

Notional processors: an approach for
multiprocessor scheduling
To appear in the proceedings of the 15th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS'09)

www.hurray.isep.ipp.pt

Technical Report

HURRAY-TR-090101

Version: 0

Date: 01-25-2009

Konstantinos Bletsas and Björn Andersson

Technical Report HURRAY-TR-090101 Notional processors: an approach for multiprocessor scheduling

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

1

Notional processors: an approach for multiprocessor scheduling
Konstantinos Bletsas and Björn Andersson

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail: nap@isep.ipp.pt

http://www.hurray.isep.ipp.pt

Abstract
Consider the problem of designing an algorithm with ahigh utilisation bound for scheduling sporadic tasks withimplicit
deadlines on identical processors. A task is characterisedby its minimum interarrival time and its executiontime. Task
preemption and migration is permitted. Still, lowpreemption and migration counts are desirable.We formulate an
algorithm with a utilisation bound noless than 66.6%, characterised by worst-case preemptioncounts comparing
favorably against the state-of-the-art.

Notional processors: an approach for multiprocessor scheduling

Konstantinos Bletsas and Björn Andersson
IPP-HURRAY! Research Group, Polytechnic Institute of Porto (ISEP-IPP),

Rua Dr. António Bernardino de Almeida 431, 4200-072 Porto,Portugal
ksbs@isep.ipp.pt, bandersson@dei.isep.ipp.pt

Abstract

Consider the problem of designing an algorithm with
a high utilisation bound for scheduling sporadic tasks
with implicit deadlines on identical processors. A task is
characterised by its minimum interarrival time and its ex-
ecution time. Task preemption and migration is permitted.
Still, low preemption and migration counts are desirable.

We formulate an algorithm with a utilisation bound no
less than66.6̄%, characterised by worst-case preemption
counts comparing favorably against the state-of-the-art.

1.. Introduction

Consider the problem of preemptively schedulingn

sporadic tasks (τ1 to τn) on m identical processors (P1

to Pm). A task generates a (potentially infinite) sequence
of jobs, with arrival times not controlled by the scheduling
algorithm anda priori unknown but occuring at leastTi

time units apart. A job byτi requires up toCi time units of
execution over the nextTi time units after its arrival. (Ti,
Ci are real numbers and0≤Ci≤Ti.) A processor executes
at most one job at a time and no job may execute on
multiple processors simultaneously. The task set utilisation
is defined asUτ= 1

m
·
∑n

i=1
Ci

Ti
. The utilisation boundUB

of an algorithm is a threshold such that, all task sets with
Uτ≤UB scheduled by said algorithm meet their deadlines.

Multiprocessor scheduling algorithms are often cate-
gorised aspartitionedor global. Under global scheduling,
a single dispatch queue is shared by all processors. At
any moment, them highest-priority tasks among those
runnable are executing on them processors. In contrast,
under partitioned scheduling, all tasks in a partition are
assigned to the same processor and may not migrate to
another processor. Multiprocessor scheduling is thus trans-
formed to many uniprocessor scheduling problems. While
this simplifies scheduling and allows reuse of many results
from uniprocessor scheduling, no partitioned algorithm can

have a utilisation bound above 50%. Conversely, thepfair
family of global scheduling algorithms offers utilisation
bounds of 100% [5], [1] but at the cost of numerous
preemptions [9]. The global scheduling scheme EDZL [8]
is not preemption-prone and usually performs well, but its
utilisation bound is unknown (and less than 63.1% [7]).

EDF-fm [2] introduced limited migration to partitioned
EDF but for scheduling soft, not hard, real-time tasks at
100% utilisation with limited tardiness. Ehd2-SIP [11], an-
other algorithm with limited migration based on partitioned
EDF, is characterised by few preemptions on average but
its utilisation bound is just 50% (i.e. same as for partitioned
EDF). Under the hybrid approach in [3], most tasks utilise
a single processor while a few (at mostm−1) utilise two –
but not both simultaneously, due to the dispatching policy.
This algorithm is configurable for higher utilisation bounds
(up to 100%) at the cost of increased preemptions. As such,
it largely solves the problem of achieving a high utilisation
bound without too many preemptions.

Still, this paper introduces an algorithm with a utilisa-
tion bound of66.6̄% and even lower worst-case preemption
counts than [3]. LetNarr(∆t) denote an upper bound on
job arrivals in the system over an interval of length∆t.
The preemptions generated during that interval are at most

Narr(∆t) +

⌈
∆t

min
i∈{1,2,...,n}

{Ti}

⌉

·
(

2 · m +
⌈m

3

⌉)

This paper is organised as follows: Section 2 discusses
important concepts, prerequisite to understanding our ap-
proach, formulated in Section 3. Sections 4 and 5 discuss
its performance in terms of its utilisation bound and worst-
case preemption counts, respectively. Section 6 concludes.

2.. Useful concepts

2.1. Intuition

Any partitioned scheme, may in the worst case leave
processors partly utilised so that although the cumulative

spare capacity in the system exceeds the utilisation of
some yet unassigned task, the latter cannot be assigned
to any processor. Assume however that, at run-time, some
mechanism would ensure that on every instant when some
Pa processor ceases to be idle, at least one other processor
Pb is guaranteed to be idle. We could then reclaim the
idle interval onPa to execute some additional task and
then migrate that toPb when necessary. Even better, we
could use such reclaimed spare capacity for scheduling an
additional set of tasks, in isolation from other tasks on each
processor, as if we had an additional processor (but in fact
“piggybacking” on existing ones). Note that the dynamic
mapping of logical processors to physical processors is not
a new concept (for example, it is used in [13]) but we use
it in a novel way.

2.2. On periodic reserves

Let U denote the cumulative utilisation of all tasks
assigned to some processor. We seek predictability in the
occurrence of idle intervals on this (and any other) pro-
cessor, so as to exploit the previously explained principle
and schedule additional tasks. Such predictability may be
achieved via having all tasks on a processor execute within
a fixed-size periodic time window – termed areserve[4].

One or more tasks with implicit deadlines and cumula-
tive utilisation U ≤ 1 may meet deadlines, if scheduled
within a periodic reserve, provided that the length of
the periodic reserve is a sufficiently large fraction of the
“timeslot length”S (i.e. the fixed interval between the start
of one reserve and the start of the next one). This fraction
will have to exceedU to account for unfavorable phasings
with respect to the arrivals of the tasks served relative
to the start of the next available reserve. The amount by
which this fraction exceedsU is termedreserve inflation.
Inflation is obviously undesirable. While it can be reduced
by opting for shorter timeslots, this increases the number
of preemptions resulting from the implementation of the
reserves.

In [3] it was shown that, if a reserve is exclusive for the
execution of some implicit-deadline task with utilisationU

and if the timeslot lengthS does not exceed the interarrival
time of the task, then, if the reserve size is at least

(

U +
U · (1 − U)

1 + U

)

· S

then the task will always meet deadlines. In that case, the
sufficient inflation (as a function ofU) is given by

α(U) =
U · (1 − U)

1 + U
(1)

In this paper we are interested in scheduling multiple
tasks under EDF, within each reserve. Still, it is trivial to

Figure 1. Plot of the functions α(U), inflate(U),
deflate(U), with y=U as a reference.

show that the sufficient inflation, as a function of the sum
U of the utilisations of the tasks served by the reserve,
is given by the same expression (as long as the timeslot
lengthS does not exceed the interarrival time of any task
served by the reserve – a constraint also enforced herein).
So as not to disrupt, the proof is in the Appendix (see
Theorem 5).

For convenience later on, we introduce the function

inflate(U) = U + α(U) =
2 · U

1 + U
(2)

which expresses what size, as fraction of the timeslot
length, a periodic reserve should be so as to be able
to accommodate tasks of cumulative utilisationU . The
inverse function

deflate(U) = inflate−1(U) =
U

2 − U
(3)

expresses the maximum cumulative task utilisation that a
periodic reserve of sizeU times the timeslot length may
accommodate. For illustration purposes, see Figure 1.

2.3. On bin-packing

Bin-packing schemes have long been used for task
assignment on partitioned multiprocessors. A popular such
scheme,First-Fit, assigns tasks one by one to the lowest-
indexed processor where each fits, subject to previous as-
signments (see [10], p. 124). We will define here a variant
of First-Fit, for use with identical multiprocessors, withthe
property that it is impossible (assuming task utilisations
do not exceed unity) for a task to fail to be assigned to
some processor (subject to existing assignments) unless all
processors are utilised by more than1

2 .

Definition 1. An ordered task set is in Heavy-First order
(abbreviated HF) if and only if every task with utilisation
higher than 1

2 (i.e. a “heavy” task) precedes every task
with utilisation 1

2 or less (i.e. a “light” task).

Multiple HF orderings might exist for a task set.

2

Definition 2. The First-Fit – Heavy-First bin-packing
algorithm (abbreviated FF-HF) is the First-Fit bin-packing
algorithm with tasks considered in HF order.

Our approach (described later) initially uses FF-HF bin-
packing for task assignment until some task cannot be
assigned (subject to existing assignments); it then attempts
to accommodate remaining unassigned tasks via other
mechanisms. So as to derive the utilisation bound of
the algorithm we then need to know what fraction of
system capacity is utilised,beforethe FF-HF bin-packing
fails. Thus, in the context of task assignment on identical
processors:

Definition 3. The bin-packing bound of a bin-packing
algorithm is the maximum valid lower bound on the
utilised system capacity immediately prior to an unsuc-
cessful attempt to assign a task (subject to assignments
already made).

Definition 4. The per processor bin-packing bound of a
bin-packing algorithm is the maximum valid lower bound
for the minimum of the respective utilised capacities of all
processors immediately prior to an unsuccessful attempt
to assign a task (subject to assignments already made).

Theorem 1. The bin-packing bound and the per processor
bin-packing bound of FF-HF are 50%.

Proof: Assume task assignment overm identical
processors according to the FF-HF algorithm. Task util-
isations do not exceed unity. Then, if at some point during
the procedure, some taskτf with utilisation uf

def
=

Cf

Tf

cannot be assigned to any processor, subject to assignments
already made, two complementary possibilities exist:

• Case 1: uf > 1
2 : That τf could not be assigned,

implies that, immediately prior to the attempt to assign
τf , every processor has at least one task assigned to it
(or else some entirely unutilised processor would have
existed to assignτf to – a contradiction). Moreover,
sinceτf is heavy and tasks are considered in HF order, it
follows that all previously assigned tasks were heavy as
well. Thus, every processor is already utilised by more
than50% before attempting to assignτf . Therefore the
entire system is also utilised by more than50% before
attempting to assignτf .

• Case 2:uf ≤ 1
2 : Thatτf could not be assigned implies

that the unutilised capacity of every processor prior to
the attempt is less thanuf . Equivalently, the utilised
capacity of every processor, before attempting to assign
τf , is more than1−uf , in turn no less than1− 1

2= 1
2

(according to the assumption of the case). The entire
system is thus also utilised by more than50% before
the attempt.

In either case, 50% is thus a lower bound both for

Figure 2. An example of a notional processor,
implemented upon 5 physical processors.

individual processor utilisation and for the utilised system
capacity before FF-HF can fail. That it is also, respectively,
the greatest such lower bound may be shown via an
example wherein, just prior to a failed attempt by FF-
HF to assign a task (subject to existing assignments),
all processors are utilised by0.5+ǫ>0.5 (with ǫ→0+).
Indeed, this occurs when given two processors and three
tasks with utilisations0.5+ǫ.

2.4. On notional processors

A notional processor is a logical construct implemented
upon multiple physical processors for the purposes of
scheduling computational tasks. Essentially, it is a function
providing a mapping, for every instant, to some (provably
idle) physical processor, where a tasklogically treated
as executing on the notional processor in question will
actually be executing. For an intuitive example of the
semantics see Figure 2. Formally, a notional processor is
denoted by

(
{a0, a1, ..., az}, {h0, h1, ..., hz−1}

)

with the following constraints:
• a0 = 0 andaz ≤ S

• ∀r ∈ {1..z} : ar−1 < ar

• ∀r : hr ∈ {1..m}

and with the semantics that on time instantt, any task
logically treated as executing on the notional processor
in consideration is actually executing on processorPhr

,
wherer is the integer for which the following holds:

ar ≤ t modulo S < ar+1 (4)

If az = S then the notional processor isfull-capacity
(i.e. will always be mapped to some physical processor,
on every instant). Else, it is fractional-capacity (i.e. peri-
odically unavailable, akin to a periodic reserve).

3

Figure 3. A system with multiple notional pro-
cessors, including one of fractional capacity.

In terms of processing capacity, a full-capacity notional
processor is “as good” as a physical one because it
supplies processing power that is continuous in time (as it
always maps to some physical processor, on any instant)
and invariant (as the physical processors mapped-to are
identical). In this respect it is unlike a typical server (which
employs disjoint time windows to schedule its workload
and may be preemptible), hence the new term (“notional
processor”), for lack of an established term covering these
semantics.

3.. The new algorithm

The algorithm is structured in three stages:

• First, we assign tasks to physical processors, until we
encounter a task which we cannot assign anywhere
(subject to assignments already made).

• Then, we restrict the workload on each processor
to execution within (appropriately sized) periodic
reserves and organise the time intervals in between
reserves on the physical processors into notional
processors.

• Remaining tasks are assigned to notional processors.
We explore these stages in a more detailed manner:
In the first stage we assign tasks to physical processors

using the FF-HF bin-packing algorithm (introduced in
Section 2.3), until either all tasks have been assigned (in
which case the algorithm completes) or we encounter a

task which cannot be assigned to any processor (subject to
assignments already made). In the latter case, because of
the properties of the bin-packing scheme employed, each
of the physical processors will be utilised by more than1

2
(by the tasks successfully assigned to each). (In the former
case, no further action is necessary; we can simply use
partitioned EDF.)

In the second stage, we select the value for an important,
system-wide setting: the timeslot lengthS. It is set equal
to the shortest of the interarrival times of all tasks (whether
yet assigned or not). We then determine, for each physical
processorPp, what the length of the corresponding reserve
xp should be, as a fraction of the timeslot length, such that
all tasks assigned toPp will meet deadlines, if scheduled
under EDF during this periodic reserve. This enforces,
on every physical processorPp, intervals of lengthxp

wherein tasks assigned to the processor may execute (under
an EDF scheme) interleaved with “gaps” – intervals of
lengthS−xp. At this point we specify offsets for timeslot
boundaries on adjacent processors such that, whenever
the periodic “gap” on processorPp ends, the “gap” on
processorPp+1 begins. This provides a seamless supply of
processing capacity that we structure into notional proces-
sors using the algorithm described in Figure 4. Figures 2
and 3 provide a more intuitive, visual explanation of how
notional processors are implemented on top of physical
processors.

In the third stage, we perform assignment of remaining
tasks to notional processors, using First-Fit bin-packing
(i.e. not necessarily FF-HF; any ordering will do). If all
tasks can be assigned, the algorithm declares SUCCESS;
otherwise, it declares FAILURE upon encountering the
first task which cannot be assigned to any notional pro-
cessor (subject to assignments already made).

4.. On the utilisation bound of the algorithm

Because the algorithm actually performs two rounds
of bin-packing (one over physical and one over notional
processors), deriving its utilisation bound is not straight-
forward. In the general case, there existm physical
processors,m′ full-capacity notional processors (indexed
m+1..m+m′) and also a notional processor of fractional
capacityF , with 0 ≤ F < 1. Then, the cumulative system
utilisation is

Ucml =

m∑

p=1

Up +

m+m′+1∑

p=m+1

Up (5)

where the first and second term denote the sum of the
utilisations of physical and notional processors (of either
full or fractional capacity), respectively. Then, the system
utilisation normalised by the number of physical proces-
sors is

4

1. i,p,r,S,m_prime,cur_p,first_unassigned:integer; 46. notional_CAP:=notional_CAP+(1-x[p]);
2. C[],T[]: array[1..n] of float; 47. end for
3. A[]: array[1..n] of integer; 48. for p:=1 to m-1 do
4. CAP[],U[],x[],O[]: array [1..m] of float; 49. O[p+1]=O[p]+(S-x[p]);
5. a[][]:array[m+1..m+m_prime+1][0..m] of float; 50. end for
6. h[][]:array[m+1..m+m_prime+1][0..m-1] of integer; 51. m_prime:=floor(notional_CAP);
7. unassigned_tasks_exist,stop: boolean; 52. enlarge_arrays_U_and_A_and_CAP_by(m+m_prime+1);
8. notional_CAP,end: float; 53. for p:=m+1 to m+m_prime do
9. read_task_parameters_from_input(); //C[], T[] 54. CAP[p]:=1; //full-capacity notional CPU

10. //stage 1 - 55. end for
11. reindex_tasks_in_HF_order(); //C[], T[] 56. CAP[m+m_prime+1]:=deflate(notional_CAP-m_prime);
12. for p:= 1 to m do 57. //now create notional CPUs
13. CAP[p]:=1; //full-capacity 58. cur_p:=1;
14. U[p]:=0; //initially unutilised 59. for p := m+1 to m+m_prime+1 do
15. end for 60. stop:=FALSE;
16. unassigned_tasks_exist:=TRUE; 61. a[p][0]:=0;
17. for i:=1 to n do 62. r:=1;
18. A[i]:=-1; //initially not assigned 63. while (stop==FALSE) do
19. p:=1; 64. end:=S*inflate(CAP[p]);
20. while (p<=m) do 65. a[p][r]:=min(a[p][r-1]+S-x[cur_p],end);
21. if (U[p]+C[i]/T[i]<=CAP[p]) then 66. h[p][r-1]:=cur_p;
22. A[i]:=p; 67. r:=r+1;
23. U[p]:=U[p]+C[i]/T[i]; 68. if (a[p][r]==end) then
24. else 69. stop:=TRUE;
25. p:=p+1; 70. else
26. end if 71. cur_p:=cur_p+1;
27. end while 72. end if
28. if ((i==n) and (A[i]!=-1)) then 73. end while
29. unassigned_tasks_exist:=FALSE; 74. end for
30. end if 75. //stage 3 -
31. if (A[i]==-1) then //was not assigned 76. for i:=first_unassigned to n do
32. first_unassigned:=i; 77. p:=m+1;
33. break; 78. while (p<=m+m_prime+1) do
34. end if 79. if (U[p]+C[i]/T[i]<=CAP[p]) then
35. end for 80. A[i]:=p;
36. //stage 2 - 81. U[p]:=U[p]+C[i]/T[i];
37. S:=T[1]; 82. else
38. for i:=1 to n do 83. p:=p+1;
39. if (T[i]<S) then 84. end if
40. S:=T[i]; 85. end while
41. end if 86. if ((i==n) && (A[i]!=-1)) then
42. end for 87. declare(FAILURE);
43. O[1]:=notional_CAP:=0; 88. end if
44. for p:=1 to m do 89. end for
45. x[p]:=inflate(U[p])*S; 90. declare(SUCCESS);

Figure 4. The offline task assignment and notional processor creation algorithm

Unrm =
Ucml

m
(6)

The cumulative capacity of the physical processors is
always equal tom. That of the notional processors, how-
ever, depends on the utilisations of the physical processors:

CAPnotl
cml =

m∑

p=1

(1 − inflate(Up)) (7)

This capacity is structured, in the general case, as
m′=⌊CAPnotl

cml ⌋ full-capacity notional processors and one
notional processor of capacityF = deflate(CAPnotl

cml −
m′).

Thus, how much additional utilisation can be accommo-
dated by the notional processors depends on the outcome
of the bin-packing over the physical processors and can-
not be considered in isolation. Note also that, although
notional processors do help (i.e. with accommodating
additional tasks), their count tends to decrease the higher

the utilisation of the physical processors, past the first
round of bin-packing. Thus, it is not obvious whether
having highly-utilised or less utilised physical processors
(or some other scenario), past the first round of bin-
packing, is the worst-case scenario (i.e. the one minimising
the cumulative utilisation threshold past which the system
might be unschedulable). So as to determine the utilisation
bound of the algorithm however, this scenario has to be
characterised. And for that, we need to determine (a lower
bound on) how much utilisation, in the worst case, fits
over a given number of notional processors (and a given
capacity for the fractional notional processor, if one exists).
This unconventional bin-packing problem (see Figure 6)
can be formulated as:

Assumem′ unit-capacity bins (i.e. processors) and one
of capacityF , 0≤F<1. We perform First-Fit bin-packing
with the fractional-capacity bin (i.e. processor) considered
last. Assuming item sizes (i.e. task utilisations) in the range
(0, 1], find the maximum threshold (as a function ofF ,

5

1. //runs on every physical processor, on every
2. //task arrival/completion or timeslot boundary
3. procedure dispatcher is
4. stay_idle: boolean;
5. p, np: integer;
6. t: float;
7. p:= this_processor();
8. t:=time_since_bootup();
9. if (((t-O[p]+S) mod S) >= S-x[p]) then

10. edf_schedule_from_queue(p);
11. else
12. stay_idle:=TRUE;
13. for np:=m+1 to m+m_prime+1 do
14. for r:=0 to length(a[np])-2 do
15. if ((a[np][r]<=t) and (t<a[np][r+1]))
16. then break;
17. end if
18. end for
19. if (h[np][r]==p) then
20. stay_idle:=FALSE;
21. break;
22. end if
23. end for
24. if (stay_idle==TRUE)
25. then do_nothing();
26. else edf_schedule_from_queue(np);
27. end if
28. end if
29. end procedure

Figure 5. The run-time dispatching algorithm

Figure 6. An unconventional bin-packing
problem, due to the fractional-capacity bin.

m) such that any set of items (tasks) with cumulative size
(utilisation) not above the threshold will always fit (i.e.
manage to be assigned).

The problem is interesting in that the fractional-capacity
bin might sometimes help, but not always. For example,
its capacity might be smaller than even the smallest item.

So as to simplify the derivation, in those cases where
m′>0, we (pessimistically) derive the corresponding util-
isation bound for the case that the fractional-capacity
processor is disregarded. (Intuitively, the utilisation bound
cannot increase as a result. For proof, see Theorem 6 in
the Appendix.) The unconventional bin-packing problem is
then transformed to First-Fit bin-packing overm′ identical
processors, in which case the utilisation bound (as known
from [12]) is m′+1

2 . We proceed with a pessimistic lower-
bound on the cumulative utilisation that we can “pack” into
the system, subject to the outcome of the first round of bin-
packing. For this, we rely on Theorem 2 via Lemma 1.

Lemma 1. Assume two physical processors,Pa

and Pb, respectively utilised by U−x, U+x,

with 1
2≤U−x<U+x≤1. It then holds that

α(U − x) + α(U − x) < 2 · α(U) (i.e. the cumulative
processing capacity wasted as inflation so as to schedule
the respective workloads on both processors within
periodic reserves is less than what it would have been in
the case that bothPa and Pb were utilised byU .)

Proof: Follows from the fact thatα(U) = U·(1−U)
1+U

is
decreasing and strictly convex over [1

2 , 1].

Theorem 2. Assumem physical processors,P1 to Pm,
respectively utilised each by someUp, p ∈ {1..m} where
1
2 ≤ Up ≤ 1. Then, the cumulative processing capacity
sacrificed as inflation (so as to schedule the respective
workloads on all physical processors within periodic re-
serves) cannot exceed what it would have been in the case
that all processors were utilised byUϕ

def
= 1

m

∑m
p=1 Up.

Using notation:
∑m

p=1 α(Up) ≤
∑m

p=1 α(Uϕ) = m ·
α(Uϕ).

Proof: Suppose that the claim was false. Then under
some other scenario, the individual processor utilisations
would not (all) beUϕ, but the average processor utilisation
would still be Uϕ and a greater fraction of the overall
processing capacity would be lost on inflation, so as to
schedule workloads within periodic reserves. We disprove
this possibility:

If, among them processors, we pickPa, the processor
with the lowest utilisationUa andPb, the processor with
the highest utilisationUb and modify the utilisations such
that bothPa andPb are utilised byUa+Ub

2 (i.e. the average
of the two original utilisations) then the following hold:

• The fraction of the utilised processing capacity of the
m-processor array is the same, before and after.

• The fraction of the utilised processing capacity wasted
as inflation can only increase (according to Lemma 1).

By repeating the above transformation, each time with
the most and least utilised processor, we reach a state
where all processors end up utilised arbitrarily close toUϕ

(the average of the original processor utilisations) and the
fraction of the overall processing capacity lost on inflation
is higher. This contradicts the assumption that the claim is
false.

We now prove the utilisation bound for our algorithm
(i.e. considering both rounds of bin-packing).

Theorem 3. The utilisation bound of the above scheduling
approach, is no less than23 .

Proof: Let Uϕ denote, as before, the average of the
utilisations of them physical processors. From Theorem 2,
the cumulative processing capacity wasted as inflation can-
not exceedm ·α(Uϕ), therefore the amount of processing
capacity made into notional processors cannot be less than

m − m · Uϕ − m · α(Uϕ) = m ·
(
1 − inflate(Uϕ)

)

6

In turn, for m′, the number of full-capacity notional
processors, it holds that

m′ ≥
⌊
m ·

(
1 − inflate(Uϕ)

)⌋
(8)

We explore three cases depending on the value ofm:
• If m ≤ 3, then if the sum of the utilisations of all
tasks to be scheduled does not exceedm+1

2 , it is known
(see [12]) that First-Fit bin-packing (of which FF-HF is
a special case) will assign all tasks to them physical
processors. Consequently, even if we would then opt to
not use notional processors at all, the utilisation bound
would be at least34 and 2

3 , respectively, form = 2 and
m = 3.

• If m = 4: If Uϕ > 2
3 , then, irrespective of whether

or not additional tasks are scheduled on the notional
processors, the utilised system capacity cannot be less
than 2

3 . Let us therefore focus on the remaining case
whereUϕ ≤ 2

3 and explore two subcases:

– If m′ > 0 (i.e. a full-capacity notional processor
exists), then we can accommodate additional tasks
of cumulative utilisation of at least unity. Thus, the
utilisation bound is no less than1

m
· (m · Uϕ + 1) >

1
4 · (4 · 1

2 + 1) = 3
4 > 2

3 .
– Else (i.e. ifm′=0), we only have a notional processor

of fractional capacity F=
∑4

p=1(1−inflate(Up)).
We can use that to schedule additional tasks
of cumulative utilisation up toF – but only
if F>1−Up, ∀p∈{1, 2, 3, 4}. Otherwise, the
fractional-capacity processor would not be able
to accommodate whichever task the first round
of bin-packing ended with (i.e. the one that
could not be assigned). But, from Theorem 1, we
know that 1 − Up < 1 − 1

2 = 1
2 , ∀p∈{1, 2, 3, 4}

whereas, from Theorem 2 and the fact that function
inflate is strictly increasing andUϕ≤

2
3 , we get

∑4
p=1(1−inflate(Up))≥

∑4
p=1(1−inflate(2

3))= 4
5 .

Therefore, the capacityF of the notional processor
will be at leastdeflate

(
4
5

)
= 2

3 > 1
2 > 1 − Up,

∀p∈{1, 2, 3, 4}, which means that we can, in any
case, accommodate additional tasks of cumulative
utilisation at least23 . Therefore the utilisation bound
is at least 1

m
· (m · Uϕ + F) > 1

4 · (4 · 1
2 + 2

3) = 2
3 .

• If m≥5: If Uϕ > 2
3 , then, irrespective of whether

or not additional tasks are scheduled on the notional
processors, the utilised system capacity cannot be less
than 2

3 . Let us therefore focus on the case where
Uϕ ≤ 2

3 :
Then, since the functioninflate is strictly increasing and
inflate(2

3) = 4
5 andUϕ ≤ 2

3 , andm ≥ 5, it follows from
Inequality 8 thatm′ ≥ 1 (i.e. that there is at least one
full-capacity notional processor).
Then, we know (see [12]) that as long as the sum of
the utilisations of remaining (i.e. from the first round of

bin-packing) unassigned tasks does not exceed

1

2
·
(⌊

m ·
(
1 − inflate(Uϕ)

)⌋
+ 1

)

then all are eventually be assigned to some notional
processor (thus the task set is schedulable by our al-
gorithm). Therefore, a lower bound for the utilisation
of the system, normalised by the number of physical
processors, is

U ≥
1

m
·
(

m · Uϕ +
1

2
·
(⌊

m ·
(
1 − inflate(Uϕ)

)⌋
+ 1

))

= Uϕ +
1

2 · m
·
(⌊

m ·
(
1 − inflate(Uϕ)

)⌋
+ 1

)

Since
⌊
m·

(
1−inflate(Uϕ)

)⌋
+1 > m·

(
1−inflate(Uϕ)

)
,

it holds that

U > Uϕ +
1

2 · m
·
(

m ·
(
1 − inflate(Uϕ)

))

= Uϕ +
1

2
−

1

2
· inflate(Uϕ) = Uϕ +

1

2
−

Uϕ

1 + Uϕ

=
1

2
+

Uϕ · (1 + Uϕ) − Uϕ

1 + Uϕ

=
1

2
+

U2
ϕ

1 + Uϕ

(9)

The expression
U2

ϕ

1+Uϕ
is an increasing function ofUϕ

over (0, ∞). Additionally, we know from Theorem 1
that Uϕ > 1

2 . Hence, over(1
2 , 1], the minimum for the

expression
U2

ϕ

1+Uϕ
occurs atUϕ = 1

2 and is equal to1
6 .

Combining this with Inequality 9 we obtain

U >
1

2
+

1

6
=

2

3
(10)

Thus, irrespective ofm, 2
3 is a valid lower bound for the

utilisation bound of our scheduling algorithm.

5.. Bounds on preemption counts

Definition 5. A task with outstanding computation at time
t, is said to be preempted at timet if it executes on
processorp just beforet but not just aftert.

By this definition, which we believe captures the notion
of preemption used in the research community, a job that
starts executing is not preempted, nor is one that finishes
executing. Also, a job executing both just before and just
aftert but on different processors is, by the same definition,
preempted at timet. Such a preemption is amigration.

At run-time, there are five types of preemptions:

• type-α: Caused upon arrival of a task whose absolute
deadline is earlier than that of some other task executing
up to that point. The number of such preemptions, within
a time interval∆t is bounded by the number of task
arrivals within the same interval (Narr(∆t)).

7

• type-β: These occur when a reserve ends, when the
currently executing task, among those assigned to a
physical processor, is preempted. The number of those
preemptions, within a time interval∆t is at most

⌈
∆t
S

⌉

per physical processor, thus at most
⌈

∆t
S

⌉
· m overall.

• type-γ: The migrations that occur when a reserve starts,
when the notional processor currently “piggybacked” on
top of the physical processor in consideration, migrates
to another physical processor. Then, whichever task was
logically on the notional processor at the time undergoes
migration, in terms of the actual physical processor upon
which it executes. In Figure 3, this occurs for notional
processorP10 at t=0.3 · S (migration from P1 to P2),
t=0.5 · S (migration from P2 to P3) and so on. The
number of such preemptions within a time interval∆t is
at most

⌈
∆t
S

⌉
per physical processor, thus at most

⌈
∆t
S

⌉
·m

overall.
• type-δ: The migrations that occur upon time instants
which are integer multiples of the timeslot lengthS, when
each full-capacity notional processor “rewinds” to using a
lower-indexed physical processor. In Figure 3, this occurs
on t = S, 2 ·S, ..., when notional processorP10 migrates
from P5 back toP1. During a time interval∆t, at most
⌈

∆t
S

⌉
· m′ of these may occur.

• type-ǫ: The preemptions that occur each time that the
single fractional-capacity notional processor (if one ex-
ists) becomes unavailable. In the example of Figure 3, this
occurs att = 0.2·S, 1.2·S, 2.2·S... During a time interval
∆t (and only if a fractional-capacity notional processor
exists), there are at most

⌈
∆t
S

⌉
such preemptions.

Thus, during an interval of length∆t, overall preemp-
tions can be at most

Npreempt(∆t) = Narr(∆t)
︸ ︷︷ ︸

type-α

+

⌈
∆t

S

⌉

· m

︸ ︷︷ ︸

type-β

+

⌈
∆t

S

⌉

· m

︸ ︷︷ ︸

type-γ

+

⌈
∆t

S

⌉

· m′

︸ ︷︷ ︸

type-δ

+

⌈
∆t

S

⌉

· m′
fr

︸ ︷︷ ︸

type-ǫ

= Narr(∆t) +

⌈
∆t

S

⌉

· (2 · m + m′ + m′
fr) (11)

wherem′
fr is the number of fractional-capacity notional

processors (which can only be either0 or 1) andm′ is the
number of full-capacity notional processors. We proceed
to eliminatem′, m′

fr from the above expression.

Theorem 4. The number of notional processors (full-
capacity or fractional capacity, irrespective) cannot exceed
⌈

m
3

⌉
, when the first-round of bin-packing is performed

according to the FF-HF algorithm.

Proof: If the cumulative capacity available, past the

first-round of bin-packing, for structuring into notional
processors isCAPnotl

cml , out of that capacity, we can craft:
• m′=⌊CAPnotl

cml ⌋ full-capacity notional processors
• m′

fr = ⌈CAPnotl
cml − m′⌉ fractional capacity proces-

sor(s) of capacitydeflate(CAPnotl
cml − m′)

Thus:
m′ + m′

fr = ⌈CAPnotl
cml ⌉ (12)

Therefore,m′ + m′
fr is maximised whenCAPnotl

cml is
maximised. As earlier stated (remember Equation 7),

CAPnotl
cml =

m∑

p=1

(1 − inflate(Up)) = m −
m∑

p=1

inflate(Up) (13)

However, we know from Theorem 1 thatUp > 1
2 , ∀p ∈

[1..m]. We also know that the functioninflate is in-
creasing. Using both of these facts and Equation 13, we
conclude that

CAPnotl
cml < m −

m∑

p=1

inflate

(
1

2

)

= m − m ·
2

3
=

m

3
(14)

Equation 12 and Inequality 14 combined yield:

m′ + m′
fr ≤

⌈m

3

⌉

(15)

Directly applying Theorem 4 to Inequality 11 yields

Npreempt(∆t) ≤ Narr(∆t) +

⌈
∆t

S

⌉

·
(

2 · m +
⌈m

3

⌉)

(16)

as an upper bound for the number of preemptions during
any interval of length∆t.

6.. Discussion and conclusions

All task sets with utilisations up to12 are schedulable
under partitioned EDF (using First-Fit bin-packing) with
at mostNarr(∆t) preemptions over an interval of length
∆t.

Any task is schedulable by the algorithm in [3] if
integer parameterδ is set to a sufficiently high value. The
utilisation bound for that algorithm as a function ofδ is
given by:

UBECRTS 2008(δ) = 4 ·
(√

δ · (δ + 1) − δ
)
− 1

One should choose the smallest acceptableδ, to avoid
needless preemptions, as the upper bound on preemptions,
within an interval of length∆t for the algorithm in [3] is
an increasing function ofδ:

NECRTS 2008
preempt (∆t) = Narr(∆t) + 3 · m · δ ·

⌈
∆t

S

⌉

+ 2

8

By comparison, for the algorithm formulated herein, the
upper bound for preemptions is given by

Npreempt(∆t) = Narr(∆t) +
(

2 · m +
⌈m

3

⌉)

·

⌈
∆t

S

⌉

We thus note that (since2 · m +
⌈

m
3

⌉
≤ 3 · m · δ,

∀m∈{1, 2, ...}, ∀δ∈{1, 2, ...}) the algorithm formulated
herein is able to schedule task sets with utilisations up
to 66.6̄% with fewer preemptions than even the most
“preemption-light” setting (δ=1) of the algorithm from [3],
which has a utilisation bound of65.7% only.

Note also that to potentially further reduce preemptions
we can retroactively (i.e. past assignment of all tasks), with
no loss of schedulability, increase the timeslot length to

S = min
i: τi assigned to physical or
fractional notional processor

{Ti} ≥ min
∀i

{Ti}

whereas in [3] by comparison,S = min
∀i

{Ti}, for δ = 1.

Thus, one may sometimes use longer timeslots than the
algorithm in [3] (thus further reducing preemptions) with
no detriment to schedulability. To leverage this, we propose
for the second bin-packing round, assignment of remaining
tasks in order of increasing interarrival time. Ifm′>0, this
heuristic prevents assignment of tasks with short interar-
rival times to the fractional-capacity notional processor.

Finally, we note that task sets of higher utilisation than
the utilisation bound of66.6̄% might still be schedulable
under the algorithm introduced. Therefore, we advocate
the following approach, when faced with the problem of
scheduling task sets with utilisations greater than1

2 :

• First try scheduling under partitioned EDF;
• if that fails, try with the algorithm formulated herein;
• if that fails, use [3], with an appropriate value forδ.

Consideration of scheduling algorithms in this order en-
sures schedulability with as few preemptions as necessary.

To conclude, our algorithm, with a utilisation bound of
66.6̄%, is the most “preemption-light” (in terms of proven
upper bounds on preemptions) of all known multiprocessor
scheduling algorithms with utilisation bounds over50%.

Acknowledgements

This work was partially funded by the Portuguese Sci-
ence and Technology Foundation (Fundação para a Ciência
e a Tecnologia - FCT) and the European Comission
through grant ArtistDesign ICT-NoE- 214373.

References

[1] J. Anderson and A. Srinivasan. Mixed Pfair/ERfair schedul-
ing of asynchronous periodic tasks.Journal of Computer
and System Sciences, 68(1):157–204, 2004.

[2] J. H. Anderson, V. Bud, and U. C. Devi. An EDF-based
Scheduling Algorithm for Multiprocessor Soft Real-Time
Systems. InProceedings of the 17th Euromicro Conference
on Real-Time Systems, pages 199–208, 2005.

[3] B. Andersson and K. Bletsas. Sporadic Multiprocessor
Scheduling with Few Preemptions. In20th Euromicro
Conference on Real-Time Systems, pages 243–252, 2008.

[4] B. Andersson and E. Tovar. Multiprocessor scheduling with
few preemptions. InProceedings of the 12th IEEE Interna-
tional Conference on Embedded and Real-Time Computing
Systems and Applications, pages 322–334, 2006.

[5] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel.
Proportionate progress: A notion of fairness in resource
allocation. Algorithmica, 15(6):600–625, June 1996.

[6] S. K. Baruah, A. K. Mok, and L. E. Rosier. Preemptively
scheduling hard-real-time sporadic tasks on one processor.
In Proceedings of the 11th IEEE Real-Time Systems Sym-
posium, pages 182–190, 1990.

[7] Y. Chao, S. Lin, and K. Lin. Schedulability issues for EDZL
scheduling on real-time multiprocessor systems.Informa-
tion Processing Letters, 107(5):158–164, Aug. 2008.

[8] S. Cho, S. Lee, A. Han, and K. Lin. Efficient Real-Time
Scheduling Algorithms for Multiprocessor Systems.IEICE
Trans. on Communications, E85-B(12):2859–2867, 2002.

[9] U. Devi and J. Anderson. Tardiness bounds for global EDF
scheduling on a multiprocessor. InProceedings of the 26th
IEEE Real-Time Systems Symposium, pages 330–341, 2005.

[10] M. R. Garey and D. S. Johnson.Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness. W. H.
Freeman & Co, 1979.

[11] S. Kato and N. Yamasaki. Real-Time Scheduling with Task
Splitting on Multiprocessors. InProc. of the 13th IEEE
International Conf. on Embedded and Real-Time Computing
Systems and Applications (RTCSA), p. 441–450, 2007.

[12] J. M. López, M. Garcia, J. L. Dı́az, and D. F. Garcia. Worst-
Case Utilization Bound for EDF Scheduling on Real-Time
Multiprocessor Systems. InProc. of the 12th Euromicro
Conference on Real-Time Systems, p. 25–33, 2000.

[13] I. Shin, A. Easwaran, and I. Lee. Hierarchical Scheduling
Framework for Virtual Clustering of Multiprocessors. In
Proceedings of the 20th Euromicro Conference on Real-
Time Systems, pages 181–190, 2007.

Appendix

Theorem 5. Sufficient inflation for a periodic reserve to
accommodate implicit-deadline tasks of cumulative utili-
sation U, under EDF, is given byU·(1−U)

1+U
, if the timeslot

lengthS does not exceed the interarrival time of any task
served.

9

Proof: Assume a deadline miss (the earliest one by
a task served by the reserve) att=tm. Then, lettm − L

denote the earliest time beforetm such that, throughout all
sub-intervals of[tm−L, tm) which lie within the periodic
reserve, the processor will have been busy. Then, lettd
denote the cumulative execution requirement, over[tm −
L, tm), of all jobs by tasks served by the reserve which
arrived at t=tm−L or later and whose deadlines lie no
later thantm. Additionally, let tϕ denote the cumulative
time available to tasks served by the reserve (i.e. the time
lying inside the reserve). The missed deadline attm means:

td > tϕ (17)

Regardingtd, it follows from [6] that

td ≤
∑

τi∈τ

⌊
L

Ti

⌋

· Ci
(17)
=⇒

∑

τi∈τ

⌊
L

Ti

⌋

· Ci > tϕ (18)

At this point we note that

∑

τi∈τ

⌊
L

Ti

⌋

· Ci ≤
∑

τi∈τ

(
L

Ti

· Ci

)

= L ·
∑

τi∈τ

Ci

Ti

= L · U

(19)
which leads us to observe that

(18)
(19)
=⇒L · U > tϕ ⇒ U >

tϕ

L
(20)

Inequality 20 states that as long as, within any interval of
lengthL ≥ S, it holds thattϕ (i.e. the time available for the
execution of tasks served by the reserve), as a fraction ofL

(i.e. the interval length), is no less thanU , then deadlines
by tasks served by the reserve will always be met. Thus,
for deadlines to always be met, a sufficient condition is:

U ≤
tϕ

L
(21)

Time for the execution of tasks served by the reserve is
available as periodic time windows of length(U+α(U))·S
(corresponding to the reserves), interleaved by time win-
dows of lengthS − (U + α(U)) · S, when the processor
is unavailable to tasks served by the reserve. Then, the
most unfavorable selection of an offset, relative to reserve
boundaries, as the start of an interval of a given length
(in terms of time available to tasks served by the reserve,
within said interval) is immediately past the end of a
reserve. Then, of all time windows of lengthL ≥ S,
the one within which, the cumulative time belonging to
reserves (i.e.tϕ), divided by L is minimised, is the one
with L = S+

(
S−(U +α(U)) ·S

)
(because it ends just as

the next reserve begins). In that case,tϕ = (U +α(U)) ·S
and

tϕ

L
=

(U + α(U)) · S

S +
(
S − (U + α(U)) · S

) =
U + α(U)

2 − U − α(U)
(22)

Inequality 21 and Equation 22 combined yield:

U ≤
U + α(U)

2 − U − α(U)

⇔ 2 · U − U2 − U · α(U) ≤ U + α(U)

⇔ α(U) ≥
U · (1 − U)

1 + U
(23)

which proves the theorem.

Theorem 6. Consider a computing platformΠ consisting
of µ identical processors indexed1..µ and another com-
puting platformΠ′ consisting ofµ processors (identical to
those ofΠ and indexed1..µ) plus one additional processor
(indexedµ + 1) of fractional capacityf , with 0 ≤ f < 1.
Let τ ′ denote a set of tasks with individual utilisations
no more than unity. Then, for any given HF ordering of
tasks inτ ′, if the First-Fit bin-packing algorithm fails to
assign every task to some processor overΠ′, it will also
fail when attempting to do so overΠ, if using the same
task ordering.

Proof: Let us simulate independently First-Fit bin-
packing (i) overΠ′ and (ii) overΠ. In both cases, we use
the same task setτ ′ and the same ordering (effectively,
“cloning” τ ′). However, the simulations are to take place
in the following “lock-step” manner:

Within every step, after every simulated assignment (or
assignment attempt) overΠ′, we simulate the assignment
(or assignment attempt) of the same task overΠ. Then, as
a next step, we proceed with the next task overΠ′ and so
on.

Due to the First-Fit scheme, a processor is only ever
considered as an assignment target, if all lower-indexed
processors have been considered and ruled out as assign-
ment targets (subject to assignments already made) for the
task in consideration. Thus, up to the point where only full-
capacity processors have been considered as assignment
targets inΠ′, the assignments overΠ mimic those inΠ′.

If then, upon trying to assign a task overΠ′, it cannot
be assigned to any of the full-capacity processors, subject
to assignments already made, then the following hold:

• The fractional-capacity processor inΠ′ will be next
considered (and the assignment might succeed or fail).

• During the corresponding assignment attempt overΠ,
the attempted assignment of the task in consideration
to each of theµ processors inΠ (all full-capacity)
will fail and the algorithm will hence declare failure.

Note also that the algorithm cannot declare failure,
during assignment overΠ′ unless, at some point, the
highest-indexed processor (i.e. that of fractional capacity)
is considered as an assignment target and the assignment
fails.

10

