

On the Scheduling of Fork-Join
Parallel/Distr ibuted Real-Time Tasks

Technical Report

CISTER-TR-140601

Version:

Date: 6/1/2014

Ricardo Garibay-Martínez

Geoffrey Nelissen

Luis Lino Ferreira

Luis Miguel Pinho

Technical Report CISTER-TR-140601 On the Scheduling of Fork-Join Parallel/Distributed Real-Time Tasks

© CISTER Research Unit
www.cister.isep.ipp.pt

1

On the Scheduling of Fork-Join Parallel/Distributed Real-Time Tasks
Ricardo Garibay-Martínez, Geoffrey Nelissen, Luis Lino Ferreira, Luis Miguel Pinho

CISTER Research Unit

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail: rgmaz@isep.ipp.pt, grrpn@isep.ipp.pt, llf@isep.ipp.pt, lmp@isep.ipp.pt

http://www.cister.isep.ipp.pt

Abstract
Modern real-time embedded applications present high computation requirements which need to be realized within
strict time constraints. The current trend towards parallel processing in the embedded domain allows providing
higher processing power. However, in some embedded applications, the use of powerful enough multi-core
processors, may not be possible due to energy, space or cost constraints. A solution for this problem is to extend
the parallel execution of the applications, allowing them to distribute their workload among networked nodes, on
peak situations, to remote neighbour nodes in the system. In this context, we present the Partitioned-Distributed-
Deadline Monotonic Scheduling algorithm for fork-join parallel/distributed fixed-priority tasks. We study the
problem of scheduling fork-join tasks that execute in a distributed system, where the inherent transmission delay
of tasks must be considered and cannot be deemed negligible, as in the case of multicore systems. Our
scheduling algorithm is shown to have a resource augmentation bound of 4, which implies that any task set that is
feasible on m unit-speed processors and a single shared real-time network, can be scheduled by our algorithm on
m processors and a single real-time network that are 4 times faster. We confirm through simulations our analytical
results.

On the Scheduling of Fork-Join Parallel/Distributed
Real-Time Tasks

Ricardo Garibay-Martínez, Geoffrey Nelissen, Luis Lino Ferreira, Luís Miguel Pinho
CISTER/INESC-TEC, ISEP

Polytechnic Institute of Porto, Portugal
{rgmaz, grrpn, llf, lmp }@isep.ipp.pt

Abstract— Modern real-time embedded applications present
high computation requirements which need to be realized within
strict time constraints. The current trend towards parallel
processing in the embedded domain allows providing higher
processing power. However, in some embedded applications, the
use of powerful enough multi-core processors, may not be
possible due to energy, space or cost constraints. A solution for
this problem is to extend the parallel execution of the
applications, allowing them to distribute their workload among
networked nodes, on peak situations, to remote neighbour nodes
in the system. In this context, we present the Partitioned-
Distributed-Deadline Monotonic Scheduling algorithm for fork-
join parallel/distributed fixed-priority tasks. We study the problem
of scheduling fork-join tasks that execute in a distributed system,
where the inherent transmission delay of tasks must be
considered and cannot be deemed negligible, as in the case of
multicore systems. Our scheduling algorithm is shown to have a
resource augmentation bound of 4, which implies that any task
set that is feasible on ࢓ unit-speed processors and a single shared
real-time network, can be scheduled by our algorithm on ࢓
processors and a single real-time network that are 4 times faster.
We confirm through simulations our analytical results.

Keywords— real-time; distributed systems; fork-join; parallel
execution; resource augmentation bound.

I. INTRODUCTION
Modern real-time applications are becoming larger and more
complex, thus demanding more and more computing resources.
By using parallel computations, the time required for
processing computational-intensive applications can be
reduced, thereby gaining in flexibility. This is a known solution
in areas that require high performance computing power, and
real-time systems are not an exception. That is why the real-
time community has been making a large effort to extend real-
time tools and scheduling algorithms to multicores [1], and
lately to further extend them considering the use of parallel
task models [2, 3, 4, 5].

Although, most of the developed work for parallel real-
time tasks (multithreaded parallel real-time tasks) has been
thought with multi- and many-core systems in mind, it is also
possible to provide parallel computing power by aggregating a
set of single-core embedded devices connected through an
interconnection network, cooperating for achieving a single
goal. Furthermore, in some embedded applications, the use of
powerful enough multi-core processors, is prohibited due to
energy, space or cost constraints. An example of such type of
applications is, for instance, the image processing for obstacle

detection in cooperating robots, where the computation
requirements of the detection algorithms are highly dependent
on the robot’s current velocity, surrounding environment and
obstacles [6]. Thus, it is possible to comply with the
requirements of such computational-intensive applications by
allowing a single-core embedded device to distribute its
workload to remote neighbour nodes connected through a
local real-time network.

Commonly, parallel programming applications are based
on the fork-join execution model. A fork-join real-time
application is an application that starts by executing
sequentially and then forks to be executed in parallel, when
the parallel execution has completed, the results are
aggregated by performing a join operation; this procedure can
be repeated several times. Some of the most popular
programming models implementing the fork-join structure are
the OpenMP programming model [7], and the Message
Passing Interface (MPI) model [8]. However, none of these
programming models is able to provide any time guarantees,
although some efforts on bridging that gap have been
presented in [9, 10].

A fork-join real-time distributed application is composed
of a set of fork-join parallel/distributed real-time tasks
executed in a distributed system. When considering such
tasks, the processing of tasks and messages must comply with
their associated time constraints, commonly expressed by an
end-to-end deadline. Therefore, when scheduling fork-join
real-time tasks in a distributed system, it is necessary to
consider the interaction between the threads and messages that
compose such a task and their impact when being scheduled in
a set of different computing devices (e.g. processors and
networks).

Contribution. In that context, we present the
Partitioned/Distributed-Deadline Monotonic Scheduling (P/D-
DMS) algorithm for distributed fixed-priority fork-join real-
time tasks. The P/D-DMS algorithm is shown to have a
resource augmentation bound of 4, which implies that any task
set that is feasible on ݉ unit-speed processors and a single
shared bus real-time network, can be scheduled by this
algorithm on ݉ processors and a single shared bus real-time
network that are 4 times faster. We confirm our analytical
results through simulations.

Structure of the paper. The remainder of the paper is
structured as follows. Section II presents the related work;

mailto:@isep.ipp.pt

Section III introduces the system model. Section IV presents
the Distributed Stretch Transformation model for
parallel/distributed real-time tasks. The resource augmentation
bound for the Partitioned-Distributed-DMS algorithm is
explained in Section V. The simulations that confirm our
analytical results are provided in Section VI, and finally our
conclusions are discussed in section VII.

II. RELATED WORK
We briefly review the related work for fixed-priority fork-join
tasks in distributed systems and multicore processors.

Related to distributed systems, Gutiérrez-García et al. [11]
presented a schedulability analysis technique for distributed
hard real-time systems in which responses of different events
may synchronize with each other. This is a general method for
computing the worst-case response time of different
synchronization events. This method allows the study of
complex synchronization structures, in which the fork-join
structure is included. The technique is based on the existing
Rate Monotonic Analysis (RMA) techniques.

Zheng et al. [12], studied the case of automotive
applications. The approach is based on finding the priorities
for tasks and messages, in a way that no end-to-end deadline is
missed. They proposed to solve the problem of priority
assignment of tasks and messages by modelling it as an
optimization problem. In Zhu et al. [13] is presented a similar
problem as in [12], but for a more detailed system model. The
authors presented a sensibility analysis that is able to measure
how much the execution time of tasks can be increased
without missing its end-to-end deadlines. Their method is
based on a combination of mixed integer linear programming
for task allocation, which is optimized according to tasks’
utilization and deadlines. Also as a second stage of their
method, they apply a set of heuristic steps for priority
assignment of tasks and messages.

In respect to multicore architectures, Lakshmanan et al. [2]
introduced the Task Stretch Transformation (TST) model for
parallel synchronous tasks which follow a fork-join structure.
They proposed a parallel model that considers preemptive
fixed-priority periodic tasks with implicit deadlines scheduled
according to the Deadline Monotonic (DM) rule, which is able
to achieve a resource augmentation bound of 3.42. Similarly,
Fauberteau et al. [3] proposed the Segment Stretch
Transformation (SST) model. The authors convert the parallel
threads into sequential ones by creating a master thread, but
with the difference that no thread is ever allowed to migrate
between cores. They showed through simulations that the TST
and SST algorithms obtain similar results, and that none of
them dominates the other. Later, Qamhieh et al. [4] proved
that SST has the same resource augmentation bound than TST
- 3.42. More insights of the TST [2] and DST [3, 4] models
are presented in Section IV-A.

Saifullah et al. [5] introduced a more general model in
which the problem of scheduling synchronous periodic
multithreaded parallel tasks with implicit deadlines is

addressed. Two main extensions to the previous works were
made. First, the limitation of having the same number of
threads in all parallel segments within a task was lifted by
allowing an arbitrary number of threads to be executed on
each parallel segment. And second, they consider the analysis
of DM and EDF scheduling. They provided a resource
augmentation bound of 4 and 5 when global EDF and
partitioned DM are used to schedule tasks, respectively.

Axer et al. [14], the presented a method for computing the
response time of fixed-priority parallel tasks on
multiprocessors, which considers the synchronization effects
for fork-join tasks with arbitrary deadlines.

However, none of the previous works addressed the specific
problem of scheduling fork-join parallel/distributed tasks. On
one hand, the research in the area of distributed systems is
focused on task partition and priority assignment to tasks and
messages with specific constraints required by the system. On
the other hand, existing techniques for scheduling fork-join
tasks are designed for multicore systems, in which the
transmission delays of parallel threads of a fork-join task can
be considered negligible. In this paper, we intend to combine
these two domains, and present a scheduling algorithm for
parallel/distributed real-time tasks in which transmission
delays are accounted. Furthermore, our solution has the
advantage to have a low complexity and could therefore be
used online to partition new tasks arriving in the system.

III. SYSTEM MODEL
We consider a set of fixed-priority fork-join
parallel/distributed real-time tasks with implicit deadlines that
execute in a distributed computing platform. A distributed
computing platform is composed of a set ߨ = ,ଵߨ} … , ௠} ofߨ
݉ identical uni-core nodes where tasks are executed. The
number of processors ݉ is defined by the architecture.

The processors are interconnected with a single shared bus
real-time network, denoted as ߸ . Messages are exchanged
between tasks executing on different nodes using the network.
Messages sent on the network are considered to be non-
preemptive (i.e., the transmission of a message cannot be
aborted or interrupted once initiated) and scheduled according
to a fixed priority algorithm (i.e., the message with the highest
priority is transmitted first). Figure 1 shows an example of
such a distributed computing platform.

A. Fork-Join Parallel/Distributed Real-Time Tasks
We consider that a distributed real-time application is
composed of a set ߬ = {߬ଵ, … , ߬௡} of ݊ fixed-priority fork-join
parallel/distributed real-time tasks (P/D tasks). P/D tasks have
the particularity of making use of distributed resources,
interconnected by a shared bus real-time network. Such a
configuration imposes an inevitable transmission delay
whenever parts of a task are distributed among a set of
processors in the distributed system. This delay is due to the
necessity for data distribution, but might also include the
transmission of the code to be executed and/or control
messages.

Figure 1. Distributed computing platform.

A P/D task ߬௜ is activated periodically every ௜ܶ time units
and is characterised by an implicit end-to-end deadline ܦ௜ ,
which is the longest elapsed time a task is permitted to take
from the time instant at which it is activated until it completes
its execution. Figure 2 shows an example of a P/D task ߬௜.

In the OpenMP programming model, a single thread starts
the execution of a parallel program. This thread is the master
thread of the program. When the master thread encounters a
#parallel pragma (indicating the starting point of the
parallel execution) it creates a team of threads to execute the
instructions enclosed within the #parallel pragma in a
parallel manner. A P/D task follows the fork-join structure of
the OpenMP programming model [7].

A P/D task starts by a master thread executing
sequentially; and then forks to be executed in parallel on
remote processors. When the parallel execution has completed
on each of the remote processors, the results are aggregated by
performing a join operation and the execution of the
sequential thread is resumed within the master thread. This
procedure can be repeated several times.

We call Distributed-Fork (D-Fork) and Distributed-Join
(D-Join), the operations that correspond to the classical fork
and join operations usually performed on multicore
processors. The main difference is that the execution of the
threads resulting from the D-Fork operation are executed on
remote processors within the distributed system, implying that
the communication between threads is realized through
messages sent through a real-time network.

Formally, a P/D task ߬௜ (݅	 ∈ 	 {1, … , ݊}) is composed of a
sequence of sequential and parallel/distributed (P/D) segments
௜,௝ߪ	 	 with ݆	 ∈ 	 {1, … , ݊௜}. Where, ݊௜ represents the number of
segments composing ߬௜, ݊௜ is assumed to be an odd integer, as
a P/D task should always start and finish with a sequential
segment. Therefore, odd segments 	ߪ௜,ଶ௝ାଵ	 identify sequential
segments and even segments 	ߪ௜,ଶ௝ 	 identify P/D segments.
Each segment ߪ௜,௝ 	 is composed of a set ߠ of threads ߠ௜,௝,௞ with
݇	 ∈ 	 {1, … , ݊௜,௝}, where ݊௜,௝ = 1 for sequential segments and
݊௜,௝ = ݉௜ ≤ ݉ threads for P/D segments. ݉௜ is the number of
P/D threads in each P/D segment, and it is considered to be the
same for all P/D segments within a P/D task ߬௜.

All sequential segments within a P/D task ߬௜ must execute
within the same processor. This means that the processor that
performs a D-Fork operation (invoker processor) is in charge
of aggregating the result by performing a D-Join operation.
Threads within a P/D segment are possibly executed on
remote processors. Consequently, for each thread ߠ௜,ଶ௝,௞
belonging to a P/D segment (P/D thread), two P/D messages
௜,ଶ௝ିଵ,௞ߤ and ߤ௜,ଶ௝,௞ are considered for realizing the
communication between the invoker and remote processors.
This is, P/D threads and messages that belong to a P/D
segment and execute on a remote processor, have a
precedence relation: ߤ௜,ଶ௝ିଵ,௞ ⟶ ௜,ଶ௝,௞ߠ ௜,ଶ௝,௞ߤ⟶ . For each
sequential and P/D segment, there exists a synchronisation
point at the end of each segment, indicating that no thread that
belongs to the segment after the synchronisation point can
start executing before all threads of the current segment have
completed execution. P/D threads are preemptive, but
messages’ packets are non-preemptive, although large
messages can be divided in several non-preemptive packets.

Also, each sequential thread ߠ௜,ଶ௝ାଵ,ଵ has a Worst-Case
Execution Time (WCET) of ܥ௜,ଶ௝ାଵ,ଵ. A P/D thread ߠ௜,ଶ௝,௞ has
a WCET of ௜ܲ ,ଶ௝,௞, and each message ߤ௜,ଶ௝,௞ has a Worst-Case
Message Length (WCML) ℳ௜,௝,௞. It is assumed that for a task
߬௜ , every P/D thread ߠ௜,ଶ௝,௞ and their respective messages
௜,ଶ௝,௞ߤ within a P/D segment 	ߪ௜,ଶ௝ , have identical WCETs
௜ܲ ,ଶ௝,௞ and identical WCMLs ℳ௜,௝,௞ , respectively. However,

the WCET and the WCML of P/D threads and their messages
can vary between different P/D segments. Also, P/D threads
and messages, share the same period ௜ܶ.

To summarise, it is possible to describe a P/D task as:

߬௜ = ,௜,ଵܥ)) ,ℳ௜,ଵ, ௜ܲ,ଶ,ℳ௜,ଶ, ,௜,ଷܥ … ,ℳ௜,௡೔ିଵ, ௜,௡೔),݉௜ܥ , ௜ܶ),

where:

 ݊௜ is the total number of segments of a task ߬௜,
 ܥ௜,௝ is the WCET of each sequential segment ௜,ଶ௝ାଵߪ	

(containing a single thread ߠ௜,ଶ௝ାଵ,ଵ),
 ℳ௜,௝ is the WCML of a single messages (all ݇ P/D

messages on the same P/D segment have exactly the same
WCML),

 ௜ܲ ,ଶ௝ is the WCET of a single P/D thread within a segment
௜,ଶ௝ߪ	 (all ݇ P/D threads on the same P/D segment have
exactly the same WCET),

 ݉௜ is the number of P/D threads (two messages are created
for each P/D thread within a P/D segment 	ߪ௜,ଶ௝) in each
P/D segment. It is considered that ݉௜ ≤ ݉, where ݉ is the
number of available processors in the distributed system,

 ௜ܶ is the period of a task, which is equal to its deadline
௜ܦ) = ௜ܶ).

B. Preliminaries
For notational convenience we introduce some definitions that
simplify the explanation and analysis of the proposed
algorithms.	

Figure 2. The fork-join parallel/distributed periodic real-time tasks (P/D task) model.

Definition 1. (Master thread). The master thread of a P/D task
߬௜ is the collection of all threads ߠ௜,௝,ଵ	 belonging to all
segments	ߪ௜,௝. A master thread can be represented as:

	߬௜௠௔௦௧௘௥ = ,௜,ଵ,ଵߠ} ,	௜,ଶ,ଵߠ ,	௜,ଷ,ଵߠ … , ,	௜,௡೔ିଵ,ଵߠ 		{௜,௡೔,ଵߠ

Definition 2. (Parallel execution length). The parallel
execution length is the sum of the WCET of all P/D threads
within the master thread:

௜ܲ = ෍ ܲ݅,2݆,1																																										(1)
௡೔ିଵ
ଶ

௝ୀଵ

Definition 3. (Minimum execution length). The minimum
execution length ߟ௜ represents the minimum execution time a
P/D task ߬௜ needs to execute when all P/D threads are
executed in parallel. This is equal to the sum of the WCET of
all the threads described in the master thread:

௜ߟ = ൭෍ ௜,ଶ௝ାଵܥ

௡೔ିଵ
ଶ

௝ୀ଴
൱+ ௜ܲ 																									(2)

Definition 4. (Maximum execution length). The maximum
execution length ܥ௜, represent the maximum execution time a
P/D task ߬௜ needs to execute when all P/D threads are
executed sequentially on the invoker processor. This is equal
to the sum of WCET of all threads in a task ߬௜:

௜ܥ = ൭෍ ௜,ଶ௝ାଵܥ

௡೔ିଵ
ଶ

௝ୀ଴
൱+ ௜ܲ × ݉௜ 																					(3)

Please note, that the messages ߤ௜,௝,௞ are not considered in
Eq. (2) and (3), since all inter-process communications are
internal to the invoker processor. The synchronization cost
between the sequential and P/D threads can therefore be
considered negligible. Figure 1, shows an example in which
some messages (ߤ௜,ଵ,ଵ and ߤ௜,ଶ,ଵ) are realizing a transmission
within the same local processor, but its cost is negligible.

Definition 5. (Slack time). The positive slack time ܮ௜ is the
temporal difference between the task’s deadline ܦ௜ and the
minimum execution length ߟ௜:

௜ܮ = ௜ܦ − ௜ߟ 																																											(4)

If the slack ܮ௜ is a negative number, it means that the
minimum execution length ߟ௜ is larger than its deadline
(௜ܶ = ௜ܦ). Therefore, such a task is not schedulable on any
number of processors with a speed of 1.

Definition 6. (Capacity). The capacity ௜݂ is defined as the
capacity of the master thread of a task ߬௜ to execute extra P/D
threads from all P/D segments without missing its deadline:

௜݂ =
௜ܮ
௜ܲ
																																														(5)

IV. DISTRIBUTED STRETCH TRANSFORMATION
Our task transformation model is called Distributed Stretch
Transformation (DST), and it has been inspired by the Task
Stretch Transformation [2] (TST) model and the Segment
Stretch Transformation [3, 4] (SST) model. The DST model is
designed specifically for distributed systems where real-time
tasks and messages need to be processed and transmitted by
processors and a real-time network, respectively. Therefore,
the main difference from DST, when compared with TST and
SST, is that the two previous transformation algorithms were
conceived for multicore processors, thus not considering the
transmission delays inherent to the synchronization between
threads executing on different processors, as in the case of
distributed systems.

The TST and SST transformations consider that tasks are
scheduled by a partitioned preemptive fixed-priority
algorithm, executed in a multicore processor. In our model, we
consider tasks to be scheduled with the preemptive fixed
priority algorithm deadline monotonic (DM) on each
processor. On the other hand, messages to be transmitted
within the real-time network are scheduled with a non-
preemptive version of DM algorithm. This is due to the fact
that the transmission of a message cannot be interrupted once
initiated.

A. The Task Stretch Transformation and Segment Stretch
Transfomation Models

In this subsection, we study the TST and the SST
transformation models, with the intention of showing the
similarities and main differences with our DST model.

In the TST model [2], Lakshmanan et al. show that “FJ
task sets on multiprocessor systems can have schedulable
utilization bounds slightly greater than and arbitrarily close
to uniprocessor schedulable utilization bounds”, thus, it is
desirable to avoid fork-join structures as much as possible.
The main objective of the TST model is to convert the master
thread into a fully stretched string in which the execution
length of the master thread becomes equal to its period ௜ܶ. The
transformation is done by inserting (or coalescing) threads (or
part of them) into the master thread while paying attention to
respect their precedence constraints. Thus, a subset of parallel
threads executes with the master thread while the rest of them
are partitioned among the cores using the partitioning heuristic
Fisher-Baruah-Baker First-Fit-Decreasing (FBB-FFD) [15].
The authors showed that their scheduling algorithm has a
resource augmentation bound of 3.42.

The main disadvantage of the TST is that it forces to stretch
a master thread completely. In some cases, it may not be
possible to fit complete threads within the master thread. This
provokes a migration of the remaining part of such a thread
for being executed in another processor. This migration can
lead to extra considerations when implemented in a real
platform. For this reason, the authors of [3] proposed the SST
model, which also tries to convert the parallel threads into
sequential ones by creating a master thread, but with the
difference that the coalescing operation is performed only
when parallel threads can be fully inserted within the master
thread. Thus, creating a master thread that can be fully
stretched (with a WCET of the master thread equal to its
period) or partially stretched (the WCET of the master thread
is smaller or equal to its period). In a similar manner than in
[2], the remaining parallel threads are scheduled with the
partitioned scheduling algorithm FBB-FFD [15]. Later, the
same authors [4] proved that SST has the same resource
augmentation bound of 3.42 than TST, although, it cannot be
claimed that one of both algorithms dominates the other [3].

B. The Distributed Stretch Transform Model
Our work is inspired by the SST approach. Since “FJ task sets
on multiprocessor systems can have schedulable utilization
bounds slightly greater than and arbitrarily close to
uniprocessor schedulable utilization bounds”, we opt for the
formation of a stretched master thread ߬௜௦௧௥௘௧௖௛௘ௗ for each P/D
task ߬௜ . However, we need to address some specific
constraints that are related to distributed systems. In that case,
when performing a D-Fork operation, it implies that some
messages will be transmitted within the network that may
affect the execution length of the P/D tasks.

Let us illustrate the DST transformation with an example.
Consider two tasks: ߬ଵ = ((1, 1,2,1,1), 3,8) , and ߬ଶ =
((1, 1,3,1,1), 3,10) to be scheduled on 3 processors. Figure
3(a), shows the execution of a task to be scheduled under
global DM scheduling. It is possible to see that task ߬ଶ having
the lowest priority misses its deadline at time 10. This is due
to the suffered interference provoked by threads of task ߬ଵ that
have higher priority. Also, notice the presence of a high source

of interference in the network, for example, the P/D thread
 ଶ,ଶ,ଷ with WCET ଶܲ,ଶ,ଷ, is ready for execution at time 1, butߠ
due to the network interference it is only released for
execution in processor 3 at time 7, therefore drastically
increasing its response time.

Now let us consider the DST transformation explained
below and illustrated in Figure 3(b). By calculating the
maximum execution length of tasks ߬ଵand ߬ଶ (see Definition
4), we obtain ܥଵ = 8 and ܥଶ = 11. Then, by looking at Figure
3(b) it is possible to observe two cases:

௜ܥ .1 ≤ ௜ܶ . This is the case of ߬1 in our example; whenever
such a case appears for a task ߬݅ , the task ߬݅ is fully
stretched into a master thread and handled as a sequential
task with execution time equal to ܥ௜, a task period of ௜ܶ, and
an implicit deadline equal to ܦ௜. That is, all threads of the
tasks are executed sequentially on a unique processor.

௜ܥ .2 > ௜ܶ . This is this case of ߬ଶ in our example; for such
tasks, the DST transformation inserts (coalesces) as many
P/D threads of ߬௜ into the master thread as possible. To do
so, it is needed to calculate the available slack and capacity
of task ߬௜ as indicated in Eq. (4) and (5). For ߬ଶ , it gives
ଶܮ = 10 − 5 = 5 and, ଶ݂ = 5 3⁄ . Thus, the number of P/D
threads that each P/D segment can fully insert into the
master thread without causing ߬௜ to miss its deadline is
given by:

݅௜,ଶ௝ =	 ⌊ ௜݂⌋																																											(6)

For example, in the case of ߬ଶ , ݅ଶ,ଶ =	 ⌊ ଶ݂⌋ = 1 . It can
indeed be seen on Figure 3(b) that ߬ଶ executes two P/D
threads per P/D segment on the invoker processor rather
than only one when considering the non-stretched master
thread.

In the DST only P/D threads that fit completely (since
݅௜,ଶ௝ =	 ⌊ ௜݂⌋) can be inserted into the master thread. A master
thread is assigned to be executed in its own processor and
the remaining subset of P/D threads, have to be executed on
other nodes in the system. The dispatching of the remaining
P/D threads to the processors is performed according to the
FBB-FFD algorithm [15].

The number ݍ௜,ଶ௝ of the remaining P/D threads that have
not been coalesced into the master thread is given by:

௜,ଶ௝ݍ =	݉௜ − ݅௜,ଶ௝ 																																				(7)

The slack ௜݂ of task ߬௜ is equally distributed between all the
P/D segments of a P/D task ߬௜ . This distribution can be
considered as the available scheduling length for the execution
of threads and transmission of messages in each P/D segment
on a remote processor.

Thus, the maximum scheduling length for the subset of P/D
threads and their respective messages is determined by
defining a set of P/D intermediate deadlines ݀௜,ଶ௝:

݀௜,ଶ௝ = (௜݂ + 1) × ௜ܲ ,ଶ௝ 		∀	1 ≤ ݆ ≤
݊௜ − 1	

2 																(8)

Figure 3. A P/D tasks: (a) scheduled with global scheduling, (b) scheduled after the DST transformation.

In the case of task ߬ଶ, ݀ଶ,ଶ = 3(5 3⁄ + 1) = 8. Also, each
P/D segment	ߪ௜,ଶ௝ 	 has a static offset ߶௜,ଶ௝ defined as:

߶௜,ଶ௝ = ෍ 1,1+2݆,݅ܥ

௡೔ିଵ
ଶ

௝ୀ଴

+ ෍ ݀݅,݆݇

௡೔ିଵ
ଶ

௝ୀଵ

																									(9)

Thus, at the end of the DST transformation, a P/D task ߬௜
will be composed of a single stretched master thread ߬௜௦௧௥௘௧௖௛௘ௗ
and a set of constrained deadline P/D threads ൛߬௜௖ௗൟ (and their
respective constrained deadline messages ൛ߤ௜௖ௗൟ) per each P/D
segment 	ߪ௜,ଶ௝.

The P/D segments’ offsets ߶௜,ଶ௝ and the P/D segments’
deadlines ݀௜,ଶ௝ , define the scheduling window, in which the
remaining ݍ௜,ଶ௝ P/D threads and its corresponding messages
have to complete their execution (and transmission,
respectively) in order for a task ߬௜ to respect its deadline. That
is, the following inequality must be respected:

ఓ೔,మೕషభ,ೖݎ + ఏ೔,మೕ,ೖݎ + ఓ೔,మೕ,ೖ	ݎ
≤ ݀௜,ଶ௝∀	ߠ௜,ଶ௝,௞ ∉ 	(10)		݀ܽ݁ݎℎݐ	ݎ݁ݐݏܽ݉

where, ݎఓ೔,మೕషభ,ೖ ఓ೔,మೕ,ೖ	ݎ ,
 and ݎఏ೔,మೕ,ೖ are the Worst Case

Response Time (WCRT) of messages ߤ௜,ଶ௝ିଵ,௞and ߤ௜,ଶ௝,௞, and
the thread ߠ௜,ଶ௝,௞, respectively.

C. End-to-end delay computation in distributed systems
In this section we summarize some results for the calculation
of the response time for the execution and transmission of
threads and messages respectively.

From [16] we know that for periodic fixed priority
preemptive tasks, the following recursive equation can be used
to calculate the response time of a threads ߠ௜,௝,௞:

ఏ೔,ೕ,ೖݎ
௡ାଵ ௜,௝,௞ܥ	= + ෍ ቜ

ఏ೔,ೕ,ೖݎ
௡

௜ܶ,௝,௟
ቝ ௜,௝,௟ܥ

ఏ೔,ೕ,೗	∈	௛௣(ఏ೔,ೕ,ೖ)

,												(11)

where ݎఏ೔,ೕ,ೖ is the worst case execution time of a thread ߠ௜,௝,௞
and ℎ݌൫ߠ௜,௝,௞൯ is the set of all threads ߠ௜,௝,௟ with higher priority
than ߠ௜,௝,௞ that execute on the same processor ߨ௜ . The
recursion ends when ݎఏ೔,ೕ,ೖ

௡ାଵ = ఏ೔,ೕ,ೖݎ
௡ = ఏ೔,ೕ,ೖ and can be solvedݎ

by successive iterations starting from ݎఏ೔,ೕ,ೖ
ଵ = ௜,௝,௞ߠ . The series

is non-decreasing, and therefore converges if
∑ ஼೔,ೕ,೗

்೔,ೕ,೗
ఏ೔,ೕ,೗	∈	௛௣(ఏ೔,ೕ,ೖ)∪ఏ೔,ೕ,ೖ ≤ 1. If the condition of convergence

is not respected threads ߠ௜,௝,௞ are not schedulable.

For the case of messages ߤ௜,௝,௞ , the calculation of the
WCRT needs to consider the non-preemptability of messages
on the network. Thus, for periodic fixed-priority non-
preemptive messages, the following recursive equation can be
used to calculate the worst-case response time [17]:

ఓ೔,ೕ,ೖݎ
௡ାଵ =	ℳ௜,௝,௞ +෍ ቜ

ఓ೔,ೕ,ೖݎ
௡

ఓܶ೔,ೕ,೗

ቝℳ௜,௝,௟																								
ఓ೔,ೕ,೗	∈	௛௣(ఓ೔,ೕ,ೖ)

+ max
	ఓ೔,ೕ,೗	∈	௟௣(ఓ೔,ೕ,ೖ)

{ℳ௜,௝,௟} ,																													(12)

where, the third term on the right hand side of Eq. (12),
accounts for the maximum possible suffered interference of a
higher priority message ߤ௜,௝,௞ , caused by lower priority
message ߤ௜,௝,௟ , contained in the set of lower priority messages
 .(௜,௝,௞ߤ)݌݈

V. THE P/D-DMS ALGORITHM
The P/D-DMS algorithm is the dispatching algorithm for
partitioning the set ߬ of tasks ߬௜ onto the elements of the
distributed system. The P/D-DMS algorithm realizes the
dispatching by: (i) applying the DST to each P/D taks ߬௜ in ߬.
Two possible cases can appear (Section IV-B): (1) ܥ௜ ≤ ௜ܶ ; the
task is fully stretched in a single sequential thread and added
to a list ℒ, or (2) the task ߬௜ is converted into a master thread
߬௜௠௔௦௧௘௥ and a subset of sequential P/D threads ൛߬௜௖ௗൟ with their
respective messages ൛ߤ௜௖ௗൟ . The master thread ߬௜௠௔௦௧௘௥ is
allocated to its own processor and the subset of sequential P/D
threads is added to the list ℒ, and (ii) the set of threads in ℒ,
are partitioned onto processors according to the FBB-FFD
algorithm [15]. Messages ൛ߤ௜௖ௗൟ are assigned to the single real-
time network.

In the following subsection, we analyse and prove the
demand bound function of a P/D task ߬௜ and provide the
resource augmentation bound for the P/D-DMS algorithm.

A. Demand Bound Function
Definition 7. (Demand Bound Function (DBF) [18]). The
DBF is defined as the largest cumulative execution
requirement of all jobs that can be generated by ߬௜ to have
both their arrival times and their deadlines within a
contiguous interval of length ݐ.

For a sequential task ߬௜ with a total execution time of ܥ௜ ,
period ௜ܶ, and a deadline ܦ௜ ≤ ௜ܶ, the DBF function is given
by:

௜߬)ܨܤܦ , (ݐ = ,0)ݔܽ݉ (ඌ
ݐ − ௜ܦ

௜ܶ
ඐ + (13)																	௜)ܥ(1

Theorem 1. The DBF function of a stretched task ߬௜௦௧௥௘௧௖௛௘ௗ
that has been transformed by the DST algorithm is bounded
from above by:

൫߬௜௦௧௥௘௧௖௛௘ௗܨܤܦ , ൯ݐ ≤ 	max
௝

{
௜ܥ

௜ܶ − ௜ߟ −
ቀݎఓ೔,మೕషభ,ೖ + ఓ೔,మೕ,ೖቁݎ × ௜ܲ

௜ܲ,ଶ௝

} (14)	ݐ

Proof: we generalize the concept of DBF for the case of P/D
tasks ߬௜ composed of a master thread ߬௜௠௔௦௧௘௥ and a sequence
of sequential P/D threads ൛߬௜௖ௗൟ and their respective messages
൛ߤ௜௖ௗൟ. We consider the two only possible cases when applying
the DST algorithm to a P/D task ߬௜ (see Section IV-B):

1. Case ࢏࡯ ≤ In that case, a P/D task ߬௜ is fully stretched .࢏ࢀ
after applying the DST into a single sequential thread with a
total execution time of ܥ௜௠௔௦௧௘௥ ≤ ௜ܥ , period ௜ܶ , and a
deadline ܦ௜௠௔௦௧௘௥ = ௜ܶ , therefore, the DBF function
(Definition 7) can be used without any modifications:

൫߬௜௦௧௥௘௧௖௛௘ௗܨܤܦ , ൯ݐ = ௜௠௔௦௧௘௥߬)ܨܤܦ , 																																												(ݐ

,൫߬௜௦௧௥௘௧௖௛௘ௗܨܤܦ ൯ݐ = 	max 	{0, (቞
ݐ − ௜௠௔௦௧௘௥ܦ

௜ܶ
቟ + 			{௜௠௔௦௧௘௥ܥ(1

൫߬௜௦௧௥௘௧௖௛௘ௗܨܤܦ , ൯ݐ = 	max 	{0, (ඌ
ݐ
௜ܶ
ඐ)ܥ௜௠௔௦௧௘௥} ≤

௜ܥ
௜ܶ
 																	ݐ

≤
௜ܥ

௜ܶ − ௜ߟ
	ݐ ≤ 	max

௝
{

௜ܥ

௜ܶ − ௜ߟ −
ఓ೔,మೕషభ,ೖݎ) + ఓ೔,మೕ,ೖݎ

) × ௜ܲ

௜ܲ,ଶ௝

} (15)					ݐ

where 0 ≤ ௜ߟ ≤ ௜ܶ.

࢏࡯ .2 > In the second case, after applying the DST, a P/D .࢏ࢀ
task ߬௜ has been transformed into a master thread ߬݅݉ܽݎ݁ݐݏ ,
and a set {߬௜௖ௗ} of constrained deadline P/D threads
associated to their respective constrained deadline messages
 ,That is .{௜௖ௗߤ}

߬௜௦௧௥௘௧௖௛௘ௗ = ߬௜௠௔௦௧௘௥ + ൛߬௜௖ௗൟ

Thus, the DBF function can be computed as follows:

൫߬௜௦௧௥௘௧௖௛௘ௗܨܤܦ , ൯ݐ = ௜௠௔௦௧௘௥߬)ܨܤܦ , (ݐ + ,൫൛߬௜௖ௗൟܨܤܦ (16)				൯ݐ

Since the master thread has been stretched, we have:

௜ߟ + ௜ܲ⌊ ௜݂⌋ ≤ ௜௠௔௦௧௘௥ܥ ≤ ௜ܶ

௜௠௔௦௧௘௥ܥ ≤ ௜ܶ ⇒
௜௠௔௦௧௘௥ܥ

௜ܶ
< 1

௜௠௔௦௧௘௥߬)ܨܤܦ⟹ , (ݐ = 	max(0, (ඌ
ݐ
௜ܶ
ඐ)ܥ௜௠௔௦௧௘௥)													

≤
௜௠௔௦௧௘௥ܥ

௜ܶ
		ݐ ≤ (17)																															ݐ

The set {߬௜௖ௗ} of constrained deadline P/D threads and their
respective messages {ߤ௜௖ௗ} consist of the P/D threads and
P/D messages of all P/D segments of a task ߬௜. Since P/D
segments within a P/D tasks have an offset, only one P/D
segment can be activated at time ݐ and the maximum
number of P/D threads in each P/D region is equal to
௜,ଶ௝ݍ) − 1) where ݍ௜,ଶ௝ = ݉௜ − ⌊ ௜݂⌋.

Therefore, the previous property guarantees that the DBF of
the subset of P/D threads {߬௜௖ௗ} over any interval of length ݐ,
does not exceed ߜ௜௠௔௫(ݍ௜,ଶ௝ − :ݐ(1

,൛߬௜௖ௗൟ)ܨܤܦ (ݐ ≤ ௜,ଶ௝ݍ)௜௠௔௫ߜ − (18)																		ݐ(1

The density of a constrained deadline tasks is given by:

௜ߜ =
௜ܥ
௜ܦ

The DST transformation fills the available slack ܮ௜ with ⌊ ௜݂⌋
P/D threads per P/D segment (remember that only complete
P/D threads are inserted within the master thread, since ⌊ ௜݂⌋
is an integer number). In each P/D segment within ߬௜ , all
P/D threads have the same WCET ௜ܲ,ଶ௝ , and a deadline
݀௜,ଶ௝ = ௜ܲ,ଶ௝ × (௜݂ + 1). Due to the fact that the P/D thread
is executed on a remote processor in the system, two
messages per P/D thread (ߤ௜,ଶ௝ିଵ,௞ and ߤ௜,ଶ௝,௞) are sent
through the real-time network. Thus, in the worst-case the
time for a P/D thread to execute is reduced to: ௜ܲ ,ଶ௝ ×
(௜݂ + 1) − ఓ೔,మೕషభ,ೖݎ − .ఓ೔,మೕ,ೖ (see Eq.(8 and 10))ݎ

Therefore, the maximum density of the P/D threads {߬௜௖ௗ}
can be calculated as follows:

௜௠௔௫ߜ = max
௝

{ ௜ܲ,ଶ௝

௜ܲ,ଶ௝ × (௜݂ + 1) − ఓ೔,మೕషభ,ೖݎ − ఓ೔,మೕ,ೖݎ

}																			

= max
௝

{
1

(௜݂ + 1) −
ఓ೔,మೕషభ,ೖݎ + ఓ೔,మೕ,ೖݎ

௜ܲ,ଶ௝

	}																						(19)

By substituting Eq. (19) in Eq. (18), the DBF of the P/D
threads {߬௜௖ௗ} can be calculated as:

,൫൛߬௜௖ௗൟܨܤܦ ൯ݐ ≤ max
௝

{
1

(௜݂ + 1) −
ఓ೔,మೕషభ,ೖݎ + ఓ೔,మೕ,ೖݎ

௜ܲ,ଶ௝

	} ௜,ଶ௝ݍ) − 			ݐ(1

and since ݍ௜,ଶ௝ = ݉௜ − ⌊ ௜݂⌋, we get

,൫൛߬௜௖ௗൟܨܤܦ ൯ݐ ≤ max
௝

{
݉௜ − ⌊ ௜݂⌋ − 1

(௜݂ + 1)−
ఓ೔,మೕషభ,ೖݎ) + ఓ೔,మೕ,ೖݎ

)
௜ܲ,ଶ௝

} 																				ݐ

≤ max
௝

{
݉௜ − ⌊ ௜݂⌋ − 1

௜݂ −
ఓ೔,మೕషభ,ೖݎ) + ఓ೔,మೕ,ೖݎ

)
௜ܲ,ଶ௝

 (20)																						ݐ{

By substituting inequality (17) and inequality (20) in Eq.
(16), we can compute the DBF of ߬௜௦௧௥௘௧௖௛௘ௗ as:

൫߬௜௦௧௥௘௧௖௛௘ௗܨܤܦ , ൯ݐ ≤ ݐ + max
௝

{
݉௜ − ⌊ ௜݂⌋ − 1

௜݂ −
ఓ೔,మೕషభ,ೖݎ) + ఓ೔,మೕ,ೖݎ

)
௜ܲ,ଶ௝

} 																		ݐ

≤ max
௝

{1 +
݉௜ − ⌊ ௜݂⌋ − 1

௜݂ −
ఓ೔,మೕషభ,ೖݎ) + ఓ೔,మೕ,ೖݎ

) ௜ܲ

௜ܲ,ଶ௝

} 																				ݐ

≤ max
௝

{
௜݂ −

ఓ೔,మೕషభ,ೖݎ) + ఓ೔,మೕ,ೖݎ
)

௜ܲ,ଶ௝
+݉௜ − ⌊ ௜݂⌋ − 1

௜݂ −
ఓ೔,మೕషభ,ೖݎ) + ఓ೔,మೕ,ೖݎ

)
௜ܲ,ଶ௝

} 	ݐ

≤ max
௝

{
݉௜ −

ఓ೔,మೕషభ,ೖݎ) + ఓ೔,మೕ,ೖݎ
)

௜ܲ,ଶ௝

௜݂ −
ఓ೔,మೕషభ,ೖݎ) + ఓ೔,మೕ,ೖݎ

)
௜ܲ,ଶ௝

 																													ݐ{

because ௜݂ = ்೔ିఎ೔
௉೔

 and ݉௜ × ௜ܲ < ௜ (from Eq.(3)), it resultsܥ
that:

൫߬௜௦௧௥௘௧௖௛௘ௗܨܤܦ , ൯ݐ ≤ max
௝

{
݉௜ × ௜ܲ −

ఓ೔,మೕషభ,ೖݎ) + ఓ೔,మೕ,ೖݎ
) ௜ܲ

௜ܲ,ଶ௝

௜ܶ − ௜ߟ −
ఓ೔,మೕషభ,ೖݎ) + ఓ೔,మೕ,ೖݎ

) ௜ܲ

௜ܲ,ଶ௝

} 										ݐ

≤ max
௝

{
௜ܥ

௜ܶ − ௜ߟ −
ఓ೔,మೕషభ,ೖݎ) + ఓ೔,మೕ,ೖݎ

) ௜ܲ

௜ܲ,ଶ௝

} (21)		ݐ

Then, in the two possible cases, the DBF of a task ߬௜௦௧௥௘௧௖௛௘ௗ
resulting of the application the DST transformation is
bounded by the same value (Eq. (15) and Eq.
(21)).																																																																																										∎

B. Resource Augmentation Bound
Now we provide a resource augmentation bound for the
Distributed-DMS partition algorithm. We will use the results
of Theorem 2 from Fisher et al. [15].

Theorem 2 (from [15]). Any constrained sporadic task system
߬ is successfully schedulable by FBB-FFD on ݉ unit-capacity
processors if:

݉ ≥
௦௨௠ߜ + ௦௨௠ݑ − ௠௔௫ߜ

1 − ௠௔௫ߜ
																														(22)

where

௦௨௠ߜ = max
௧வ଴

ቆ
∑ ൫߬௜௦௧௥௘௧௖௛௘ௗܨܤܦ , ൯௡ݐ
௜ୀଵ

ݐ ቇ																			(23)

Using equations (22) and (23), we now provide a resource
augmentation bound for the Distributed-DMS partition
algorithm.

Theorem 3. If any set ߬ of P/D tasks ߬௜ is feasible on ݉ unit-
speed processors (and messages are feasible on a single unit-
speed real-time network), then the Distributed-DMS partition
algorithm is guaranteed to successfully schedule this task set
on ݉ processors and one real-time network that are 4 times
faster.

Proof: The set ߬ of P/D tasks is feasible on ݉ unit-speed
processors:

௦௨௠ݑ ≝෍
௜ܥ
௜ܶ

௡

௜ୀଵ

≤ ݉,																																						(24)

and because the minimum response time of a thread is its
execution time, Equations (8) and (9) imply that the task set ߬
is feasible if and only if:

ఓ೔,మೕషభ,ೖݎ + ௜ܲ,ଶ௝ + ఓ೔,మೕ,ೖݎ ≤ (௜݂ + 1) × ௜ܲ,ଶ௝
⟺				 ఓ೔,మೕషభ,ೖݎ + ఓ೔,మೕ,ೖݎ ≤ ௜݂ × ௜ܲ,ଶ௝ 																															(25)

Let us consider the minimum execution length ߟ௜ of any task
߬௜. It must respect that:

∀	1 ≤ ݅ ≤ ௜ߟ		݊ ≤ ௜ܶ 																																					(26)

Otherwise, ߬௜ would be unschedulable on a unit-speed
processor. On a processor that is ݒ times faster, the minimum
execution length ߟ௜௩ is given by:

∀	1 ≤ ݅ ≤ ௜௩ߟ		݊ =
௜ߟ
ݒ ≤ ௜ܶ

ݒ 																										(27)

For each task ߬௜, it was proven by Theorem 1 that:

൫߬௜௦௧௥௘௧௖௛௘ௗܨܤܦ , ൯ݐ ≤ max
௝

{
௜ܥ

௜ܶ − ௜ߟ −
݇,2݆−1,݅ߤݎ)

+ 2,݅ߤݎ ,݆݇
) ௜ܲ

௜ܲ,ଶ௝

} 	ݐ

Using the above inequality together with Eq. (22) we have:

௦௨௠௩ߜ ≤෍ max
௝

{
௜௩ܥ

௜ܶ − ௜௩ߟ −
ఓ೔,మೕషభ,ೖݎ)

௩ + ఓ೔,మೕ,ೖݎ
௩) ௜ܲ

௩

௜ܲ ,ଶ௝
௩

}
௡

௜ୀଵ

using inequality (27):

௦௨௠௩ߜ ≤෍ max
௝

{
௜௩ܥ

௜ܶ ቀ1− 1
ቁݒ −

ఓ೔,మೕషభ,ೖݎ)
௩ + ఓ೔,మೕ,ೖݎ

௩) ௜ܲ
௩

௜ܲ,ଶ௝
௩

}
௡

௜ୀଵ

≤
1
෍ݒ max

௝
{

௜ܥ

௜ܶ ቀ1− 1
ቁݒ −

1
ݒ

ఓ೔,మೕషభ,ೖݎ) + (ఓ೔,మೕషభ,ೖݎ ௜ܲ

௜ܲ,ଶ௝

}
௡

௜ୀଵ
				

From inequality (25) and then (5):

௦௨௠௩ߜ ≤
1
෍ݒ

௜ܥ

௜ܶ ቀ1 − 1
ቁݒ −

1
ݒ ௜݂ ௜ܲ

௡

௜ୀଵ
																																			

≤
1
෍ݒ

௜ܥ

௜ܶ ቀ1 − 1
ቁݒ −

௜ܶ
ݒ

௡

௜ୀଵ
																																									

≤
1
෍ݒ

௜ܥ

௜ܶ ቀ1− 1
ቁݒ −

௜ܶ
ݒ

௡

௜ୀଵ
≤

1
ݒ − 2෍

௜ܥ
௜ܶ

௡

௜ୀଵ
								

௦௨௠௩ߜ⟺ ≤
1

ݒ − 																																									௦௨௠ݑ2

Also on ݒ speed processors, ݑ௦௨௠௩ = ௨ೞೠ೘
௩

 and ߜ௠௔௫௩ = ఋ೘ೌೣ
௩

.
Using Eq. (22), the task set ߬ is schedulable on ݉ processors
of speed ݒ if:

݉ ≥
௦௨௠௩ߜ + ௦௨௠௩ݑ − ௠௔௫௩ߜ

1 − ௠௔௫௩ߜ

≥
௦௨௠ݑ
ݒ − 2 + ௦௨௠ݑ

ݒ − ௠௔௫ߜ
ݒ

1 − ௠௔௫ߜ
ݒ

The right-hand side of the inequality above is an increasing
function of ߜ௠௔௫for ݉ ≥ ௩(௩ିଶ)

ଶ௩ିଶ
.

Since ߜ௜ = ஼೔
஽೔

 and because the task set ߬ is feasible if and only
if ܥ௜ ≤ ௜ for all tasks ߬௜ܦ , we have that the greatest possible
density for a feasible task set is given by ߜ௜௠௔௫ ≤ 1.

Thus, when ݉ ≥ ௩(௩ିଶ)
ଶ௩ିଶ

, the schedulability is guaranteed if:

݉ ≥
݉

ݒ − 2 +݉
ݒ − 1

ݒ
1 − 1

ݒ

݉(1 −
1
(ݒ ≥

݉
ݒ − 2 +

݉
ݒ −

1
 ݒ

ݒ −
2

ݒ − 2 ≥ 3 −
1
݉

This inequality is respected with ݒ = 4 and ݉ ≥ 2.

Hence, any feasible P/D task set ߬ feasible on ݉ ≥ 2 unit-
speed processors and a unit-speed network, is guaranteed to be
schedulable by the P/D-DMS algorithm on ݉ processors and a
single real-time network with speed ݒ = 4.																																∎

VI. SIMULATIONS
In this section we present the simulation results that validate
the resource augmentation bound of the P/D-DMS algorithm
after applying the DST transformation presented in Sections V
and IV, respectively.

To generate feasible P/D task sets, we follow the
guidelines presented in [19] for generating random task sets
for multiprocessor systems, using the Stafford’s
Randfixedsum algorithm [20]. The Randfixedsum algorithm
generates a set of ݊ values which are evenly distributed and
whose components sum to a constant value. Thus, we use the
Randfixedsum algorithm for generating unbiased sets of P/D
tasks with a fixed total density ߜ௧௢௧ = ௜. For a given totalߜ∑
density ߜ௧௢௧, the Randfixedsum algorithm returns ݊ P/D tasks
with density ߜ௜. For generating the P/D threads’ densities we
use again the Randfixedsum algorithm taking as an input the
previous generated densities ߜ௜ = ௜,௝,௞ߜ∑ , obtaining a set of
values ߜ௜,௝,௞ for each P/D thread. The WCETs and end-to-end
deadlines ܦ௜ are generated as recommended in [19]. Once all
P/D threads are generated, their respective messages are

generated and inserted within a P/D task by preserving their
execution order. The total message density ߜ௧௢௧

௠௘௦௦௔௚௘௦ ,
represents the utilization of the network. Thus, when a total
message density is given, the Randfixedsum algorithm returns
݊ messages of densities ߜ௜

௠௘௦௦௔௚௘௦ for each task ߬௜ . For
generating the messages’ densities ߜ௜

௠௘௦௦௔௚௘௦ = ௜,௝,௞ߜ∑
௠௘௦௦௔௚௘

we use again the Randfixedsum algorithm taking as an input
the previous generated densities ߜ௜

௠௘௦௦௔௚௘௦. We consider that
applications have implicit end-to-end deadlines (ܦ௜ = ௜ܶ)
following a uniform distribution between the values ܦ௜௠௜௡ =
100 and ܦ௜௠௔௫ = 10000.

Figure 4(a) shows the number of accepted task sets over
1000 experiments for different given total message densities
௧௢௧ߜ
௠௘௦௦௔௚௘௦. We simulate 4 P/D tasks that are partitioned by the

P/D-DMS algorithm in a computing platform of 8 processors
and 1 network. Thus the total utilization ௧ܷ௢௧ for these
experiments is fixed to 8. Three different total message
densities are analysed: (i) ߜ௧௢௧

௠௘௦௦௔௚௘௦equal to the 10% of the
fixed total utilization ௧ܷ௢௧ ; ௧௢௧ߜ

௠௘௦௦௔௚௘௦ = 0.8 ,
(ii)	ߜ௧௢௧

௠௘௦௦௔௚௘௦equal to the 5% of ௧ܷ௢௧ ௧௢௧ߜ ;
௠௘௦௦௔௚௘௦ = 0.4, and

(iii) ߜ௧௢௧
௠௘௦௦௔௚௘௦equal to 1% of the total utilization; ߜ௧௢௧

௠௘௦௦௔௚௘௦ =
0.08. It is possible to see that when ߜ௧௢௧

௠௘௦௦௔௚௘௦ increases, more
speed ݒ is required by the processors and the network to be
able to schedule 100% of the task sets. This effect is modelled
by Eq. 10 in our analysis.

In Figure 4(b) we show the number of accepted task sets
for 1000 experiments. 4 P/D tasks have to execute in a
computing platform composed of 1 network and 8 distributed
processors. The total density ߜ௧௢௧ is fixed to 8. In this case we
analyse the variations in respect of different individual thread
density ߜ௜,௝,௞

௠௜௡ and ߜ௜,௝,௞
௠௔௫ . Three different variations are

compared: (i) ߜ௜,௝,௞
௠௜௡ = 0.1 and ߜ௜,௝,௞

௠௔௫ = 0.2 , (ii) ߜ௜,௝,௞
௠௜௡ = 0.05

and ߜ௜,௝,௞
௠௔௫ = 0.1 , and (iii) ߜ௜,௝,௞

௠௜௡ = 0.01 and ߜ௜,௝,௞
௠௔௫ = 0.05 .

௧௢௧ߜ
௠௘௦௦௔௚௘௦ is fixed to 5% of the ߜ௧௢௧. It is possible to observe

that if densities of tasks are larger, the more speed is needed to
successfully schedule 100% of the task sets.

Figure 4(c) shows the number of accepted task sets over
1000 experiments, in which we vary the number of P/D tasks
with a fixed total density ௧ܷ௢௧ = ௧௢௧ߜ = 8 to be scheduled in a
computing platform of 8 processors and 1 network. The total
message density ߜ௧௢௧

௠௘௦௦௔௚௘௦ is fixed to 5% of ௧ܷ௢௧ . We
compared three possible variations: (i) 4 P/D tasks, (ii) 6 P/D
tasks and (iii) 8 P/D tasks. It is possible to see that when
generating fewer P/D tasks for the same density ߜ௧௢௧, the more
speed ݒ is required by the processors and the network to
successfully schedule 100% of the task sets. Thus, whenever
P/D densities ߜ௜ increase, the probability of finding a
schedulable partitioning with the P/D-DMS algorithm for P/D
tasks, decreases.

Therefore, it is possible to observe though Figures 4(a-c)
that in all cases; the P/D-DMS algorithm is able to find a
schedulable partition by respecting its resource augmentation
bound of 4.

Figure 4. 1000 generated task sets varying (a) the total message density ߜ௧௢௧
௠௘௦௦௔௚௘௦ , (b) the minimum thread density ߜ௜,௝,௞

௠௜௡ and maximum thread density
௜,௝,௞ߜ
௠௔௫, and (c) the number of P/D tasks in the set ߬.

VII. CONCLUSIONS AND FUTURE WORK
This paper presented the P/D-DMS algorithm. The P/D-DMS
algorithm makes use of the DST model for scheduling
parallel/distributed fixed-priority fork-join real-time tasks. The
P/D-DMS algorithm is shown to have a resource augmentation
bound of 4. The DST is designed with two main objectives.
The first one is to eliminate as many messages of a P/D task as
possible by stretching a master thread, since a master thread is
executed locally on its own processor. And the second
objective is to reduce the possible interference in the network
and in the processors by forcing P/D threads to execute within
the master thread.

We are currently working on finding more efficient
partitioning algorithms for P/D threads and messages by
considering the specific structure (threads’ offsets and
intermediate deadlines) of distributed fixed-priority fork-join
real-time tasks.

ACKNOWLEDGMENTS
This work was partially supported by National Funds through FCT (Portuguese
Foundation for Science and Technology) and by ERDF (European Regional
Development Fund) through COMPETE (Operational Programme 'Thematic Factors
of Competitiveness'), within project FCOMP-01-0124-FEDER-037281 (CISTER);
by FCT and the EU ARTEMIS JU funding, within projects ENCOURAGE
(ARTEMIS/0002/2010, JU grant nr. 269354), ARROWHEAD
(ARTEMIS/0001/2012, JU grant nr. 332987), CONCERTO (ARTEMIS/0003/2012,
JU grant nr. 333053); by FCT and ESF (European Social Fund) through POPH
(Portuguese Human Potential Operational Program), under PhD grant
SFRH/BD/71562/2010.

REFERENCES

[1] R. I. Davis and A. Burns, “A survey of hard real-time scheduling for
multiprocessor systems,” ACM Comp. Surv., vol. 43, no. 35, p. 1–44,
2011.

[2] K. Lakshmanan, S. Kato and R. Rajkumar, “Scheduling parallel real-
time tasks on multi-core processors,” in Proc. of the IEEE 31st Real-
Time Systems Symposium (RTSS 2010), 2010.

[3] F. Fauberteau, M. Qamhieh and S. Midonnet, "Partitioned Scheduling of
Parallel Real-time Tasks on Multiprocessor Systems," in ACM SIGBED
Review, 8(Special Issue on Work-in-Progress (WiP) session of the 23rd
Euromicro Conference on Real-Time System), 2011.

[4] M. Qamhieh, F. Fauberteau and S. Midonnet, "Performance Analysis for
Segment Stretch Transformation of Parallel Real-time Tasks," in
Proceedings of the 5th Junior Researcher Workshop on Real-Time
Computing (JRWRTC 2011), 2011.

[5] A. Saifullah, K. Agrawal, C. Lu and C. Gill, “Multi-core Real-Time
Scheduling for Generalized Parallel Task Models,” in Proc. of the IEEE
32st Real-Time Systems Symposium (RTSS 2011), 2011.

[6] Y. Nimmagadda, K. Kumar, L. Yung-Hsiang and C. S. G. Lee, “Real-

time moving object recognition and tracking using computation
offloading,” in Proc. of IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS 2010), 2010.

[7] OpenMP Architecture Review Board, "OpenMP application program
interface V3.1 July 2011," www.openmp.org/wp/openmp-specifications/,
online: last accessed April 2014.

[8] Message Passing Interface Forum, “MPI: A Message-Passing Interface
standard version 2.2,” online: http://www.mpi-forum.org/docs/docs.html,
online: last accessed April 2014.

[9] R. Garibay-Martínez, L. L. Ferreira and L. M. Pinho, “A framework for
the development of parallel and distributed real-time embedded
systems,” in Proc. of 38th EUROMICRO Conference on Software
Engineering and Advanced Applications (SEAA'12), 2012.

[10] R. Garibay-Martínez, L. Ferreira, C. Maia and L. Pinho, "Towards
transparent parallel/distributed support for real-time embedded
applications," in Proc. of the 8th IEEE International Symposium on
Industrial Embedded Systems (SIES'13), 2013.

[11] J. J. Gutiérrez-García, J. C. P. Gutierrez and M. Gonzalez-Harbour,
"Schedulability analysis of distributed hard real-time systems with
multiple-event synchronization," in Proc. of the12th Euromicro
Conference on Real-Time Systems (ECRTS'00), 2000.

[12] W. Zheng, Q. Zhu, M. Di Natale and A. S. Vincentelli, "Definition of
task allocation and priority assignment in hard real-time distributed
systems," in Proc. 28th IEEE International Real-Time Systems
Symposium (RTSS'2007), 2007.

[13] Q. Zhu, Y. Yang, M. Di Natale, E. Scholte and A. Sangiovanni-
Vincentelli, "Optimizing the Software Architecture for Extensibility in
Hard Real-Time Distributed Systems," IEEE Transactions on Industrial
Informatics, vol. 6 , no. 4, pp. 621-636, Nov. 2010.

[14] P. Axer, S. Quinton, M. Neukirchner and R. Ernst, "Response-Time
Analysis of Parallel Fork-Join Workloads with Real-Time Constraints,"
in Proc. IEEE 25th Euromicro Conference on Real-Time Systems
(ECRTS'13), 2013.

[15] N. Fisher, S. Baruah and T. P. Baker, "The partitioned scheduling of
sporadic tasks according to static-priorities," in Proc. of the IEEE 18th
Euromicro Conference on Real-Time Systems (ECRTS'06), 2006.

[16] M. Joseph and P. Pandya, "Finding response times in a real-time
system," The Computer Journal, vol. 29, no. 5, pp. 390-395, 1986.

[17] G. Laurent, N. Rivierre and M. Spuri, "Preemptive and non-preemptive
real-time uniprocessor scheduling," 1996.

[18] S. K. Baruah, A. K.-L. Mok and L. E. Rosier, "Preemptively scheduling
hard-real-time sporadic tasks on one processor," in Proc. of the 11th
IEEE Real-Time Systems Symposium (RTSS'90), Orlando, Florida, USA,
1990.

[19] P. Emberson, R. Stafford and R. I. Davis, "Techniques for the synthesis
of multiprocessor tasksets," in 1st International Workshop on Analysis
Tools and Methodologies for Embedded and Real-time Systems
(WATERS'10), 2010.

[20] R. Stafford , "Random vectors with fixed sum," [Online]. Available:
http://www.mathworks.com/matlabcentral/fileexchange/9700, 2006.

http://www.openmp.org/wp/openmp-specifications/,
http://www.mpi-forum.org/docs/docs.html,
http://www.mathworks.com/matlabcentral/fileexchange/9700,

