On the Optimization of Multiple Applications for Sensor Networks
Ref: VIKRAMG-THESIS Publication Date: 2014
On the Optimization of Multiple Applications for Sensor Networks
Ref: VIKRAMG-THESIS Publication Date: 2014Abstract:
Wireless Sensor Networks are an important example of networked embedded systems, and they
have a key role to play in the development and materialization of the concept of an Internet of Things.
Most current deployments of sensor networks are very application-specific and only target a particular
goal. This negatively impacts the cost-effectiveness of the network, thereby reducing the incentive
to deploy a sensing infrastructure in the first place. Multi-purpose sensor networks can overcome
these limitations, where they can be used for more than one application simultaneously. To promote
the role of wireless sensor networks as an infrastructure technology, support for multiple independent
applications is essential, such that different users can concurrently submit their applications to
accomplish diverse goals.
In this dissertation, we address various challenges that arise when the support of multiple applications
is enabled on a sensor network, mainly with respect to application development, installation
and execution. First, we propose a holistic programming framework called Nano-CF that is built on
top of the Nano-RK operating system that allows independent users to deploy applications at a network
level, and coordinates network activity. Then, we propose various approaches to reduce the
resource consumption at different levels in a sensor network. Most sensor networking applications
are designed for sampling one or more sensors, conduct signal processing on the sensed data, and
communicate this data with other devices in the network. With more than one such application executing
on the network, it is highly probable that some redundancies occur across applications. In this
work, we identify and eliminate these redundancies through a compile-time approach that identifies
the temporal overlap across the execution of the applications. Moreover, we augment the Nano-CF
framework with a hierarchical task-assignment scheme that selectively eliminates the redundancies
while simultaneously conforming to the resource constraints of the sensor node and the application
requirements. Finally, we propose a network-level scheme called Network-Harmonized Scheduling that
coordinates the packet transmissions in a simple and distributed way such that the radio can be used
efficiently in a multi-hop network with multiple applications releasing packets periodically
Document:
PhD Thesis, Carnegie Mellon University and Faculty of Engineering, University of Porto.
Pittsburgh.
Record Date: 24, Oct, 2014