7~ N—]

IPP HURRAY!

A y 4
www.hurraw.pt /

Technical Report

Notional processors: an approach for
multiprocessor scheduling

Konstantinos Bletsas and Bjorn Andersson

HURRAY-TR-090101
Version: O
Date: 01-25-2009

Technical Report HURRAY-TR-090101 Notional processors: an approach for multiprocessor scheduling

Notional processors: an approach for multiprocessor scheduling

Konstantinos Bletsas and Bjorn Andersson

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. Antonio Bernardino de Almeida, 431
4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509
E-mail: nap@isep.ipp.pt
http://www.hurray.isep.ipp.pt

Abstract

Consider the problem of designing an algorithm with ahigh utilisation bound for scheduling sporadic tasks withimplicit
deadlines on identical processors. A task is characterisedby its minimum interarrival time and its executiontime. Task
preemption and migration is permitted. Still, lowpreemption and migration counts are desirable.We formulate an
algorithm with a utilisation bound noless than 66.6%, characterised by worst-case preemptioncounts comparing
favorably against the state-of-the-art.

© IPP Hurray! Research Group 1
www.hurray.isep.ipp.pt

Notional processors: an approach for multiprocessor schading

Konstantinos Bletsas

and Bjorn Andersson

IPP-HURRAY! Research Group, Polytechnic Institute of BQISEP-IPP),
Rua Dr. Antbnio Bernardino de Almeida 431, 4200-072 Porortugal
ksbs@isep.ipp.pt, bandersson@dei.isep.ipp.pt

Abstract

Consider the problem of designing an algorithm with
a high utilisation bound for scheduling sporadic tasks
with implicit deadlines on identical processors. A task is
characterised by its minimum interarrival time and its ex-
ecution time. Task preemption and migration is permitted.
Still, low preemption and migration counts are desirable.

We formulate an algorithm with a utilisation bound no
less than66.6%, characterised by worst-case preemption
counts comparing favorably against the state-of-the-art.

1. Introduction

Consider the problem of preemptively scheduling
sporadic tasks7{ to 7,,) on m identical processorsH
to P,,). A task generates a (potentially infinite) sequence
of jobs, with arrival times not controlled by the scheduling
algorithm anda priori unknown but occuring at lea$t;
time units apart. A job by; requires up ta”; time units of
execution over the next; time units after its arrival. 1;,
C; are real numbers antk C;<T;.) A processor executes

at most one job at a time and no job may execute on

multiple processors simultaneously. The task set utitisat

is defined ad/,==+-3 ", &. The utilisation bound/B

of an algorithm is a threshold such that, all task sets with

U.<UB scheduled by said algorithm meet their deadlines.
Multiprocessor scheduling algorithms are often cate-

gorised agartitionedor global. Under global scheduling,

a single dispatch queue is shared by all processors. At

any moment, then highest-priority tasks among those
runnable are executing on the processors. In contrast,
under partitioned scheduling, all tasks in a partition are

have a utilisation bound above 50%. Conversely,pfar
family of global scheduling algorithms offers utilisation
bounds of 100% [5], [1] but at the cost of numerous
preemptions [9]. The global scheduling scheme EDZL [8]
is not preemption-prone and usually performs well, but its
utilisation bound is unknown (and less than 63.1% [7]).

EDF-fm [2] introduced limited migration to partitioned
EDF but for scheduling soft, not hard, real-time tasks at
100% utilisation with limited tardiness. Ehd2-SIP [11];-an
other algorithm with limited migration based on partitione
EDF, is characterised by few preemptions on average but
its utilisation bound is just 50% (i.e. same as for partiéidn
EDF). Under the hybrid approach in [3], most tasks utilise
a single processor while a few (at mast-1) utilise two —
but not both simultaneously, due to the dispatching policy.
This algorithm is configurable for higher utilisation bosnd
(up to 100%) at the cost of increased preemptions. As such,
it largely solves the problem of achieving a high utilisatio
bound without too many preemptions.

Still, this paper introduces an algorithm with a utilisa-
tion bound 0f66.6% and even lower worst-case preemption
counts than [3]. LetV,,.(At) denote an upper bound on
job arrivals in the system over an interval of lengh.

The preemptions generated during that interval are at most

Novn(AF) + [At

e—}{TJ (2 [5])

min

,2,...,mn

This paper is organised as follows: Section 2 discusses
important concepts, prerequisite to understanding our ap-
proach, formulated in Section 3. Sections 4 and 5 discuss
its performance in terms of its utilisation bound and worst-
case preemption counts, respectively. Section 6 concludes

2. Useful concepts

assigned to the same processor and may not migrate to

another processor. Multiprocessor scheduling is thustran

formed to many uniprocessor scheduling problems. While
this simplifies scheduling and allows reuse of many results

from uniprocessor scheduling, no partitioned algorithm ca

2.1. Intuition

Any partitioned scheme, may in the worst case leave
processors partly utilised so that although the cumulative

1~

spare capacity in the system exceeds the utilisation of ao | =
some yet unassigned task, the latter cannot be assigned A ///

to any processor. Assume however that, at run-time, some 23 | o 7

mechanism would ensure that on every instant when some 12l ¥ o7

P, processor ceases to be idle, at least one other processor sl ,/);axe\“\

P, is guaranteed to be idle. We could then reclaim the 3204 -7 2w

idle interval on P, to execute some additional task and el ==

then migrate that ta% when necessary. Even better, we . 7 % z % : 1Y

could use such reclaimed spare capacity for scheduling an
additional set of tasks, in isolation from other tasks orheac
processor, as if we had an additional processor (but in fact
“piggybacking” on existing ones). Note that the dynamic
mapping of logical processors to physical processors is not
a new concept (for example, it is used in [13]) but we use

Figure 1. Plot of the functions «(U), inflate(V),
deflate(U), with y=U as a reference.

it in a novel way. show that the sufficient inflation, as a function of the sum
U of the utilisations of the tasks served by the reserve,
2.2. On periodic reserves is given by the same expression (as long as the timeslot

length S does not exceed the interarrival time of any task
Let U denote the cumulative utilisation of all tasks served by the reserve — a constraint also enforced herein).
assigned to some processor. We seek predictability in theSo as not to disrupt, the proof is in the Appendix (see
occurrence of idle intervals on this (and any other) pro- Theorem 5).
cessor, so as to exploit the previously explained principle For convenience later on, we introduce the function
and schedule additional tasks. Such predictability may be 2.1
achieved via having all tasks on a processor execute within inflate(U) = U + a(U) = ; (2)
a fixed-size periodic time window — termedeserve[4].
One or more tasks with implicit deadlines and cumula-
tive utilisation U < 1 may meet deadlines, if scheduled
within a periodic reserve, provided that the length of
the periodic reserve is a sufficiently large fraction of the
“timeslot length”S (i.e. the fixed interval between the start deflate(U) = inflate™ (U) = u 3)
of one reserve and the start of the next one). This fraction 2-U
will have to exceed/ to account for unfavorable phasings expresses the maximum cumulative task utilisation that a
with respect to the arrivals of the tasks served relative periodic reserve of siz& times the timeslot length may
to the start of the next available reserve. The amount byaccommodate. For illustration purposes, see Figure 1.
which this fraction exceed§ is termedreserve inflation
Inflation is obviously undesirable. While it can be reduced 2.3. On bin-packing
by opting for shorter timeslots, this increases the number

of preemptions resulting from the implementation of the Bin-packing schemes have long been used for task
reserves. _ _ . assignment on partitioned multiprocessors. A popular such
In [3] it was shown that, if a reserve is exclusive for the gchemeFirst-Fit, assigns tasks one by one to the lowest-
execution of some implicit—dead"ne task with utilisatibn indexed processor where each ﬁtS, subject to previous as-
and if the timeslot lengtly’ does not exceed the interarrival signments (see [10], p. 124). We will define here a variant

which expresses what size, as fraction of the timeslot
length, a periodic reserve should be so as to be able
to accommodate tasks of cumulative utilisatibh The
inverse function

time of the task, then, if the reserve size is at least of First-Fit, for use with identical multiprocessors, witie
property that it is impossible (assuming task utilisations
U-1-0) .) .
U+ T do not exceed unity) for a task to fail to be assigned to

some processor (subject to existing assignments) unliess al
then the task will always meet deadlines. In that case, theprocessors are utilised by more than

sufficient inflation (as a function af) is given by Definition 1. An ordered task set is in Heavy-First order

U-(1-0U) (abbreviated HF) if and only if every task with utilisation
1+U (1) higher than% (i.e. a “heavy” task) precedes every task
with utilisation % or less (i.e. a “light” task).

aU) =

In this paper we are interested in scheduling multiple
tasks under EDF, within each reserve. Still, it is trivial to Multiple HF orderings might exist for a task set.

reserves (incl. inflation)

Definition 2. The First-Fit — Heavy-First bin-packing forthe executon of

locally assigned tasks

algorithm (abbreviated FF-HF) is the First-Fit bin-packin b, I Co7s I Co7s I Cors I [o7s I

algorithm with tasks considered in HF order. -, I o5 I o5 I Coss] [ss Y.
Our approach (described later) initially uses FF-HF bin- P, W oes [oss || i e -).

packing for task assignment until some task cannot be ‘_ s] Coes] Cass] [aesd)

assigned (subject to existing assignments); it then atiemp by by by i

to accommodate remaining unassigned tasks via other _ oes | [oes [[o&s | [08Tl

. . S (physical)
mechanisms. So as to derive the utilisation bound of et 434~~~ ————————————

the algorithm we then need to know what fraction of MEE mE me me .
system capacity is utilisedyeforethe FF-HF bin-packing ‘
fails. Thus, in the context of task assignment on identical
processors:

Figure 2. An example of a notional processor,
implemented upon 5 physical processors.

Definition 3. The bin-packing bound of a bin-packing
algorithm is the maximum valid lower bound on the

utilised system capacity immediately prior to an unsuc- individual processor utilisation and for the utilised ®yst
cessful attempt to assign a task (subject to assignmentsgapacity before FF-HF can fail. That it is also, respectivel
already made). the greatest such lower bound may be shown via an

Definition 4. The per processor bin-packing bound of a €Xa@mple wherein, just prior to a failed attempt by FF-
bin-packing algorithm is the maximum valid lower bound HF 0 assign a task (subject to existing aSS|gn£nents),
for the minimum of the respective utilised capacities of all &l Processors are utilised by.5+¢>0.5 (with e~07).
processors immediately prior to an unsuccessful attempt'ndeed' this occurs when given two processors and three

to assign a task (subject to assignments already made). tasks with utilisationg).5-+e. .

Theorem 1. The bin-packing bound and the per processor
bin-packing bound of FF-HF are 50%. 2.4. On notional processors

Proof: Assume task assignment over identical
processors according to the FF-HF algorithm. Task util-
isations do not exceed unity. Then, if at some point during

A notional processor is a logical construct implemented
upon multiple physical processors for the purposes of

h d ith utilisati def C; scheduling computational tasks. Essentially, it is a fiomct
the proce ure, some tasl with ut |sat|qn wr = 7 roviding a mapping, for every instant, to some (provably
cannot be assigned to any processor, subject to assngnmenfale) physical processor, where a taldgically treated

already made, two complementary possibilities exist: as executing on the notional processor in question will

 Case 1:uy; > 3: That7; could not be assigned, actually be executing. For an intuitive example of the
implies that, immediately prior to the attempt to assign semantics see Figure 2. Formally, a notional processor is
T¢, every processor has at least one task assigned to itlenoted by

(or else some entirely unutilised processor would have

existed to assigny to — a contradiction). Moreover, ({ao, ax,...,az}, {ho, h1,....h._1})

sincery is heavy and tasks are considered in HF order, it
follows that all previously assigned tasks were heavy as
well. Thus, every processor is already utilised by more

with the following constraints:
. a0:0andaZ§S

than50% before attempting to assigty. Therefore the o Vre{lz}: a1 <ar
entire system is also utilised by more thai% before « Vr: hyc{l.mj
attempting to assigm;. and with the semantics that on time instantany task

« Case 2:uy < 1: Thatr; could not be assigned implies logically treated as executing on the notional processor
that the unutilised capacity of every processor prior to in consideration is actually executing on processp,

the attempt is less than;. Equivalently, the utilised wherer is the integer for which the following holds:
capacity of every processor, before attempting to assign

74, is more thanl—uy, in turn no less than—1=1 ar <t modulo S < arq1 4)

(according to the assumption of the case). The entire |t ;. — g then the notional processor fall-capacity
system is thus also utilised by more thao% before (¢ will always be mapped to some physical processor,
the attempt. on every instant). Else, it is fractional-capacity (i.eripe

In either case, 50% is thus a lower bound both for odically unavailable, akin to a periodic reserve).

[]Po B P He- | timeslot boundary task which cannot be assigned to any processor (subject to
=0 = -)
full-capacity fractional-capacity assignments already made). In the latter case, because of

notional processors __ notional processor the properties of the bin-packing scheme employed, each
of the physical processors will be utilised by more t@n
P Il 075 | 075 | 075 (by the tasks successfully assigned to each). (In the former
P, | .| o08&s [0ss 085S . case, no further action is necessary; we can simply use
partitioned EDF.)
Ps .« 09s [J] o09s [[o09s |. In the second stage, we select the value for an important,
system-wide setting: the timeslot lengsh It is set equal
P .| 085S | 08s [085S . A
to the shortest of the interarrival times of all tasks (wleeth
Ps .l 07 s [o7s | [ors | . yet assigned or not). We then determine, for each physical
¥ processolP,, what the length of the corresponding reserve
Fs _ o7-s [l o7s _ 07S .- x,, should be, as a fraction of the timeslot length, such that
) P))
P, _ 078 _ 078 _ 075 | all tasks assigned t&, will meet deadlines, if scheduled
under EDF during this periodic reserve. This enforces,
Ps . _ 088 _ 088 _ 088 . on every physical processa?,, intervals of lengthz,
— — : wherein tasks assigned to the processor may execute (under
ol 0TS 4- ors 4- ers h an EDF scheme) interleaved with “gaps” — intervals of
0 s 2's 3s ' lengthS — z,,. At this point we specify offsets for timeslot
boundaries on adjacent processors such that, whenever
Figure 3. A system with multiple notional pro- the periodic “gap” on processaF, ends, the “gap” on
cessors, including one of fractional capacity. processor’,1 begins. This provides a seamless supply of

processing capacity that we structure into notional proces
sors using the algorithm described in Figure 4. Figures 2
and 3 provide a more intuitive, visual explanation of how

In terms of processing capacity, a full-capacity notional qtional processors are implemented on top of physical
processor is “as good” as a physical one because 'tprocessors.

supplies processing power that is continuous in timg @sit |nthe third stage, we perform assignment of remaining
always maps to some physical processor, on any instantyasks to notional processors, using First-Fit bin-packing
and invariant (as the physical processors mapped-to ar§j e not necessarily FF-HF; any ordering will do). If all
identical). In this respect it is unlike a typical server (@i tasks can be assigned, the algorithm declares SUCCESS;
employs disjoint time windows to schedule its workload otherwise, it declares FAILURE upon encountering the

and may be preemptible), hence the new term (“notional first task which cannot be assigned to any notional pro-
processor”), for lack of an established term covering these gggor (subject to assignments already made).

semantics.

. 4.0n the utilisation bound of the algorithm
3. The new algorithm
Because the algorithm actually performs two rounds
The algorithm is structured in three stages: of bin-packing (one over physical and one over notional
« First, we assign tasks to physical processors, until we processors), deriving its utilisation bound is not straigh
encounter a task which we cannot assign anywhereforward. In the general case, there exist physical
(subject to assignments already made). processorsyn’ full-capacity notional processors (indexed
« Then, we restrict the workload on each processor m+ 1..m-+m’) and also a notional processor of fractional
to execution within (appropriately sized) periodic capacityF’, with 0 < F' < 1. Then, the cumulative system
reserves and organise the time intervals in betweenultilisation is
reserves on the physical processors into notional m m4m’+1
processors. Uemi = Z U, + Z U, (5)
« Remaining tasks are assigned to notional processors. p=1 p=m+1
We explore these stages in a more detailed manner: where the first and second term denote the sum of the
In the first stage we assign tasks to physical processoraitilisations of physical and notional processors (of &ithe
using the FF-HF bin-packing algorithm (introduced in full or fractional capacity), respectively. Then, the syst
Section 2.3), until either all tasks have been assigned (inutilisation normalised by the number of physical proces-
which case the algorithm completes) or we encounter asors is

4

1. i,p,r,S mprine, cur_p,first_unassigned:integer; 46 not i onal _CAP: =noti onal _CAP+(1-x[p]);
2. C]1,T[]: array[1..n] of float; 47. end for
3. Al]: array[1..n] of integer; 48. for p:=1to m1l do
4. CAP[],U]1,x[]1,d]: array [1..nm of float; 49. q p+1] = p] +(S-x[p]);
5. a[][]l:array[m1l.. mtm prime+1][0..n] of float; 50. end for
6. h[][]:array[m-l.. mrm prinme+1][0..m 1] of integer; 51. mprinme:=floor(notional _CAP);
7. unassigned_t asks_exi st, stop: bool ean; 52. enlarge_arrays_U and_A_and_CAP_by(mm pri me+1);
8. notional _CAP, end: float; 53. for p:=mtl to mtrmprinme do
9. read_task_paraneters_frominput(); //C], T[] 54. CAP[p]:=1; //full-capacity notional CPU
10. //stage 1 - 55. end for
11. reindex_tasks_in_HF_order(); //C], T[] 56. CAP[mtrm pri me+1]: =def | at e(noti onal _CAP-m pri ne);
12. for p:=1 to mdo 57. //now create notional CPUs
13. CAP[p]:=1; //full-capacity 58. cur_p:=1;
14. U p] : =0; /linitially unutilised 59. for p:= mtl to mmprine+l do
15. end for 60. st op: =FALSE;
16. unassi gned_t asks_exi st: =TRUE; 61. a[p][0]:=0;
17. for i:=1to n do 62. r:=1;
18. Alil:=-1; //initially not assigned 63. whi l e (stop==FALSE) do
19. p: =1; 64. end: =Sxinfl ate(CAP[p]);
20. while (p<=n) do 65. a[p][r]:=mn(a[p][r-1] +S-x[cur_p], end);
21. if (Upl+di]/T[i]<=CAP[p]) then 66. h{pl[r-1]:=cur_p;
22. Ali]:=p; 67. ri=r+1;
23. Upl:=Upl+Cil/Ti]; 68. if (a[p][r]==end) then
24. el se 69. st op: =TRUE;
25. p: =p+1; 70. el se
26. end if 71. cur _p: =cur _p+1;
27. end while 72. end if
28. if ((i==n) and (A[i]!=-1)) then 73. end while
29. unassi gned_t asks_exi st: =FALSE; 74. end for
30. end if 75. /lstage 3 - - - - - - - - - - - - - - oo - o -
31. if (Alil]==-1) then //was not assigned 76. for i:=first_unassigned to n do
32. first_unassigned: =i; 77. p: =m+l;
33. br eak; 78. whil e (p<=mtm prinme+l) do
34. end if 79. if (Up]+Ci]/T[i]<=CAP[p]) then
35. end for 80. Ali]:=p;
36. //stage 2 - - - - - - - - - - - - - - - - - o - - 81. Upl:=Upl+Cil/Tli];
37. S =T[1]; 82. el se
38. for i:=1to n do 83. p: =p+1;
39. if (T[I]1<S) then 84. end if
40. S =T[i]; 85. end while
41. end if 86. if ((i==n) & (A[i]!=-1)) then
42. end for 87. decl ar e(FAI LURE) ;
43. (1] : =noti onal _CAP: =0; 88. end if
44. for p:=1 to mdo 89. end for
45, x[p]:=inflate(Up])*S; 90. decl ar e(SUCCESS) ;

Figure 4. The offline task assignment and notional processor

creation algorithm

the utilisation of the physical processors, past the first

Uemi (6) round of bin-packing. Thus, it is not obvious whether

m having highly-utilised or less utilised physical processo
The cumulative capacity of the physical processors is (or some other scenario), past the first round of bin-
always equal ton. That of the notional processors, how- packing, is the worst-case scenario (i.e. the one minimisin
ever, depends on the utilisations of the physical processor the cumulative utilisation threshold past which the system

Unrm =

m might be unschedulable). So as to determine the utilisation
CAP™! — Z(l — inflate(Up)) (7 bound of the algorithm however, this scenario has to be
p=1 characterised. And for that, we need to determine (a lower

This capacity is structured, in the general case asbound on) how much utilisation, in the worst case, fits

m'=|CAP™! | full-capacity notional processors and one ©Ver & given numbgr of notipnal processors.(and a given
notional processor of capacit§ — deﬁate(CAPZﬁfll _ capacny for thefract|oqal nouqnal processor, |fong sjis
m’). This unconventional bin-packing problem (see Figure 6)
Thus, how much additional utilisation can be accommo- ¢an be formulated as:

dated by the notional processors depends on the outcome Assumen’ unit-capacity bins (i.e. processors) and one
of the bin-packing over the physical processors and can-of capacityF', 0<F'<1. We perform First-Fit bin-packing
not be considered in isolation. Note also that, although with the fractional-capacity bin (i.e. processor) consit
notional processors do help (i.e. with accommodating last. Assuming item sizes (i.e. task utilisations) in thege
additional tasks), their count tends to decrease the higher(0, 1], find the maximum threshold (as a function fof

1. //runs on every physical processor, on every . 1
2. //task arrival/conpletion or timeslot boundary with 5§U—x<U+I§1. It then holds that
8. procedure di spat cher is aU —z) +a(U —z) < 2-a(U) (i.e. the cumulative
- y_idle ;
5 p, np: integer; processing capacity wasted as inflation so as to schedule
6. t: float; the respective workloads on both processors within
o o im s processor() eriodic reserves is less than what it would have been in
8. t:=time_si nce_boot up(); p !
9. if (((t-dpl+S) mod S) >= S-x[p]) then the case that bottP, and P, were utilised byU.)
10. edf _schedul e_from queue(p);
11. else . _u-(a=-v0) ;
o stay i di e: =TRUE: Progf. Follows .from the fact thatv(U) = —— is
13. for np:=m+l to mrmprinme+l do decreasing and strictly convex ovel;, [1]. O
14. for_r::OtoIength(a[np])—z do)
12: if fﬁgL”glé;}(ct) and (t<a[np][r+1])) Theorem 2. Assumem physical processorsPy to P,
17. end if respectively utilised each by sorbg, p € {1..m} where
ig- ie?d(L‘[)Lp”r]__p) hen 1 < U, < 1. Then, the cumulative processing capacity
20. stay_i dl e: =FALSE; sacrificed as inflation (so as to schedule the respective
g; endbiffeak? workloads on all physical processors within periodic re-
23. end for serves) cannot exceed what it would have been in the case
24, if (stay_idl e==TRUE) T def 1 m
o5 then do. not hi ng() : tha_t all proc_essorsmwere utilised b%" = = szl Up.
26. el se edf _schedul e_from queue(np); Using notation: Zp—l Q(Up) < Zp—l O[(U@) - m -
27. end if B B
28. end if a(Uy).

29. d d :
end procedure Proof: Suppose that the claim was false. Then under

some other scenario, the individual processor utilisation
would not (all) beU,,, but the average processor utilisation
would still be U, and a greater fraction of the overall

processing capacity would be lost on inflation, so as to

Y “TT T 71T schedule workloads within periodic reserves. We disprove
Fl- 1 o T - this possibility:
o ﬂ If, among them processors, we piclk,, the processor

with the lowest utilisation/, and P,, the processor with
the highest utilisatiort/;, and modify the utilisations such
that bothP, and P, are utilised byZ=t (i.e. the average
of the two original utilisations) then the following hold:
« The fraction of the utilised processing capacity of the
m-processor array is the same, before and after.
m) such that any set of items (tasks) with cumulative size « The fraction of the utilised processing capacity wasted
(utilisation) not above the threshold will always fit (i.e. as inflation can only increase (according to Lemma 1).
manage to be assigned). By repeating the above transformation, each time with
The problem is interesting in that the fractional-capacity the most and least utilised processor, we reach a state
bin might sometimes help, but not always. For example, where all processors end up utilised arbitrarily closé/to
its capacity might be smaller than even the smallest item. (the average of the original processor utilisations) ared th
So as to simplify the derivation, in those cases where fraction of the overall processing capacity lost on inflatio
m’>0, we (pessimistically) derive the corresponding util- is higher. This contradicts the assumption that the claim is
isation bound for the case that the fractional-capacity false. O
processor is disregarded. (Intuitively, the utilisatiosuhd We now prove the utilisation bound for our algorithm
cannot increase as a result. For proof, see Theorem 6 in(i.e. considering both rounds of bin-packing).
the Appendix.) The unconventional bin-packing problem is
then transformed to First-Fit bin-packing ovef identical
processors, in which case the utilisation bound (as known
from [12]) is mT“ We proceed with a pessimistic lower- Proof: Let U, denote, as before, the average of the
bound on the cumulative utilisation that we can “pack” into utilisations of them physical processors. From Theorem 2,
the system, subject to the outcome of the first round of bin- the cumulative processing capacity wasted as inflation can-
packing. For this, we rely on Theorem 2 via Lemma 1. not exceedn - a(U,,), therefore the amount of processing
capacity made into notional processors cannot be less than

Figure 5. The run-time dispatching algorithm

m’ in total

Figure 6. An unconventional bin-packing
problem, due to the fractional-capacity bin.

Theorem 3. The utilisation bound of the above scheduling
approach, is no less thaé.

Lemma 1. Assume two physical processors?,
and P,, respectively utilised by U-z, U-+uz, m—m-U, —m-a(U,) =m- (1—inflate(U,))

In turn, for m’, the number of full-capacity notional bin-packing) unassigned tasks does not exceed

processors, it holds that)
m' > |m- (1 - inflate(U,,)) | (8) 5+ (Im- (1 — inflate(U,))| +1)
We explore three cases depending on the valueof then all are eventually be assigned to some notional

« If m < 3, then if the sum of the utilisations of all processor (thus the task set is schedulable by our al-

tasks to be scheduled does not exc@g’é it is known gorithm). Therefore, a lower bound for the utilisation
(see [12]) that First-Fit bin-packing (of which FF-HF is ~ ©f the system, normalised by the number of physical
a special case) will assign all tasks to the physical Processors, 1s

processors. Consequently, even if we would then opt to 1 1 .

not use notional processors at all, the utilisation bound U = 77 ° (m Ve t3- (lm- (1 - inflate(U,,)) | + 1))
woolg be at Ieasg and 5, respectively, forn = 2 and —U,+ - (Lm (1 B inﬂate(Ug,))J " 1)

2 . .

o If m = 4:1f U, > 3, then, irrespective of Whether since|m- (1—inflate(U,)) |[+1 > m- (1—inflate(U,)),
or not add|t|onal tasks are scheduled on the notional i 1o1ds that

processors, the utilised system capacity cannot be less

than 2. Let us therefore focus on the remaining case U>U,+ o (m~ (1- inﬂate(Uw)))
whereU,, < 2 and explore two subcases: L1 2-m . U
—If m’ > 0 (i.e. a full-capacity notional processor =Uy,+ - — - -inflate(U,) = Uy, + - — £
) e 2 2 2 14U,
exists), then we can accommodate additional tasks
: S : 1 U,-(1+U,)-U, 1 U2
of cumulative utilisation of at least unity. Thus, the — -4 2 ® ©_ -4 ® (9)
2 1+U, 2 1+U,

utilisation bound is no less thag - (m - U, + 1) >

l.g.l41)=3>2

Elce (i o i Y e . - Th function of,,
— Else (i.e. ifm’=0), we only have a notional processor e expressio ‘1— is an increasing function

of fractional capacity F:Z?):l(l_inﬂate((]p))_ over (0, oo) Additionally, we know from Theorem 1
We can use that to schedule additional tasks thatU, > 3 Hence over(s, 1], the minimum for the
of cumulative utilisation up toF — but only expressmn— occurs atU, and is equal to-
if F>1-U,, Vpe{l,2,3,4}. Otherwise, the Combining thig with Inequahtygwe obtain
fractional-capacity processor would not be able 1 1 9

to accommodate whichever task the first round U>_-+-= (10)

of bin-packing ended with (i.e. the one that 2 6 3

could not be assigned). But, from Theorem 1, we Thus, irrespective ofn, 2 is a valid lower bound for the
know thatl — U, < 1— 3 = 1, vpe{1,2,3,4} utilisation bound of our scheduling algorithm.
whereas, from Theorem 2 and the fact that function O
inflate is strictly mcreasrng andU, <3, we get

> (1—inflate(U,)) >3~ (1—inflate(2))=4. 5.Bounds on preemption counts

Therefore, the capacity’ of the notional processor

i 4y — 2 1 —
will be at Ieastdeﬂate(g) =3>3>1 _UP’ Definition 5. A task with outstanding computation at time
vpe{l,2,3,4}, which means that we can, in any

t, is said to be preempted at timeif it executes on
case, accommodate additional tasks of cumulatrveprocessorp just beforet but not just afterr.
utilisation at Ieast3 Therefore the utilisation bound
isatleastl - (m-U,+F)> 1 -(4-3+3) =2 By this definition, which we believe captures the notion
o If m>5:If U, > 2, then, |rrespective of whether Of preemption used in the research community, a job that
or not additional tasks are scheduled on the notionalStarts executing is not preempted, nor is one that finishes

processors, the utilised system capacity cannot be les€Xecuting. Also, a job executing both just before and just

than % Let us therefore focus on the case where aftert buton different processorsis, by the same definition,

U, < 2: preempted at timeé. Such a preemption is migration
Then, since the functiomflate is strictly increasing and At run-time, there are five types of preemptions:
inﬂate(%) = % andU,, < % andm > 5, it follows from « type«: Caused upon arrival of a task whose absolute
Inequality 8 thatm’ > 1 (i.e. that there is at least one deadline is earlier than that of some other task executing
full-capacity notional processor). up to that point. The number of such preemptions, within

Then, we know (see [12]) that as long as the sum of a time interval At is bounded by the number of task
the utilisations of remaining (i.e. from the first round of arrivals within the same interval\(,,..(At)).

« type{3: These occur when a reserve ends, when thefirst-round of bin-packing, for structuring into notional
currently executing task, among those assigned to aprocessors i€ AP"°Y out of that capacity, we can craft:

cml

physical processor, is preempted. The number of those o m/=|CAP"°!| full-capacity notional processors
preemptions, within a time intervalt is at most[4] o m}, = [CAPZ! —m'] fractional capacity proces-
per physical processor, thus at mqiégti] -m overall. sor(s) of capacityleflate(CAP"°% — m/)

« type-y: The migrations that occur when a reserve starts, Thus:
when the notional processor currently “piggybacked” on
top of the physical processor in consideration, migrates
to another physical processor. Then, whichever task wasTherefore, m’ + m/,. is maximised whenCAP™ is

logically on the notional processor at the time undergoesmaximised. As earlier stated (remember Equation 7),
migration, in terms of the actual physical processor upon

m' +m, = [CAPL] (12)

cml

which it executes. In Figure 3, this occurs for notional P m
processorP;, at t=0.3 - S (migration from P, to P,), CAPY = Z(l — inflate(Uy)) = m — Ziﬂﬂate(Up) (13)
t=0.5 - S (migration from P, to P3) and so on. The p=1 p=1

number of such preemptions within a time intervsd is

atmost| | per physical processor, thus at ms¢ [-m [1.m]. We also know that the functiomflate is in-

overall. o o creasing. Using both of these facts and Equation 13, we
« type<d: The migrations that occur upon time instants conclude that

which are integer multiples of the timeslot lengthwhen

each full-capacity notional processor “rewinds” to using a m

lower-indexed physical processor. In Figure 3, this occurs CApnotll <m— Z inflate 1 —m—1m - 2 _m (14)
_) i i e 2 3 3

ont =25, 2-5,..., when notional processdf;, migrates

from P5 back to P;. During a time intervalA¢, at most

[&L] - m’ of these may occur.

However, we know from Theorem 1 th&t, > %, Vp €

p=1
Equation 12 and Inequality 14 combined yield:

« type<: The preemptions that occur each time that the m ml < {ﬂw (15)
single fractional-capacity notional processor (if one ex- fr=13
ists) becomes unavailable. In the example of Figure 3, this O
occurs at = 0.2-5, 1.2-5,2.2-S... During a time interval Directly applying Theorem 4 to Inequality 11 yields

At (and only if a fractional-capacity notional processor
exists), there are at mo$&!| such preemptions.

Thus, during an interval of length\¢, overall preemp-
tions can be at most

S

as an upper bound for the number of preemptions during
any interval of lengthA¢.

Nyreempt (A1) < Nopo(Af) + [H} (2om+[2]) as)

At At
Npreempt(At) = Narr(At) + ’V_-‘ : m+ ’V_-‘ -m . . .
—— S S 6. Discussion and conclusions
type3 type-y
At , At , All task sets with utilisations up t(% are schedulable
{jw nm {jw "My under partitioned EDF (using First-Fit bin-packing) with
at mostN,,.-(At) preemptions over an interval of length
yped types At.
N (A) + [ﬁw @-m4m +ml) 1) Any task is schedulable by the algorithm in [3] if
S integer parametef is set to a sufficiently high value. The

utilisation bound for that algorithm as a function &fis

Wherem}r is the number of fractional-capacity notional *.
given by:

processors (which can only be eithieor 1) andm’ is the

number of full-capacity notional processors. We proceed UBecrrs 20040) =4 (V- (6 +1) —4) — 1

to eliminatem’, m'fr from the above expression.)
One should choose the smallest acceptahléo avoid

Theorem 4. The number of notional processors (full- needless preemptions, as the upper bound on preemptions,
capacity or fractional capacity, irrespective) cannot ezd within an interval of lengthA¢ for the algorithm in [3] is

m

[2], when the first-round of bin-packing is performed an increasing function of:

according to the FF-HF algorithm. At
ECRTS 200 — . o —
Proof: If the cumulative capacity available, past the Npréempt RAL) = Nupr (M) +3-m -9 { S -‘ +2

By comparison, for the algorithm formulated herein, the [2] J. H. Anderson, V. Bud, and U. C. Devi. An EDF-based

upper bound for preemptions is given by Scheduling Algorithm for Multiprocessor Soft Real-Time
A Systems. IrProceedings of the 17th Euromicro Conference
m 13 on Real-Time Systemgages 199-208, 2005.
N80 = N 00)+ (24 [2]) [2] s
) [3] B. Andersson and K. Bletsas. Sporadic Multiprocessor
We thus note that (sinc@ - m + {%1 < 3-m-4, Scheduling with Few Preemptions. [20th Euromicro
vme{l, 2, ...}, Vée{l, 2, ...}) the algorithm formulated Conference on Real-Time Systemages 243-252, 2008.

herein is able to schedule task sets with utilisations up [4] B. Andersson and E. Tovar. Multiprocessor schedulinghwi
Eo 66'6%_ Wlth fe,}"’er _preemptlons than even the most few preemptions. IrProceedingsc‘))fthe 12th IEEE Interna-
preemption-light” setting{=1) of the algorithm from [3], tional Conference on Embedded and Real-Time Computing
which has a utilisation bound d@f.7% only. Systems and Applicationpages 322-334, 2006.

Note also that to potentially further reduce preemptions
we can retroactively (i.e. past assignment of all tasksth wi [5] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel.

it ; Proportionate progress: A notion of fairness in resource
no loss of schedulability, increase the timeslot length to allocation. Algorithmica, 15(6):600-625, June 1996.
S = min {T;} > II%/i_Il{Ti}
2

it 7; assigned to physical or [6] S. K. Baruah, A. K. Mok, and L. E. Rosier. Preemptively
fractional notional processor scheduling hard-real-time sporadic tasks on one processor

whereas in [3] by comparisor§f = min{T}}, for § = 1. In Proceedings of the 11th IEEE Real-Time Systems Sym-

! i : posium pages 182—-190, 1990.
Thus, one may sometimes use longer timeslots than the
algorithm in [3] (thus further reducing preemptions) with [7] Y. Chao, S. Lin, and K. Lin. Schedulability issues for EDZ

no detriment to schedulability. To leverage this, we pr@pos scheduling on real-time mU|ti_I0f0C€SSOIr systertisfiorma-
for the second bin-packing round, assignment of remaining o Processing Lettersl07(5):158-164, Aug. 2008.
task; in order of increasing interarrival t|m§.nhf>0, th|s 8] S. Cho, S. Lee, A. Han, and K. Lin. Efficient Real-Time
heuristic prevents assignment of tasks with short interar- Scheduling Algorithms for Multiprocessor Systeni&ICE

rival times to the fractional-capacity notional processor Trans. on Communication&£85-B(12):2859-2867, 2002.
Finally, we note that task sets of higher utilisation than
the utilisation bound 0f6.6% might still be schedulable ~ [9] U. Devi and J. Anderson. Tardiness bounds for global EDF
under the_ algorithm introduced. Thergfore, we advocate fgg%dglég?_%?nz rsn;sltféoscgiﬁgogrggggg'ggg_(gﬂ‘,ez%%g
the following approach, when faced with the problem of
scheduling task sets with utilisations greater tHan [10] M. R. Garey and D. S. Johnso@omputers and Intractabil-
« First try scheduling under partitioned EDF; ity: A Guide to the Theory of NP-Completenes/. H.
« if that fails, try with the algorithm formulated herein; Freeman & Co, 1979.

« if that fails, use [3], with an appropriate value for [11] S. Kato and N. Yamasaki. Real-Time Scheduling with Task
Consideration of scheduling algorithms in this order en- Splitting on Multiprocessors. IProc. of the 13th IEEE
sures schedulability with as few preemptions as necessary. International Conf. on Embedded and Real-Time Computing

To conclude, our algorithm, with a utilisation bound of Systems and Applications (RTCSB) 441-450, 2007.

66.6%, is the most “preemption-light” (in terms of proven [12] J. M. Lbpez, M. Garcia, J. L. Diaz, and D. F. Garcia. \&ter

upper bQUHdS on.preemptionsl)_of ?” known multiprocessor Case Utilization Bound for EDF Scheduling on Real-Time
scheduling algorithms with utilisation bounds ov#1%. Multiprocessor Systems. IRroc. of the 12th Euromicro
Conference on Real-Time Systems25-33, 2000.

Acknowledgements [13] I. Shin, A. Easwaran, and |. Lee. Hierarchical Scheuli
Framework for Virtual Clustering of Multiprocessors. In
This work was partially funded by the Portuguese Sci- Proceedings of the 20th Euromicro Conference on Real-

ence and Technology Foundation (Fundagao para a Cigncia ~ 'Me Systemgpages 181-190, 2007.

e a Tecnologia - FCT) and the European Comission

through grant ArtistDesign ICT-NoE- 214373. Appendix
References Theorem 5. Sufficient inflation for a periodic reserve to
accommodate implicit-deadline tasks of cumulative utili-

. . . U-(1-U) .
[1] J. Anderson and A. Srinivasan. Mixed Pfair/ERfair saried ~ Sation U, under EDF, is given by7-7—, if the timeslot

ing of asynchronous periodic taskdournal of Computer |engthS doeS not exceed the interarrival t|me Of a.ny task
and System Scienge88(1):157-204, 2004. served.

Proof: Assume a deadline miss (the earliest one by
a task served by the reserve)tatt,,. Then, lett,, — L
denote the earliest time beforg such that, throughout all
sub-intervals oft,, — L, ¢,,) which lie within the periodic
reserve, the processor will have been busy. Thent et
denote the cumulative execution requirement, dugr—
L, t.), of all jobs by tasks served by the reserve which
arrived att=t,,—L or later and whose deadlines lie no
later thant,,. Additionally, let t¥ denote the cumulative

time available to tasks served by the reserve (i.e. the time

lying inside the reserve). The missed deadling,ameans:

tg > t¥ a7)

Regardingt,, it follows from [6] that

ta< > %J YRS {%J-Ci>t“’ (18)

T;ET T;E€ET

At this point we note that

Slgasg(fe)rggre

3

TiET TiET TiET
(19)
which leads us to observe that
t®
(18)“:93L-U>t*";»U>f (20)

Inequality 20 states that as long as, within any interval of
lengthL > S, it holds that¥ (i.e. the time available for the
execution of tasks served by the reserve), as a fractidn of
(i.e. the interval length), is no less théh then deadlines

by tasks served by the reserve will always be met. Thus,

for deadlines to always be met, a sufficient condition is:

t¥

U<+ (21)

Time for the execution of tasks served by the reserve is

available as periodic time windows of lend®#i+a(U))-S

(corresponding to the reserves), interleaved by time win-

dows of lengthS — (U + «(U)) - S, when the processor
is unavailable to tasks served by the reserve. Then, th
most unfavorable selection of an offset, relative to reserv

Inequality 21 and Equation 22 combined yield:

U+ a(U)
< - 77
Us 2-U—-a(U)
2. U-U*-U-a(U)<U+aU)
U-(1-0)
>
< aU) > 70 (23)
which proves the theorem. O

Theorem 6. Consider a computing platforfi consisting
of u identical processors indexed.;x and another com-
puting platformII’ consisting of.. processors (identical to
those ofll and indexed ..x) plus one additional processor
(indexedu + 1) of fractional capacityf, with 0 < f < 1.
Let 7/ denote a set of tasks with individual utilisations
no more than unity. Then, for any given HF ordering of
tasks in7’, if the First-Fit bin-packing algorithm fails to
assign every task to some processor oMér it will also
fail when attempting to do so ovéti, if using the same
task ordering.

Proof: Let us simulate independently First-Fit bin-
packing (i) overll’ and (ii) overII. In both cases, we use
the same task set’ and the same ordering (effectively,
“cloning” 7). However, the simulations are to take place
in the following “lock-step” manner:

Within every step, after every simulated assignment (or
assignment attempt) ovél’, we simulate the assignment
(or assignment attempt) of the same task dvefrhen, as
a next step, we proceed with the next task ddémnd so
on.

Due to the First-Fit scheme, a processor is only ever
considered as an assignment target, if all lower-indexed
processors have been considered and ruled out as assign-
ment targets (subject to assignments already made) for the
task in consideration. Thus, up to the point where only full-
capacity processors have been considered as assignment
targets inIl’, the assignments ovéf mimic those inII’.

If then, upon trying to assign a task ovEf, it cannot

ebe assigned to any of the full-capacity processors, subject

boundaries, as the start of an interval of a given length to assignments already made, then the following hold:

(in terms of time available to tasks served by the reserve,

within said interval) is immediately past the end of a
reserve. Then, of all time windows of length > S,
the one within which, the cumulative time belonging to
reserves (i.et¥), divided by L is minimised, is the one
with L = S+ (S—(U+a(U))-S) (because it ends just as
the next reserve begins). In that case= (U + «(U))- S
and

t¥

L

U +a(U)) - S U+aU)

S+(5-(U+a(0)-5) 2-U-a(0)
(22)

10

« The fractional-capacity processor Iff will be next
considered (and the assignment might succeed or fail).
« During the corresponding assignment attempt dver
the attempted assignment of the task in consideration
to each of theu processors il (all full-capacity)
will fail and the algorithm will hence declare failure.

Note also that the algorithm cannot declare failure,
during assignment ovefl’ unless, at some point, the
highest-indexed processor (i.e. that of fractional capaci
is considered as an assignment target and the assignment
fails. O

