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Abstract—TFlit-level preemptions via virtual channels have
been proposed as one viable method to implement priority-
preemptive arbitration policies in NoC routers, and integrate
NoCs in the hard real-time domain. In recent years, researchers
have explored several aspects of priority-preemptive NoCs, such
as different arbitration techniques, different priority assignment
methods (where applicable) and different workload mapping
approaches, all with the common objective to use interconnect
mediums more efficiently. Yet, the impact of different routing
techniques on such a model is still an unexplored topic. Motivated
by this reality, in this work we study the effects of routing
flexibility on wormhole-switched priority-preemptive NoCs.

I. INTRODUCTION

Slowly but steadily, many-core platforms pave their path
into the real-time embedded domain. Traditionally, in the real-
time analysis of many-cores, the emphasis is on one particular
type of shared resources — processing elements. Yet, as the
number of processing elements integrated within many-cores
continues to grow every day, the contentions for other shared
resources, such as the interconnect medium, become more
apparent. Thus, in order to perform the end-to-end worst-case
analysis of applications deployed upon a many-core platform,
it is no longer sufficient to take into account only computation
requirements, but delays of the communication and memory
traffic have to be considered as well. This implies that the real-
time analysis of interconnects is becoming an essential part of
the real-time analysis of many-cores.

The Network-on-Chip architecture [1] (NoC) is the most
prevalent choice for the interconnect medium in nowadays
available many-cores (e.g. [2]-[4]), due to it’s scalability po-
tential [5]. Typically, the data transfer over NoCs is performed
with the wormhole switching technique [6]. Some wormhole-
switched NoCs (e.g. [2]) have virtual channels [7], [8], which
means that data of multiple traffic flows can be simultaneously
buffered in a single router port. This feature allows to perform
preemptions among traffic flows [9] and implement priority-
preemptive arbitration policies [10], which is a promising
step towards deriving hard real-time guarantees for NoCs, and
subsequently integrating them in the hard real-time domain
(the main topic of interest in this work).
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Fig. 1: Motivational example of 3 traffic flows

The majority of studies on wormhole-switched priority-
preemptive NoCs have a common assumption that the deter-
ministic dimension-ordered X-Y routing policy is applied. This
technique is very popular among hardware vendors (e.g. [2],
[4]), due to a relatively easy implementation and a deadlock-
free property [11]. Yet, the X-Y routing technique has some
disadvantages as well. For example, it has been demonstrated
that this mechanism is not very efficient for memory responses
on platforms where memory controllers are accessed from the
topmost and the bottommost rows of tiles [12], [13]. Another
disadvantage is demonstrated with an example from Figure 1.
Consider a 2-D mesh NoC and three traffic flows ¢1, ¢o and
¢3, with fixed sources and destinations. Let the no-load latency
and the deadline of each traffic flow be 3 and 5 time units,
respectively. Assuming the X-Y routing policy (Figure la),
due to contentions, some flows will miss deadlines. Since
meeting all deadlines is often an absolute imperative in the
hard real-time domain, then it might be necessary to opt for a
platform with sufficiently better hardware characteristics (e.g.
higher router frequencies and/or link bandwidths), such that
flow traversal times would be reduced to the extent that all
deadlines are met. This solution could be very expensive.

Now, consider Figure 1b. Notice that each flow still travels
across the same number of routers, thus the traversal latencies
remain as in the previous case. But unlike before, in this
case there are no contentions, and hence no missed deadlines.
This implies that if we could (i) thoughtfully derive flow-
paths, such that the inter-flow interference is minimised, and
(ii) guarantee the conservation of the deadlock-free property,
we could exploit the available NoC resources more efficiently.
The benefits are twofold. First, significant design-cost reduc-
tions could be achieved by deploying the same workload on
a (potentially cheaper) platform with more modest physical



characteristics. Second, spare capacities could be used to
accommodate additional workload, so as to enhance existing
functionalities, or implement new, more sophisticated ones.

Contribution: A heuristic-based method for deriving
static paths of traffic flows at design-time is proposed. When
compared with conventional dimension-ordered routing algo-
rithms, our approach succeeds to avoid missed deadlines for
a significantly higher fraction of analysed flow-sets, and at
the same time conserves the deadlock-free property (Exper-
iment 1). A slight decrease in hardware requirements (the
number of needed virtual channels) is also achieved (Exper-
iment 2). Moreover, the proposed technique finds optimal
routes in 23% of the cases, while in more than half of the cases
it underperforms by at most 10% with respect to optimal routes
(Experiments 3-4). The method is computationally efficient
and scalable (Experiment 5).

II. RELATED WORK

In this section, we describe only studies related to deriving
real-time guarantees for priority-preemptive NoCs. Song et
al. [9] proposed to use virtual channels as a means to im-
plement preemptions among traffic flows. Shi and Burns [10]
further developed that idea, made two additional assumptions
(per-traffic-flow distinctive priorities, and per-priority virtual
channels), and proposed the worst-case analysis for wormhole-
switched priority-preemptive NoCs with fixed priorities and
constrained deadlines. Then, Shi et al. [14] extended the model
so as to make it applicable to flow-sets with arbitrary deadlines,
while Nikoli¢ et al. [15] reduced hardware requirements of this
model. Also working on this topic, Shi and Burns [16] and
Liu et al. [17] derived methods for priority assignment, while
Nikoli¢ and Petters [18] introduced a novel arbitration policy
and the accompanying worst-case analysis for flows with
dynamic priorities. Kashif et al. [19] proposed a stage level
analysis which performs better than the traditional analysis,
but requires sufficiently big buffers to store preempted flows.

Researchers also used different mapping strategies, with
the main objective to accommodate more traffic flows on
priority-preemptive NoCs, without missing deadlines. Shi and
Burns [20] perform a simple task swapping, Mesidis and Indru-
siak [21] and Racu and Indrusiak [22] use generic algorithms,
while Nikoli¢ et al. [15] employ the simulated annealing
metaheuristic. Sayuti and Indrusiak [23] studied the mapping
process, with an emphasis on the NoC power consumption.

Assuming the same type of NoC, Indrusiak [24] proposed
an end-to-end schedulability analysis for a fully-partitioned
many-core system, while Nikoli¢ et al. [25] derived a com-
munication analysis for Limited Migrative Model. Burns et
al. [26] and Indrusiak et al. [27] demonstrated that priority-
preemptive NoCs can also be used in the mixed-criticality
domain, which is the area that currently attracts a lot of
attention from the real-time community.

The aforementioned studies assume static routing, and the
X-Y routing policy was used in experiments. Yet, as mentioned
in Section I, that approach has some limitations. Motivated by
those facts, in this work we focus on deriving flow-paths that
do not necessarily conform to the rules of the said policy, and
investigate to what extent can such an approach contribute to
a more efficient use of NoCs in the hard real-time domain.

III. SYSTEM MODEL
A. Platform

The platform under consideration 6 is a many-core system
with a 2-D mesh NoC interconnect medium. The NoC consists
of m x n identical routers (like illustrated in Figure 1). Each
pair of adjacent routers is connected with two unidirectional
links, and all links have the same physical characteristics.
The data transfer employs the wormhole switching mechanism
with the credit-based flow control. With this technique, the
data is, prior to sending, divided into small elements of fixed
size called flits. All flits that constitute one traffic packet
are sequentially injected into a NoC, and then travel to their
destination in a pipeline manner.

A virtual channel (VC) is a buffer dedicated to a specific
traffic flow in a specific port. As mentioned before, VCs can
be used as an infrastructure to implement preemptions among
flows. For example, when two flows contend for a common
link, one will be granted the permission to progress (the higher-
priority one), while the other one will be stored inside a VC,
until the NoC resources of interest become available for its
traversal. As in all related works (Section II), we assume that
the number of VCs is at least equal to the maximum number
of contentions for any port [15], which guarantees that each
flow will have an available VC within each router along its
path. This assumption is realistic, because on a NoC with a
10 x 10 2-D mesh, the workload of 400 flows requires on
average only 10 VCs [15]. Moreover, we assume that each
VC can store only a single flit.

Additionally, we assume that the routing of flows is not
conforming to some global policy (e.g. X-Y). In fact, each flow
will have its static path derived at design-time (the contribution
of this work) and the path information will be stored inside the
header flit. Once a packet is released, intermediate routers will
inspect its header flit, and route the packet based on the given
information. Some of the existing platforms already support
this type of routing, e.g. [3]. This topic will be revisited in
Section VI-A.

B. Workload

The workload is modelled as a sporadic traffic flow-set F,
which is a collection of z flows {¢1, ..., ¢, }. Each flow ¢; is
characterised by a source router pg..(¢;), a destination router
Pdst(¢;), a minimum inter-arrival period T'(¢;), a constrained
deadline D(¢;) < T(¢;), and a unique fixed priority P(¢;)".
A flow ¢; travels across the minimal distance between ps,.(¢;)
and pgst(¢;), also known as the Manhattan distance, formally
introduced in Section VI-A. The term C(¢;) denotes the no-
load latency of ¢; (no contentions), in the literature also
referred to as the basic network latency. Jg(¢;) denotes
the release jitter, which is the maximum deviation of two
successive packets of ¢, released from their period T'(¢;).

During each inter-arrival period, a flow releases exactly
one packet. If it can be analytically proven that each packet
of a flow can complete the transfer before its deadline, even

In this work, we assume that priorities are not given a priori, as a part
of the problem instance, but instead, once all flow-paths are derived, some
technique for priority assignment (e.g. [16], [17]) will be applied. Note, that
our approach is not tied to any particular method.



in the worst-case conditions, then that flow is considered
schedulable. Let R(¢;) denote the worst-case traversal time
(WCTT) of packets of ¢;. Then R(¢;) < D(¢;) is both a
sufficient and necessary condition for ¢; to be schedulable. If
all flows of the flow-set are schedulable, the flow-set itself is
schedulable.

IV. PROBLEM FORMULATION

Given the platform 6, the flow-set F, and a technique for
priority assignment (e.g. [16], [17]), for each flow ¢, € F
derive at design-time a static path m(¢;), such that F is
schedulable. A path 7w(¢;) denotes a set of resources (NoC
links of 6) traversed by ¢;, from ps.c(d;) t0 past(@:).

V. BACKGROUND AND PRELIMINARIES

In this section, we cover the real-time analysis of
wormbhole-switched priority-preemptive NoCs with fixed pri-
orities.

Let Fp(¢;) be a set of flows that can preempt ¢; (share
some NoC links with ¢; and have higher priorities). Formally:

Vo; € F | P(¢;) > P(¢i) Am(¢;) Nm(ei) # 0= ¢; € Fp(di)
The WCTT of ¢; is computed by solving Equation 1 [10].

Ro) = Ce+ Y. [T O] o)
V6, €FD () !

ey

In Equation 1, the term J;(¢;) is the interference jitter,
and it is computed by solving Equation 2.
N _ JR(5) = C(¢;), if 3¢k € Fp(d;) | dr & Fp(9i)
Ji(¢;) = 0

otherwise

2

That is, the interference jitter has a non-zero value only
if there exists a higher-priority flow ¢, which is not able to
preempt the flow under analysis ¢;, but is able to preempt
some other flow ¢;, which can preempt ¢;. This effect is also
known as the indirect interference. It is evident that in Figure 1
there is no indirect interference, because there is no flow which
satisfies the condition of Equation 2. However, that may not be
the case with the example from Figure 2. Let us consider that
example, and let flow indexes also be the priorities. Then, ¢2
suffers indirect interference from ¢4, which is manifested in
its WCTT as an interference jitter of ¢s. Note, that in order to
compute the WCTT of ¢;, it is necessary to have the WCTTs
already computed for all flows from Fp(¢;). Also note, that
the priority order among flows from Fp(¢;) does matter.

VI. PROPOSED APPROACH

The proposed path derivation method is presented as fol-
lows. First, we estimate the search space of the addressed
problem, and justify the need for the heuristic-based approach
(Section VI-A). Then, we introduce the metric for the path
derivation (Section VI-B), and demonstrate how it is used to
derive a path of a single flow (Section VI-C). Finally, we show
how to derive paths of an entire flow-set (Section VI-D).

A. Search Space Reduction via Minimal Paths

In this section, we estimate the search space of the path
derivation problem, so as to asses whether an exhaustive search
is a viable option. First, we formally introduce the concept of
the minimal path.

Definition 1 (Minimal path). A minimal path of the flow
oi, between the source router ps..(¢;) and the destination
router pasi(¢;), with the coordinates (X gpc(;); Ysre(0:)], and
[Tast (0:); Yast(6:)], respectively, is any continuous path which
involves | spc(9i) = Tdst (D) |4 Ysre (i) —ydse (¢i) |41 routers,
of which psyc(¢;) is the first, and past(d;) is the last.

In this work, we impose a constraint that each derived path
must be minimal. Note that some flows may have multiple
minimal paths (e.g. Figure 1). Notice that, by design, the X-
Y routing method derives minimal paths. The benefits when
considering only minimal paths are as follows:

e Constant no-load latencies: Regardless of selected
paths, no-load latencies of all flows are constant, i.e. C(¢;) =
const,V¢; € JF. Therefore, no recalculations of no-load
latencies are necessary when deriving or modifying flow-paths.

o Solution space reduction: The solution space is reduced
to more promising candidates. That is, if a flow is unschedula-
ble with any of its minimal paths, it is unlikely that it will be
schedulable with any other path. We back up this claim with
the fact that non-minimal paths involve more shared resources,
and therefore it is more likely that a flow will face more
interference on a non-minimal path, than on a minimal one.

e Path can be stored in the header as a set of bits:
Assuming the X-Y routing policy, routing decisions are based
on a destination router, whose information is stored in a
header flit. Yet, in our approach it is necessary to store a
path information as well. When considering minimal paths
only, a path can be represented as a set of bits, with a bit
per router, except the last one, where it is not needed. That is,
solely by analysing the information regarding the destination,
the current router can deduce the horizontal and/or vertical
direction in which the flow has to progress. The only remaining
thing is to decide which one to chose. So, if we establish
a convention that “0” means a horizontal advancement, and
“1” means a vertical progress, then the path of a flow can be
described as a set of bits. With this convention, the path of ¢
from Figure la is {0,0,0,1,1,1}, while the path of ¢; from
Figure 1bis {1,1,0,1,0,0}. Thus, all routing information can
be stored in a header flit, and each traversed router will route a
packet by (i) considering the final destination, (ii) interpreting
the corresponding bit, and (iii) performing a logical shift
of the path information inside the header (so as to set the
corresponding bit for the next router). On Kalray [3], traffic is
routed in a similar way?.

e Minimal paths cannot cause deadlocks: Lemma 1
proves that a flow with a minimal path cannot put itself in
a deadlock, while Theorem 1 proves that a flow-set with all
minimal paths cannot experience a deadlock.

Lemma 1. On a wormhole-switched priority-preemptive NoC,
a flow ¢;, with a minimal path w(¢;), cannot deadlock itself.

20n Kalray [3], two bits are used per router, and each of the four progress
directions has its own explicit code (00,01, 10,11).
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Fig. 2: Example of flows with minimal paths

Proof: Proven by contradiction. Assume the opposite, that
the flow ¢; can deadlock itself. This implies that ¢; competes
with itself for some NoC resource, e.g. a link A. In order to
do that, ¢; has to traverse A twice, and hence \ exists twice in
m(¢;). This means that 7(¢;) is not minimal, which contradicts
the initial assumption. A contradiction has been reached. H

Theorem 1. Assuming a priority-preemptive NoC with the
wormhole-switching, a flow-set with all minimal paths cannot
experience a deadlock.

Proof: Proven by contradiction. Assume the opposite, that
a set of interfering flows reached a deadlock. Let ¢; be the flow
with the lowest priority. By the initial assumption, it cannot
progress because it is contending with some higher-priority
flow ¢;. Also, ¢; cannot progress due to some higher-priority
flow ¢y,. Let us continue this reasoning, until we encounter ¢,,,
which is the highest priority flow involved in a deadlock (e.g.
if we assume that the flows from Figure 2 reached a deadlock,
and that flow indexes are also the respective priorities, then
¢s would be the flow with the highest priority). By the
initial deadlock assumption, ¢,, cannot progress. Since there
exists no higher-priority flow which might prevent its progress,
this means that ¢,, put itself in a deadlock. This contradicts
Lemma 1. A contradiction has been reached. [ |

After narrowing a set of possible paths to minimal only,
and after justifying such an approach, let us estimate the size of
the reduced solution space. This will give us a good indication
whether it is practical to perform an exhaustive enumeration.
Let I1(¢;) be a set of all possible minimal paths of a given flow
¢;. Theorem 2 computes the number of elements of TI(¢;).

Theorem 2. Let ¢; be a flow between the source router
psrc(Pi) and the destination router pysi(¢p;), with the coor-

dinates [Tsrc(Pi); Ysre(Pi)], and [Tasi(@i); yasi(@i)], respec-
tively. Moreover, let: (i) h; be the horizontal distance, (ii) v; be
the vertical distance, and (iii) s; be the minimal (Manhattan)
distance between pg..(¢;) and pasi (i)

hi = |@sre(¢i) — Tase (i)
Vi = |ysrc(¢i) — Ydst ((f’z)‘

$i =hi +vi = |xsrc(¢i) - xdst(¢i)| + ‘ysrc((ﬁi) - ydst(¢i)|

The number of minimal paths of ¢;, denoted by E(¢;), is:

. . |
E(¢s) = (Z) = (j) = —hif? o 3)

Fig. 3: Minimal paths between diagonal routers on 3 x 3 mesh

Proof: Proven directly. Recall the proposed convention
for storing the path information into the header flit as a set of
bits (“0” for a horizontal advancement, and “1” for a vertical
progress). A bit is needed for each traversed router, except the
last one (which is the destination), thus the total number of
bits needed to describe an entire path is s;. Regardless of the
selected path, the flow must progress h; times horizontally,
and v; times vertically, which implies that of those s; bits,
h; must be zeros and v; must be ones. Therefore, the problem
becomes to find the total number of different s;-bit-long binary
sequences with h; zeros and v; ones. Note that the relative
order of the same-value bits does not matter, and therefore
the total number of possible solutions is equal to the number
of permutations of all s; bits (s;!), divided by the number of
permutations of ones (h;!) and the number of permutations of
zeros (v;!). That is:

N . .
s =5t = ()= (3)
|

This can be easily verified with an illustrative example
given in Figure 3, where the source router of the flow ¢; is
in the bottom-left corner, and the destination router is in the
top-right corner of a 3 x 3 mesh NoC. Let us compute the
total number of possible minimal paths of ¢;. In this example,
s; =4, h; = 2 and v; = 2. Therefore:

o= ({ - st

And indeed, from Figure 3 it is visible that the total number
of possible minimal paths of ¢; is 6.

The parameter E(¢;) we call the elasticity property of ¢;.
Notice two things: (i) flows which connect diagonal corners
of the grid have the biggest elasticity property and (ii) flows
which connect routers from the same row or column have the
smallest elasticity property (equal to one). Indeed, for a flow
¢; from the latter category it holds that h; = 0V v; =0 =
E(¢;) = 1, and hence ¢; has only a single minimal path.
The elasticity property will be used during the path derivation
process (revisited in Section VI-D).

Now we can estimate the search space of the problem
formulated in Section IV, with an additional restriction that
paths must be minimal. Let X (F) be the size of the solution
space. Then, X (F) is computed by solving Equation 4.

X(F) =[] E@) )

Vo, eF



Despite the search space reduction (only minimal paths are
considered), an exhaustive search for the optimal solution is,
in most cases, still impractical. For example, consider only
15 flows on a 8 x 8 NoC, and assume that each flow has
the elasticity property equal to 10, which is a reasonable
assumption for the NoC of that size. Then, X (F) = 10'°, and
we believe that this result justifies a heuristic-based approach
for solving the path derivation problem. Therefore, in the
next section we introduce a new concept, which is used as
a heuristic function in our method.

B. Indicative Traversal Time (ITT)

Although in the end it will be necessary to compute the
WCTT of each flow, so as to validate that the flow-set is indeed
schedulable with derived paths, using the WCTT analysis
(Equation 1) during the path derivation phase may not be the
most efficient approach. This claim is supported by the fact that
in order to compute the WCTT of a flow, it is necessary to
already have computed WCTTs of all higher-priority directly
interfering flows. In other words, the analysis holds only for
given paths and only for a given priority ordering among flows
(recall Section V). This implies that each time the WCTT
analysis is applied, only an individual candidate, or a small
subset of related candidates, of an entire solution space is
assessed.

Given the nature of the problem and the size of the search
space, a more efficient approach would be to apply some
generic metric which allows to systematically asses classes
of candidates (potential solutions), and in that way converge
towards a set of promising ones. To that aim, we introduce
the indicative traversal time (ITT). Before we explain how to
compute the ITT of a given flow, let us define the set of flows
Fa(pi), which contains all flows that share the path with the
analysed flow ¢;, regardless of their priorities. Formally:

Voj € Flj#inm(d;) Nm(di) # 0= ¢5 € Faldi)

The flow ¢; can contend with flows from F4(¢;). Which
of those can preempt ¢;, and which can be preempted by it,
depends on the priority assignment, and is irrelevant at this
stage. The ITT of ¢; is computed by solving Equation 5.

Jr(¢;) + R*(¢s)

R (¢:) =C(¢)+ Y [ T(;)

Vo EFa(di)

|-c) ©

Notice the similarities between Equation 5 and Equation 1.
In fact, there are only two differences between the WCTT and
ITT. First, the ITT considers all contending flows, regardless of
their priorities, whereas WCTT takes into account only higher-
priority contending flows. Second, Equation 5 does not have an
interference jitter component, and the ITT of the analysed flow
does not depend on the WCTT, nor the ITT of other flows.

There are several benefits of using the ITT:

e Easy to compute: As already mentioned, the ITT does
not require its components to be pre-computed, but only
depends on values (constants), which are all given as inputs.

e Generic: The ITT does not depend on the priority
ordering among traffic flows, but only on their paths.

n
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Fig. 4: Example of flows to explain the process of finding the
path with the smallest ITT for the flow ¢4 from p; to ps

Fig. 5: Direct acyclic graph for Figure 4

e Good indication: The ITT gives a good indication about
the level of contention among flows on the path of the analysed
flow, where a small value means that a path is low utilised.

The intuition behind our approach is to use the ITT
metric to quickly compare multiple paths (where exist), and
for each flow select the one which would most likely lead
to a schedulable solution, if one exists. It is a reasonable
assumption that the most promising path is the one with the
smallest ITT, and our approach is developed around this idea.
Note, that from the ITT nothing can be inferred about the
WCTT, nor the schedulability of the analysed flow, simply
because the ITT is oblivious to priorities. The sole purpose
of this metric is to help derive a path of each flow, so that
after employing some priority assignment strategy (e.g. [16],
[17]), a flow-set is likely to be rendered schedulable. In the
next section, we describe the process of finding a path with
the smallest ITT.

C. Finding Path with the Smallest ITT

The process is formulated with Algorithm 1. We also use
a small demonstrative example of flows (Figure 4), so as to
help the reader to better understand the proposed method.

Consider the set of flows from Figure 4, and let ¢4
from p; to pg be the flow for which we want to find a path
with the smallest ITT. First, a direct acyclic graph (DAG)
is created: routers are represented as vertices, and links are
represented as edges. The weight of an edge is a set of
flows that traverse it. Note that the entire NoC needs not be
considered, but only (i) routers whose x- and y-coordinates are
between [min{grc(¢i), Tast(Pi)}s mar{Tre(di), Tasi(di)}]
and [min{ysrc(qsi)v Ydst (¢Z)}’ max{ysrc((bi)a Ydst (¢1)H 4
(ii) horizontal links in the direction from Z g..(®;) to Zgst (i),
and (iii) vertical links in the direction from yg..(¢;) to
Yast(¢;). The justification is that minimal paths traverse only
these routers and only these links. A corresponding DAG for
the example from Figure 4 is given in Figure 5.

After constructing a DAG (line 1 of Algorithm 1), a single
path is created and added to the set of all paths (lines 2 — 3).
A path contains only a source router, and its ITT is set to the
no-load latency of the flow — C(¢;). In order to control the
complexity of the approach, the variable steps is introduced,



Algorithm 1 findPathWithSmallestITT (0, F, ¢;)

Input: platform 6, flow-set F, analysed flow ¢;
Parameters: maximum number of allowed steps max_steps
Output: path of ¢; with the smallest ITT

1: dag.Create(0, F, ¢;); Il create DAG for ¢;

2: paths.Initialise(); // create empty set of paths

3: paths.Add(path(psre(pi), C(¢:))); / first path only psre(e;)
4: steps <— 1; // initialise number of steps

5: while (true) do

6: // find and remove path with the smallest ITT

7: minPath < paths.GetMinPath();

8: if (minPath.dst = past(¢;)) then

9: // path with the smallest ITT has been found
10: return minPath;

11:  end if
12:  if (steps = max_steps) then

13: // maximum number of steps reached
14: currPath < paths.Get MinPathWithDst(past(¢:));
15: if (currPath # null) then

16: // path found, but it may not have the smallest ITT
17: return currPath;

18: else

19: /I past(¢i) not reached, so return X-Y routed path
20: return XY path(¢;);
21: end if
22:  end if
23:  newPaths < minPath.Develop(); // develop paths
24:  for each (newPath in newPaths) do
25: newPath.ComputeITT();
26: paths.Add(newPath); // add new paths to the list
27:  end for

28: steps <— steps + 1; // increment number of steps
29: end while

and given an initial value of 1 (line 4). Then, the path with the
smallest ITT is removed from the list (line 7). If its destination
is the same as the destination of the analysed flow, then the
path with the smallest ITT has been found (lines 8 — 11).
Otherwise, it is checked if the maximum number of steps
is exceeded, where max_steps is an input parameter which
controls how many search iterations (steps) are allowed. A
higher value of this parameter means that more computational
resources can be spent in the searching phase. If the limit on
the number of steps is exceeded, and the currently selected
path with the smallest ITT does not have the same destination
as the analysed flow, it is checked if some other path exists
in the paths set, such that it’s destination is the same as
that of the analysed flow. Note, that for such a path, if it
exists, cannot be guaranteed that it has the smallest ITT among
all minimal paths. However, since the search process cannot
continue further (max_steps reached), that path is returned
(lines 15 — 17). Otherwise, if such a path does not exist, an
X-Y-routed path is returned (lines 18 — 21).

If the number of steps did not exceed the limit, a path
with the smallest ITT is developed in all possible directions,
and new paths are created (line 23). In our example, an initial
path {p1} is developed into: {p1, p2} and {p1, p5}. Then, for
each of the newly created paths, the ITT is computed?, and the
path is added to the list of all paths (lines 24 — 27). Finally,
the number of steps is incremented (line 28).

3The no-load latency C/(¢;) is used in the ITT computation of each analysed
path, regardless of its size (e.g. see the first step of Table II).

Assuming the flow parameters given in Table I for our
example illustrated in Figures 4-5, the path of the flow ¢4
with the smallest ITT is {p1, p2, ps, p7, ps }, its ITT is 20, and
it is found in 7 steps. The step-by-step computation process is
given in Table II. In each step, a path with the smallest ITT
(the one to be developed) is emphasised with a gray colour.

TABLE I: Flow parameters for Figure 4

Flow | C | Jr D T
b1 5 0 100 100
b2 10 0 100 100
@3 20 0 100 100
b4 10 0 100 100

TABLE II: Process of finding the path of the flow ¢4 from p;
to ps (Figure 4, and Table I) with the smallest ITT value

Step Path ITT
1 {p1} 10
9 {p1, p2} 20

{p1, p5} 15
3 {p1, p2} 20
{p1, p5, ps} 15
4 {p1, p2} 20
{p1, p5. ps. p7} 25
{p1, p2, p3} 40
5 {p1. p2. pe} 20
{p1, p5. ps, p7} 25
{p1, p2, p3} 40
6 {p1, p2, pe, p7} 20
{p1. p5, ps, p7} 25
{p1, p2, p3} 40

7
{p1, p5, ps, p7} 25

For clarity of the example, paths are represented as sets
of routers, whereas paths are usually represented as sets of
traversed links. The link representation is more convenient,
because having the common router is only a necessary con-
dition for the contention between two flows, while having a
common link is both a necessary and sufficient condition.

A reader may notice that the proposed technique is similar
to Dijkstra’s algorithm [28] for finding the shortest path
between two graph nodes. Yet, unlike Dijkstra’s algorithm,
which can be applied to weighted DAGs with the complexity
of O(E+ V) (E being the number of edges, and V' being the
number of vertices), our approach may require, in the worst-
case, to investigate all possible paths. The difference comes
from the fact that, in Dijkstra’s algorithm, a local minimum
will always lead to the global minimum, whereas that is not the
case for our problem. We illustrate this with an example from
Figure 5 and the corresponding ITT computation process from
Table II. Notice that in step 3 there is a path {p1, p5, ps}, while
in step 5 there is a path {p1, p2, ps }. Both paths lead to pg, but
with different ITTs, which is in the former case 15, and in the
latter 20. However, despite having a smaller ITT, the former
path cannot suppress the latter one, because it may happen that
the latter path eventually leads to the one with the smallest ITT.
And in fact that happens in our example, because the path with
the smallest ITT is {p1, p2, ps, P7, Ps}- S0, none of the paths



can be discarded until a path is found, such that (i) it has
the desired destination, and (ii) it has the smallest ITT among
all currently investigated paths. And due to these reasons, we
introduced the variable max_steps, which represents a means
to control the algorithm complexity. In Section VII, we will
investigate its usefulness.

D. Path Derivation

The process of deriving flow-paths is given in Algorithm 2.
Recall the elasticity property, which represents the number
of possible minimal paths of a given flow. First, by solving
Equation 3 for each flow, we compute their respective elasticity
properties (line 2). Then, we initialize a path of each flow to an
empty set (line 3). We mentioned in Section VI-A that flows
whose source and destination routers are in the same row or
column have a single minimal path. All single-path flows are
added to the set spFlows (lines 6 — 8). Remaining flows are
added to the set of multi-path flows mpFlows (lines 4 — 5).

Each flow from spFlows is assigned its only minimal path
(lines 10 — 12). In order to exploit the elasticity property
of multi-path flows more efficiently, we sort them by the
parameter F, non-decreasingly (line 13), and treat them in that
order. The intuition behind this approach is to assign paths first
to flows with fewer choices, and thus allow flows which have
numerous options to select their respective paths later, when
the contentions are more apparent. Similar to Algorithm 1,
there is a parameter which controls the algorithm complexity,
called LIM. This parameter serves as an upper bound on the
maximum number of iterative steps that can be performed
when deriving paths. Now, for each flow from mpFlows, a
path which was derived in the previous iteration (or an empty
path, if it is the first iteration) is stored as an old path (line
16). Then, a new path is derived by invoking Algorithm 1.
This is repeated until all flows from mpFlows are considered.
If paths of all flows are the same for two consecutive iterations,
the algorithm stops (lines 19 — 21), and a flow-set is rendered
unschedulable (line 27). Otherwise, a flow-set passes through
a priority assignment phase (line 22), by using some priority
assignment method (e.g. [16], [17]).

Now, the flow-set is tested for schedulability. If the out-
come is positive, the algorithm returns true (lines 23 — 25).
Otherwise, a new iteration begins. In the new iteration, all
flows from mpFlows have another chance to chose their paths,
but unlike in the first iteration, this time all flows except the
currently analysed one will already have their respective paths
derived. This allows to re-align flows on the NoC, and achieve
even better arrangements than in the previous iteration(s).
Then, if a priority assignment can be performed with new
paths, such that a flow-set is schedulable, the algorithm is
terminated with the positive reply (lines 23 — 25). Otherwise,
if new paths are the same as in the previous iteration when
a flow-set was unschedulable, then no further improvements
can be made, and the algorithm terminates with a negative
reply (lines 19 — 21 and 27). Finally, if a flow-set cannot be
made schedulable even after LIM number of iterations, the
algorithm terminates with a negative reply (lines 14 and 27).

VII. EXPERIMENTAL EVALUATIONS

In this section, we show the results of the experimental
evaluation. The emphasis is on 4 aspects: (i) schedulability

Algorithm 2 assignSchedulable Paths AndPriorities(6, F)

Input: platform 6, flow-set F

Parameters: max. number of allowed iterations LIM

Output: info. whether flow-set is schedulable or not
for each (¢; in F) do

1:

2 E(¢;) + CompElasticity(¢;); // Equation 3

3 W((Z)L) < (; // Set empty paths for all flows

4:  if (E(¢;) > 1) then

5: mpFlows.Add(¢;); / added to set of multi-path flows
6 else

7 spFlows.Add(¢;); // added to set of single-path flows
8 end if

9: end for

10: for each (¢; in spFlows) do

11:  7(¢ps) < FindMinPath(¢;); /I ¢; has one minimal path
12: end for

13: mpFlows.Sort(E 1); /I sort by E, non-decreasingly

14: for (i « 0;i < LIM;i ¢ i+ 1) do

15:  for each (¢; in mpFlows) do

16: Totd(pi) <= m(i);

17: m(pi) < findPathWithSmallestITT (0, F, ¢;); /I in-
voke Algorithm 1
18:  end for

19:  if (B¢ € spFlows | wo1a(¢pi) # w(¢:)) then
20: break;

21:  end if

22:  PriorityAssignment(F);

23:  if (IsSchedulable(F) then

24: return true;
25: end if
26: end for

27: return false;

guarantees (Experiment 1), (ii) hardware requirements (Ex-
periment 2), (iii) the method efficiency (Experiments 3-4),
and (iv) the computational aspects and scalability (Experi-
ment 5). The following approaches are compared:

e our method, as presented in Section VI-D.

e the same approach, with the only difference that in line
17 of Algorithm 2, instead of invoking Algorithm 1 to find a
path with the smallest ITT, a classical Dijkstra’s shortest path
algorithm is used. A weight of each edge e; is interpreted as a
cumulative utilisation of all flows traversing a corresponding
link \;, ie. w(e;) = > 9:)

T(¢;)*
V(Zﬁje]:‘)\iEﬂ'((bj) (¢ )

e a method where paths conform to the X-Y routing policy.
e a method where paths conform to the Y-X routing policy.

To make the evaluation fair, for all approaches we use the
same priority assignment method — a heuristic function H6
(Equation 11 from the work of Shi and Burns [16]), without
backtracking*. We opt for this method because it is very fast
and efficient, and hence gives us the opportunity to devote the
most of the experimentation time to the most important aspect
of this work — the assessment of routing techniques.

Evaluation Parameters

The analysis parameters are given in Table III. An asterisk
sign denotes a randomly generated value (uniform distribu-

4Performing evaluations where our method exploits more time-consuming
priority assignment schemes (e.g. [16], [17]) is a potential future work.



120,

1 iteration
(2 iterations
@5 iterations
10 iterations
W20 iterations
W50 iterations
100 iterations
W200 iterations

901

©

=]
T
1

70 - - - 4

Am .,

6

=

5

=}

ST improvement (in %)
B
o

|
50 100 150 200
Flow-set size

Fig. 6: ST improvements our over best{XY,Y X}

tion). The no-load latencies (C's) are obtained, from platform
characteristics and flow sizes, in the same way as in the studies
of Shi and Burns [10] and Nikoli¢ and Petters [18].

TABLE III: Analysis parameters

NoC topology 2-D mesh
Router frequency 2GHz
Router latency + link latency 3 + 1 cycles
Link width = flit size 4B
Flow size [1 - 128]* KB
Flow periods [20 - 100]* ps
maz_steps for Algorithm 1 | max{100, 10% - E(¢;)}

Experiment 1: Schedulability Guarantees

The comparison of the approaches is performed in the
form of a sensitivity analysis. Assuming that the method, the
platform and the flow-set are already selected, the flow-set is
first tested for schedulability with the initial flow sizes. If it is
schedulable, the sizes of all flows are uniformly increased until
the flow-set becomes unschedulable. If it is unschedulable, the
sizes of all flows are uniformly decreased, until the flow-set
becomes schedulable. The process is repeated via a binary
search, until a threshold is found. We term that value the
schedulability threshold ST. A bigger ST implies that a
method is more efficient.

In this experiment, we focus on the schedulability guar-
antees, so we compare ST's in the following way. Let ST}
and ST, be obtained for a given platform and a given flow-
set with two different approaches, and let STy > ST5. Then,
the improvement of the former method over the latter one is

computed as follows: imp(STy) = Mg;TfTQ -100%.

Assuming an 8 x 8 NoC, we create 200 flow-sets with
50 flows each. Source and destination routers are randomly
chosen. For each flow-set, we obtain and compare ST's of
all 4 approaches (the vertical axis in Figure 6)°. In the first
two approaches, the parameter LIM, which represents the
maximum number of iterations of Algorithm 2, is additionally

SIn Figures 6-10, the box-edges represent the 25" percentile (q1) and the
75" percentile (g3), while every data input more than an interquartile range
away from the box (i.e. less than g1 — (g3 —q1 ), or greater than g3+ (g3 —q1))
is considered an outlier.
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varied (the legend in Figure 6). This is repeated for flow-sets
with 100, 150 and 200 flows (the horizontal axis in Figure 6).

Our method with Dijkstra’s shortest path algorithm ex-
hibits a significantly worse performance than the other 3
methods, and is, therefore, omitted from Figure 6 and the
remaining experiments. This finding can be explained with
the fact that although the algorithm is finding paths with the
smallest cumulative utilisation, and hence minimising the per-
link contentions, it is at the same time increasing the total
number of per-path contentions. Thus, on average, each flow
is contending with more flows then in any other approach. This
has a very negative effect on Equation 1.

For better clarity, in Figure 6 we plot the improvements
of our approach (Algorithm 2) over the better of the two
remaining methods with conventional routing policies (X-Y
and Y-X), termed best{ XY, Y X }. It is evident that our method
achieves substantially better results than the other approaches.
The improvements are the biggest for low and moderately
utilised NoCs (50 and 100 flows), where a thoughtful path
derivation can significantly reduce the number of contentions.
In such scenarios our method excels, and in some cases
outperforms the other ones by more than 100%. For larger
flow-sets the gains slightly decrease, but even for sets with
200 flows the improvements are greater than 30%, in more
than 3/4 of the cases.

The parameter LIM has a significant effect on the effi-
ciency of the approach. For smaller sets, the final solutions
are found within several iterations, and additional ones do not
help. For larger sets, the benefits of additional iterations are
also noticeable, but the gains are decreasing.

Experiment 2: Hardware Requirements

In this experiment, we observe the improvement of our
method over the better of the two remaining methods with
conventional routing policies (X-Y and Y-X), with respect
to the number of needed virtual channels. The number of
needed virtual channels is equal to the maximum number of
contentions for any link of the NoC [15]. Thus, the method is
considered more efficient if less virtual channels are needed.
Let VCq and VC5 be the number of needed virtual channels
obtained for two methods, when their respective ST's were
captured, and let VC; < V(5. Then, the improvement of the
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former method over the latter one is computed as follows:

imp(VCy) = ‘/0‘2/;0‘2/01 -100%.

We use the same flow-sets as in the previous experiment,
and the results are plotted in Figure 7. In every observed cate-
gory, our approach reports improvements in 3/4 of the cases,
while it underperforms in the rest of investigated scenarios.
For smaller flow-sets the average improvements are between
5 and 10%, while for larger flow-sets the improvements are
around 5%. It is visible that additional iterations have a mild
positive effect.

Experiments 3 and 4: Method Efficiency

In these two experiments, we test the efficiency of our
method. First, we do so by comparing the obtained ST's
against the corresponding optimal thresholds (obtained by
exhaustively enumerating all possible minimal paths and pri-
orities for all flows). Let ST} be the threshold obtained by our
method for a given flow-set, and let ST}” " be its corresponding
optimal threshold. It always holds that ST} < STlopt, and
the closer ST} to STfpt is, the more efficient the method
is. This is expressed with the following metric: ef f(ST;) =

SSTZZ;t - 100%. In order an optimal search to complete within
1

a reasonable time, we reduced the NoC size to 4 X 4 and
the flow-set size to 30. With these settings, we obtained STs
with our approach, with two conventional routing methods
(for reference), and optimal thresholds for 200 flow-sets. The
results are plotted in Figure 8.

Our method, combined with the fast priority assignment
heuristic, manages to find the optimal solution in 23% of the
scenarios. The value of the median is 90.46%, which means
that, in more than half of the cases, the obtained STs are at
most 10% worse than the optimal thresholds. Also, in 3/4 of
the cases, the obtained STs are at most 15% worse than the
optimal, which means that in majority of cases the proposed
method, combined with the fast priority assignment scheme,
finds near-optimal solutions. Figure 8 shows that even the best
of the two conventional routing policies performs worse.

In Experiment 4, we analyse the traffic distribution across
the NoC. We use the results from Experiment 1 (our method,
100 flows, 200 flow-sets, 200 iterations), and compare the
individual traffic of all routers, normalised by the number of
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corresponding ports. The baseline for comparison is the router
with the most traffic (100% in Figure 9).

Figure 9 shows that the most used routers are those in the
middle of the NoC, which is a very intuitive result. However,
it is evident that even less utilised routers (especially those in
the corners) also have a significant amount of traffic, which
infers that the method takes advantage of available resources
and efficiently distributes the traffic. Extending our approach
to also consider non-minimal paths, and combining it with
some mapping strategies (e.g. [21], [22]), with an intention
to achieve an even better utilisation of NoC resources, is a
potential future work.

Experiment 5: Computational Aspects and Scalability

In Section VI-C, it was mentioned that the process of
finding the path with the smallest ITT may require, in the
worst case, to investigate all possible paths. Investigating all
minimal paths of all flows can be computationally demanding.
For that purpose, the parameter max_steps was introduced.

In this experiment, we investigate how efficient is Algo-
rithm 1 in finding the path with the smallest ITT, and in how
many cases did the search process reach the imposed limit
on the number of allowed search steps (see the last row in
Table III). To that end, we reuse the 200 flow-sets (each with
200 flows) from Experiment 1. For each flow ¢;, we measure
the number of investigated paths while executing Algorithm 1,
and express them as a fraction of the maximum possible value
— the elasticity property E(¢;) (the vertical axis in Figure 10).
We perform that for all flows with different elasticity properties
(the horizontal axis in Figure 10). We repeat the process for
different NoC sizes, so as to see if the approach scales with
the NoC size (see the legend in Figure 10).

To our surprise, the maximum number of steps was not
reached in a single case, as is visible from Figure 10. This
implies that the proposed method is very efficient and finds the
path with the smallest ITT within several steps. This finding
suggests that the approach is practical, scalable and applicable
to workloads and platforms that are available nowadays.
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VIII. CONCLUSIONS AND FUTURE WORK

In this work, we studied the impact of the routing flexibility
on priority-preemptive NoCs, and their integration in the
safety-critical hard real-time domain. We proposed a heuristic-
based method for routing traffic flows, and found out that by
thoughtfully selecting flow paths, significant improvements can
be achieved (with respect to schedulability guarantees) over the
approaches which employ traditional routing techniques. At the
same time, a slight reduction in hardware requirements is also
noticeable. The results of a small-scale experiment suggest that
the proposed method, combined with the fast heuristic-based
approach for priority assignment, finds optimal or near-optimal
routes and priorities in more than 75% of the scenarios.

In order to exploit NoCs even more efficiently, as the future
work we plan to develop a unified approach, where our routing
method will be combined with mapping techniques (e.g. [15],
[21], [22]), and more time-demanding priority assignment
schemes (e.g. [16], [17]).
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