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Abstract 
Recent embedded processor architectures containing multiple heterogeneous cores and non-coherent caches, 
bring renewed attention to the use of Software Transactional Memory (STM) as a building block for developing 
parallel applications. STM promises to ease concurrent and parallel software development, but relies on the 
possibility of abort conflicting transactions to maintain data consistency, which affects the execution time of tasks 
carrying transactions. Thus, execution time overheads resulting from aborts must be limited, otherwise the timing 
behaviour of the task set will not be predictable. In this paper we formalise a FIFO-based algorithm to order the 
sequence of commits of concurrent transactions. Furthermore, we propose and evaluate two non-preemptive 
scheduling strategies, in order to avoid transaction starvation. 
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Abstract. Recent embedded processor architectures containing multi-
ple heterogeneous cores and non-coherent caches, bring renewed atten-
tion to the use of Software Transactional Memory (STM) as a building
block for developing parallel applications. STM promises to ease concur-
rent and parallel software development, but relies on the possibility of
abort conflicting transactions to maintain data consistency, which affects
the execution time of tasks carrying transactions. Thus, execution time
overheads resulting from aborts must be limited, otherwise the timing be-
haviour of the task set will not be predictable. In this paper we formalise
a FIFO-based algorithm to order the sequence of commits of concurrent
transactions. Furthermore, we propose and evaluate two non-preemptive
scheduling strategies, in order to avoid transaction starvation.

1 Introduction

The current trend to increase processing power by manufacturing chips includ-
ing multiple processor cores provided the ability to execute concurrent software
in parallel. This tendency for even larger number of processor cores will further
impact the way systems are developed. Some recently proposed architectures for
embedded systems, like the STMicroelectronics P2012 [4] (prototypes are avail-
able with 69 cores), Kalray’s MPPA [10] (up to 1024 cores; current version is
256 cores) allow both to concentrate multiple applications into the same proces-
sor, maximizing the hardware utilisation, and reducing cost, size, weight, and
power requirements, and also to improve application performance by exploiting
parallelism at the application level.

Nevertheless, integrating a high number of cores in a chip raises several prob-
lems, due to core interconnection and memory hierarchy. Cache coherency is be-
ing challenged [7] although some solutions can scale to dozens of cores [13], and
some chips still provide (software-based) solutions. Buses do not to scale and the
paradigm is shifting to networks-on-chip (NoC). Furthermore, platforms can be
homogeneous, with either symmetric multiprocessing or asymmetric multipro-
cessing, or heterogeneous, with different core types. This influences substantially
in the way applications share data.



Caches can be private to the cluster/tile, being coherent at that level, globally
coherent in the chip, or not made coherent at all (e.g. [4] and [10]). As the
number of cores increases, traditional solutions, such as buses or caches may
become bottlenecks due to the contention on simultaneous accesses.

These challenging architectures introduce more complexity for sharing data
between parallel threads. Lock-based synchronisation solutions are seldom used
to avoid race conditions, but in multiprocessor systems, coarse-grained locks seri-
alise non-conflicting operations that could progress in parallel, causing an impact
on the system throughput, while fine-grained locks increase the complexity of
system development, causing an impact on composability.

Alternatively, non-blocking approaches present strong conceptual advantages
[19] and have been shown in several cases to perform better than lock-based
ones [6]. The software transactional memory (STM) [18], is a concept in which
a critical section – the transaction – executes in isolation, without blocking,
regardless of other simultaneous transactions. An optimistic concurrency control
mechanism is responsible to serialise concurrent transactions, maintaining the
consistency of shared data objects. Conflicts are solved applying a contention
policy that selects the transaction that will commit, while the contender will
most likely abort and repeat. Solutions must be devised that reduce contention.

The time overhead resulting from aborts affects the worst-case execution time
(WCET) of a task that executes a transaction. Therefore, the timing behaviour
of a task can only be predictable if the transaction overhead is bounded, allowing
to determine the WCET and the utilisation of the task. Additionally, minimising
the number of aborts reduces wasted execution time.

In this paper, we formalise a FIFO-based contention management algorithm
and two non-preemptive scheduling strategies that provide predictability and
prevent transaction starvation. We evaluate the behaviour of these strategies by
simulation, analysing the introduced overhead and consequent impact in schedu-
lability.

The paper is structured as follows. Section 2 describes the problem of guar-
anteeing timing requirements when using STM in embedded real-time systems
based on parallel architectures, and presents relevant published work in this
field. Section 3 sets the system model in which the assumptions of this work
are valid. We then formalise a decentralised algorithm to manage conflicts be-
tween concurrent transactions (Section 4). This contention management policy
is more effective if transactions are not preempted, as we show in Section 5. The
results from simulations that compare the performance of the contention man-
agement algorithm, under the two proposed scheduling strategies against pure
partitioned EDF (P-EDF) are presented in section 6. This paper terminates with
the conclusions and perspectives for further work in Section 7.

2 Background and Related Work

Transactional memory promises to ease concurrent programming: the program-
mer must indicate which code that forms the transaction, and relies an underly-



ing mechanism that maintains the consistency of shared data objects located at
the transactional memory. Multiple transactions can be executed optimistically
in parallel; however, when conflicting concurrent object accesses occurs (either a
read-write or a write-write conflict) a contention policy is applied to guarantee
the serialisation of the concurrent schedules, usually allowing one transaction to
complete and aborting (and, consequently, repeat) the contenders. This approach
has proved to scale well with multiprocessors [8], delivers higher throughput than
coarse-grained locks and does not increase design complexity as fine-grained locks
do [16].

STM achieves better performances when contention is low, causing low trans-
action abort ratio. Thus, STM behaves very well in systems exhibiting the follow-
ing characteristics [11]: a predominance of read-only transactions, short-running
transactions and a low ratio of context switching during the execution of a
transaction. Some transactions may present characteristics (e.g. long-running,
low priority) that can potentially expose them to starvation. In parallel sys-
tems literature, the main concern about STM is on system throughput, and
the contention management policy has often the role to prevent livelock (a pair
of transactions indefinitely aborting each other) and starvation (one transac-
tion being constantly aborted by the contenders), so that each transaction will
eventually conclude and the system will progress as a whole.

In real-time systems, the guarantee that a transaction will eventually con-
clude is not sufficient to assure the timing requirements that are critical to such
type of systems: it must be known how long it will take to conclude. The verifi-
cation of the schedulability of the task set requires that the WCET of each task
is known, which can only be calculated if the maximum time used to commit the
included transaction is known. As such, STM can be used in real-time systems
as long as the employed contention management policy provides guarantees on
the maximum number of retries each transaction is subject to.

Although the concept of STM is not new and numerous works have been
published, only a few works dealt with it in the context of real-time systems.
In [12], a data access mechanism is proposed for uniprocessor platforms – the
Preemptible Atomic Regions – together with an analysis to bound the response
time of jobs. An atomic region is guaranteed to be free from other tasks’ interfer-
ence because any transaction preempted by a higher-priority task is immediately
aborted, and its effects undone. As no concurrent transactions are allowed in the
system, it is impractical in multiprocessor systems. However, this policy matches
with the Abort-and-Restart model [15].

In [2], and based on previous work on lock-free objects, Anderson et al. es-
tablish scheduling conditions for lock-free transactions under Earliest Deadline
First (EDF) and Deadline Monotonic (DM), exclusively for uniprocessor sys-
tems. A different approach to support transactions in multiprocessor systems is
provided in [1]: a wait-free mechanism relies on a helping scheme that provides
an upper bound on the transaction execution time. In this approach, an arriving
transaction must help pending transactions before being able to proceed, even



if no conflicts would occur, so the upper bound is likely to increase with the
number of processors in the system.

In [9], Fahmy et al. describe an algorithm to calculate an upper-bound on
the worst-case response time of tasks on a multiprocessor system using STM.
Tasks are scheduled with the Pfair approach. Each task can have multiple atomic
regions, and concurrent transactions can interfere with each other. Conflicts are
detected and solved during the commit phase. This analysis is limited for small
atomic regions, assuming that any transaction will execute in, at most, two
quanta.

Sarni et al. propose real-time scheduling of concurrent transactions for soft
real-time systems in [17]. The authors adapted a practical STM to run on a real-
time kernel, and modified the contention manager to apply their proposed policy.
In this model, transactions are characterised by scheduling parameters, which
are taken into account whenever solving a detected conflict between transactions.
Conflicting transactions are serialised based exclusively on their absolute dead-
lines, which may have a negative effect on transactions with further deadlines.

In [3], we defend a FIFO-based approach to serialise concurrent transactions
as a means to predict the time required to commit, but only provide a sketch
of the decision algorithm. However, this paper does not take into account the
considerable effect of preempting transaction on the predictability of the time
required to commit.

These works provide already some perspectives on how to deal with STM in
real-time systems. However, it is clear that there are many issues pending, and
further research is necessary to take advantage of future parallel architectures.
Therefore, this paper proposes new approaches to manage contention between
conflicting transactions, using on-line information, with the purpose of reducing
the overall number of retries, increasing responsiveness and reducing useless
processor utilisation, while assuring deadlines are met.

3 System model

We assume that jobs are released by a set of periodic tasks ⌧ = {⌧1, . . . , ⌧n},
and scheduled on m identical processors denoted P = {P1, . . . , Pm}, under par-
titioned EDF (each task is statically assigned to a processor and each processor
schedules its set of tasks under classical EDF). Each task ⌧i is characterised by
the period of job arrivals Ti, the worst-case execution time Ci, and the relative
deadline Di. The jth job of task ⌧i, hence forward denominated ⌧i,j , is charac-
terised by the time the job arrives rij , and the absolute deadline of the job dij ,
defined as

dij = rij +Di. (1)

For the sake of simplicity, we assume that each task ⌧i performs at most one
transaction, !i. Nevertheless, the results of this paper are extensible to tasks
executing multiple non-nested transactions. Each transaction is characterised
by:
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Fig. 1. State diagram of a transaction.

– CTi – the maximum execution time required to execute the sequential code
once and try to commit,

– DataSeti – the data set, a collection of shared objects accessed by the trans-
action, which is divided into

– ReadSeti – the read set, the collection of objects that are accessed solely for
reading, and

– WriteSeti – the write set, a collection of objects that are modified during
the execution of the transaction.

A collection of STM objects O = {o1, . . . , op} are assumed to be located at
shared memory, being globally accessible to tasks, independently of the processor
in which transactions are executing. We assume multiple simultaneous transac-
tions are supported, and for each object there is a chronologically ordered list
that contains records of all transactions currently accessing the object.

Each instance of a transaction has a life cycle that follows the states repre-
sented in Figure 1. Once a transaction arrives, it executes the transaction code
and then tries to commit; if no conflicts are detected, the transaction commits,
otherwise it may be aborted, retrying immediately. A transaction may be aborted
multiple times until successfully commit. Transaction overhead is the execution
time wasted executing aborted attempts. Transaction overhead of task ⌧i is given
considering the maximum number of failed attempts experienced by any of its
jobs, abortsi before the transaction commits:

overheadi = abortsi · CTi. (2)

The WCET of a task that executes a transaction is then given by the time
required to execute the code of the task without aborts C 0

i, with the maximum
transaction overhead:

Ci = C 0
i + overheadi. (3)

The utilisation of this task is expressed by

Ui = Ci/Ti. (4)



4 Contention management

A STM contention management policy oriented for real-time systems must tackle
three issues.

– Predictability. When a transaction arrives, it must be assured that it will not
exceed a determined time to commit (thus, imposing an upper bound on the
number of aborts).

– Starvation avoidance. The ability to commit must be distributed fairly be-
tween contending transactions, so no task will have an excessive abort over-
head.

– Decentralised contention management. The algorithm that implements the
contention management policy should be preferably decentralised and exe-
cuted by each transaction at the moment it tries to commit, and not on a
dedicated processor.

In [3], we advanced that these issues are covered by a policy that sequences
contending transactions by their chronological order of arrival, i.e. by the mo-
ment a transaction starts executing its first attempt. The algorithm we now
formalise considers only static parameters, such as time of arrivals and core ids,
so it is simple to reach a decentralised consensus. The time until commit should
depend solely on the ongoing transactions at the moment the transaction starts,
and independent of future arrivals of other transactions.

In algorithm 1 we detail the operations executed by every transaction when
trying to commit. If the transaction was not previously turned in to zombie,
it will take ownership of the objects in its data set. A transaction will have to
wait that an object is released before taking ownership of it. For every object
in its write set, the transaction determines if it wins against all contenders. In
order to preserve work, the transaction just considers the contenders that are
currently active and running (i.e. the host job is not preempted). If it fails on
one object, then it immediately releases all owned objects, aborts and repeats.
If all conflicts are won, it can immediately release the objects in the read set,
commit updates, and mark the contenders in the write set as zombies, before
releasing the objects.

Unlike locking solutions, the shared objects are just owned during the process
of commit, and not during the whole critical section, which improves parallelism.
Furthermore, the ownership process is controlled by the STM and should be
transparent to the programmer, which improves composability.

However, if we consider preemptions during the execution of transactions, this
behaviour can be seriously undermined, as we demonstrate in the next section.

5 Scheduling transactions

The way tasks are scheduled on multiple cores can affect the contention manage-
ment behaviour and influence the success rate and predictability of transactions.
Our algorithm permits that a transaction overtakes a preempted transaction:



Algorithm 1 STM contention management algorithm proposed for real-time
systems.
Require: Current job of task ⌧i has finished executing transaction !i.
Ensure: Transaction !i commits if and only if it wins all conflicts.
1: if !i status is ACTIVE then

2: for all ok 2 DataSeti do

3: if !i status is ACTIVE then

4: Take ownership of ok
5: for all !j contending with !i on ok do

6: if !j status is ACTIVE then

7: if ⌧j status is RUNNING then

8: if arrival(!i) > arrival(!j) then

9: Set !i status as FAILED
10: else if arrival(!i) = arrival(!j) and

Core(⌧i) > Core(⌧j) then

11: Set !i status as FAILED
12: else

13: Stop checking further objects
14: if !i status is ACTIVE then

15: for all ok 2 ReadSeti do

16: Remove !i entry from list
17: Release ok

18: Commit updates
19: for all ok 2 WriteSeti do

20: Remove !i entry from list
21: for all !j accessing ok do

22: Set !j status as ZOMBIE
23: Release ok

24: else

25: Release all currently owned objects
26: Abort and repeat !i

27: else

28: Abort and repeat !i



this avoids deadlock between conflicting transactions executing in the same core,
and preserves work of running transactions ready to commit. However, this re-
duces the probability of committing transactions that are prone to be preempted
(e.g. long transaction, or low-priority job). Furthermore, a frequently preempted
transaction may fail to commit for contending transactions that are more re-
cent but are allowed to commit while the transaction is preempted, inverting
artificially the intended behaviour of the system.

Cancelling temporarily preemptions, during the execution of a transaction,
solves the problems of long transaction starvation and unpredictability stated
above. If a transaction is guaranteed that it will not be preempted, then the
success of transaction will depend solely on the contention management policy.

This solution can be compared with priority boosting [14]: raising the pri-
ority of a job to the highest level during a critical section cancels effectively
preemptions. The Flexible Multiprocessor Locking Protocol (FMLP) [5] follows
a similar approach to the one presented in this paper, executing critical sections
non-preemptively, by their order of arrival. However, FMLP can serialise critical
sections with non-intersecting datasets but accessing objects in the same group;
STM allows such transactions to proceed and commit in parallel.

In this paper, we consider two non-preemptive approaches:

– Non-preemptible until commit (NPUC).

In this approach, the job is assured to be scheduled from the moment the
transaction arrives until it successfully commits.

– Non-preemptible during attempt (NPDA).

In this approach, the task is non-preemptible during the transaction, but
has preemption points between attempts. Any higher-priority job can be
scheduled at any of these points.

5.1 Non-preemptible until commit

Under NPUC, each transaction will take-over the core in which it is executing,
and will fail until all active direct contenders (transactions whose data accesses
will conflict with the accesses of the transaction in consideration) that arrived
earlier have committed and finished.

NPUC is totally predictable, as the time required for the transaction to
successfully commit depends solely on the transactions that are already executing
when the transaction arrives. Since direct contenders (transactions that have, at
least, one conflict with the write set) will also wait for their own earlier direct
contenders to finish, contention is propagated in chain. So, in the worst case,
a transaction will have to wait for (m � 1) transactions to complete, assuming
that every other core is already executing one transaction.

The predictability given by NPUC comes with a cost: higher priority tasks
will have their responsiveness reduced due to lower-priority blocking.



5.2 Non-preemptible during attempt

Under NPDA, preemptions are limited during a transaction to preemption points
inserted between attempts. This policy assures that the success of each attempt
depends only on the running transactions, and reduces lower-priority blocking
as compared with NPUC, improving responsiveness of higher-priority tasks.

Since jobs can be preempted between transaction attempts, one core can
hold more than one ongoing transaction at any given time. This means that the
number of earlier conflicting transactions for a given transaction is not limited
to the number of remaining cores (m � 1), as in NPUC. So, although NPDA
increases responsiveness of higher priority jobs, it is less predictable than NPUC.

6 Simulation results

We developed a simulation environment to test the proposed contention manage-
ment algorithm under different scheduling policies – pure P-EDF, P-EDF with
NPUC and P-EDF with NPDA – in systems containing from 2 to 64 cores.

For each system we generated randomly 20 synchronous task sets for three
degrees of contention. The degree of contention is characterised by the ratio of
the sum of all dataset sizes and the number of TM objects. In the experiments,
we used 1.2, 2.4 and 3.6 ratios. All task sets demand each core a maximum ideal
utilisation (not considering abort overhead) of 0.75.

In each task set, all tasks executed one transaction, and 50% were update
transactions. The sequential execution time of each transaction CT was 20% of
the ideal WCET (without abort overhead) of the task. Each transaction could
access, at most, 5 shared TM objects.

In each simulation, we recorded for each task the maximum number of aborts
experienced in a job, the total number of aborts, the number of deadlines missed
and the total execution time. For every task set, we simulated 106 time units
under P-EDF, NPUC and NPDA.

First, we wanted to know how cancelling preemptions would affect the maxi-
mum number aborts experienced in a job of a task. We normalised the maximum
number of aborts experienced in a job in NPUC and NPDA simulations to the
values recorded in P-EDF simulations. Figure 2 presents the averages of these
normalised results, indicating that cancelling preemptions tends to reduce the
maximum number of aborts.

Next, we wanted to observe how the execution time would increase, due to
aborts. Figure 3 shows the increase in execution time due to transaction over-
head. We can observe that the amount of execution time with aborted trans-
actions increases with contention density, as expected. The non-preemptive ap-
proaches also present very similar overheads (they overlap in this chart), and are
lower than P-EDF, which means that they tend to produce less aborts, at the
overall system perspective.

Table 1 reveals the total number of missed deadlines for each set of 20 sim-
ulations. Deadline misses are practically due to a very limited number of tasks
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Cores

Missed deadlines (total 30 simulations)Missed deadlines (total 30 simulations)Missed deadlines (total 30 simulations)

Cores EDF NPUC NPDA

2 (0.20) 0 0 0
4 (0.20) 0 0 0
8 (0.20) 0 0 0
16 (0.20) 0 0 0
16 (0.50) 174 119 79
32 (0.20) 0 0 0
32 (0.50) 848 640 426
64 (0.20) 85 931 75
64 (0.50) 38624832 38526564 36905124

Cores

1.21.21.2 2.42.42.4 3.63.63.6

Cores EDF NPUC NPDA EDF NPUC NPDA EDF NPUC NPDA

2 0 0 0 0 1 0 0 0 0
4 0 0 37 0 35 1 21 1 1
8 0 77 0 657 520 540 964 959 954

16 6 60 49 154 256 220 1939 1897 1687
32 33 204 147 483 723 589 1768 2317 1884
64 246 450 310 1400 1923 1424 4843 4757 4389

Table 1. Total deadlines missed (20 simulations).

with very high ideal utilisations, close to 0.75, and small periods. Inspection of
simulation logs reveals that such tasks have laxities that are barely sufficient
to accommodate transactions from concurrent tasks on the same core (in low
contention scenarios), or accommodate multiple aborts (in higher contention
scenarios). These characteristics do not fit non-preemptive approaches.



These results suggest that STM can naturally adapt to systems in which cores
are grouped in tiles of 8 or 16 cores, and STM is isolated inside each partition
(tile). Note that this maps well with cluster based many-core architectures which
are emerging, where dozens or hundreds of processors are grouped into 8 or 16
core shared memory partitions, being the clusters interconnected by NoC.

7 Conclusions and further work

In this paper we propose a decentralised contention management algorithm
for Software Transactional Memory (STM), for multi-core real-time systems,
in which conflicting transactions are serialised by their chronological order of
arrival. This algorithm is fair and avoids starvation across transactions. How-
ever, preempting a transaction reduces the probability of successfully commit,
and so we propose two approaches to limit preemptions: non-preemptive until
commit (NPUC) and non-preemptive during attempt (NPDA). NPUC is more
predictable, while NPDA improves responsiveness of more urgent tasks.

Simulation results show that non-preemptive approaches can reduce transac-
tion overhead. However, judicious processor allocation is required for tasks that
have small laxity to accommodate transaction retries.
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