
  

 

 

 

 

On the Scheduling of Fork-Join 
Parallel/Distr ibuted Real-Time Tasks 
 
 
 

 

Technical Report 

CISTER-TR-140601 

Version:  

Date: 6/1/2014 

Ricardo Garibay-Martínez 

Geoffrey Nelissen 

Luis Lino Ferreira 

Luis Miguel Pinho 
 



Technical Report CISTER-TR-140601                                      On the Scheduling of Fork-Join Parallel/Distributed Real-Time Tasks 

© CISTER Research Unit 
www.cister.isep.ipp.pt   

1 
 

On the Scheduling of Fork-Join Parallel/Distributed Real-Time Tasks 
Ricardo Garibay-Martínez, Geoffrey Nelissen, Luis Lino Ferreira, Luis Miguel Pinho 

CISTER Research Unit 

Polytechnic Institute of Porto (ISEP-IPP) 

Rua Dr. António Bernardino de Almeida, 431 

4200-072 Porto 

Portugal 

Tel.: +351.22.8340509, Fax: +351.22.8340509 

E-mail: rgmaz@isep.ipp.pt, grrpn@isep.ipp.pt, llf@isep.ipp.pt, lmp@isep.ipp.pt 

http://www.cister.isep.ipp.pt 

 
Abstract 
Modern real-time embedded applications present high computation requirements which need to be realized within 
strict time constraints. The current trend towards parallel processing in the embedded domain allows providing 
higher processing power. However, in some embedded applications, the use of powerful enough multi-core 
processors, may not be possible due to energy, space or cost constraints. A solution for this problem is to extend 
the parallel execution of the applications, allowing them to distribute their workload among networked nodes, on 
peak situations, to remote neighbour nodes in the system. In this context, we present the Partitioned-Distributed-
Deadline Monotonic Scheduling algorithm for fork-join parallel/distributed fixed-priority tasks. We study the 
problem of scheduling fork-join tasks that execute in a distributed system, where the inherent transmission delay 
of tasks must be considered and cannot be deemed negligible, as in the case of multicore systems. Our 
scheduling algorithm is shown to have a resource augmentation bound of 4, which implies that any task set that is 
feasible on m unit-speed processors and a single shared real-time network, can be scheduled by our algorithm on 
m processors and a single real-time network that are 4 times faster. We confirm through simulations our analytical 
results. 
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Abstract— Modern real-time embedded applications present 
high computation requirements which need to be realized within 
strict time constraints. The current trend towards parallel 
processing in the embedded domain allows providing higher 
processing power. However, in some embedded applications, the 
use of powerful enough multi-core processors, may not be 
possible due to energy, space or cost constraints. A solution for 
this problem is to extend the parallel execution of the 
applications, allowing them to distribute their workload among 
networked nodes, on peak situations, to remote neighbour nodes 
in the system. In this context, we present the Partitioned-
Distributed-Deadline Monotonic Scheduling algorithm for fork-
join parallel/distributed fixed-priority tasks. We study the problem 
of scheduling fork-join tasks that execute in a distributed system, 
where the inherent transmission delay of tasks must be 
considered and cannot be deemed negligible, as in the case of 
multicore systems. Our scheduling algorithm is shown to have a 
resource augmentation bound of 4, which implies that any task 
set that is feasible on ࢓ unit-speed processors and a single shared 
real-time network, can be scheduled by our algorithm on ࢓ 
processors and a single real-time network that are 4 times faster. 
We confirm through simulations our analytical results. 

Keywords— real-time; distributed systems; fork-join; parallel 
execution; resource augmentation bound. 

I.  INTRODUCTION 
Modern real-time applications are becoming larger and more 
complex, thus demanding more and more computing resources. 
By using parallel computations, the time required for 
processing computational-intensive applications can be 
reduced, thereby gaining in flexibility. This is a known solution 
in areas that require high performance computing power, and 
real-time systems are not an exception. That is why the real-
time community has been making a large effort to extend real-
time tools and scheduling algorithms to multicores [1], and 
lately to further extend them considering the use of parallel 
task models [2, 3, 4, 5]. 

Although, most of the developed work for parallel real-
time tasks (multithreaded parallel real-time tasks) has been 
thought with multi- and many-core systems in mind, it is also 
possible to provide parallel computing power by aggregating a 
set of single-core embedded devices connected through an 
interconnection network, cooperating for achieving a single 
goal. Furthermore, in some embedded applications, the use of 
powerful enough multi-core processors, is prohibited due to 
energy, space or cost constraints. An example of such type of 
applications is, for instance, the image processing for obstacle 

detection in cooperating robots, where the computation 
requirements of the detection algorithms are highly dependent 
on the robot’s current velocity, surrounding environment and 
obstacles [6]. Thus, it is possible to comply with the 
requirements of such computational-intensive applications by 
allowing a single-core embedded device to distribute its 
workload to remote neighbour nodes connected through a 
local real-time network. 

Commonly, parallel programming applications are based 
on the fork-join execution model. A fork-join real-time 
application is an application that starts by executing 
sequentially and then forks to be executed in parallel, when 
the parallel execution has completed, the results are 
aggregated by performing a join operation; this procedure can 
be repeated several times. Some of the most popular 
programming models implementing the fork-join structure are 
the OpenMP programming model [7], and the Message 
Passing Interface (MPI) model [8]. However, none of these 
programming models is able to provide any time guarantees, 
although some efforts on bridging that gap have been 
presented in [9, 10].  

A fork-join real-time distributed application is composed 
of a set of fork-join parallel/distributed real-time tasks 
executed in a distributed system. When considering such 
tasks, the processing of tasks and messages must comply with 
their associated time constraints, commonly expressed by an 
end-to-end deadline. Therefore, when scheduling fork-join 
real-time tasks in a distributed system, it is necessary to 
consider the interaction between the threads and messages that 
compose such a task and their impact when being scheduled in 
a set of different computing devices (e.g. processors and 
networks).  

Contribution. In that context, we present the 
Partitioned/Distributed-Deadline Monotonic Scheduling (P/D-
DMS) algorithm for distributed fixed-priority fork-join real-
time tasks. The P/D-DMS algorithm is shown to have a 
resource augmentation bound of 4, which implies that any task 
set that is feasible on ݉ unit-speed processors and a single 
shared bus real-time network, can be scheduled by this 
algorithm on ݉ processors and a single shared bus real-time 
network that are 4 times faster. We confirm our analytical 
results through simulations.  

Structure of the paper. The remainder of the paper is 
structured as follows. Section II presents the related work; 
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Section III introduces the system model. Section IV presents 
the Distributed Stretch Transformation model for 
parallel/distributed real-time tasks. The resource augmentation 
bound for the Partitioned-Distributed-DMS algorithm is 
explained in Section V. The simulations that confirm our 
analytical results are provided in Section VI, and finally our 
conclusions are discussed in section VII. 

II. RELATED WORK 
We briefly review the related work for fixed-priority fork-join 
tasks in distributed systems and multicore processors. 

Related to distributed systems, Gutiérrez-García et al. [11] 
presented a schedulability analysis technique for distributed 
hard real-time systems in which responses of different events 
may synchronize with each other. This is a general method for 
computing the worst-case response time of different 
synchronization events. This method allows the study of 
complex synchronization structures, in which the fork-join 
structure is included. The technique is based on the existing 
Rate Monotonic Analysis (RMA) techniques. 

Zheng et al. [12], studied the case of automotive 
applications. The approach is based on finding the priorities 
for tasks and messages, in a way that no end-to-end deadline is 
missed. They proposed to solve the problem of priority 
assignment of tasks and messages by modelling it as an 
optimization problem. In Zhu et al. [13] is presented a similar 
problem as in [12], but for a more detailed system model. The 
authors presented a sensibility analysis that is able to measure 
how much the execution time of tasks can be increased 
without missing its end-to-end deadlines. Their method is 
based on a combination of mixed integer linear programming 
for task allocation, which is optimized according to tasks’ 
utilization and deadlines. Also as a second stage of their 
method, they apply a set of heuristic steps for priority 
assignment of tasks and messages.  

In respect to multicore architectures, Lakshmanan et al. [2] 
introduced the Task Stretch Transformation (TST) model for 
parallel synchronous tasks which follow a fork-join structure. 
They proposed a parallel model that considers preemptive 
fixed-priority periodic tasks with implicit deadlines scheduled 
according to the Deadline Monotonic (DM) rule, which is able 
to achieve a resource augmentation bound of 3.42. Similarly, 
Fauberteau et al. [3] proposed the Segment Stretch 
Transformation (SST) model. The authors convert the parallel 
threads into sequential ones by creating a master thread, but 
with the difference that no thread is ever allowed to migrate 
between cores. They showed through simulations that the TST 
and SST algorithms obtain similar results, and that none of 
them dominates the other. Later, Qamhieh et al. [4] proved 
that SST has the same resource augmentation bound than TST 
- 3.42. More insights of the TST [2] and DST [3, 4] models 
are presented in Section IV-A. 

Saifullah et al. [5] introduced a more general model in 
which the problem of scheduling synchronous periodic 
multithreaded parallel tasks with implicit deadlines is 

addressed. Two main extensions to the previous works were 
made. First, the limitation of having the same number of 
threads in all parallel segments within a task was lifted by 
allowing an arbitrary number of threads to be executed on 
each parallel segment. And second, they consider the analysis 
of DM and EDF scheduling. They provided a resource 
augmentation bound of 4 and 5 when global EDF and 
partitioned DM are used to schedule tasks, respectively. 

Axer et al. [14], the presented a method for computing the 
response time of fixed-priority parallel tasks on 
multiprocessors, which considers the synchronization effects 
for fork-join tasks with arbitrary deadlines. 

However, none of the previous works addressed the specific 
problem of scheduling fork-join parallel/distributed tasks. On 
one hand, the research in the area of distributed systems is 
focused on task partition and priority assignment to tasks and 
messages with specific constraints required by the system. On 
the other hand, existing techniques for scheduling fork-join 
tasks are designed for multicore systems, in which the 
transmission delays of parallel threads of a fork-join task can 
be considered negligible. In this paper, we intend to combine 
these two domains, and present a scheduling algorithm for 
parallel/distributed real-time tasks in which transmission 
delays are accounted. Furthermore, our solution has the 
advantage to have a low complexity and could therefore be 
used online to partition new tasks arriving in the system. 

III. SYSTEM MODEL 
We consider a set of fixed-priority fork-join 
parallel/distributed real-time tasks with implicit deadlines that 
execute in a distributed computing platform. A distributed 
computing platform is composed of a set  ߨ = ,ଵߨ} … ,  ௠} ofߨ
݉  identical uni-core nodes where tasks are executed. The 
number of processors ݉ is defined by the architecture.  

The processors are interconnected with a single shared bus 
real-time network, denoted as ߸ . Messages are exchanged 
between tasks executing on different nodes using the network. 
Messages sent on the network are considered to be non-
preemptive (i.e., the transmission of a message cannot be 
aborted or interrupted once initiated) and scheduled according 
to a fixed priority algorithm (i.e., the message with the highest 
priority is transmitted first). Figure 1 shows an example of 
such a distributed computing platform. 

A. Fork-Join Parallel/Distributed Real-Time Tasks 
We consider that a distributed real-time application is 
composed of a set ߬ = {߬ଵ, … , ߬௡} of ݊ fixed-priority fork-join 
parallel/distributed real-time tasks (P/D tasks). P/D tasks have 
the particularity of making use of distributed resources, 
interconnected by a shared bus real-time network. Such a 
configuration imposes an inevitable transmission delay 
whenever parts of a task are distributed among a set of 
processors in the distributed system. This delay is due to the 
necessity for data distribution, but might also include the 
transmission of the code to be executed and/or control 
messages.  



 
Figure 1.  Distributed computing platform. 

A P/D task ߬௜ is activated periodically every ௜ܶ time units 
and is characterised by an implicit end-to-end deadline ܦ௜ , 
which is the longest elapsed time a task is permitted to take 
from the time instant at which it is activated until it completes 
its execution. Figure 2 shows an example of a P/D task ߬௜. 

In the OpenMP programming model, a single thread starts 
the execution of a parallel program. This thread is the master 
thread of the program. When the master thread encounters a 
#parallel pragma (indicating the starting point of the 
parallel execution) it creates a team of threads to execute the 
instructions enclosed within the #parallel pragma in a 
parallel manner. A P/D task follows the fork-join structure of 
the OpenMP programming model [7]. 

A P/D task starts by a master thread executing 
sequentially; and then forks to be executed in parallel on 
remote processors. When the parallel execution has completed 
on each of the remote processors, the results are aggregated by 
performing a join operation and the execution of the 
sequential thread is resumed within the master thread. This 
procedure can be repeated several times.  

We call Distributed-Fork (D-Fork) and Distributed-Join 
(D-Join), the operations that correspond to the classical fork 
and join operations usually performed on multicore 
processors. The main difference is that the execution of the 
threads resulting from the D-Fork operation are executed on 
remote processors within the distributed system, implying that 
the communication between threads is realized through 
messages sent through a real-time network.  

Formally, a P/D task ߬௜ (݅	 ∈ 	 {1, … , ݊}) is composed of a 
sequence of sequential and parallel/distributed (P/D) segments 
௜,௝ߪ	 	 with ݆	 ∈ 	 {1, … , ݊௜}. Where, ݊௜ represents the number of 
segments composing ߬௜, ݊௜ is assumed to be an odd integer, as 
a P/D task should always start and finish with a sequential 
segment. Therefore, odd segments 	ߪ௜,ଶ௝ାଵ	 identify sequential 
segments and even segments 	ߪ௜,ଶ௝ 	  identify P/D segments. 
Each segment ߪ௜,௝ 	 is composed of a set ߠ of threads ߠ௜,௝,௞ with 
݇	 ∈ 	 {1, … , ݊௜,௝}, where ݊௜,௝ = 1 for sequential segments and 
݊௜,௝ = ݉௜ ≤ ݉ threads for P/D segments. ݉௜ is the number of 
P/D threads in each P/D segment, and it is considered to be the 
same for all P/D segments within a P/D task ߬௜. 

All sequential segments within a P/D task ߬௜ must execute 
within the same processor. This means that the processor that 
performs a D-Fork operation (invoker processor) is in charge 
of aggregating the result by performing a D-Join operation. 
Threads within a P/D segment are possibly executed on 
remote processors. Consequently, for each thread ߠ௜,ଶ௝,௞ 
belonging to a P/D segment (P/D thread), two P/D messages 
௜,ଶ௝ିଵ,௞ߤ  and ߤ௜,ଶ௝,௞  are considered for realizing the 
communication between the invoker and remote processors. 
This is, P/D threads and messages that belong to a P/D 
segment and execute on a remote processor, have a 
precedence relation: ߤ௜,ଶ௝ିଵ,௞ ⟶ ௜,ଶ௝,௞ߠ ௜,ଶ௝,௞ߤ⟶ . For each 
sequential and P/D segment, there exists a synchronisation 
point at the end of each segment, indicating that no thread that 
belongs to the segment after the synchronisation point can 
start executing before all threads of the current segment have 
completed execution. P/D threads are preemptive, but 
messages’ packets are non-preemptive, although large 
messages can be divided in several non-preemptive packets. 

Also, each sequential thread ߠ௜,ଶ௝ାଵ,ଵ  has a Worst-Case 
Execution Time (WCET) of ܥ௜,ଶ௝ାଵ,ଵ. A P/D thread ߠ௜,ଶ௝,௞ has 
a WCET of ௜ܲ ,ଶ௝,௞, and each message ߤ௜,ଶ௝,௞  has a Worst-Case 
Message Length (WCML) ℳ௜,௝,௞. It is assumed that for a task 
߬௜ , every P/D thread ߠ௜,ଶ௝,௞  and their respective messages 
௜,ଶ௝,௞ߤ  within a P/D segment 	ߪ௜,ଶ௝ , have identical WCETs 
௜ܲ ,ଶ௝,௞  and identical WCMLs ℳ௜,௝,௞ , respectively. However, 

the WCET and the WCML of P/D threads and their messages 
can vary between different P/D segments. Also, P/D threads 
and messages, share the same period ௜ܶ. 

To summarise, it is possible to describe a P/D task as: 

߬௜ = ,௜,ଵܥ)) ,ℳ௜,ଵ, ௜ܲ,ଶ,ℳ௜,ଶ, ,௜,ଷܥ … ,ℳ௜,௡೔ିଵ, ௜,௡೔),݉௜ܥ , ௜ܶ), 

where: 

 ݊௜ is the total number of segments of a task ߬௜, 
 ܥ௜,௝ is the WCET of each sequential segment  ௜,ଶ௝ାଵߪ	

(containing a single thread ߠ௜,ଶ௝ାଵ,ଵ),  
 ℳ௜,௝  is the WCML of a single messages (all ݇  P/D 

messages on the same P/D segment have exactly the same 
WCML), 

 ௜ܲ ,ଶ௝ is the WCET of a single P/D thread within a segment 
௜,ଶ௝ߪ	  (all ݇  P/D threads on the same P/D segment have 
exactly the same WCET), 

 ݉௜ is the number of P/D threads (two messages are created 
for each P/D thread within a P/D segment 	ߪ௜,ଶ௝) in each 
P/D segment. It is considered that ݉௜ ≤ ݉, where ݉ is the 
number of available processors in the distributed system, 

 ௜ܶ  is the period of a task, which is equal to its deadline 
௜ܦ) = ௜ܶ). 

B. Preliminaries 
For notational convenience we introduce some definitions that 
simplify the explanation and analysis of the proposed 
algorithms.	 



 
Figure 2.  The fork-join parallel/distributed periodic real-time tasks (P/D task) model. 

Definition 1. (Master thread). The master thread of a P/D task 
߬௜  is the collection of all threads ߠ௜,௝,ଵ	  belonging to all 
segments	ߪ௜,௝. A master thread can be represented as: 

	߬௜௠௔௦௧௘௥ = ,௜,ଵ,ଵߠ} ,	௜,ଶ,ଵߠ ,	௜,ଷ,ଵߠ … , ,	௜,௡೔ିଵ,ଵߠ  		{௜,௡೔,ଵߠ

Definition 2. (Parallel execution length). The parallel 
execution length is the sum of the WCET of all P/D threads 
within the master thread: 

௜ܲ = ෍ ܲ݅,2݆,1																																										(1)
௡೔ିଵ
ଶ

௝ୀଵ
 

Definition 3. (Minimum execution length). The minimum 
execution length ߟ௜ represents the minimum execution time a 
P/D task ߬௜  needs to execute when all P/D threads are 
executed in parallel. This is equal to the sum of the WCET of 
all the threads described in the master thread: 

௜ߟ = ൭෍ ௜,ଶ௝ାଵܥ

௡೔ିଵ
ଶ

௝ୀ଴
൱+ ௜ܲ 																									(2) 

Definition 4. (Maximum execution length). The maximum 
execution length ܥ௜, represent the maximum execution time a 
P/D task ߬௜  needs to execute when all P/D threads are 
executed sequentially on the invoker processor. This is equal 
to the sum of WCET of all threads in a task ߬௜: 

௜ܥ = ൭෍ ௜,ଶ௝ାଵܥ

௡೔ିଵ
ଶ

௝ୀ଴
൱+ ௜ܲ × ݉௜ 																					(3) 

Please note, that the messages ߤ௜,௝,௞  are not considered in 
Eq. (2) and (3), since all inter-process communications are 
internal to the invoker processor. The synchronization cost 
between the sequential and P/D threads can therefore be 
considered negligible. Figure 1, shows an example in which 
some messages (ߤ௜,ଵ,ଵ and ߤ௜,ଶ,ଵ) are realizing a transmission 
within the same local processor, but its cost is negligible. 

Definition 5. (Slack time). The positive slack time ܮ௜  is the 
temporal difference between the task’s deadline ܦ௜  and the 
minimum execution length ߟ௜: 

௜ܮ = ௜ܦ − ௜ߟ 																																											(4) 

If the slack ܮ௜  is a negative number, it means that the 
minimum execution length ߟ௜  is larger than its deadline 
( ௜ܶ = ௜ܦ ). Therefore, such a task is not schedulable on any 
number of processors with a speed of 1.  

Definition 6. (Capacity). The capacity ௜݂  is defined as the 
capacity of the master thread of a task ߬௜ to execute extra P/D 
threads from all P/D segments without missing its deadline: 

௜݂ =
௜ܮ
௜ܲ
																																														(5) 

IV. DISTRIBUTED STRETCH TRANSFORMATION 
Our task transformation model is called Distributed Stretch 
Transformation (DST), and it has been inspired by the Task 
Stretch Transformation [2] (TST) model and the Segment 
Stretch Transformation [3, 4] (SST) model. The DST model is 
designed specifically for distributed systems where real-time 
tasks and messages need to be processed and transmitted by 
processors and a real-time network, respectively. Therefore, 
the main difference from DST, when compared with TST and 
SST, is that the two previous transformation algorithms were 
conceived for multicore processors, thus not considering the 
transmission delays inherent to the synchronization between 
threads executing on different processors, as in the case of 
distributed systems. 

The TST and SST transformations consider that tasks are 
scheduled by a partitioned preemptive fixed-priority 
algorithm, executed in a multicore processor. In our model, we 
consider tasks to be scheduled with the preemptive fixed 
priority algorithm deadline monotonic (DM) on each 
processor. On the other hand, messages to be transmitted 
within the real-time network are scheduled with a non-
preemptive version of DM algorithm. This is due to the fact 
that the transmission of a message cannot be interrupted once 
initiated.  

A. The Task Stretch Transformation and Segment Stretch 
Transfomation Models 

In this subsection, we study the TST and the SST 
transformation models, with the intention of showing the 
similarities and main differences with our DST model.  



In the TST model [2], Lakshmanan et al. show that “FJ 
task sets on multiprocessor systems can have schedulable 
utilization bounds slightly greater than and arbitrarily close 
to uniprocessor schedulable utilization bounds”, thus, it is 
desirable to avoid fork-join structures as much as possible. 
The main objective of the TST model is to convert the master 
thread into a fully stretched string in which the execution 
length of the master thread becomes equal to its period ௜ܶ. The 
transformation is done by inserting (or coalescing) threads (or 
part of them) into the master thread while paying attention to 
respect their precedence constraints. Thus, a subset of parallel 
threads executes with the master thread while the rest of them 
are partitioned among the cores using the partitioning heuristic 
Fisher-Baruah-Baker First-Fit-Decreasing (FBB-FFD) [15]. 
The authors showed that their scheduling algorithm has a 
resource augmentation bound of 3.42.  

The main disadvantage of the TST is that it forces to stretch 
a master thread completely. In some cases, it may not be 
possible to fit complete threads within the master thread. This 
provokes a migration of the remaining part of such a thread 
for being executed in another processor. This migration can 
lead to extra considerations when implemented in a real 
platform. For this reason, the authors of [3] proposed the SST 
model, which also tries to convert the parallel threads into 
sequential ones by creating a master thread, but with the 
difference that the coalescing operation is performed only 
when parallel threads can be fully inserted within the master 
thread. Thus, creating a master thread that can be fully 
stretched (with a WCET of the master thread equal to its 
period) or partially stretched (the WCET of the master thread 
is smaller or equal to its period). In a similar manner than in 
[2], the remaining parallel threads are scheduled with the 
partitioned scheduling algorithm FBB-FFD [15]. Later, the 
same authors [4] proved that SST has the same resource 
augmentation bound of 3.42 than TST, although, it cannot be 
claimed that one of both algorithms dominates the other [3]. 

B. The Distributed Stretch Transform Model 
Our work is inspired by the SST approach. Since “FJ task sets 
on multiprocessor systems can have schedulable utilization 
bounds slightly greater than and arbitrarily close to 
uniprocessor schedulable utilization bounds”, we opt for the 
formation of a stretched master thread ߬௜௦௧௥௘௧௖௛௘ௗ for each P/D 
task ߬௜ . However, we need to address some specific 
constraints that are related to distributed systems. In that case, 
when performing a D-Fork operation, it implies that some 
messages will be transmitted within the network that may 
affect the execution length of the P/D tasks. 

Let us illustrate the DST transformation with an example. 
Consider two tasks: ߬ଵ = ((1, 1,2,1,1), 3,8) , and ߬ଶ =
((1, 1,3,1,1), 3,10) to be scheduled on 3 processors. Figure 
3(a), shows the execution of a task to be scheduled under 
global DM scheduling. It is possible to see that task ߬ଶ having 
the lowest priority misses its deadline at time 10. This is due 
to the suffered interference provoked by threads of task ߬ଵ that 
have higher priority. Also, notice the presence of a high source 

of interference in the network, for example, the P/D thread 
 ଶ,ଶ,ଷ with WCET ଶܲ,ଶ,ଷ, is ready for execution at time 1, butߠ
due to the network interference it is only released for 
execution in processor 3 at time 7, therefore drastically 
increasing its response time.  

Now let us consider the DST transformation explained 
below and illustrated in Figure 3(b). By calculating the 
maximum execution length of tasks ߬ଵand ߬ଶ  (see Definition 
4), we obtain ܥଵ = 8 and ܥଶ = 11. Then, by looking at Figure 
3(b) it is possible to observe two cases: 

௜ܥ .1 ≤ ௜ܶ . This is the case of ߬1  in our example; whenever 
such a case appears for a task ߬݅ , the task ߬݅  is fully 
stretched into a master thread and handled as a sequential 
task with execution time equal to ܥ௜, a task period of ௜ܶ, and 
an implicit deadline equal to ܦ௜. That is, all threads of the 
tasks are executed sequentially on a unique processor. 

௜ܥ .2 > ௜ܶ . This is this case of ߬ଶ  in our example; for such 
tasks, the DST transformation inserts (coalesces) as many 
P/D threads of ߬௜ into the master thread as possible. To do 
so, it is needed to calculate the available slack and capacity 
of task ߬௜  as indicated in Eq. (4) and (5). For ߬ଶ , it gives 
ଶܮ = 10 − 5 = 5 and, ଶ݂ = 5 3⁄ . Thus, the number of P/D 
threads that each P/D segment can fully insert into the 
master thread without causing ߬௜  to miss its deadline is 
given by: 

݅௜,ଶ௝ =	 ⌊ ௜݂⌋																																											(6) 

For example, in the case of ߬ଶ , ݅ଶ,ଶ =	 ⌊ ଶ݂⌋ = 1 . It can 
indeed be seen on Figure 3(b) that ߬ଶ  executes two P/D 
threads per P/D segment on the invoker processor rather 
than only one when considering the non-stretched master 
thread. 

In the DST only P/D threads that fit completely (since 
݅௜,ଶ௝ =	 ⌊ ௜݂⌋) can be inserted into the master thread. A master 
thread is assigned to be executed in its own processor and 
the remaining subset of P/D threads, have to be executed on 
other nodes in the system. The dispatching of the remaining 
P/D threads to the processors is performed according to the 
FBB-FFD algorithm [15]. 

The number ݍ௜,ଶ௝  of the remaining P/D threads that have 
not been coalesced into the master thread is given by: 

௜,ଶ௝ݍ =	݉௜ − ݅௜,ଶ௝ 																																				(7) 

The slack ௜݂ of task ߬௜ is equally distributed between all the 
P/D segments of a P/D task ߬௜ . This distribution can be 
considered as the available scheduling length for the execution 
of threads and transmission of messages in each P/D segment 
on a remote processor. 

Thus, the maximum scheduling length for the subset of P/D 
threads and their respective messages is determined by 
defining a set of P/D intermediate deadlines ݀௜,ଶ௝: 

݀௜,ଶ௝ = ( ௜݂ + 1) × ௜ܲ ,ଶ௝ 		∀	1 ≤ ݆ ≤
݊௜ − 1	

2 																(8) 



 
Figure 3.  A P/D tasks: (a) scheduled with global scheduling, (b) scheduled after the DST transformation. 

In the case of task ߬ଶ, ݀ଶ,ଶ = 3(5 3⁄ + 1) = 8. Also, each 
P/D segment	ߪ௜,ଶ௝ 	 has a static offset ߶௜,ଶ௝ defined as: 

߶௜,ଶ௝ = ෍ 1,1+2݆,݅ܥ

௡೔ିଵ
ଶ

௝ୀ଴

+ ෍ ݀݅,݆݇

௡೔ିଵ
ଶ

௝ୀଵ

																									(9) 

Thus, at the end of the DST transformation, a P/D task ߬௜ 
will be composed of a single stretched master thread ߬௜௦௧௥௘௧௖௛௘ௗ 
and a set of constrained deadline P/D threads ൛߬௜௖ௗൟ (and their 
respective constrained deadline messages ൛ߤ௜௖ௗൟ) per each P/D 
segment 	ߪ௜,ଶ௝. 

The P/D segments’ offsets ߶௜,ଶ௝  and the P/D segments’ 
deadlines ݀௜,ଶ௝ , define the scheduling window, in which the 
remaining ݍ௜,ଶ௝  P/D threads and its corresponding messages 
have to complete their execution (and transmission, 
respectively) in order for a task ߬௜ to respect its deadline. That 
is, the following inequality must be respected: 

ఓ೔,మೕషభ,ೖݎ + ఏ೔,మೕ,ೖݎ + ఓ೔,మೕ,ೖ	ݎ
≤ ݀௜,ଶ௝∀	ߠ௜,ଶ௝,௞ ∉  	(10)		݀ܽ݁ݎℎݐ	ݎ݁ݐݏܽ݉

where, ݎఓ೔,మೕషభ,ೖ ఓ೔,మೕ,ೖ	ݎ ,
 and ݎఏ೔,మೕ,ೖ  are the Worst Case 

Response Time (WCRT) of messages ߤ௜,ଶ௝ିଵ,௞and ߤ௜,ଶ௝,௞, and 
the thread ߠ௜,ଶ௝,௞, respectively. 

C. End-to-end delay computation in distributed systems 
In this section we summarize some results for the calculation 
of the response time for the execution and transmission of 
threads and messages respectively. 

From [16] we know that for periodic fixed priority 
preemptive tasks, the following recursive equation can be used 
to calculate the response time of a threads ߠ௜,௝,௞: 

ఏ೔,ೕ,ೖݎ
௡ାଵ ௜,௝,௞ܥ	= + ෍ ቜ

ఏ೔,ೕ,ೖݎ
௡

௜ܶ,௝,௟
ቝ ௜,௝,௟ܥ

ఏ೔,ೕ,೗	∈	௛௣(ఏ೔,ೕ,ೖ)

,												(11) 

where ݎఏ೔,ೕ,ೖ is the worst case execution time of a thread ߠ௜,௝,௞ 
and ℎ݌൫ߠ௜,௝,௞൯ is the set of all threads ߠ௜,௝,௟  with higher priority 
than ߠ௜,௝,௞  that execute on the same processor ߨ௜ . The 
recursion ends when ݎఏ೔,ೕ,ೖ

௡ାଵ = ఏ೔,ೕ,ೖݎ
௡ =  ఏ೔,ೕ,ೖ and can be solvedݎ

by successive iterations starting from ݎఏ೔,ೕ,ೖ
ଵ = ௜,௝,௞ߠ . The series 

is non-decreasing, and therefore converges if 
∑ ஼೔,ೕ,೗

்೔,ೕ,೗
ఏ೔,ೕ,೗	∈	௛௣(ఏ೔,ೕ,ೖ)∪ఏ೔,ೕ,ೖ ≤ 1. If the condition of convergence 

is not respected threads ߠ௜,௝,௞ are not schedulable. 

For the case of messages ߤ௜,௝,௞ , the calculation of the 
WCRT needs to consider the non-preemptability of messages 
on the network. Thus, for periodic fixed-priority non-
preemptive messages, the following recursive equation can be 
used to calculate the worst-case response time [17]: 

ఓ೔,ೕ,ೖݎ
௡ାଵ =	ℳ௜,௝,௞ +෍ ቜ

ఓ೔,ೕ,ೖݎ
௡

ఓܶ೔,ೕ,೗

ቝℳ௜,௝,௟																								
ఓ೔,ೕ,೗	∈	௛௣(ఓ೔,ೕ,ೖ)

+ max
	ఓ೔,ೕ,೗	∈	௟௣(ఓ೔,ೕ,ೖ)

{ℳ௜,௝,௟} ,																													(12) 

where, the third term on the right hand side of Eq. (12), 
accounts for the maximum possible suffered interference of a 
higher priority message ߤ௜,௝,௞ , caused by lower priority 
message ߤ௜,௝,௟ , contained in the set of lower priority messages 
 .(௜,௝,௞ߤ)݌݈

V. THE P/D-DMS ALGORITHM 
The P/D-DMS algorithm is the dispatching algorithm for 
partitioning the set ߬  of tasks ߬௜ onto the elements of the 
distributed system. The P/D-DMS algorithm realizes the 
dispatching by: (i) applying the DST to each P/D taks ߬௜ in ߬. 
Two possible cases can appear (Section IV-B): (1) ܥ௜ ≤ ௜ܶ ; the 
task is fully stretched in a single sequential thread and added 
to a list ℒ, or (2) the task ߬௜ is converted into a master thread 
߬௜௠௔௦௧௘௥  and a subset of sequential P/D threads ൛߬௜௖ௗൟ with their 
respective messages ൛ߤ௜௖ௗൟ . The master thread ߬௜௠௔௦௧௘௥  is 
allocated to its own processor and the subset of sequential P/D 
threads is added to the list ℒ, and (ii) the set of threads in ℒ, 
are partitioned onto processors according to the FBB-FFD 
algorithm [15]. Messages ൛ߤ௜௖ௗൟ are assigned to the single real-
time network. 

In the following subsection, we analyse and prove the 
demand bound function of a P/D task ߬௜  and provide the 
resource augmentation bound for the P/D-DMS algorithm. 



A. Demand Bound Function 
Definition 7. (Demand Bound Function (DBF) [18]). The 
DBF is defined as the largest cumulative execution 
requirement of all jobs that can be generated by ߬௜  to have 
both their arrival times and their deadlines within a 
contiguous interval of length ݐ. 

For a sequential task ߬௜  with a total execution time of ܥ௜ , 
period ௜ܶ, and a deadline ܦ௜ ≤ ௜ܶ, the DBF function is given 
by: 

௜߬)ܨܤܦ , (ݐ = ,0)ݔܽ݉ (ඌ
ݐ − ௜ܦ

௜ܶ
ඐ +  (13)																	௜)ܥ(1

Theorem 1. The DBF function of a stretched task ߬௜௦௧௥௘௧௖௛௘ௗ 
that has been transformed by the DST algorithm is bounded 
from above by: 

൫߬௜௦௧௥௘௧௖௛௘ௗܨܤܦ , ൯ݐ ≤ 	max
௝

{
௜ܥ

௜ܶ − ௜ߟ −
ቀݎఓ೔,మೕషభ,ೖ + ఓ೔,మೕ,ೖቁݎ × ௜ܲ

௜ܲ,ଶ௝

}  (14)	ݐ

Proof: we generalize the concept of DBF for the case of P/D 
tasks ߬௜ composed of a master thread ߬௜௠௔௦௧௘௥  and a sequence 
of sequential P/D threads ൛߬௜௖ௗൟ and their respective messages 
൛ߤ௜௖ௗൟ. We consider the two only possible cases when applying 
the DST algorithm to a P/D task ߬௜ (see Section IV-B): 

1. Case ࢏࡯ ≤  In that case, a P/D task ߬௜ is fully stretched .࢏ࢀ
after applying the DST into a single sequential thread with a 
total execution time of ܥ௜௠௔௦௧௘௥ ≤ ௜ܥ , period ௜ܶ , and a 
deadline ܦ௜௠௔௦௧௘௥ = ௜ܶ , therefore, the DBF function 
(Definition 7) can be used without any modifications: 

൫߬௜௦௧௥௘௧௖௛௘ௗܨܤܦ , ൯ݐ = ௜௠௔௦௧௘௥߬)ܨܤܦ ,  																																												(ݐ

,൫߬௜௦௧௥௘௧௖௛௘ௗܨܤܦ ൯ݐ = 	max 	{0, (቞
ݐ − ௜௠௔௦௧௘௥ܦ

௜ܶ
቟ +  			{௜௠௔௦௧௘௥ܥ(1

൫߬௜௦௧௥௘௧௖௛௘ௗܨܤܦ , ൯ݐ = 	max 	{0, (ඌ
ݐ
௜ܶ
ඐ)ܥ௜௠௔௦௧௘௥} ≤

௜ܥ
௜ܶ
 																	ݐ

≤
௜ܥ

௜ܶ − ௜ߟ
	ݐ ≤ 	max

௝
{

௜ܥ

௜ܶ − ௜ߟ −
ఓ೔,మೕషభ,ೖݎ) + ఓ೔,మೕ,ೖݎ

) × ௜ܲ

௜ܲ,ଶ௝

}  (15)					ݐ

where 0 ≤ ௜ߟ ≤ ௜ܶ. 

࢏࡯ .2 >  In the second case, after applying the DST, a P/D .࢏ࢀ
task ߬௜ has been transformed into a master thread ߬݅݉ܽݎ݁ݐݏ , 
and a set {߬௜௖ௗ}  of constrained deadline P/D threads 
associated to their respective constrained deadline messages 
 ,That is .{௜௖ௗߤ}

߬௜௦௧௥௘௧௖௛௘ௗ = ߬௜௠௔௦௧௘௥ + ൛߬௜௖ௗൟ 

Thus, the DBF function can be computed as follows: 

൫߬௜௦௧௥௘௧௖௛௘ௗܨܤܦ , ൯ݐ = ௜௠௔௦௧௘௥߬)ܨܤܦ , (ݐ + ,൫൛߬௜௖ௗൟܨܤܦ  (16)				൯ݐ

Since the master thread has been stretched, we have: 

௜ߟ + ௜ܲ⌊ ௜݂⌋ ≤ ௜௠௔௦௧௘௥ܥ ≤ ௜ܶ 

௜௠௔௦௧௘௥ܥ ≤ ௜ܶ ⇒
௜௠௔௦௧௘௥ܥ

௜ܶ
< 1 

௜௠௔௦௧௘௥߬)ܨܤܦ⟹ , (ݐ = 	max(0, (ඌ
ݐ
௜ܶ
ඐ)ܥ௜௠௔௦௧௘௥)													 

≤
௜௠௔௦௧௘௥ܥ

௜ܶ
		ݐ ≤  (17)																															ݐ

The set {߬௜௖ௗ} of constrained deadline P/D threads and their 
respective messages {ߤ௜௖ௗ} consist of the P/D threads and 
P/D messages of all P/D segments of a task ߬௜. Since P/D 
segments within a P/D tasks have an offset, only one P/D 
segment can be activated at time ݐ  and the maximum 
number of P/D threads in each P/D region is equal to 
௜,ଶ௝ݍ) − 1) where ݍ௜,ଶ௝ = ݉௜ − ⌊ ௜݂⌋. 

Therefore, the previous property guarantees that the DBF of 
the subset of P/D threads {߬௜௖ௗ} over any interval of length ݐ, 
does not exceed ߜ௜௠௔௫(ݍ௜,ଶ௝ −  :ݐ(1

,൛߬௜௖ௗൟ)ܨܤܦ (ݐ ≤ ௜,ଶ௝ݍ)௜௠௔௫ߜ −  (18)																		ݐ(1

The density of a constrained deadline tasks is given by: 

௜ߜ =
௜ܥ
௜ܦ

 

The DST transformation fills the available slack ܮ௜ with ⌊ ௜݂⌋ 
P/D threads per P/D segment (remember that only complete 
P/D threads are inserted within the master thread, since ⌊ ௜݂⌋ 
is an integer number). In each P/D segment within ߬௜ , all 
P/D threads have the same WCET ௜ܲ,ଶ௝ , and a deadline 
݀௜,ଶ௝ = ௜ܲ,ଶ௝ × ( ௜݂ + 1). Due to the fact that the P/D thread 
is executed on a remote processor in the system, two 
messages per P/D thread (ߤ௜,ଶ௝ିଵ,௞  and ߤ௜,ଶ௝,௞ ) are sent 
through the real-time network. Thus, in the worst-case the 
time for a P/D thread to execute is reduced to: ௜ܲ ,ଶ௝ ×
( ௜݂ + 1) − ఓ೔,మೕషభ,ೖݎ −   .ఓ೔,మೕ,ೖ (see Eq.(8 and 10))ݎ

Therefore, the maximum density of the P/D threads {߬௜௖ௗ} 
can be calculated as follows: 

௜௠௔௫ߜ = max
௝

{ ௜ܲ,ଶ௝

௜ܲ,ଶ௝ × ( ௜݂ + 1) − ఓ೔,మೕషభ,ೖݎ − ఓ೔,మೕ,ೖݎ

}																			 

= max
௝

{
1

( ௜݂ + 1) −
ఓ೔,మೕషభ,ೖݎ + ఓ೔,మೕ,ೖݎ

௜ܲ,ଶ௝

	}																						(19) 

By substituting Eq. (19) in Eq. (18), the DBF of the P/D 
threads {߬௜௖ௗ} can be calculated as: 

,൫൛߬௜௖ௗൟܨܤܦ ൯ݐ ≤ max
௝

{
1

( ௜݂ + 1) −
ఓ೔,మೕషభ,ೖݎ + ఓ೔,మೕ,ೖݎ

௜ܲ,ଶ௝

	} ௜,ଶ௝ݍ) −  			ݐ(1

and since ݍ௜,ଶ௝ = ݉௜ − ⌊ ௜݂⌋, we get 

,൫൛߬௜௖ௗൟܨܤܦ ൯ݐ ≤ max
௝

{
݉௜ − ⌊ ௜݂⌋ − 1

( ௜݂ + 1)−
ఓ೔,మೕషభ,ೖݎ) + ఓ೔,మೕ,ೖݎ

)
௜ܲ,ଶ௝

}  																				ݐ



≤ max
௝

{
݉௜ − ⌊ ௜݂⌋ − 1

௜݂ −
ఓ೔,మೕషభ,ೖݎ) + ఓ೔,మೕ,ೖݎ

)
௜ܲ,ଶ௝

 (20)																						ݐ{

By substituting inequality (17) and inequality (20) in Eq. 
(16), we can compute the DBF of ߬௜௦௧௥௘௧௖௛௘ௗ as: 

൫߬௜௦௧௥௘௧௖௛௘ௗܨܤܦ , ൯ݐ ≤ ݐ + max
௝

{
݉௜ − ⌊ ௜݂⌋ − 1

௜݂ −
ఓ೔,మೕషభ,ೖݎ) + ఓ೔,మೕ,ೖݎ

)
௜ܲ,ଶ௝

}  																		ݐ

≤ max
௝

{1 +
݉௜ − ⌊ ௜݂⌋ − 1

௜݂ −
ఓ೔,మೕషభ,ೖݎ) + ఓ೔,మೕ,ೖݎ

) ௜ܲ

௜ܲ,ଶ௝

}  																				ݐ

≤ max
௝

{
௜݂ −

ఓ೔,మೕషభ,ೖݎ) + ఓ೔,మೕ,ೖݎ
)

௜ܲ,ଶ௝
+݉௜ − ⌊ ௜݂⌋ − 1

௜݂ −
ఓ೔,మೕషభ,ೖݎ) + ఓ೔,మೕ,ೖݎ

)
௜ܲ,ଶ௝

}  	ݐ

≤ max
௝

{
݉௜ −

ఓ೔,మೕషభ,ೖݎ) + ఓ೔,మೕ,ೖݎ
)

௜ܲ,ଶ௝

௜݂ −
ఓ೔,మೕషభ,ೖݎ) + ఓ೔,మೕ,ೖݎ

)
௜ܲ,ଶ௝

 																													ݐ{

because ௜݂ = ்೔ିఎ೔
௉೔

 and ݉௜ × ௜ܲ <  ௜ (from Eq.(3)), it resultsܥ
that: 

൫߬௜௦௧௥௘௧௖௛௘ௗܨܤܦ , ൯ݐ ≤ max
௝

{
݉௜ × ௜ܲ −

ఓ೔,మೕషభ,ೖݎ) + ఓ೔,మೕ,ೖݎ
) ௜ܲ

௜ܲ,ଶ௝

௜ܶ − ௜ߟ −
ఓ೔,మೕషభ,ೖݎ) + ఓ೔,మೕ,ೖݎ

) ௜ܲ

௜ܲ,ଶ௝

}  										ݐ

≤ max
௝

{
௜ܥ

௜ܶ − ௜ߟ −
ఓ೔,మೕషభ,ೖݎ) + ఓ೔,మೕ,ೖݎ

) ௜ܲ

௜ܲ,ଶ௝

}  (21)		ݐ

Then, in the two possible cases, the DBF of a task ߬௜௦௧௥௘௧௖௛௘ௗ 
resulting of the application the DST transformation is 
bounded by the same value (Eq. (15) and Eq. 
(21)).																																																																																										∎ 

B. Resource Augmentation Bound  
Now we provide a resource augmentation bound for the 
Distributed-DMS partition algorithm. We will use the results 
of Theorem 2 from Fisher et al. [15]. 

Theorem 2 (from [15]). Any constrained sporadic task system 
߬ is successfully schedulable by FBB-FFD on ݉ unit-capacity 
processors if: 

݉ ≥
௦௨௠ߜ + ௦௨௠ݑ − ௠௔௫ߜ

1 − ௠௔௫ߜ
																														(22) 

where 

௦௨௠ߜ = max
௧வ଴

ቆ
∑ ൫߬௜௦௧௥௘௧௖௛௘ௗܨܤܦ , ൯௡ݐ
௜ୀଵ

ݐ ቇ																			(23) 

Using equations (22) and (23), we now provide a resource 
augmentation bound for the Distributed-DMS partition 
algorithm. 

Theorem 3. If any set ߬ of P/D tasks ߬௜ is feasible on ݉ unit-
speed processors (and messages are feasible on a single unit-
speed real-time network), then the Distributed-DMS partition 
algorithm is guaranteed to successfully schedule this task set 
on ݉ processors and one real-time network that are 4 times 
faster. 

Proof: The set ߬  of P/D tasks is feasible on ݉  unit-speed 
processors: 

௦௨௠ݑ ≝෍
௜ܥ
௜ܶ

௡

௜ୀଵ

≤ ݉,																																						(24) 

and because the minimum response time of a thread is its 
execution time, Equations (8) and (9) imply that the task set ߬ 
is feasible if and only if: 

ఓ೔,మೕషభ,ೖݎ + ௜ܲ,ଶ௝ + ఓ೔,మೕ,ೖݎ ≤ ( ௜݂ + 1) × ௜ܲ,ଶ௝ 
⟺				 ఓ೔,మೕషభ,ೖݎ + ఓ೔,మೕ,ೖݎ ≤ ௜݂ × ௜ܲ,ଶ௝ 																															(25) 

Let us consider the minimum execution length ߟ௜ of any task 
߬௜. It must respect that: 

∀	1 ≤ ݅ ≤ ௜ߟ		݊ ≤ ௜ܶ 																																					(26) 

Otherwise, ߬௜  would be unschedulable on a unit-speed 
processor. On a processor that is ݒ times faster, the minimum 
execution length ߟ௜௩ is given by: 

∀	1 ≤ ݅ ≤ ௜௩ߟ		݊ =
௜ߟ
ݒ ≤ ௜ܶ

ݒ 																										(27) 

For each task ߬௜, it was proven by Theorem 1 that: 

൫߬௜௦௧௥௘௧௖௛௘ௗܨܤܦ , ൯ݐ ≤ max
௝

{
௜ܥ

௜ܶ − ௜ߟ −
݇,2݆−1,݅ߤݎ)

+ 2,݅ߤݎ ,݆݇
) ௜ܲ

௜ܲ,ଶ௝

}  	ݐ

Using the above inequality together with Eq. (22) we have: 

௦௨௠௩ߜ ≤෍ max
௝

{
௜௩ܥ

௜ܶ − ௜௩ߟ −
ఓ೔,మೕషభ,ೖݎ)

௩ + ఓ೔,మೕ,ೖݎ
௩ ) ௜ܲ

௩

௜ܲ ,ଶ௝
௩

}
௡

௜ୀଵ
 

using inequality (27): 

௦௨௠௩ߜ ≤෍ max
௝

{
௜௩ܥ

௜ܶ ቀ1− 1
ቁݒ −

ఓ೔,మೕషభ,ೖݎ)
௩ + ఓ೔,మೕ,ೖݎ

௩ ) ௜ܲ
௩

௜ܲ,ଶ௝
௩

}
௡

௜ୀଵ
 

≤
1
෍ݒ max

௝
{

௜ܥ

௜ܶ ቀ1− 1
ቁݒ −

1
ݒ

ఓ೔,మೕషభ,ೖݎ) + (ఓ೔,మೕషభ,ೖݎ ௜ܲ

௜ܲ,ଶ௝

}
௡

௜ୀଵ
				 

From inequality (25) and then (5): 

௦௨௠௩ߜ ≤
1
෍ݒ

௜ܥ

௜ܶ ቀ1 − 1
ቁݒ −

1
ݒ ௜݂ ௜ܲ

௡

௜ୀଵ
																																			 

≤
1
෍ݒ

௜ܥ

௜ܶ ቀ1 − 1
ቁݒ −

௜ܶ
ݒ

௡

௜ୀଵ
																																									 

≤
1
෍ݒ

௜ܥ

௜ܶ ቀ1− 1
ቁݒ −

௜ܶ
ݒ

௡

௜ୀଵ
≤

1
ݒ − 2෍

௜ܥ
௜ܶ

௡

௜ୀଵ
								 



௦௨௠௩ߜ⟺ ≤
1

ݒ −  																																									௦௨௠ݑ2

Also on ݒ speed processors, ݑ௦௨௠௩ = ௨ೞೠ೘
௩

 and ߜ௠௔௫௩ = ఋ೘ೌೣ
௩

. 
Using Eq. (22), the task set ߬ is schedulable on ݉ processors 
of speed ݒ if: 

݉ ≥
௦௨௠௩ߜ + ௦௨௠௩ݑ − ௠௔௫௩ߜ

1 − ௠௔௫௩ߜ  

≥
௦௨௠ݑ
ݒ − 2 + ௦௨௠ݑ

ݒ − ௠௔௫ߜ
ݒ

1 − ௠௔௫ߜ
ݒ

 

The right-hand side of the inequality above is an increasing 
function of ߜ௠௔௫for ݉ ≥ ௩(௩ିଶ)

ଶ௩ିଶ
. 

Since ߜ௜ = ஼೔
஽೔

 and because the task set ߬ is feasible if and only 
if ܥ௜ ≤ ௜ for all tasks ߬௜ܦ , we have that the greatest possible 
density for a feasible task set is given by ߜ௜௠௔௫ ≤ 1. 

Thus, when ݉ ≥ ௩(௩ିଶ)
ଶ௩ିଶ

, the schedulability is guaranteed if: 

݉ ≥
݉

ݒ − 2 +݉
ݒ − 1

ݒ
1 − 1

ݒ
 

݉(1 −
1
(ݒ ≥

݉
ݒ − 2 +

݉
ݒ −

1
 ݒ

ݒ −
2

ݒ − 2 ≥ 3 −
1
݉ 

This inequality is respected with ݒ = 4 and ݉ ≥ 2. 

Hence, any feasible P/D task set ߬  feasible on ݉ ≥ 2  unit-
speed processors and a unit-speed network, is guaranteed to be 
schedulable by the P/D-DMS algorithm on ݉ processors and a 
single real-time network with speed ݒ = 4.																																∎ 

VI. SIMULATIONS 
In this section we present the simulation results that validate 
the resource augmentation bound of the P/D-DMS algorithm 
after applying the DST transformation presented in Sections V 
and IV, respectively.  

To generate feasible P/D task sets, we follow the 
guidelines presented in [19] for generating random task sets 
for multiprocessor systems, using the Stafford’s 
Randfixedsum algorithm [20]. The Randfixedsum algorithm 
generates a set of ݊ values which are evenly distributed and 
whose components sum to a constant value. Thus, we use the 
Randfixedsum algorithm for generating unbiased sets of P/D 
tasks with a fixed total density ߜ௧௢௧ =  ௜. For a given totalߜ∑
density ߜ௧௢௧, the Randfixedsum algorithm returns ݊ P/D tasks 
with density ߜ௜. For generating the P/D threads’ densities we 
use again the Randfixedsum algorithm taking as an input the 
previous generated densities ߜ௜ = ௜,௝,௞ߜ∑ , obtaining a set of 
values ߜ௜,௝,௞ for each P/D thread. The WCETs and end-to-end 
deadlines ܦ௜ are generated as recommended in [19]. Once all 
P/D threads are generated, their respective messages are 

generated and inserted within a P/D task by preserving their 
execution order. The total message density ߜ௧௢௧

௠௘௦௦௔௚௘௦ , 
represents the utilization of the network. Thus, when a total 
message density is given, the Randfixedsum algorithm returns 
݊  messages of densities ߜ௜

௠௘௦௦௔௚௘௦  for each task ߬௜ . For 
generating the messages’ densities ߜ௜

௠௘௦௦௔௚௘௦ = ௜,௝,௞ߜ∑
௠௘௦௦௔௚௘ 

we use again the Randfixedsum algorithm taking as an input 
the previous generated densities ߜ௜

௠௘௦௦௔௚௘௦. We consider that 
applications have implicit end-to-end deadlines (ܦ௜ = ௜ܶ ) 
following a uniform distribution between the values ܦ௜௠௜௡ =
100 and ܦ௜௠௔௫ = 10000. 

Figure 4(a) shows the number of accepted task sets over 
1000 experiments for different given total message densities 
௧௢௧ߜ
௠௘௦௦௔௚௘௦. We simulate 4 P/D tasks that are partitioned by the 

P/D-DMS algorithm in a computing platform of 8 processors 
and 1 network. Thus the total utilization ௧ܷ௢௧  for these 
experiments is fixed to 8. Three different total message 
densities are analysed: (i) ߜ௧௢௧

௠௘௦௦௔௚௘௦equal to the 10% of the 
fixed total utilization ௧ܷ௢௧ ; ௧௢௧ߜ

௠௘௦௦௔௚௘௦ = 0.8 , 
(ii)	ߜ௧௢௧

௠௘௦௦௔௚௘௦equal to the 5% of ௧ܷ௢௧ ௧௢௧ߜ ;
௠௘௦௦௔௚௘௦ = 0.4, and 

(iii) ߜ௧௢௧
௠௘௦௦௔௚௘௦equal to 1% of the total utilization; ߜ௧௢௧

௠௘௦௦௔௚௘௦ =
0.08. It is possible to see that when ߜ௧௢௧

௠௘௦௦௔௚௘௦ increases, more 
speed ݒ is required by the processors and the network to be 
able to schedule 100% of the task sets. This effect is modelled 
by Eq. 10 in our analysis. 

In Figure 4(b) we show the number of accepted task sets 
for 1000 experiments. 4 P/D tasks have to execute in a 
computing platform composed of 1 network and 8 distributed 
processors. The total density ߜ௧௢௧ is fixed to 8. In this case we 
analyse the variations in respect of different individual thread 
density ߜ௜,௝,௞

௠௜௡  and ߜ௜,௝,௞
௠௔௫ . Three different variations are 

compared: (i) ߜ௜,௝,௞
௠௜௡ = 0.1 and ߜ௜,௝,௞

௠௔௫ = 0.2 , (ii) ߜ௜,௝,௞
௠௜௡ = 0.05 

and ߜ௜,௝,௞
௠௔௫ = 0.1 , and (iii) ߜ௜,௝,௞

௠௜௡ = 0.01  and ߜ௜,௝,௞
௠௔௫ = 0.05 . 

௧௢௧ߜ
௠௘௦௦௔௚௘௦ is fixed to 5% of the ߜ௧௢௧. It is possible to observe 

that if densities of tasks are larger, the more speed is needed to 
successfully schedule 100% of the task sets. 

Figure 4(c) shows the number of accepted task sets over 
1000 experiments, in which we vary the number of P/D tasks 
with a fixed total density ௧ܷ௢௧ = ௧௢௧ߜ = 8 to be scheduled in a 
computing platform of 8 processors and 1 network. The total 
message density ߜ௧௢௧

௠௘௦௦௔௚௘௦  is fixed to 5% of ௧ܷ௢௧ . We 
compared three possible variations: (i) 4 P/D tasks, (ii) 6 P/D 
tasks and (iii) 8 P/D tasks. It is possible to see that when 
generating fewer P/D tasks for the same density ߜ௧௢௧, the more 
speed ݒ  is required by the processors and the network to 
successfully schedule 100% of the task sets. Thus, whenever 
P/D densities ߜ௜  increase, the probability of finding a 
schedulable partitioning with the P/D-DMS algorithm for P/D 
tasks, decreases.  

Therefore, it is possible to observe though Figures 4(a-c) 
that in all cases; the P/D-DMS algorithm is able to find a 
schedulable partition by respecting its resource augmentation 
bound of 4. 



 

Figure 4.  1000 generated task sets varying (a) the total message density ߜ௧௢௧
௠௘௦௦௔௚௘௦ , (b) the minimum thread density ߜ௜,௝,௞

௠௜௡ and maximum thread density 
௜,௝,௞ߜ
௠௔௫, and (c) the number of P/D tasks in the set ߬.

VII. CONCLUSIONS AND FUTURE WORK 
This paper presented the P/D-DMS algorithm. The P/D-DMS 
algorithm makes use of the DST model for scheduling 
parallel/distributed fixed-priority fork-join real-time tasks. The 
P/D-DMS algorithm is shown to have a resource augmentation 
bound of 4. The DST is designed with two main objectives. 
The first one is to eliminate as many messages of a P/D task as 
possible by stretching a master thread, since a master thread is 
executed locally on its own processor. And the second 
objective is to reduce the possible interference in the network 
and in the processors by forcing P/D threads to execute within 
the master thread.  

We are currently working on finding more efficient 
partitioning algorithms for P/D threads and messages by 
considering the specific structure (threads’ offsets and 
intermediate deadlines) of distributed fixed-priority fork-join 
real-time tasks. 
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