

On the Robot Path Planning using Cloud
Computing for Large Grid Maps

Conference Paper

CISTER-TR-180411

Imen Chaari

Anis Koubaa

Basit Qureshi

Habib Youssef

Ricardo Severino

Eduardo Tovar

Conference Paper CISTER-TR-180411 On the Robot Path Planning using Cloud Computing for Large ...

© CISTER Research Center
www.cister.isep.ipp.pt

1

On the Robot Path Planning using Cloud Computing for Large Grid Maps

Imen Chaari, Anis Koubaa, Basit Qureshi, Habib Youssef, Ricardo Severino, Eduardo Tovar

*CISTER Research Centre

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail:

http://www.cister.isep.ipp.pt

Abstract

Global path planning consists in finding the optimalpath for a mobile robot with the lowest cost in the
minimumamount of time, without colliding with the obstacles scatteredin the workspace. In this paper, we
investigate the benefits ofoffloading path planning algorithms to be executed in the cloudrather than in the robot.
The contribution consists in developinga vertex-centric implementation of R A "17 [1], a version of A "17that we
developed for grid maps and that was proven to bemuch faster than A "17, using the distributed graph
processingframework Giraph that rely on Hadoop. We also developed acentralized cloud-based C++
implementation of the algorithm forbenchmarking and comparison purposes. Experimental results ona real cloud
shows that the distributed graph processing Giraphfails to provide faster execution as compared to centralized
C++implementation for different map sizes and configuration due tonon-real time properties of Hadoop.

On the Robot Path Planning using Cloud

Computing for Large Grid Maps

Imen Châari ∗, Anis Koubâa †‡§,Basit Qureshi†, Habib Youssef ¶, Ricardo Severino §, Eduardo Tovar §

∗ PRINCE Research Unit, University of Manouba (ENSI), Tunisia.
† Prince Sultan University, College of Computer and Information Sciences, Saudi Arabia

‡ Gaitech International Ltd, China
§ CISTER/INESC-TEC, ISEP, Polytechnic Institute of Porto, Porto, Portugal.

¶ University of Sousse, PRINCE Research Unit, Sousse, Tunisia.

imen.chaari@coins-lab.org, akoubaa@coins-lab.org, quershi@psu.edu.sa, habib.youssef@fsm.rnu.tn,

RARSS@isep.ipp.pt, emt@isep.ipp.pt

Abstract—Global path planning consists in finding the optimal
path for a mobile robot with the lowest cost in the minimum
amount of time, without colliding with the obstacles scattered
in the workspace. In this paper, we investigate the benefits of
offloading path planning algorithms to be executed in the cloud
rather than in the robot. The contribution consists in developing
a vertex-centric implementation of RA

∗ [1], a version of A
∗

that we developed for grid maps and that was proven to be
much faster than A

∗, using the distributed graph processing
framework Giraph that rely on Hadoop. We also developed a
centralized cloud-based C++ implementation of the algorithm for
benchmarking and comparison purposes. Experimental results on
a real cloud shows that the distributed graph processing Giraph
fails to provide faster execution as compared to centralized C++
implementation for different map sizes and configuration due to
non-real time properties of Hadoop.

I. INTRODUCTION

This research work addresses the global path planning

problem for large environment. We consider that the robot

has a complete knowledge about its workspace modeled as a

grid map that contains static obstacles. This problem becomes

more challenging for large grid environments as the process

of searching a path in large grid maps containing different

obstacles requires large execution time [2].

In [1], we presented a relaxed version of the A∗ algorithm

called relaxed astar RA∗ to solve the path planning problem.

This algorithm has a linear complexity, it provides near opti-

mal solutions with less than 2% error and with an extremely

reduced execution time as compared to A∗.

Nowadays, with the emergence of cloud robotics [3], recent

studies have proposed to offload heavy computation from

robots to the cloud as robots are usually small, lightweight, and

have minimal hardware configurations. This leads to having

limited processing capabilities that is insufficient for handling

computation-intensive tasks which will not allow the robot to

complete its mission in a short period of time. In fact, when

connected to the cloud, robots can benefit from the powerful

computational, storage, and communications resources in the

cloud. This solution has a number of advantages over tradi-

tional approach, where all actions are performed on the robot.

This led us to think in outsourcing the path calculation process

using the cloud computing techniques in order to investigate

the the benefits of the cloud robotic solution to solve grid path

planning. Our objective is to reduce the execution time of the

path searching process in large grid maps as far as possible.

Accordingly, we used the open source graph processing frame-

work Giraph [4] that rely on the open source Hadoop frame-

work [5] and we designed a vertex-centric RA∗ algorithm.

Giraph was our first choice to implement RA∗ for two reasons,

first Giraph has an increasing number of contributors and

companies that were already running clusters based on it,

including Facebook, Twitter and Linkedin. In addition, there

is no major research efforts that presented a comprehensive

solution on how to use Hadoop and Giraph to solve the path

planning. This represent the main motivation of this work. The

rest of this paper is organized as follows. In Section 2, we

give an overview of some relevant works dealing with Giraph

and shortest path problem. Section 3 presents a background

about Giraph framework. The vertex-centric RA∗ algorithm is

described in Section 4. In Section 5, we present the simulation

results and finally Section 6 concludes the paper.

II. RELATED WORKS

To the best of our knowledge, no previous research works

addressed the robot path planning problem in large grid maps

using the Giraph framework. In our previous works [6], [7],

we designed and developed a cloud robotics management

system that allows the access an real-time control of robots

and drones over the Internet. In this paper, we are interested

in investigating the other facet of cloud robotics related to

computation offloading, with the particular emphasis on robot

path planning using cloud computing applications.

Some research works have tackled the shortest path problem

without considering the obstacle avoidance. For example, the

Giraph package [4] provides an implementation of the Dijkstra

algorithm. In reference [8], the authors firstly implement

the Breadth-first search algorithm using Giraph to solve the

shortest path problem. They tested their algorithms in two

large graphs; the first one contains 10000 vertices and 121210

edges and the second has 100000 vertices and 1659270 edges.

The authors compared the implementation of breadth-first

search on Giraph with a Hadoop MapReduce solution. The

simulation results confirm the superiority of Giraph over

Hadoop for this kind of task. The intresting point of this

paper is the proposition of new improvements that modify

Giraph framework in order to support dynamics graphs, in

which the input may change while the job is being performed.

In [9], the authors descriped how they modifiy the Giraph

framework to be able to support managing Facebook-scale

graphs of up to one trillion edges. They presented new graph

processing techniques such as composable computation and

superstep splitting. The work [10] is centered around the

development of a cloud-based system, called Path Planning

as a Service (PPaaS) for robot path planning. The authors

proposed a three-layered system architecture, which facilitates

on-demand path planning software in the cloud. They have

implemented the proposed system with the Rapyuta cloud

engine and used Robot Operating System (ROS) platform as

the communication framework for the entire system.

The Okapi project [11] presents a multiple source shortest

paths algorithm. The idea of the algorithm consists to apply

the single source shortest path algorithm (SSSP) for a given

number of vertices. A number of vertices are chosen and the

SSSP algorithm is run in parallel at the aim to improve the

performance by reducing the number messages. The work [12]

compared the Hadoop Map Reduce and the Bulk Synchronous

Parallel approach, used in Giraph, using the single source

shortest path computation, existing in the giraph package, and

the relational influence propagation algorithms. They tested

the algorithm in cluster containing 85 machines each has

7500 MB of RAM; They used various datasets, with different

sizes, to evaluate the performance of the approaches. They

varied the number of nodes in the cluster and measured the

execution times of the algorithm. The results revealed that

iterative graph processing with BSP implementation signifi-

cantly outperform MapReduce. Pace et al. in [13] provided

a theoretical comparison of the Bulk Synchronous Parallel

and the MapReduce models. In terms of graph processing,

they noticed, that Breadth First Search algorithm cannot be

efficiently implemented by means of the MapReduce model.

The iGiraph framework for Processing Large-scale Graphs is

described in [14]. iGiraph is a modified version of Giraph.

The authors use a new dynamic re-partitioning approach to

minimize communication between computation nodes and

thus reduces the cost of resource utilization. To evaluate the

performance of the new framework, the authors tested the

shortest path, the connected components and the PageRank al-

gorithms on a cloud formed by 16 machines each has 8 GB of

RAM. They used three graphs containing between 403394 and

1632803. They compared the iGiraph and Giraph frameworks

in terms of number of messages exchanged between partitions,

the execution time and the number of workers used and they

proved that the execution time of the shortest path algorithm

using iGiraph is not reduced as compared to Giraph, it takes

around 5 minutes. For the other algorithms the execution time

is decreased and the number of messages passing through

network is reduced significantly. The authors in [15] proposed

two models to maximize the performance of graph computing

on heterogeneous cluster (different nodes with various band-

width or CPU resource). They presented a greedy selection

model to select the optimal worker set for executing the

graph jobs for graph processing systems using hash-based

partition method and a heterogeneity-aware streaming graph

partitioning to balance the load among workers. Experiments

were made using five different algorithms (page rank, shortest

path, random walk, kcore and weakly connected-components)

on two different clusters: the university lab cluster (46 ma-

chines) and EC2 cluster (100 instances). The experiments

prove that the execution time of the algorithms is reduced by

55.9% for lab cluster and 44.7% for EC2 cluster as compared

to traditional method. In [16], the authors compared Giraph

against GraphChi. In 2012, it was proven that GraphChi is

able to perform intensive graph computations in a single PC

in just under 59 minutes, whereas the distributed systems were

taking 400 minutes using a cluster of about 1000 computers.

In this work, the authors compared the new versions of the two

frameworks by testing three different algorithms (PageRank,

Shortest path and weakly connected-components) and they

concluded that even for a moderate number of simple machines

(between 20 and 40 each has 1GB of RAM), Apache Giraph

outperforms GraphChi in terms of execution time for all the

algorithms and datasets used. [17] proposed a graph-oriented

mechanism to achieve the smart transportation system. The

overall traffic information were obtained from road sensors

which forms big data. Graphs were generated from big data.

Various graph algorithms were implemented using Giraph to

acheive real time transportation. Dijkstra was implemented to

select the quickest and shortest path. In addition to the path

cost, other parameters are taken into consideration to evaluate

the path quality in the process of searching the shortest path

such as the current traffic intensity as well as the vehicles

speeds. However, experiments were conducted only on a single

node machine and they have used not very large graph (less

than 90000 nodes and edges).

III. GIRAPH: HOW PARRALLEL ALGORITHMS ARE

IMPLEMENTED AND PROCESSED?

In 2012, Apache introduced Giraph [4] an open source

distributed graph processing framework. It is a loose imple-

mentation of Google’s Pregel [18]. Giraph is widely used due

to its increasing number of contributors and the companies

that were already running clusters based on it that included

Facebook, Twitter and Linkedin.

Giraph follows the Bulk Synchronous Parallel (BSP) com-

putation model. A Giraph program (Giraph job) consists of

three main steps: An input step, where the graph is loaded

and distributed among the workers machines, followed by a

sequence of iterations called supersteps and finally an output

step to write down the results. This process is illustrated in

Figure 1.

At the beginning, the master starts by loading the input file

(graph) from the Hadoop Distributed File System (HDFS).

Giraph provides tools called Inputs Format that define how

to read data from the input file into the mapper instances. A

large variety of Input Formats are already implemented within

the Giraph package and we could also define our own Input

Format implementations to format the input to the program.

Then, the master splits the input graph file among the workers

using a partitioner. By default Giraph use a HashPartitioner,

distributing the vertices among the workers at random. At

the end of the Input Superstep, the workers become ready to

perform computation. Computation proceeds as a sequence of

iterations, called supersteps. In each superstep, the workers run

in parrallel a user defined function compute() for the active

vertices in their respective partitions. Initially, every vertex is

active, then a vertex can turn into inactive state by calling

voteToHalt() method. The overall program terminates if every

vertex is inactive.

The user-defined function specifies the behaviour at a single

vertex and a single superstep S and there is no access to

other vertices from the current vertex. The function can read

messages that are sent to the vertex in superstep S − 1, send

messages to other vertices that will be received at superstep

S + 1, and modify the state of the vertex and its outgoing

edges. Messages are typically sent along outgoing edges, but

you can send a message to any vertex with a known identifier.

After all active vertices finish their local computation in a

superstep, a global synchronization phase allows global data

to be aggregated, and messages created by each vertex to be

delivered to their destinations.

Finally, when there are no more messages to process or the

computation is halted, the workers store the output graph back

in HDFS during the Output Superstep. We should distinguish

two different types of messages: Local messages between ver-

tices (or subgraphs) belonging to the same worker co-located

on the same machine, and remote messages transferred over

network between vertices (subgraphs) on different machines.

In fact, before the computation phase Vertices are hashed and

distributed across multiple machines. To exchange their status,

the vertices send messages. When the vertex sends a message,

the worker first determines whether the destination vertex of

the message is owned by a remote worker or the local worker.

IV. RASTAR USING GIRAPH AND HADOOP FRAMEWORKS

This section presents the vertex-centric RA∗ algorithm.

To design a Giraph algorithm we should consider the ‘‘think

like-a-vertex’’ programming model, i.e. the algorithm should

be transformed to show the behavior of one vertex in a given

superstep.

Step 1: Input Format Selection:

As explained in the previous section, the first step

of any Giraph application is to choose a MapRe-

duce Input Format. For the RA∗ job, we choose the

JsonLongDoubleFloatDoubleVertexInputFormat

 G= (V, E): Input Format

 Split

Worker 1 Worker 2

In
p

u
t

S
u

p
e

rs
te

p

Load/send

Graph

Load/send

Graph

 Master

Part0 Part1 Part2 Part3

Worker 1 Worker 2

Compute/

send

Message

Compute/

send

Message

C
o

m
p

u
ta

ti
o

n
 :

 S
u

p
e

rs
te

p
s

iterate

M
a

p
.t

x
t

O
u

tp
u

t
S

u
p

e
rs

te
p

In memory Graph

A
n

a
ly

si
s

re
su

lt
s

Worker 1 Worker 2

Part0 Part1 Part2 Part3

Part0 Part1 Part2 Part3

HDFS

Fig. 1: Apache Giraph Dataflow

format to present the grid map as a graph. The grid will be

transformed to a serie of lines that represent the graph (the

input file of the job), each line has the following format:

JSONArray(vertexID, vertexV alue, JSONArray(JSONArray(

DestV ertexID,EdgeV alue), ...))

Each line is composed from three elements to describe one

cell in the grid. The vertexID is the cell ID, vertexV alue

is the cell value which can have one of these two possible

values 0 or 100, where 0 means the cell is free and 100

means the cell is occupied by an obstacle and finally a list

of adjacent neighbors, each neighbor is represented by its ID

DestV ertexID and the edge value EdgeV alue. The edge

value has two possibles value 1 or 1.4; it is equal to 1 if the

neighbor vertex exists in the vertical or horizontal direction in

the map and 1.4 if the adjacent vertex exists in the diagonal

direction.

Step 2: Implementation of the Compute Method:

The RA∗ algorithm is implemented as a subclass of

the AbstractComputation class that provides a

compute() method which will be executed by each active

vertex in the graph in each superstep. Vertices begin the

process as actives, then they become inactives if they vote to

halt and they can come back to activity only if they receive

a message from neighbors. At the end of the superstep, it is

ensured that all active vertices have executed the compute

method and messages are being delivered for the next

superstep.

This method has two inputs as shown in the compute

The compute method signature

1 @Override

2 public void compute (Vertex < LongWritable,

DoubleWritable,FloatWritable > vertex, Iterable < DoubleWritable >
messages)

3 {
4 ...

5 }

Superstep 0 of The Algorithm

// if we are in superstep 0 and the processed

vertex is the start vertex

1 if (getSuperstep() == 0) then

2 if (isStart(vertex)) then

// update the h_score value of the start

vertex

3 h score=calculateHScoreValue();

// send message containing its g_score
value to the neighbors

4 sendCurrentVertexMessages(vertex);

// update the f_score of the vertex

5 vertex.setValue(h score);

6 else

7 vertex.setValue(MAX VALUE));

8 end

9 vertex.voteToHalt();

10 end

method signature, the vertex expanded V ertex <

LongWritable,DoubleWritable, F loatWritable > and the

message received by this vertex. The same compute method

is called for all iterations, so any special cases that need to

be handled in a particular superstep must be done through

a call to the getSuperstep() function. For example, in

superstep 0, all vertices are actives at the begining. However,

only the start vertex of the robot updates its f score and

sends messages to its neighbors. Other free vertices set their

values to the maximum double value. At the end of superstep

0, all vertices vote to halt and become inactives. This is

presented in the second method.

In the next supersteps, an active vertex that invokes the

compute method can: (1) Send messages to its adjacent

nodes, if it is elected to be the next current vertex, in

order to update the g score values of the neighbors. The

sendMessage() implemented within the Giraph package

enables the vertex to send only its value to its neighbors,

thus, we implemented our own sendMessages() method

in order to send both the ID and the value (g score) of the

current vertex to the neighbors.

(2) Receive a message from its neighbors: (Receive

message method) neighbors receive the current vertex ID and

g score in order to update their g score and f score. (3)

Make computation: (Computation method) the vertex that

receives message updates its value (g score) then it will be

added to the open List.

Finally, after sending all messages, the vertex will vote to

halt. The overall execution will be halted when the target

Send message method

1 public void sendCurrentVertexMessages(Vertex) {
2 for each edge of the current vertex do

3 sendMessage(DestV ertexID,

Message(SenderV ertexID,SenderV ertexGScore));

4 end

5 }

Receive message method

1 for (each received message) do

2 CurrentV ertexGScore=getGScoreOfSenderVertex

(message);

3 CurrentV ertexID=getIDOfSenderVertex (message);

4 end

Vertex computation method

1 g score=CurrentVertexGScore+dist edge (V ertexID,

CurrentV ertexID);

2 h score=calculateHScoreValue (V ertexID, CurrentV ertexID);

3 vertex.setValue(g score+h score);

4 AddToOpenList(vertexID, f score);

5 aggregate(OPENLIST AGG, newElementAddedToOPL);

vertex is found or the master stops the computation using

haltComputation() method if the path has not been

found.

Step 3: Implementation of the RAStar Master Compute

class:

The RA∗ Master Compute RAStarMasterCompute is

a subclass of DefaultMasterCompute class, it is a way

to introduce centralization into our algorithm. It executes

some computation between supersteps. In each superstep, the

RAStarMasterCompute runs first then the workers execute

the compute method for their active vertices. Before each

superstep, the RAStarMasterCompute is called to register

the aggregators using the initialize() function (this

will be explained in detail in the next paragraph), then the

compute() method of the RAStarMasterCompute class is

invoked, in this method we choose the vertex that has the

minimum f score existing in the open list to be the next

current vertex. The new current is removed from the open list

and shared among all the workers. If the open list is empty

and the target is not found then the algorithm computation

is stopped using the function haltComputation(),

otherwise the search process continue until reaching the goal

cell if a path exists.

Aggregators: They are global objects visible to all vertices,

they are used for coordination and data sharing. Each

aggregator is assigned to one worker that receives the partial

values from the all the other workers and is responsible for

performing the aggregation. Afterwards, it sends the final

value to the master. Moreover, the worker in charge of an

RAStarMasterCompute class: compute method

1 if (getSuperstep()>1) then

2

3 if (openList is not empty && goalV ertex is not found) then

4 currentV ertex = the node in openList having the lowest

f score;

5 newOpenList=remove currentV ertex from

openList;
6 end

// add the current vertex and the new open

list to the aggregator to be shared between

workers;

7 Add currentV ertex to the current vertex aggregator;

8 Add newOpenList to the openList aggregator;

9 end

LongDenseVectorOverwrite Aggregator

1 @Override

2 public LongDenseVector createInitialValue() {
3 return new LongDenseVector();

4 }
5

6 @Override

7 public void aggregate(LongDenseVector vector) { if (vector.length()!=0)

then

8 getAggregatedValue().overwrite(vector);

9 end

10 }

aggregator sends the final value to all the other workers.

During supersteps, vertices provide values to the aggregator.

These values will be available for other vertices in the

next superstep. Different types of aggregators are used

our algorithm. We use an aggregator for the openList

MyDoubleDenseVectorSumAggregator , each

expanded vertex is added to the openList if it does not exist.

Another aggregator is used to indicate if the goal vertex

is found or not BooleanOverwriteAggregator.

Providing a value to aggregator is done by calling

the aggregate() function. To get the value of

an aggregator during the previous supestep we used

getAggregatedValue() function. The aggregators are

registered in the RAStarMasterCompute class in initialize()
fuction by calling registerAggregator() function or

registerPersistentAggregator() according to the

aggregator type chosen regular or persistent. The value of a

regular aggregator will be reset to the initial value in each

superstep, whereas the value of persistent aggregator will live

through the application.

Many aggregators are already implemented in the giraph

package. In RA∗ job, we implemented three new aggregators.

The new aggregator extends BasicAggregator class,

two functions must be implemented the aggregate()

function and the createInitialValue() function

(LongDenseVectorOverwrite Aggregator example)

V. PERFORMANCE EVALUATION

In this section we present the results of various experiments

carried out to investigate the performance of the RA∗ algo-

rithm implemented using Giraph framework. We compared the

results of the vertex-centric RA∗ algorithm against the C++

version.

A. Cloud Framework

The vertex-centric RA∗ algorithm is tested on a small

Dreamhost cloud cluster [19] formed by seven virtual ma-

chines, one Master and six slaves, each with three 2.10GHz

processors Intel (R) Xeon (R) CPU E5-2620, 8GB RAM and

a 80 GB disk, running Ubuntu 14.4 as an operating system.

The master node runs only the namenode task whereas all

computations are performed in the datanodes running in the

slaves machines. We used Hadoop 2.4.0 and Giraph 1.2.0. The

same scenarios are used to test the centralized version of RA∗

under one node from the cluster.

B. Experimental Scenarios

We considered three different maps for test: The first with

dimensions 500*500 cells, the second is of size 1000*1000

and the third map is 2000*2000 map. Table I provides details

about the maps that we have used for simulation. We consid-

ered 21 different scenarios to test the three maps, where each

scenario is specified by the coordinates of randomly chosen

start and goal cells. Each scenario, is repeated 5 times (i.e.

5 runs for each scenario) and with six different numbers of

workers. In total, 630 runs to evaluate the performance of the

vertex-centric RA∗. For each run, we recorded the length of

the generated path and the execution time of RA∗ (without

hadoop initialisation time) and the time required by hadoop

to initialise the job. The execution time of an algorithm in a

given map is the average of the 5 execution times recorded,

calculated with 95% of confidence interval.

TABLE I: Grid Maps Characteristics

Map size Number of vertices Number of edges

500*500 250000 499000

1000*1000 1000000 1998000

2000*2000 4000000 7996000

In what concerns paths found, the paths generated by the

two implementation of RA∗ (vertex-centric and C++) are the

same of all maps and for all runs.

Figure 2 compares the average execution times consumed

by the two versions of RA∗ and the Hadoop initialization.

We clearly observe from this figure, that the difference in

execution time between the two algorithms is significant, for

example for 1000*1000 grid map RA∗ implemented using

Giraph and executed in a cluster composed from 3 machines

is seventy thousand times larger than RA∗ implemented using

C++. This can be explained by different reasons; First, the

numbers of iterations of RA∗ implemented using Giraph is

higher than RA* implemented on C++. This is related to

the Giraph programming concepts. In fact, in superstep i, the

current vertex sends a message to their neighbors in order to

update their g score values, the messages will be received in

the next superstep (i+1), thus to update the g score we need

two superstep one for sending messages, one for updating

g score of neighbors which contributes in increasing the

number of superteps and then the execution time of the whole

algorithm. Moreover, the openList in the algorithm cannot be

implemented only as an aggregator as it is must be shared

between all workers. The Aggregators are manipulated only by

the master, it can add/remove values to/from the openList, so

if the neighbors of the current vertex are added to the openList

in superstep i, this will be visible for workers only in superstep

i+1 after the master update which also contributes in increasing

the number of supersteps and then the execution time of the

algorithm. In addition, we should note that the time consumed

by the RA∗ is the time required to do computation plus the

time required to communication between workers which also

contribute in the increasing of the run time. In addition, we see

that the increasing of the number of machines in the cluster

from 3 to 7 contributes in reducing the execution times; for

500*500 and 1000*1000 grid map the runtime is reduced up to

34,2% and for 2000*2000 grid map up to 16.2%. However, the

C++ version of RA∗ always exhibits the best execution time.

Also looking to Figure 2, we observe that the time required

by hadoop for the initialisation and the shutdown of the job,

without considering the computation time, is greater than the

runtime of the RA∗ implemented using C++. This clearly

proves that Giraph/Hadoop framework (using 7 machines each

has 8GB of RAM) is not an appropriate technique for solving

the path planning problem in large environments.

500*500 1000*1000 2000*2000

100

105

Ex
ec

ut
io

n
Ti

m
es

 (m
ill

is
ec

on
ds

)

RA* using C++
RA* using Giraph(3 nodes)
Hadoop Time (3 nodes)
RA* using Giraph(7 nodes)
Hadoop Time (7 nodes)

Fig. 2: Average Execution Times of the different implemen-

tation of RA* and hadoop initialisation time for 500*500,

1000*1000 and 2000*2000 grid maps

VI. CONCLUSION

In this paper, we implemented RA∗ using Giraph that

works on the top of Hadoop. We compared the efficiency

of the new version of RA∗ with a C++ implementation of

RA∗. Our objective was to assess the efficiency of Giraph

platform in solving robotics path planning algorithms in terms

of solution quality and real-time performance. Our results

showed that cloud computing techniques are not efficient

for the robot global path planning problem due to the non-

real time properties of Hadoop and the Giraph programming

concepts. Currently, we working towards investigating the

capabilities of other frameworks in solving this problem.

ACKNOWLEDGEMENT

This work is supported by Gaitech Robotics in China. It is

also supported by Robotics and Internet-of-Things (RIOTU)

Lab and Research and Initiative Center (RIC) of Prince Sultan

University, Saudi Arabia.

REFERENCES

[1] A. Ammar, H. Bennaceur, I. Châari, A. Koubâa, and M. Alajlan,
“Relaxed dijkstra and a* with linear complexity for robot path planning
problems in large-scale grid environments,” Soft Computing, vol. 20,
no. 10, pp. 4149–4171, 2016.

[2] I. Chaari, A. Koubaa, H. Bennaceur, A. Ammar, M. Alajlan, and
H. Youssef, “Design and performance analysis of global path planning
techniques for autonomous mobile robots in grid environments,” Inter-

national Journal of Advanced Robotic Systems, vol. 14, no. 2, pp. 1–15,
2017.

[3] R. chaari, F. Ellouze, A. Koubaa, B. Quershi, N. Pereira, and E. Youssef,
Habib an Tovar, “Cyber-physical systems clouds: A survey,” Computer

Networks, vol. 108, pp. 260–278, 2016.
[4] Giraph. [Online]. Available: http://giraph.apache.org/
[5] Apache hadoop. [Online]. Available: https://hadoop.apache.org/
[6] A. Koubaa and B. Quershi, “Dronetrack: Cloud-based real-time object

tracking using unmanned aerial vehicles,” IEEE Access, 2018.
[7] A. Koubaa, B. Quershi, M.-F. Sriti, Y. Javed, and E. Tovar, “A service-

oriented cloud-based management system for the internet-of-drones,” in
Autonomous Robot Systems and Competitions (ICARSC), 2017 IEEE

International Conference on. IEEE, 2017, pp. 329–335.
[8] M. Aurelio, B. Fagnani, and G. Lotz, “Dynamic graph computations

using parallel distributed computing solutions.” [Online]. Available:
http://www.marcolotz.com/wp-content/uploads/2014/05/LotzReport.pdf

[9] A. Ching, S. Edunov, M. Kabiljo, D. Logothetis, and S. Muthukrishnan,
“One trillion edges: Graph processing at facebook-scale,” Proceedings

of the VLDB Endowment, vol. 8, no. 12, pp. 1804–1815, 2015.
[10] M.-L. Lam and K.-Y. Lam, “Path planning as a service ppaas: Cloud-

based robotic path planning,” in IEEE International Conference on

Robotics and Biomimetics (ROBIO), 2014, pp. 1839–1844.
[11] The okapi project. [Online]. Available: https://github.com/grafos-

ml/okapi
[12] T. Kajdanowicz, W. Indyk, P. Kazienko, and J. Kukul, “Comparison of

the efficiency of mapreduce and bulk synchronous parallel approaches to
large network processing,” in Data Mining Workshops (ICDMW), 2012

IEEE 12th International Conference on. IEEE, 2012, pp. 218–225.
[13] M. F. Pace, “Bsp vs mapreduce,” in Proceedings of the International

Conference on Computational Science, vol. 9, 2012, p. 246255.
[14] S. Heidari, R. N. Calheiros, and R. Buyya, “igiraph: A cost-efficient

framework for processing large-scale graphs on public clouds,” in
Cluster, Cloud and Grid Computing (CCGrid), 2016 16th IEEE/ACM

International Symposium on. IEEE, 2016, pp. 301–310.
[15] W. C. M. H. C. W. A. in Graph Computation, “Jilong xue and zhi yang

and shian hou and yafei dai,” in 2015 IEEE International Conference

on Big Data (Big Data), 2015, pp. 154–163.
[16] J. Lu and A. Thomo, “An experimental evaluation of giraph and

graphchi,” in Advances in Social Networks Analysis and Mining

(ASONAM), 2016 IEEE/ACM International Conference on. IEEE, 2016,
pp. 993–996.

[17] M. M. Rathore, A. Ahmad, A. Paul, and G. Jeon, “Efficient graph-
oriented smart transportation using internet of things generated big data,”
in Signal-Image Technology & Internet-Based Systems (SITIS), 2015

11th International Conference on. IEEE, 2015, pp. 512–519.
[18] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,

and G. Czajkowski, “Pregel: a system for large-scale graph processing,”
in Proceedings of the 2010 ACM SIGMOD International Conference on

Management of data. ACM, 2010, pp. 135–146.
[19] Dreamhost. [Online]. Available: https://www.dreamhost.com/

