the INACTIVE state the DMM_IDMP_Abort_Timer (TDMM-IDMPAbort) is loaded with _dmm_ 
idmp_abort_timer parameter value and is started (by the invocation of the 
startIDMPaborttimer() function). Then, if its DLL is holding the token it evolves to the INQUIRY 
state and the processRBTmessage() function is called. Otherwise, the DMM evolves to the WTOKEN 
state. When another PBT message is received and if the DMM is in the INQUIRY state the 
processRBTmessage() function is called again (i.e., a new RBT is sent). If the DMM is in the 
WTOKEN state then no action is taken. 

When TDMM-IDMPAbort expires the handleTimer(msg) function (see Figure C.28) is automatically 
invoked and it evolves to the INACTIVE state from any other state. 
 

1. handleTimer(msg) 
2. { 
3. switch (getAction(msg)) { 
4.  case IDMP_TIMEOUT:  
5.   dllholdtoken=false; 
6.   state=INACTIVE; 
7.   … 
8.  end; 
9. } 
10.}  

Figure C.28 – handleTimer(msg) function, pseudo-code algorithm 

When a DMM is in the INQUIRY state, the relaying of the IDMP-related messages is ensured by 
transmitting IQ_REQ messages to the BMs belonging to its domain (Figure C.29). The goal of this 
message is to allow the BMs to perform the relaying of IDMP-related messages to the GMM or broadcast 
by GMM. For that purpose, the DMM selects a BM which belongs to its domain, builds an IQ_REQ message 
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and passes it to DLL. After that, it waits for the DLL notification before processing a new message. 
Meanwhile, the DLL sends an IQ_REQ message and informs the DMM if it received a response or if the 
TSL expired. During this process the DMM can receive a SBT message and it sets variable sbt_rcv to 
true. After ending the current IQ_REQ message processing, the IDMP Phase 2 ends and TDMM-IDMPAbort 
is stopped. If DMM’s domain is a wired domain then the IDMP ends and its state machine evolves to the 
INACTIVE state. After, the message dispatching procedure presented in Section C.1.3 is performed. 
Otherwise, it evolves to the BEACON_TX state and the IDMP Phase 3 begins. 
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Figure C.29 – Inquiry SubPhase Procedure (Phase 2) 

The GMM starts the Phase 3 by issuing a SBT message, but the remainder of this phase is 
commanded by the DMMs in the wireless domains. For the wired domains the IDMP ends and the 
message dispatching procedure presented in Section C.1.3 is performed. The Beacon messages are 
used by the wireless mobile stations to evaluate the quality of adjacent radio channels. The DMM sends a 
pre-defined number of Beacon messages. Figure C.30 presents the send Beacon procedure. 
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Figure C.30 – Send Beacon Procedure (Phase 3)  
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During Phase 4, the DMMs of the wireless domains try to detect which wireless mobile stations are 
present in their domains. Every DMM knows the addresses of all the wireless mobile stations belonging 
to the network (LWMSN). And for each of them transmits a Discovery message (D_REQ) using the 
DLL services. After sending, the D_REQ message the DLL informs the DMM with the result, which can 
be the reception of a response or the TSL expiration. The DMM collects this information and after all 
D_REQ messages have been processed it broadcasts a RU message containing the addresses of the 
wireless mobile stations in its domain. The IDMP ends and the DMM evolves to the INACTIVE state. 
Figure C.31 presents the Send Discovery Procedure. 
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Figure C.31 –Discovery SubPhase Procedure (phase 4)  

 Station Mobility 

In order to model the mobility of station between domains, in the BHW2PNetSim, the DMM of the 
wireless domains also operates as a BS. At reception of the SBT message from GMM sends to the 
Controller (through the ctrl_con connection) a message indicating that it is starting to transmit 
Beacon frames and sends another message to indicate the end Beacon message transmission. 

Wireless mobile stations at reception of Beacon frames send to the Controller (through the 
ctrl_con connection) a message indicating to which domain they want to change, according to their 
_location_vector parameter (see Section 6.2.3). The Controller manages this information in order 
to disconnect the Master and Slave from the Domain to which they are connected, and connect them 
to the destination Domain. However, a Master or a Slave can only change to a Domain where Phase 3 
has taken place. 

 DLL Operation 

As mentioned the DLL must support additional functionalities. In order to perform the mobility 
procedure, when the DLL state machine is in the ACTIVE_IDLE or the USE_TOKEN state after the 
execution of any tasks it must check if this station acts as a DMM. If it does succeed, in which the state 
DMM is, more precisely if it is not in INACTIVE state (Figure C.32). 

Figure C.33 presents the DLL mobility procedure. All IDMP-related messages are transmitted as 
high priority messages. Therefore, whenever there are IDMP-related messages into the output queues, 
the DLL sends them. Its state machine evolves according to the message’s type or to the DMM state 
machine. Therefore, it has to check the message type and in the case of being an IQ_REQ message the 
DLL evolves to the WAIT_INQUIRY_RESPONSE state. After that, it waits for a valid frame or for the 
expiration of the TSL and changes to the INQUIRY_MODE state. Similarly, if the message is a D_REQ 
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the DLL evolves to the AWAIT_DISCOVERY_RESPONSE state and waits for a response or for the 
expiration of the TSL timer and changes to the DISCOVERY state.  
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Figure C.32 – Message dispatching procedure (IDMP)  

Whenever a message is received or TSL timer expires, the DMM is notified about this. If a message 
is received it is passed to the DMM. If it is neither an IQ_REQ nor a D_REQ messages the DLL simply 
sends the frame. The evolution of the DLL state machine related with the INQUIRY_MODE, 
DISCOVERY and BEACONT_TX states is controlled by the DMM.  
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Figure C.33 – Mobility procedure 



 



Annex D 

Tools for Simulation Output Analysis 

This annex presents a description of the output data files and the tools which support the analysis of 
the output data files generated by the Repeater-Based Hybrid Wired/Wireless Network Simulator 
and the Bridge-Based Hybrid Wired/Wireless Network Simulator. 

D.1. Introduction 

Output data analysis is the examination of the data generated by a simulator and this examination has 
two purposes. Firstly, it is used to verify and validate the simulator and its simulation model. Secondly, 
it is used for testing, evaluating the performance of different scenarios and different systems 
configurations. Additionally, when the input variables are random values, the output data exhibits 
random variability. Therefore, the output data is used to estimate the confidence level, or to determine 
the number of observation required to achieve a desired precision. 

The objective of this annex is to present and describe the information produced by the 
RHW2PNetSim and by the BHW2PNetSim. It describes the output data files generated by both 
simulators from which it is possible to extract results. To help on the analysis of the results some 
specific tools have been developed: The Timeline Visualization Tool and a Microsoft Excel-based tool 
to output data analyse.  

D.2. Timeline Visualisation Tool 

Figure D.1 shows a screenshot of the Timeline Visualisation Tool which provides a way to show the 
network events using Gant Diagrams. This tool was developed using Microsoft Foundation Classes 
(MFC) (Prosise, 1999) and C++ programming language. This figure depicts a diagram drew using the 
data files generated by BHW2PNetSim concerning the network scenario presented in Figure 9.2. In 
this figure it is possible to see the events accomplished by each module instance. When a Master 
module instance operates also as BM the events related to BM module instance are separately shown. 
On the other hand, the events accomplished by a bridge are also separated by each BM module instance 
that composes it. For example, Figure D.1.shows that the bridge B3 is composed by BMs M7 and 
M10, thus the events of each BM module instance (BM_M7 and BM_M10) that composes a bridge are 
individually shown.  

To illustrate the importance of this tool, in Figure D.1 three transactions are highlighted using 
arrows: one IADT (between master M1 and slave S1) and two IDTs (between master M2 and slave S6 
and master M1 and slave S5).  

The transaction between master M2 and slave S6 can be surprising, since this transaction is an 
IDT and it finishes during the first AL request of this transaction. This happen because when master 
M2 sends the request, an open a transaction is created by BM M7 and when master M2 finishes the 
retry BM M7 already has received the response frame from the responder. One of the factors that cause 
this situation is related to the difference between the bit rates of domain D4 (0.5 Mbits/s), to which 
master M2 belongs, and domain D3 (2 Mbits/s), to which slave S6 belongs. 

This tool was also of paramount importance for debugging and validating of the both simulation 
models, since it provides a temporal overview of the network events. Further, it is possible to check the 
characteristics of all events by a double click on the event object. Figure D.2 shows a screenshot of this 
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feature using output data files generated by RHW2PNetSim concerning the network scenario presented 
in Figure D.1. In this figure a message box shows the information related to the indicated event. 

 
Figure D.1 – Screenshot of Timeline Visualisation Tool (BHW2PNetSim) 

 
Figure D.2 – Screenshot of Timeline Visualisation Tool (RHW2PNetSim) 

In order to the RHW2PNetSim and BHW2PNetSim gather this information the Controller 
module _output_gant_diagram parameter must be set equal to 1. This diagram is built using two 
kinds of files. One kind contains the network configuration (with extension “.cfg”) and is generated by 
the Controller module instance. The other kind contains the module instance events (with extension 
“.evt”) which are generated by the other modules instances. 

D.3. Output Data Analysis Tool 

In order to extract information from the output data files and especially due to amount of information 
generated by he RHW2PNetSim and BHW2PNetSim a tool was developed which provides a fast way 
to decode text files containing the simulation results and present simulation statistical results in a 
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convenient format. Output Data Analysis Tool was developed using Microsoft Excel and Visual Basic 
for Applications (VBA) (Simon, 2002).  

Figure D.3 depicts a screenshot of this tool. This tool permits the analysis of the message stream 
response time, stations state machine evolution over time, probability distribution functions and data 
related to bit error models.  

 
Figure D.3 – Screenshot of the Output Data Analysis Tool 

D.3.1. Message Stream Response Time  

In order to compute the message stream response time Master and Slave module instance are able to 
gather information about transactions. This information is stored in text files which use the “.srt” 
extension and contain information depicted in Figure D.4. In the first column (with the header “ID”) is 
the identifier of the stream. The follows column contains the Destination Address (DA), the 
Source Address (SA), the Destination Address Extension (DAE) and the Source Address 
Extension (SAE).  

The sixth column contains the time when the stream is queued on the DLL module instance output 
queue. The first transmission of the request frame appears in the seventh column (named FTxReq), the 
first transmission of the response frame appear in the eighth column (named FTxResp) and the last 
reception, i.e., when the transaction is finished appears in the ninth column (named LRecep). The last 
column displays path related information, the first item is the initiator’s domain, when message is 
queued; the second item is the domain name to which the initiator belongs when the first request is 
transmitted; on the third item appears the domain name to which the responder belongs when it replies; 
on the fourth item contains the domain name to which the station belongs when the transaction 
finishes.  

 
ID DA SA DAE SAE Queued FTxReq FTxResp LRecep Domains 
7 46 3 7 7 0.000000 0.000560 0.001120 0.005619 D1:D1:D3:D1 
7 46 3 7 7 0.010000 0.010588 0.011265 0.015621 D1:D1:D3:D1 
7 46 3 7 7 0.020000 0.020505 0.021207 0.025593 D1:D1:D3:D1 
7 46 3 7 7 0.030000 0.030675 0.032323 0.035648 D1:D1:D3:D1 
7 46 3 7 7 0.040000 0.040580 0.042337 0.045570 D1:D1:D3:D1 
7 46 3 7 7 0.050000 0.050675 0.051481 0.055802 D1:D1:D3:D1 
7 46 3 7 7 0.060000 0.060522 0.061403 0.065519 D1:D1:D3:D1 
…           

Figure D.4 – Output response time file (excerpt) 
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Note that, if the transaction is a SDR the transaction, then it only finishes when the initiator 
receives the response frame. But if it is a SDN then the transaction finishes when the “responder” 
receives the request frame. In the last case no contain any information. 

The number of transaction that missed its deadline is also stored in a file. This information is 
recorded in text files (using the “.sdm” extension) by each Master module instance. 

 Message Stream Response Time Statistical Analysis 

The tool is capable of decode the text files described in the last Section and retrieve statistical results. 
The response time is computed as a difference between the timestamp of the last reception (ninth 
column of the text file) and of the timestamp when the message was queued (sixth column of the text 
file). 

Figure D.5 shows a screenshot of a spreadsheet created by this option. It provides information 
about message streams characteristics, like: minimum (MIN); maximum (MAX); mean (MEAN); 
standard deviation (STD DVT); number of transaction (N TRANS) and number of transaction that 
missed the deadline (N TRANS DM). Further, this option builds a histogram of the message stream 
response time values.  

 
Figure D.5 – Screenshot of spread sheet created by Message Stream Response Time Analysis 

option 

Additionally, it also provides information about the domain location of the initiator and 
responder during a transaction. This information is particularly important for IDTs involving wireless 
mobile stations. Since this option shows to which domain the initiator was belonging when a message 
was queued (QUE) and to which domain it belongs when the message was sent (REQ). Another kind 
of information provide by this option is related to the domain location when the initiator sends the 
request (REQ) the domain location of the responder when it replies (RESP). 

 Central Limit Theorem 

The Central Limit Theorem is an option (Figure D.6) that provides a way to compute the confidence 
interval of the message stream response time values according to the central limit theorem (Law and 
Kelton, 2000). The lower bound and the upper bound of this interval is computed as mean value 
(MEAN) less error (ERROR) value and mean value more error value, respectively. 
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Figure D.6 – Screenshot of spreadsheet created by Message Stream Response Time Central 
Limit Theorem option 

D.3.2. State Machine  

A Master module models a PROFIBUS master and additionally can model the BM, DMM and GMM 
functionalities separately or simultaneously. Each of these elements has its own state machine. The 
information about the state machine transitions of these elements are recorded in text files (with “.stt” 
extension). Each line of this kind of file represents a transition. The transition instant (Time), the state 
name and a brief explanation about reason that causes the transition appear in first, second and third 
column, respectively. Figure D.7 illustrates an example of this kind of files related to a Master module 
instance. 
 

Time State name Description 
…   
0.019468 USE_TOKEN Received token from [6] 
0.019534 AWAIT_STATUS_RESPONSE Waiting for a FDL response from [3] 
0.019648 USE_TOKEN Slot time expired 
0.019648 PASS_TOKEN Trying to pass the token to [5] 
0.019671 CHECK_TOKEN_PASS Waiting for activity from [5] 
0.019759 ACTIVE_IDLE Activity detected from [5] 
0.019848 USE_TOKEN Received token from [6] 
0.019914 AWAIT_STATUS_RESPONSE Waiting for a FDL response from [4] 
0.020028 USE_TOKEN Slot time expired 
0.020028 PASS_TOKEN Trying to pass the token to [5] 
0.020051 CHECK_TOKEN_PASS Waiting for activity from [5] 
0.020139 ACTIVE_IDLE Activity detected from [5] 
0.020228 USE_TOKEN Received token from [6] 
0.020294 PASS_TOKEN Trying to pass the token to [5] 
0.020317 CHECK_TOKEN_PASS Waiting for activity from [5] 
… . .  

Figure D.7 – Output state machine file (excerpt) 

 State Machine Statistical Analysis 

The State Machine Analysis option (Figure D.8) provides a fast way to summarise the information. 
This option builds histogram related to each transition computing the number of times (N REG) that a 
Master module instance was in each state. Additionally, it computes the minimum (MIN) and 
maximum (MAX) time spending in each state as well as the mean (MEAN) and the standard deviation 
(STD DVT).  

D.3.3. Probability Distribution Function  

The information about the random values generated by the probability distribution function (PDF) are 
recorded into several text files (different extension are used, for example, the files related with the TID 
and with the TSDR has “.tid” and “.tsdr” extensions, respectively). Figure D.9 presents an example of 
this kind of files. The first line is used to identify the PDF and its parameters. In this case, the PDF is a 
triangular distribution function with apex at 50 bit times and extremes at 11 and 70 bit times. 
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Figure D.8 – Screenshot of spreadsheet created by State machine Analysis option 

 
TRIANG#11.000000#50.000000#70.000000 
18.103736 
54.119785 
62.908148 
51.248531 
26.079176 
43.094876 
66.415956 

Figure D.9 – Output PDF file (excerpt) 

 Probability Distribution Function Statistical Analysis 

This output of the Probability Distribution Function Analysis option is similar to the previous. It 
computes some statistical elements like mimimum (MIN), maximum (MAX), mean (MEAN), standard 
deviation (STD DVT) values as well as a histogram. Figure D.10 shows a screenshot of a spreadsheet 
created by this option. 

 
Figure D.10 – Screenshot of spreadsheet created by the Probability Distribution Functions 

Analysis option 

D.3.4. Bit Error Model 

The information about the Bit Error Model (BEM) used in simulation runs are recorded in several 
output data files. First, includes information about the number of correct and corrupted transmitted 
frames. Second includes detailed information about corrupted frames transmitted. Third, includes 
information about IDT deleted and fourth includes information about IDMP aborted. The last one 
includes information about channel state quality and the frame transmitted by each Domain module 
instance. The third and fourth are only generated by the BHW2PNetSim and fifth is generated only if 
the BEM used is either Gilbert-Elliot Model (simplified or not) or Burst-Error Periodic Model. 

 Frame Accounting 

The number of valid and invalid frames is also recorded to files (with “.cfr” and “.efr” extensions), as 
well as the information about the invalid frames relayed by each Domain module instance. The 
information is grouped into four groups: PROFIBUS, BEACON, IDP and IDMP-related frames, where 
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the first is related to standard PROFIBUS frames, the second are the beacon frames, the third are the 
IDF used by the IDP protocol and the last group represents the frames related to the IDMP. For each 
group is presented the number of valid and invalid frames relayed by a Domain module instance. 
Figure D.11 presents the information generated by a Domain module instance of the BHW2PNetSim.  
 

PROFIBUS:8954:57 
BEACON:: 
IDP: 246: 6 
IDMP: 131:2 

Figure D.11 – Output frame accounting file (excerpt) 

Detailed information about corrupted frames is also recorded to file. In such kind of file each line 
is composed by several fields separated by colons (see Figure D.12). The first field is the timestamp at 
which an invalid frame was detected, the second and the third fields are the DA and SA contained in 
the frame, respectively. The frame’s type appears in the fourth field. The remaining fields contain the 
remaining frame parameters: Start Delimiter (SD), Frame Control (FC) and the Mobility Code 
(MC).  
 

0.209914:4:6:IDMP::IQ_REQ:REQUEST_OR_SEND_REQUEST_FRAME:SEND_DATA_WITH_NO_ACKNOWLEDGE_HIGH 
0.214466:44:3:IDF:::REQUEST_OR_SEND_REQUEST_FRAME:SEND_AND_REQUEST_DATA_HIGH 
0.220326:5:4:PROFIBUS:FDL_REQUEST_STATUS::REQUEST_OR_SEND_REQUEST_FRAME:REQUEST_FDL_STATUS_WITH_REPLY 
0.222138:42:1:PROFIBUS:::REQUEST_OR_SEND_REQUEST_FRAME:SEND_AND_REQUEST_DATA_HIGH 
0.226439:5:4:PROFIBUS:FDL_REQUEST_STATUS::REQUEST_OR_SEND_REQUEST_FRAME:REQUEST_FDL_STATUS_WITH_REPLY 
0.226918:45:1:PROFIBUS:::REQUEST_OR_SEND_REQUEST_FRAME:SEND_AND_REQUEST_DATA_HIGH 
0.227865:4:1:PROFIBUS:TOKEN::: 
… 

Figure D.12 – Information about invalid frames relayed by a Domain module instance 

Figure D.13 depicts a screenshot of the spreadsheet generated by Bit Error Model Frame 
Accounting option, where the information contained on the referred kind of files is summarized.  

 
Figure D.13 – Screenshot of spreadsheet created by the Bit Error Model Frame Accounting 

option 

 IDP Timeout 

The IDP has a error recovery mechanism which deletes an entry from a BMini LOT if the timeout timer 
associated with that transaction expires. This behaviour allows the BMini to initialise a new LOT entry 
related to the same message stream. 

The information about deleted IDTs in a BMini LOT is recorded in a file with the “.tidt” 
extension. Figure D.14 shows an example of this kind of file. The information gathered in this file is 
the DA, SA, message ID and the timestamp when the deletion occurred.  

Based on the information contained in this file a spreadsheet tool allows the analysis of the 
results. 

Figure D.15 depicts a screenshot of the spreadsheet where the information concerning IDTs 
deleted by BM M8 is shown. The information is organized by message stream.  
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DA SA DAE SAE Timestamp 
…     
43 2 4 4 0.080469 
46 2 5 5 0.156737 
46 2 5 5 0.237376 
43 2 4 4 0.250335 
46 2 5 5 0.260427 
46 2 5 5 0.293211 
46 2 5 5 0.332400 
46 2 5 5 0.445243 
46 2 5 5 0.518283 
46 2 5 5 0.565210 
46 2 5 5 0.668706 
46 2 5 5 0.748602 
46 2 5 5 0.773215 
43 2 4 4 0.080469 
46 2 5 5 0.156737 
…      

Figure D.14 – Output deleted IDTs file (excerpt) 

 
Figure D.15 – Screenshot of spreadsheet created by the Bit Error Model IDP Timeout option 

 IDMP Timeout Timers 

Concerning IDMP, four timers are assigned to the GMM and one to each BM ((TBM-IDMPAbort)) and 
another to each DMM (DMM_IDMP_Abort_Timer (TDMM-IDMPAbort)) presents in the network. Two of the 
timers associated to the GMM are used to detect and handle the errors during the Phase 1 (GMM_Phase_ 
1_Alert_Timer (TGMM-P1Alert) and (TGMM-P1Abort)), while the others two are related to the Phase 2 (GMM_ 
Phase_2_Alert_Timer (TGMM-P2Alert) and GMM_Phase_2_Abort_Timer (TGMM-P2Abort)). 

In Chapter 3 a mechanism was proposed to provide the IDMP with capabilities to operate in 
error-prone environments. This proposed mechanism is based on the timers: BM_IDMP_Abort_Timer, 
DMM_ IDMP_Abort_Timer, GMM_Phase_1_Alert_Timer, GMM_Phase_1_Abort_Timer, GMM_Phase_2 
_Alert_Timer and GMM_Phase_2_Abort_Timer. Whenever a timer expires the simulator records 
information about it. 

Figure D.16 depicts part of this file (“.tidmp” extension) which contains information about the 
expiration of the IDMP timers concerning the GMM. The first column contains the time when the 
timer expired and in second contains the identification of the expired timer.  

 
timestamp Timer  
…  
108.211156 Phase 1 alert 
109.211156 Phase 1 alert 
109.222311 Phase 1 abort 
109.412431 Phase 2 alert 
109.611156 Phase 1 alert 
109.622311 Phase 1 abort 
111.211156 Phase 1 alert 
111.216033 Phase 2 alert 
111.413714 Phase 2 alert 
113.011156 Phase 1 alert 
114.211156 Phase 1 alert 
114.222311 Phase 1 abort 
108.211156 Phase 1 alert 
109.211156 Phase 1 alert 
109.222311 Phase 1 abort 
…   

Figure D.16 – Output IDMP alerts and aborts file (excerpt) 

To analyse this results a spreadsheet-based tool has also been developed. Figure D.17 depicts a 
screenshot of these results which contains the number of timer that the IDMP was triggered and the 
IDMP timers that expired. 



Tools for Simulation Output Analysis 167 

 

 
Figure D.17 – Screenshot of spreadsheet created by the Bit Error Model IDMP Timeout option 

 Channel State Quality 

In order to model burst sensitive models like the Gilbert-Elliot bit error model, there is the need to 
compute the state of the channel during time. This information can also be recorded to output data files 
by each Domain module instance. Figure D.18 shows an example of this kind of file (which uses the 
“.cst” extension). The identification of the BEM used and its parameters are written in the first line. 
The following lines show, in the first column, the timestamp when state change occurred and the 
second column show when the new state. 

The main objective of this feature is to validate the error model in use, by displaying statistical 
data regarding its operation. 
 

#GILBERT_ELLIOT#0.327037#0.672963#0.000082#0.002889 
0.0000000000 GOOD 
0.0000005000 BAD 
0.0000010000 GOOD 
0.0000020000 BAD 
0.0000025000 GOOD 
0.0000040000 BAD 
0.0000050000 GOOD 
0.0000060000 BAD 
0.0000065000 GOOD 
0.0000085000 BAD 
0.0000095000 GOOD 
…   

Figure D.18 – Output channel state quality file (excerpt) 

Figure D.19 shows a screenshot of the spreadsheet related to channel state quality of one domain. 
This tool summarizes information regarding the periods in time during which the channel in one 
domain has been in the good or in the bad state of the Gilbert-Elliot bit error model. The tool provides 
some statistical parameters, like minimum (MIM), maximum (MAX), mean (MEAN), standard 
deviation (STD DVT) and the number of times that this domain was in this state (N REG). 
Additionally it also constructs a histogram of these timings. 

 

 
Figure D.19 – Screenshot of spreadsheet created by the Bit Error Model Channel State Quality 

option 



 



Annex E 

Acronyms and Symbols  

This annex presents two lists one containing the acronyms and another containing the symbols used 
in this dissertation. 

E.1. Acronyms 

Acronyms Description 
AGV Automatic Guided Vehicle  
AL Application Layer 
BEM Bit Error Mode 
BER Bit Error Rate 
BHW2PNetSim Bridge-Based Hybrid Wired/Wireless PROFIBUS Network Simulator 
BM Bridge Master 
BMini  First bridge master in the path from the initiator to the responder of a transaction 
BMres Last bridge master in the path from the initiator to the responder of a transaction 
BS Base Station 
BT Beacon Trigger 
CSRD Cyclic Send and Receive with Data (PROFIBUS standard) 
DA Destination Address (PROFIBUS standard) 
DAE Destination Address Extension (PROFIBUS standard) 
DCCS Distributed Computer-Controlled System 
DLL Data Link Layer 
DMM Domain Mobility Manager 
DSSS Direct Sequence Spread Spectrum 
EBF Emitting_Beacon_Frame  
ED End Delimiter  
EFC Embedded frame Function Code 
EFT Embedded Frame Type 
FC Frame Control (PROFIBUS standard) 
FCS Frame Check Sequence (PROFIBUS standard) 
FMA1/2 Management for PROFIBUS networks layers 1 and 2 
GAPL Gap List 
GMM Global Mobility Manager 
HSA Highest Station Address 
I/O Input/Output 
IADT Intra-Domain Transaction 
ICM Independent Channel Model  
IDF Inter-Domain Frame 
IDMP Inter-Domain Mobility Procedure 
IDP Inter-Domain Protocol 
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IDreq Inter-Domain Request frame 
IDres Inter-Domain Response frame 
IDT Inter-Domain Transaction 
IEC International Electrotechnical Commission 
IIDT Intra/Inter Domain Transaction  
IS Intermediate System 
ISO International Organization for Standardisation 
LAN Local Area Network 
LAS List of Active Stations (PROFIBUS Standard) 
LASD List of Active Stations in Domain  
LBMD List of Bridge Masters in the Domain 
LBMN List of Bridge Masters in the Network 
LDMMN List of Domain Mobility Managers in the Network  
LE Frame Length (PROFIBUS Standard) 
LEr Frame Length repeated (PROFIBUS Standard) 
LL Live List (PROFIBUS Standard) 
LOT List of Open Transactions 
LWMSN List of Wireless Mobile Stations in the Network  
MAC Medium Access Control 
MaxRT maximum response time  
MC Mobility Code  
MeanBER Mean Bit Error Rate 
MeanRT Mean response time  
MinRT Minimum response time  
MLR Multiple Logical Ring 
MM Mobility Master  
MSim Mobility Simulator  
NS  Next Station (PROFIBUS Standard) 
OMNeT++ Objective Modular Network Testbed in C++ 
OSI Open System Interconnection 
PBT Prepare_for_Beacon_Transmission 
PC Personal Computer 
PCF Point Coordinator Function (IEEE 802.11) 
PDA Personal Digital Assistant 
PDF Probability Distribution Function  
PDU Protocol Data Unit 
PhL Physical Layer 
PLC Programmable Logical Controller 
PROFIBUS PROcess FIeld BUS 
PROFIBUS-DP PROFIBUS – Decentralised Peripherals 
PROFIBUS-FMS PROFIBUS – Fieldbus Message Specification 
PS Previous Station (PROFIBUS Standard) 
RBT Ready_for_Beacon_Transmission 

RFieldbus High Performance Wireless Fieldbus in Industrial Multimedia-Related 
Environment 

RHW2PNetSim Repeater-Based Hybrid Wired/Wireless PROFIBUS Network Simulator 
RSMP Ready_to_Start_Mobility_Procedure 
RT Routing Table 
RU Route_Update 
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SA Source Address (PROFIBUS standard) 
SAE Source Address Extension (PROFIBUS standard) 
SBT Start_Beacon_Transmission 
SC Short Acknowledge (PROFIBUS standard) 
SD Start Delimiter (PROFIBUS standard) 
SDA Send Data with Acknowledge (PROFIBUS Standard)  
SDN Send Data with no Acknowledge (PROFIBUS Standard) 
SLR Single Logical Ring 
SMP Start_Mobility_Procedure 
SRD  Send and Request Data (PROFIBUS Standard) 
TBM-IDMPAbort BM_IDMP_Abort_Timer  
TBM-IDTAbort BM_IDT_Abort_Timer  
TCP/IP Transport Control Protocol/Internet Protocol 
TDMM-IDMPAbort DMM_IDMP_Abort_Timer  
TGMM-P1Abort GMM_Phase_1_Abort_Timer  
TGMM-P1Alert GMM_Phase_1_Alert_Time 
TGMM-P2Abort GMM_Phase_2_Abort_Timer  
TGMM-P2Alert GMM_Phase_2_Alert_Time 
TGUD Gap Update Time 
TI Transaction Identifier 
TID Idle Time  
TIDm Minimum idle time  
TRR Real Rotation Time 
TS This Station (PROFIBUS Standard) 
TSDI  Station Delay of the Initiator Time 
TSDR  Station Delay of a Responder Time 
TSL Slot Time  
TSM  Safety Margin Time 
TSYN  Synchronisation Time 
TTD Transmission Delay Time  
TTH Token Holding Time 
TTO Time-Out Time  
TTR Target Rotation Time  
WCRT Worst-Case Response Time 

E.2. Symbols 

Symbol Description 
a  Lower limit of an interval 
apex Mode 
b Upper limit of an interval 
c The speed of the light  
d  The distance between transmitter and receiver in meters 

d0  
The close-in reference distance which is determined from measurements close to 
the transmitter 

Di Communication Domain i 
f  Carrier frequency in Hertz  
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F(x) Probability function 
f(x) Density function 
G Gap Update Factor 
Gr  The receiver antenna gain 
Gt  the transmitter antenna gain 
L Number of characters in a frame 
maxTSDR Maximum delay before a responder starts transmitting a response to a request. 
minTSDR Minimum delay before a responder starts transmitting a response to a request. 
MeanBER Mean Bit Error Rate 

n The path loss exponent which indicates the rate at which the path loss increases 
with distance 

NeM The maximum burst length 
Nem The minimum burst length 
Ny The transmission error burst length 
pb  The BER probability in bad state 
pb|b The steady state probability for being in bad state 
pb|g The probability of a transition occurs from bad to good state 
pber  Bit Error Rate (BER) probability  
Pfr_err The frame error probability  
pg  The BER probability in good state 
pg|b The probability of a transition occurs from good to bad state 
pg|g The steady state probability for being in good state 
PL(d) The average path loss at distance d between transmitter and receiver  
PL0(d0)  The free-space path loss distance d0 
Pr(d) The power at received radio signal  
Pt  The transmitted power 
Si

x Message stream i from an initiator station x  
tb The mean duration of bad state 
Tem Lower period threshold 
TeM Higher period threshold 
tg The mean duration of good state 
TGUD Gap Update time, defines the periodicity of the GAP update mechanism 
ti→j

ng The no gaps instant 
ti→j

sr The start relaying instant 

TID1 
Idle time inserted by a master station after an acknowledgement, response or 
token PDU 

TID2 
Idle time inserted by a master ES after an acknowledged request PDU 
(PROFIBUS). 

ti
dr The data ready instant 

ti
lk The length known instant 

TQUI Transmitter fall time 
trd The relaying delay time 

TRDY Time within which a master station shall be ready to receive an 
acknowledgement or response after transmitting a request. 

TRR Real Rotation Time 
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TSDI 
Station delay of the initiator, which is measured with respect to the receipt of the 
last frame last bit until an initiator is ready to transmit again. 

TSDI Station Delay of the Initiator  
TSDR Station Delay of a Responder 

TSET 
Set-up time which expires from the occurrence of an event (e.g. interrupt: last 
octet sent or Synchronous Time expired) until the necessary reaction is 
performed (e.g. to start Synchronous Time or to enable the receiver). 

TSL 
The Slot Time is a parameter set in every master that defines the timeout for 
listening for activity in the bus, after having transmitted an acknowledged 
request or token. 

TSL1 
Maximum time the initiator waits for the complete reception of the first frame 
character of the acknowledgement/response frame, after transmitting the last bit 
of the request frame 

TSL2 
Maximum time the initiator waits after having transmitted the last bit of the 
token PDU until it detects the first bit of a PDU (either a request or the token) 
transmitted by the station that received the token 

TSM Safety margin (PROFIBUS) 
tst System turnaround time 
TSYN Synchronization period of (at least) 33 idle bit periods 
TTD Transmission Delay is the propagation delay in the bus. 
TTH  Token Holding Time  
TTo Time-out time 
TTR Target Token Rotation time 
Tx The transmission error period 

Xσ  
The shadowing term (the zero-mean Gaussian random variable in dB with 
standard deviation of σ) 

β Constant rate 
λ The wavelength in meters  
σ2 Standard deviation 
µ Mean value 
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