

NoC Contention Analysis using a Branch and
Prune Algorithm

Technical Report

CISTER-TR-131107

Version:

Date: 11/13/2013

Dakshina Dasari

Borislav Nikolic

Vincent Nelis

Stefan M. Petters

Technical Report CISTER-TR-131107 NoC Contention Analysis using a Branch and Prune Algorithm

© CISTER Research Unit
www.cister.isep.ipp.pt 1

NoC Contention Analysis using a Branch and Prune Algorithm
Dakshina Dasari, Borislav Nikolic, Vincent Nelis, Stefan M. Petters

CISTER Research Unit

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail: dandi@isep.ipp.pt, borni@isep.ipp.pt, nelis@isep.ipp.pt, smp@isep.ipp.pt

http://www.cister.isep.ipp.pt

Abstract
“Many-core” systems based on a Network-on-Chip (NoC) architecture offer various opportunities in terms of
performance and computing capabilities, but at the same time they pose many challenges for the deployment of
real-time systems, which must fulfill specific timing requirements at run time – It is therefore essential to identify,
at design time, the parameters that have an impact on the execution time of the tasks deployed on these systems
and the upper bounds on the other key parameters. The focus of this work is to determine an upper bound on the
traversal time of a packet when it is transmitted over the NoC infrastructure. Towards this aim, we first identify
and explore some limitations in the existing recursive-calculus based approaches to compute the worst-case
traversal time (WCTT) of a packet. Then, we extend the existing model by integrating the characteristics of the
tasks that generate the packets. For this extended model, we propose an algorithm called “Branch and Prune”
(BP). Our proposed method provides tighter and safe estimates than the existing recursive-calculus based
approaches. Finally, we introduce a more general approach - “Branch, Prune and Collapse” (BPC) which offers a
configurable parameter that provides a flexible trade-off between the computational complexity and the tightness
of the computed estimate. The recursive-calculus methodsand BP present two special cases of BPC when a trade-
off parameter is 1 or 1, respectively. Through simulations, we analyze this trade-off, reason about the implications
of certain choices and also provide some case studies to observe the impact of task parameters on the WCTT
estimates.

ANoC Contention Analysis using a Branch and Prune Algorithm

DAKSHINA DASARI, BORISLAV NIKOLIĆ, VINCENT NÉLIS, STEFAN M. PETTERS,
CISTER-ISEP Research Centre, Polytechnic Institute of Porto

“Many-core” systems based on a Network-on-Chip (NoC) architecture offer various opportunities in terms of
performance and computing capabilities, but at the same time they pose many challenges for the deployment
of real-time systems, which must fulfill specific timing requirements at run time – It is therefore essential to
identify, at design time, the parameters that have an impact on the execution time of the tasks deployed on
these systems and the upper bounds on the other key parameters. The focus of this work is to determine an
upper bound on the traversal time of a packet when it is transmitted over the NoC infrastructure. Towards
this aim, we first identify and explore some limitations in the existing recursive-calculus based approaches
to compute the worst-case traversal time (WCTT) of a packet. Then, we extend the existing model by inte-
grating the characteristics of the tasks that generate the packets. For this extended model, we propose an
algorithm called “Branch and Prune” (BP). Our proposed method provides tighter and safe estimates than
the existing recursive-calculus based approaches. Finally, we introduce a more general approach - “Branch,
Prune and Collapse” (BPC) which offers a configurable parameter that provides a flexible trade-off between
the computational complexity and the tightness of the computed estimate. The recursive-calculus methods
and BP present two special cases of BPC when a trade-off parameter is 1 or 1, respectively. Through sim-
ulations, we analyze this trade-off, reason about the implications of certain choices and also provide some
case studies to observe the impact of task parameters on the WCTT estimates.

Categories and Subject Descriptors: C.3 [Computer Systems Organization]: Special Purpose and Applica-
tion Based Systems—Real-time and embedded systems; C.3 [Computer Systems Organization]: Multiple
Data Stream Architectures—Interconnection Architectures; B.4 [Input/Output and Data Communica-
tions]: Performance Analysis and Design Aids—Worst-case Analysis
General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: Many-core systems, Network on-chip, Real-time systems, Wormhole
routing

1. INTRODUCTION
The current trend in the chip manufacturing industry is towards the integration of
previously isolated functionalities into a single-chip. Following this trend, the usage
of multi-cores has become ubiquitous, not only for general-purpose systems but also
in the embedded computing segment. Besides the increasing processing demand, ad-
vancements in the semiconductor arena have fostered in the “many-core” systems era
and we are now witnessing the emergence of chips enclosing up to 100 cores. The ex-
plosion of the number of cores within a single chip also ushered in many issues and
challenges – system designers realized that the traditional shared bus/ring architec-
ture (c.f. left plot of Figure 1) does not scale beyond a limited number of cores as it
results in a substantial increase in the access time to the off-chip subsystems due to
contention for the bus. Hence, the increase in the number of cores necessitated a shift
in the earlier design paradigm towards a more scalable interconnection medium: the
NoC architecture [Benini and De Micheli 2002]. One of the base principles of the many-
core technology is the division of the processing elements into “tiles” interconnected by
a NoC. Each tile is composed of a processor core, a private cache subsystem and a
network switch connected to its (up to 4) neighboring tiles located in the cardinal di-

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c� YYYY ACM 1539-9087/YYYY/01-ARTA $15.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2

Core1 Core2 Core3

Memory controller

Front-Side-Bus

Core4 Tile1 Tile2

Tile3

Memory controller

Tile4

Core3

switch
NoC

cache

Traditional multicores architecture Massive multicores architecture

Fig. 1. Multi-core vs. many-core systems

rections, thereby forming a 2D-mesh (c.f. right plot of Figure 1). The NoC serves as
a communication channel among the cores and between the cores and other off-chip
subsystems, e.g. the main memory. Such many-core systems offer evident enhanced
computational capabilities compared to the former (traditional) multi-core platforms.
The Tile64 from Tilera [Wentzlaff et al. 2007], Epiphany from Adapteva and the 48-core
Single-Chip-Cloud computer [Intel 2010] are just some examples of such many-core ar-
chitectures. Without loss of generality, in this document we focus on the structure and
terminology of the Tile64 platform.

Motivation: Real-time applications and NoCs. NoC-based multicores are the pre-
ferred platforms for the deployment of real-time applications, where-in it is very im-
portant for applications to exhibit the required functional behavior within pre-defined
time-bounds to be deemed correct. It is also vital to derive upper bounds on the exe-
cution time of these applications at design time itself before these applications can be
deployed. In a scenario involving data transfers (amongst cores or from cores to mem-
ory), the execution time of a task running on a given core increases as the core stalls
waiting for the data to be transferred over the underlying network. This waiting time
can lead to a substantial increase in the execution time when the traffic on the net-
work and thus the contention for the network resources increases. Specifically, when
the task under analysis is required to meet some strict timing requirements, an upper
bound for this extra delay must be determined. Additionally, depending on their respec-
tive behavior, tasks running on different cores may release packets over the network
independently and asynchronously. All the packets are transmitted over the same un-
derlying interconnection network and share the available network resources like links
and finite sized buffers. Thus the time to transmit a packet depends on the current load
of the network, which is in turn determined by the number of packets generated by the
tasks executing on the other cores. Other factors like the routing mechanism employed
also impacts the traversal times as it influences the path taken by the packets to reach
their destination –this in-turn decides whether they would directly or indirectly block
the analyzed packet by contending for the same resources. To summarize, the number
of parameters contributing to the non-determinism combined with the large number of
cores poses a challenging problem to designers aiming to determine an upper bound on
the traversal time of a (message/memory/IO) packet . In this work, we aim to compute
such an upper bound which we refer to as the worst-case traversal time (WCTT) for a
NoC based many-core system employing a wormhole switching technique [Dally 1992].

2. RELATED WORK
A significant amount of research has been carried out on exploring the impact of the in-
terconnect networks in systems employing wormhole switching [Dally and Seitz 1986].
In the works of [Draper and Ghosh 1994] and [Dally 1992], the respective authors elab-
orated on the estimation of end-to-end delays for wormhole switching networks, but
with the primary focus on the determination of the average latencies using queuing

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:3

theory techniques. As mentioned earlier, in real-time systems, estimation of the worst
case latencies rather than average case latencies is vital. Hence the earlier approaches
do not suffice to perform a real-time analysis.

To ensure predictability and derive upper bounds on the communication delays,
some researchers have used mechanisms which require special hardware support to
the NoC as in [Diemer and Ernst 2010], priority mechanisms [Shi and Burns 2008],
time-triggered systems [Paukovits and Kopetz 2008] and time division multiple access
(TDMA) [Goossens et al. 2005]. All these approaches assume that the basic NoC is de-
signed to support predictability, but as seen in a survey of NoCs [Salminen et al. 2008],
existing commercial of the shelf (COTS) based NoC architectures are more suited to
provide best effort service and hence to model the existing systems, a software-based
analysis is warranted.

The existing works which address the issues of the worst-case end-to-end commu-
nication latencies in standard NoC-based many-cores can be broadly categorized into
two groups: approaches applying network calculus and approaches applying Recursive
calculus (RC). We borrowed the terminology RC from [Ferrandiz et al. 2012].

Network Calculus (NC) based methods: In general queuing networks, network
calculus-[Boudec and Thiran 2004] provides an elegant way to express and deal with
the timing properties of traffic flows. Based on the powerful abstraction of arrival
curves for traffic flows and service curves for network elements like routers and
servers, it facilitates the computation of the worst-case delay and backlog bounds. For
wormhole switching based networks, flow control is based on feedback received from
the next router (downstream router). Determining the service curve of a given router
independently (without the knowledge of the service curve of the next router involved
in the transfer) is not straightforward by the basic abstractions provided by network
calculus theory (which is designed to deal with forward networks) since there is a cyclic
dependency between the service curves of the routers involved in the transfer.

To overcome this, researchers have modeled the flow control mechanism in the switch
itself as another service curve [Qian et al. 2010]. But [Ferrandiz et al. 2011] clearly
showed with an illustrative example the flaws of the design and that such a modeling
is pessimistic, leading to over-dimensioning of resources. [Ferrandiz et al. 2011] con-
sider a space wire network topology and introduced a special network element called
the “wormhole section” to describe the wormhole routing with the network-calculus ter-
minology. This element envelopes a set of routers lying in the shared path between an
analyzed flow and the blocking flow(s): the analyzed and the blocking flows enter the
first router and exit through the last router of the wormhole section, with no additional
blocking flows either entering or leaving from any other link within the wormhole sec-
tion. The analysis treats this section as a single element, with the arrival and service
curves computed as a function of the individual curves of the flows contained within the
section. Finally, an end-to-end service curve is derived by combining the service curves
of all the wormhole sections in the path of the analyzed flow. In the presence of diverse
traffic (with intersecting blocking flows with short shared paths), the direct application
of this method on the NoC-based many-core platform would force a wormhole section
fragmentation, i.e. every router would be treated as an individual element, which ren-
ders the purpose of the wormhole section obsolete, and the results pessimistic.

Recursive Calculus (RC) based methods: The methods centered around this
paradigm compute the end-to-end delays by recursively analyzing the contention at
each router in the path of the analyzed flow. The model and assumptions to support
this methodology have, as a common denominator, the assumption that flows inject
packets at the maximum rate to saturate the network. The initial assumption of these
approaches is that all the intermediate buffers in the switches between the source and
the destination are filled to their capacity [Ferrandiz et al. 2012]. The method thus
ensures capturing the worst-case scenario.

The works of [Lee 2003], [Rahmati et al. 2009] and [Ferrandiz et al. 2009] have been
noteworthy in this area. Initially, [Lee 2003] proposed a model for real-time communi-

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4

DDR3 Controller

DDR3 Controller

Sm
ar

t N
IC

 C
on

tro
lle

r

Network
I/O

Two
10 Gb

&
Two
1Gb

UART x2
USB x2
JTAG

12C, SPI

PCIe 2.0
8 Lanes

PCIe 2.0
4 Lanes

Flexible
I/O

Fig. 2. Tilera architecture. (Diagram taken from [Wentzlaff et al. 2007])

cation in wormhole networks based on the use of real-time wormhole channels. This
was improved by [Rahmati et al. 2009] by computing real-time bounds for high band-
width traffic in which they assume that all intermediate buffers are full, and for low
latency regulated traffic, the concept of lumping flows is combined with the method of
[Ferrandiz et al. 2009]. [Lu et al. 2005] proposed a contention tree based approach fo-
cused at feasibility analysis for a set of periodic messages with pre-assigned priorities,
which were used to resolve arbitration conflicts in the switch. Their model does not
classically fall into the recursive calculus based methods but it introduced the concept
of contention trees (to capture direct and indirect blockings) which are analyzed in a
recursive manner and thus conceptually fits in this category (and not in the NC based
approaches).

In the approach proposed by [Ferrandiz et al. 2009], which is conceptually similar
to the method of [Rahmati et al. 2009], an upper-bound on the traversal delay is com-
puted, but with the assumption that the packets can be injected into the network con-
tinuously and therefore the computed WCTT is not tight.

The key advantage of these methods is that they compute the WCTT (with low time
complexity), but the main limitation is that they do not leverage the input arrival
patterns and hence lead to over-approximations of the WCTT. This may lead to a sys-
tem design in which the processor utilization is over-dimensioned and many potential
tasks which could be scheduled at run-time are deemed unschedulable. Hence a method
which provides tighter WCTTs in acceptable times is warranted.

Positioning our approach: In a very recent work by [Ferrandiz et al. 2012], the au-
thors compare their newly proposed NC method against their previous RC method
considering different parameters. In our approach we combine the best of both method-
ologies - an ability to exploit the simplicity and intuition behind RC methods without
losing the input traffic characterization provided by NC methods. In order to do so, we
identify the key sources of pessimism in RC methods, introduce the model and methods
to characterize the traffic patterns. We then formulate a “Branch and Prune” algorithm
which leverages these input characteristics in-order to eliminate packets which cannot
arrive at run-time owing to task constraints and thus derive tighter bounds than the
existing methods. We also propose a more general approach called “Branch, Prune and
Collapse” which through a controllable parameter, offers the designer a trade-off be-
tween the tightness of the bound and computational complexity. By performing the
simulations, we validate and verify the performance of our algorithm in comparison
with the RC-based approach presented by [Ferrandiz et al. 2009] and observe that our
approach dominates this method by yielding at least as tight as and in most cases
tighter WCTT estimates than the related work. We investigate the influence of the
trade-off parameter on the derived bounds.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:5

3. SYSTEM MODEL
3.1. Platform and Application Model

Platform model. As previously noted, without loss of generality we drive our discus-
sion in the context of tile-based platforms from Tilera. As seen in Figure 2, the tile-
based architecture uses a 2D-mesh network to interconnect the processors and serves
as the transport channel for off-chip memory access, I/O, interrupts, and other commu-
nication.

As illustrated in Figure 1, each tile comprises a general purpose processing engine
(core), a cross-bar switch and a private cache. The platform is thus structured as a
grid of m ⇥ m tiles, where “m” is the dimension of the square grid and r off-chip sub-
systems (e.g. memory controllers). The off-chip subsystems are connected to some of
the tiles on the periphery of the grid. Inter-tile communication is achieved by routing
packets via the embedded switches. Note that the terms router and switch are used
interchangeably in the rest of the paper.

Generally, the switch that is embedded in each tile is part of several networks.
Independent networks are typically used to handle different types of traffic to mini-
mize the interference and maximize the performance. For example, the TILEProTMand
TILE64TMfamily of chips employ distinct networks to transmit traffic related to mem-
ory, caches, I/O and inter-tile communication between application. Since a packet can
travel (and interfere with other packets) only over one of the networks, the analysis of
the WCTT of a given packet can be carried out by considering each network individu-
ally. Hence, the analysis presented in this paper considers only the relevant inter-tile
communication network.

The entire platform can thus be modeled by a directed graph G(N ,L), where

— N = {n
1

, n
2

, . . . , n
2m2

+r

} is the set of 2m2

+ r nodes comprising m2 switches, m2 cores
and the r off-chip subsystems (caches are considered part of the processing cores) and

— L is the set of directed (physical) links that interconnect the switches to the cores, to
other switches or to the off-chip subsystems.
For a given link l 2 L, we denote by lsrc(l) and ldest(l) the source and destination node

of the directed link, respectively. A bi-directional link is modeled by using two links in
opposite directions and all the links have the same capacity denoted by C. We assume
that the links support full-duplex transmission with the interpretation that request
and response packets can be simultaneously sent across a tile and will not contend
amongst each other for the link. Our model is applicable to any generic platform which
can be modeled as a graph and hence is not restricted to the Tile64 platform.

Application Model. As a first step, we assume that there is a 1:1 mapping between
applications (called tasks hereafter) and cores; each task ⌧i is non-preemptive, stati-
cally assigned to a dedicated core and does not migrate during its execution. We also
assume that the cores do not support hyperthreading. The assumption of a single task
is made to focus on the network latency delays, while efficiently abstracting away the
problems of on-core interferences and dealing with the processor scheduling policies.

3.2. Switching and Routing Mechanism
Data is transmitted over the network, embedded in “packets”. A packet comprises a
header containing the destination address and a payload, which contains the actual
data to be transmitted. In our model, packets are switched using the wormhole switch-
ing technique within which every packet sent over the network is split into smaller
irreducible units called flits (FLow control digITS). The first flit of each packet is called
the header flit: it stores the destination address and arbitrates for a given output port
at a switch. Specifically, when a packet is granted access to an output port, it locks
down that output port until its last flit has successfully traversed the switch. Since
the subsequent (data) flits do not store any information about the destination, they
always follow the same path as the header flit. When the output port is unavailable,

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6

the flits remain buffered in finite (and typically small) sized buffers in the router, until
the output port is freed. In order to ensure fairness in the arbitration, we assume that
the switches implement round-robin arbitration as in [Tilera 2011]. We denote by d

sw

,
the time needed for arbitration and subsequently grant access to the output port to
one of the pending packet. The value of d

sw

is typically less than 25 µs for the Tilera
platform [Tilera 2011].

We also consider that packets are routed statically using the XY (or YX dimen-
sion) routing algorithm. In XY routing, packets always travel in the X direction first,
then the Y-direction. The XY routing algorithm is known to be deadlock and livelock
free [Hu and Marculescu 2003] and is employed by many-core architectures like the
Tile64 [Tilera 2011]. However, in general, our model can adapt to any static routing
algorithm as long as it is deadlock free. While adaptive routing schemes are more ef-
ficient than the static ones, they are non-deterministic and hence are not considered
here. A physical link that connects two routers (also referred to as channel) may be
split into several virtual channels to allow multiple packets to pass through in par-
allel. In the analysis that follows, as a first step, we assume that every physical link
implements only a single virtual channel hence allowing only a single packet at every
input port of a router.

3.3. Communication and traffic modeling
3.3.1. The basic flow model. The network traffic between two tasks or between a task

and an off-chip subsystem is modeled by a flow. Each flow f is characterized by an ori-
gin and a destination node, denoted by fsrc(f) and fdest(f) (respectively) and a maxi-
mum packet size denoted by maxpsize(f). In order to reach its destination, every packet
of a flow f is routed throughout the network over a pre-defined static path defined by
an ordered list of links and denoted by path(f). The number of hops traversed by the
packets of f along this path is given by nhops(f). Also, we denote by first(f) the first
link of path(f) and we use the notations prev(f, l) and next(f, l) to refer to the links
directly before and after the link l in path(f), respectively. Finally, F denotes the set of
all the flows in the system.

3.3.2. Our extended model. We augment the simple model given above by distinguishing
between two types of packet-release profiles, namely regulated (Reg) and unregulated
(UnReg) flows. A regulated flow models a sporadic communication between two nodes,
with the interpretation that a packet of a regulated flow f can be released at least a
certain duration after the receipt of the previous packet of the same flow has been ac-
knowledged by the receiver at the destination node. This minimum time duration is
referred to as the minimum non-sending time of the regulated flow f and is denoted by
MinNonSend(f). In practice, MinNonSend(f) represents the application-specific delay
(on the core) before another packet can be generated: it may be an explicitly defined
waiting phase or time spent for processing. A stream of video frames which must be
transferred to an off-chip graphic controller is an example of a regulated flow. An un-
regulated flow in contrast, models an aperiodic communication between two nodes: the
source node can release a packet at any instant in time after the receipt of its previ-
ous packet has been acknowledged, i.e., for all unregulated flows f , MinNonSend(f) is
null. Data transfers between a task and the system memory at arbitrary times due to
random cache misses serves as an example of unregulated flows. It is important to re-
iterate that our model inherently assumes “blocking” communication: the next packet
of a given flow can be generated only after the receipt of the acknowledgement of the
previous packet.

4. INPUT TRAFFIC CHARACTERIZATION FUNCTIONS
In this section, we introduce two functions associated with each flow, namely the min-
imum inter-release time function and the maximum packet release function.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:7

4.1. The minimum Inter-Release Time Function
DEFINITION 1. The Minimum Inter-Release Time function MinInterRel(f) of a flow

f is the minimum time gap between two consecutive packets released by f .

Specifically, if p
1

and p
2

are two consecutive packets generated by flow f , then
MinInterRel(f) is the sum of (i) the minimum time needed to deliver and acknowledge
p
1

— sometimes referred to as the round-trip time of p
1

— and (ii) the application-
specific minimum delay that must elapse before the release of p

2

, i.e., MinNonSend(f).
We then compute MinInterRel(f) as:

MinInterRel(f) = MinDest(f) +MinDest(ack) +MinNonSend(f) (1)

where MinDest(f) is the minimum time taken by a packet of f to travel from its source
fsrc(f) to its destination fdest(f). Note that MinInterRel(f) differs from MinNonSend(f)
as it also includes the minimum time needed to acknowledge a packet of f . As a direct
consequence of the need for acknowledging a packet, it can be easily shown that no two
packets of the same flow f can reach a given router separated by a time gap of less
than MinInterRel(f) time units. Note that these parameters are computed in isolation
(i.e. without any contention from the other flows). Since the objective is to determine
the WCTT of a given packet (say p), we must be able to capture the worst-case scenario
in which the blocking flows can cause maximum interference to any packet of the an-
alyzed flow. We must therefore have a parameter which represents a lower-bound on
the inter-release time of all these blocking flows and so a lower-bound on MinDest(f)
for all flows f 2 F . We shall use the following result.

DEFINITION 2. For the wormhole routing technique, the minimum time-to-
destination MinDest(f), for any given flow f 2 F , is given by

MinDest(f) = nhops(f)⇥ (d
sw

+ d
across

) +

minpsize(f)

C
(2)

where d
across

is the time for a flit to be read from an input buffer, traverse the crossbar
(the switch) and reach the storage at the input of a neighboring switch.

The above equation can be interpreted as follows. The term nhops(f) denotes the num-
ber of hops that the first (header) flit of the packet of f traverses while travelling from
its source to destination. While traversing the network, the first flit locks down all the
output ports on its path and at each intermediate switch, it incurs an arbitration delay
of d

sw

and a time of d
across

to traverse the crossbar. In our model, d
across

also accounts for
the maximum time it takes to transfer flow-control tokens between the routers. Once
this first flit reaches the destination, all the traversed output ports from its source to its
destination have been locked down and the entire packet of size minpsize(f) can travel
over the network of capacity C, which requires minpsize(f)/C time units. Hereafter,
Equation (2) will be used as the value of MinDest(f).

4.2. The Maximum Packet-Release Function
DEFINITION 3. The Maximum Packet Release Function MaxPcktRel(f, t) of a flow f

provides an upper-bound on the number of packets that f can generate in a time interval
of length t.

This function is computed considering that the task (initiating the flow) is run in
isolation, i.e., without any contention from other packets on the network and hence
can be determined at design time. Methods to compute an upper bound on the number
of requests issued by a task in a given time interval have been proposed by [Dasari
et al. 2011], [Schliecker et al. 2010] and [Pellizzoni et al. 2010]. For regulated flows,
the maximum packet release function can be expressed based on the minimum inter-
release time of the given flow as in Equation (3), since their minimum non-sending

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8

node :
Memory
controller

node :
switch

node :
core

f
x

many nodes in between

ly

node :
switch

node :
core

l1l2

l3

l4

l5

l6

f1

f2

n1

n2

nY

nX

nZ

l7

l8

l9

node :
switch

node :
core
n4

n3

f3

f4

Fig. 3. Example to illustrate network and task-level pessimism
time is clearly defined and integrated into their minimum inter-release time.

MaxPcktRel(f, t) =

⇠
t

MinInterRel(f)

⇡
(3)

However, for unregulated flows, computing MaxPcktRel() with the same approach may
lead to an over-estimated number of packets, especially for large values of t. To over-
come this pessimism in the computation, we can apply the method proposed in [Dasari
et al. 2011]. Although the exact time-instants at which unregulated flows generate
packets are not known, these methods calculates this parameter by instrumenting the
task code at different sampling points when the task executes in isolation and uses
this information to derive an upper bound on the maximum number of packets it can
generate in any time interval of duration t. Note that the MaxPcktRel(f, t) function
roughly corresponds to the arrival curve abstraction used in network calculus theory.

5. CONCEPTUAL DESCRIPTION OF EXISTING RC BASED METHODS
To understand the concepts behind the recursive calculus based method, we present
an algorithm to compute an upper bound on the traversal time of a packet of flow
f from its source to the destination node. This will represent the approach proposed
by [Ferrandiz et al. 2009] and is conceptually similar to that of [Rahmati et al. 2009].

Algorithm 1: d(f, l)
input : a flow f , a link l

output: WCTT of f , starting from link l, to the destination.
// there cannot be any contention on the first link.

1 if l = first(f) then return d(f, next(f, l)) ;
/* Header flit reaches end of path and the entire packet transits */

2 if l = null then return maxpsize(f)
C ;

/* Determine the set of links excluding prev(f, l) and whose destination node is lsrc(l) */

3 BL {l
in

2 L | l
in

6= prev(f, l) ^ ldest(l
in

) = lsrc(l)};
4 foreach l

in

2 BL do
/* Determine the set of flows fin that use link lin and have l as the next link */

5 Ulin {f
in

2 F | l
in

2 path(f
in

) ^ next(f
in

, l

in

) = l};
6 end
7 delay

X

lin2BL

max
fin2Ulin

{d
sw

+ d

across

+ d(f
in

, next(f
in

, l))};

8 return delay+d

sw

+ d

across

+ d(f, next(f, l)) ;

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:9

Let us consider the part of Figure 3 above the horizontal dotted lines. There are four
nodes: two cores n

1

and n

4

, two corresponding switches n

2

and n

3

, and three flows: f
1

,
f
2

and f
3

. All the flows terminate at the core n

4

. Flow f
1

originates in n

1

and the source
nodes of f

2

and f
3

are not specified in this example.
Let us compute the WCTT of flow f

1

by invoking the function d(f
1

, l
1

) (Algorithm 1).
Since link l

1

is the first link in the path of flow f
1

, it could be blocked only if other flows
generated by its source (core n

1

) have to transit first. This particular case has been
handled in earlier methods but in contrast to their approach, we assume that the cores
stall while waiting for a given packet transmission to be completed before initiating
a new transmission. Therefore, under this assumption, a flow f issued from one core
can never be blocked by another flow issued from the same core and the first flit of the
packet is directly transferred to the (top) input port of the switch n

2

. Thus, the algo-
rithm directly calls the function d(f

1

, l
6

) at line 1. At this stage, the flow f
1

traverses
via link l

1

and next passes through l
6

via node n
2

. At line 3, the algorithm computes
the set of links, BL, connected to the other input ports of n

2

(i.e., the links excluding l
1

),
Here, BL = {l

2

, l
3

, l
4

, l
5

}. Then, for each of the links l
in

2 BL, the algorithm determines
the set Ulin of blocking flows which passes consecutively through links l

in

and l
6

. Here
Ul4 = {f

2

} and the other sets do not have flows matching the criterion stated above
and are therefore empty. Note that exactly one blocking flow of each set Ulin may block
f
1

since the switch arbitration rule is assumed to be round-robin. Therefore, to maxi-
mize the delay, for each link l

in

in BL, the algorithm explores all the flows f
in

in Ulin by
recursively invoking d(f

in

, next(f
in

, l)) and then chooses the flow which maximizes the
delay in line 6. It then computes the cumulative delay by summing up the maximum
delays obtained for each l

in

2 BL. After the blocking flows are allowed to progress at
the current link, the flow being analyzed, f

1

can progress to its next link. At line 7,
the algorithm returns the cumulative delay computed in line 6, plus the time for the
flow f

1

to traverse through n
2

(i.e., d
sw

), plus the delay suffered by f
1

in the next hop,
i.e., d(f

1

, next(f
1

, l
6

)) = d(f
1

, l
9

). Notice that at line 2, if l = null, then it implies that
the flow f has reached its destination. In this case, the packet of f is fully transmitted,
which requires, in the worst-case, maxpsize(f)

C time units.

6. PROPOSED METHOD FOR TIGHTER WCTT
In order to compute a tighter WCTT, we first explore the sources of pessimism in the
previous approach and then describe the methods to deal with it.

6.1. Sources of Pessimism
Although the computation presented in the previous section is correct and terminates
within a reasonable computation time (as shown by [Ferrandiz et al. 2009]), we iden-
tified two main sources of pessimism. In order to highlight this pessimism, we con-
structed a computation tree as shown in Figure 4 based on Algorithm 1. In this tree,
each recursive call to the function d(f, l), with l 6= null, is a (non-leaf) node of the tree
and each call to d(f, null) is a leaf node. Algorithm 1 traverses this computation tree
in a pre-ordered depth-first manner: first the root node is visited and then each of the
children are visited, from the left to the right.

As seen in Figure 4, the order in which the leaf nodes of the computational tree
are reached reflects the following scenario. The flow f

1

is delayed because f
2

goes first
through l

6

(step ¿). f
2

is then blocked by f
3

at node n

3

. Once f
3

has reached the core n

4

,
its whole packet is transferred to n

4

, hence adding maxpsize(f
3

)/C to the delay (step ¡,
the first “leaf”). Then f

2

flows and reaches the core n

4

(step ¬), followed by f
1

which
passes through n

2

but gets blocked by another flow of f
3

in n

3

. This second flow of f
3

passes first (step √) and finally f
1

can progress to its destination (step ƒ).
As a conclusion, the scenario considered by the computation of d(f

1

, l
1

) assumes that
f
3

blocks the flow f
1

twice before it finally reaches the core n

4

. These multiple blockings
may not be possible for several reasons and can lead to an overestimation of the WCTT.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10

In the next subsection we explore these reasons which we refer to as the “sources of
pessimism” and propose methods to overcome them.

6.2. Network-level Pessimism
The basic premise behind earlier approaches was the assumption that every flow in-
jects traffic continuously into the network, thereby assuming that for all flows, the
packets do not expect any response and have no temporal constraints on their gener-
ation. In practice, the application initiating a flow may dictate that two consecutive
packets cannot be generated separated by less than a minimum time gap (given by
the MinInterRel() functions). As seen in the previous section, this minimum time gap
cannot be null as it includes the round-trip communication delay incurred due to the
underlying network. In a large setup, on ignoring these “minimum round-trip time”
constraints, the delay incurred as a result of these non-feasible contentions can cas-
cade and increase in magnitude as the flow path unrolls, ultimately leading to highly
pessimistic WCTT estimates.

In the example of Figure 3, it is seen that flow f
3

blocks f
1

twice: once indirectly
by blocking f

2

and once directly in step √. However, because of its round-trip time
constraint it may not be possible for flow f

3

to release a second packet by the time flow
f
1

transits through node n
3

. Thus by taking into account this constraint, the analysis
of the delay incurred by f

1

can be less pessimistic.
In order to tackle this source of pessimism, we introduce the notion of “current time”

during the computation. The current time is initialized to 0 at the beginning of the
analysis and it is then increased by d

sw

+d
across

every time a flow traverses a router and
by minpsize(fx) whenever a flow fx reaches its destination. During the computation,
whenever a flow fx traverses a router nk, the current time (denoted by t) is recorded
and used as a time-stamp for this traversal, i.e., a time-stamp is attached to the pair
< fx, nk >. Then, in the time interval [t, t+MinInterRel(fx)], our proposed analysis will
not recognize flow fx as a potentially blocking flow in router nk as it is not possible for
fx to have another packet at an input port of nk in that interval of time.

6.3. Task-level Pessimism
Intuitively, it may happen that many occurrences of a same flow fx have to be consid-
ered by Algorithm 1 and none of them violates its MinInterRel(fx) constraint, i.e., at
every router on fx’s path, every occurrence of fx is separated in time from the previous
one by at least MinInterRel(fx) time units.

A manifestation of this situation can be seen in the example of Figure 3 (consider the
portion below the dotted line). Let us assume that the destination of the (dashed) flow
f
4

is the memory controller denoted by the node nZ , and that nZ is distantly located
from n

4

(in terms of number of hops). In addition, consider a flow fx from the core nX

to nZ . When computing the WCTT of f
4

, chances are high that Algorithm 1 invokes the
function d(fx, ly) a significant number of times since it blocks all the flows directed to

+

d(f1, l6)

d(f1, l1)

+ + +

¿

¡ ¬ √ ƒ

dsw + d(f2, l9) dsw + d(f1, l9)

dsw + d(f3, null) dsw + d(f2, null) dsw + d(f1, null)

maxpsize(f3)

C

maxpsize(f2)

C

maxpsize(f1)

C

maxpsize(f3)

C

dsw + d(f3, null)

Fig. 4. Computation tree of d(f
1

, l

1

).

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:11

nZ . As stated above, in such a case the flow fx may never violate the constraint imposed
by MinInterRel(fx), as the distance between nX and nZ is short, but at a given current
time t during the analysis it may be the case that the task which initiates fx is not
able to generate that many packets in the time interval [0, t]. As a result, Algorithm 1
may return overly pessimistic WCTT estimates as it does not take into account the
packet-release profile specific to each task.

The paper proposes to tackle this source of pessimism by extending the solution for
tackling the network-level pessimism. Instead of recording and maintaining a time-
stamp only for the last occurrence of every flow fx in every router nk, we propose to save
a time-stamp for every occurrence of all the flows in every router that they traverse.
That is, for each pair of flow-router < fx, nr >, we maintain the number of occurences
and the corresponding list of time-stamps reflecting all the time-instants at which fx
has traversed nk during the computation. Let us assume t

0

is the time-stamp of the first
occurrence of fx in nk. Then, at any current time t during the analysis, the flow fx is
deemed infeasible (and hence cannot potentially block the analyzed flow another time)
if the number of recorded occurences of fx in router nk exceeds MaxPcktRel(fx, t � t

0

).
As described earlier, this upper bound on the number of packets is given by the function
MaxPcktRel(fx, t� t

0

) defined in Section 3.3.2.

7. THE BRANCH AND PRUNE ALGORITHM
This section introduces our “Branch and Prune” (BP) algorithm for calculating the
WCTT of a packet released by a flow. While the basic principle of Algorithm 1, which
consists of recursively tracking the progression of all flows throughout the network
remains the same, our method differs from this algorithm in two aspects:

(1) It considers the extended flow model presented in Section 3.3.2, in which the input
traffic of the flows are characterized with specific functions and

(2) It incorporates the ideas described in Section 6 to reduce the task- and network-
level pessimism.

7.1. Overview of the Branch and Prune Algorithm
The basic principles of flow progression remain the same as in Algorithm 1. At each
link l in the path of the analyzed flow f , we first determine the set of all flows that
can potentially block f by accessing l first. Then, we enumerate all possible interfering
scenarios for that link and we analyze each of them recursively. An interfering scenario
is defined here as a flow sequence, i.e., an order of passage of the blocking flows over
the considered link.

One of the main differences with Algorithm 1 is that we first branch-out, thereby
enumerating all possible blocking flow sequences, then we validate if the flows in the
sequence can arrive, given their task constraints and thereby prune the infeasible
flows in each sequence. We compute and record the traversal times of these pruned
sequences. Since the tests for constraint compliance are applied early-on in the compu-
tation, the resulting search space is greatly reduced. This is especially true for loaded
networks where in the impact of indirect contention of certain flows can cause the
search space to grow exponentially. It can be seen that pruning an infeasible flow is
equivalent to pruning the entire subtree of flows which would have blocked it (which
would have to be otherwise explored by the algorithm increasing the search space).

7.2. Concepts behind the algorithm
The main steps of our approach are described here with a simple example, illustrated
in Figure 5. Let us assume that f is the analyzed flow which traverses on its kth hop
through the router nx along its path to the destination. This implies that interfering
flows of an earlier hop may have been already analyzed for their delay in node nx.

7.2.1. Blocking Links and Flows. At every router in the path of f , we first determine the
set of blocking links. In the given example, the set BL of blocking links at router nx is

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12

given by BL = {lp, lq}. Then, for each blocking link l
in

, we compute the associated set
Ulin of blocking flows that can potentially block f in this router nx. Here, Ulp = {fa, fb}
and Ulq = {fc, fd}.

Fig. 5. A simple example.

At this stage, we still assume that all
these blocking flows have a packet to
transmit and are allowed to transmit it
before the flow f progresses.

7.2.2. List of Interfering Scenarios. During
the computation, the progress of all flows
is ensured by the round-robin arbitra-
tion policy applied at each intermediate
router, which implies that at most one
packet from each of the blocking flows
can block the analyzed flow f . At this
phase, we are interested in finding the
sequence of flows progression over the
network that will delay f for as long as
possible. To tighten the WCTT estimate

by overcoming the limitations (sources of pessimism) presented earlier, at each router
in the path of the analyzed flow we first enumerate all the possible flow sequences
(called “interfering scenarios” hereafter) that might block it. Specifically, we denote
by LIS the list of all possible “Local Interfering Scenarios” at the current router, as-
suming that the currently analyzed flow f is the last one allowed to progress. That
is, at router nx for example, LIS contains {fa, fc, f}, {fa, fd, f}, {fb, fc, f}, {fb, fd, f},
{fc, fa, f}, {fc, fb, f}, {fd, fa, f}, {fd, fb, f} , {fa, f}, {fb, f}, {fc, f}, {fd, f}, and {f}.

Note: Upon explicitly pruning all the computed flow sequences and removing the
duplicates which appear as a consequence of the pruning mechanism, it is necessary to
investigate all of them, so as to eliminate any possible timing anomalies and ensure the
safety of the algorithm. The necessity comes from the fact that any of the scenarios at
a given router cannot be implicitly discarded, as the local maximum at a given router
may not translate into the global maximum. For example, in the above LIS, we cannot
ignore the scenarios {fa, f} – intuitively we may conclude that among scenarios S1 =

{fc, fa, f} and S2 = {fa, f}, the scenario S1 is more likely to contribute to the WCTT,
but it may not be so. In fact, S2 = {fa, f} may in the future progression, allow for flows
contributing to a large interference to be included in the final WCTT while scenario S1
may prohibit it thus leading to a timing anomaly and also leading to an unsafe WCTT.

We traverse this LIS and investigate each interfering scenario individually. When
considering {fa, fc, f} for example, we first compute (recursively) the WCTT of fa, then
the WCTT of fc and finally we allow f to progress to the next router on its path. How-
ever, before computing the WCTT of fa (and the same holds for fc later), we reduce
the pessimism of the computation by applying the two optimization mechanisms that
determine whether fa is “feasible”. Being infeasible implies that it is impossible for
a given flow to release a packet at the given time, considering that it either released
a packet too close in time relative to its previous packet (thereby accounting for the
network-level pessimism) or it has already exceeded the upper bound on the number
of packets it could possibly generate from the beginning of the computation (task-level
pessimism). If the flow fa is declared infeasible then it is removed from the currently
considered interfering scenario {fa, fc, f} and the algorithm moves on with the next
flow fc of that scenario. As a side note, it can be observed that removing fa from that
scenario {fa, fc, f} yields the scenario {fc, f} and thus, the equivalent scenario {fc, f}
listed in LIS will not have to be investigated again later on. Thereby, removing flows
from a scenario is equivalent to pruning the resulting scenario from LIS, which consid-
erably improves the time-complexity of this technique (as well as the accuracy of the

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:13

WCTT estimates) as discarding a single flow from a scenario automatically cuts off a
whole subtree from the computation tree.

7.2.3. Need for ordering. Since our approach considers the input flow characteristics,
the order in which flows progress cannot be ignored as it can lead to different results.
We illustrate this with an example given in Figure 6. Consider two possible scenarios:
S
1

= {fc, fd, fb, fd, fc, fa, fc, fd, f} and S
2

= {fc, fd, fb, fc, fd, fa, fc, fd, f}. These two sce-
narios only differ in the order in which fc and fd block fa. However, notice that in S

1

the first and the second appearance of fd are distanced only by fb, while the second and
the third appearance of fc are distanced only by fa. Conversely, in S

2

, any two appear-
ances of the same flow are distanced by at least two other flows. Depending on flow
characteristics, in some cases the entire S

2

might be feasible, while S
1

would require
the pruning of some appearances of fc and/or fd. Thus, considering only S

1

in the anal-
ysis may result in unsafe worst-case estimates, and in order to capture the worst-case
it is necessary to investigate all possible flow orderings at every traversed router.

Indeed, at a given router nx along f ’s path, the list of interfering scenarios can be
computed as explained above but identifying which blocking flows are infeasible within
each of these scenarios requires the knowledge of which flows have already progressed
(and in which order) in the previously traversed routers, before f reaches nx. Without
this knowledge, our pruning mechanisms would not be able to determine whether a
flow listed in an interfering scenario is feasible or not. This leads to the concept of
“context” which is key in our algorithm.

7.2.4. Notion of a “context”. Formally, a context is a snapshot of all the information char-
acterizing a unique sequence of flow progressions throughout the network before a
given flow f reaches a given router nx, including (1) the order in which the flows have
progressed over the network so far, (2) all the past occurrences and the associated
timestamps of all these flows in this flow sequence and (3) the delay incurred by f
before it reaches nx. At a given router nx, for a given flow f and context ctx, which
(informally speaking) reflects the history of what happened in the network before that
flow f reached nx, we explained above that every feasible blocking flow of every inter-
fering scenario of LIS in nx will be allowed to progress from nx to its destination before
the analyzed flow f . Therefore, it can be seen that the progression of each of these
blocking flows towards their destination may in-turn generate a multitude of new con-
texts (more exactly, the progression of each blocking flow will make the current context
ctx evolve in an unique way). Subsequently, all these new contexts derived from ctx are
investigated when f eventually progresses to the next router on its path. At the end,
the WCTT of f will be found by looking at all the flow sequences (i.e., the contexts) in
which f finally reaches its destination.

7.3. Detailed Explanation of the Algorithm GetContexts()
Initially, the algorithm is invoked by Algorithm 3 with the following inputs: the flow f
to be analyzed, the first link l on its path and an initial “context”. The initial context
contains an empty flow sequence, a delay of zero, and past occurrences set to null. On
arriving at a router, the algorithm (line 10) computes the set of blocking links BL (as
explained earlier) and the corresponding blocking flows (lines 11-13) incident on each
of the links in BL. Based on this information, the set LIS of Local Interfering Scenarios
is computed (line 14) as follows: LIS contains all permutations of flow sequences in
which (i) there is exactly zero or one flow from each set Ulin and (ii) the analyzed flow f
is appended to each of these permutations.

Once the set LIS is computed, the algorithm investigates each of them. For each
scenario in LIS, (line 16), e.g, {fa, fc, f}, the list SCList will ultimately contain all the
generated contexts arising from the execution of this scenario. The investigation starts
with the first flow, here fa (line 18), and considers every current context curCtx (line 19)
that results in f reaching the link l. Remember that, (because our extended model con-
siders flows with some timing constraints on their packet generation) the interfering

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14

Algorithm 2: getContexts(Flow f, Link l, Context curCtx)
input : a flow f , a link l, a context curCtx
output: A set of contexts, each constituting a scenario string and its delay

1 if l = null then
2 curCtx . delay += maxpsize(f)

C ;
3 curCtx.scenario.Append(f) ;
4 return curCtx;
5 end
6 if l = first(f) then
7 curCtx . delay += d

sw

+ d

across

;
8 return getContexts(f, next(f, l), curCtx) ;
9 end

10 BL {l
in

2 L | l
in

6= prev(f, l) ^ ldest(l
in

) = lsrc(l)} ;
11 foreach l

in

2 BL do
// Find the set of blocking flows on link lin

12 Ulin {f
in

2 F | next(f
in

, l

in

) = l} ;
13 end
14 LIS Set of local interfering scenarios based on Ulin ;
15 GCList {;} ;
16 foreach scenario Si 2 LIS do
17 SCList {curCtx};
18 foreach flow fj 2 Si do
19 foreach context ctxk 2 SCList do
20 SCList .pop(ctxk) ;
21 if isMITRCompliant(fj , ctxk .LogTbl, ctxk .delay) then
22 if isMPRFCompliant(fj , ctxk .LogTbl, ctxk .delay) then
23 ctxk . delay += d

sw

+ d

across

;
24 FCListk getContexts(fj , next(fj , l), ctxk);
25 end
26 end
27 end
28 SCList [8k FCListk;
29 end
30 GCList GCList[SCList ;
31 end
32 return GCList;

Algorithm 3: getMaxDelay(Flow f, Link l)
input : a flow f , a link l

output: WCTT of flow f , starting from link l, to the destination.
1 StudiedFlow f , ctx.scenario “ ”, ctx . delay 0 ;
2 ctxSet getContexts(f, l, ctx) ;
3 maxdelay max8 ctx2ctxSet

ctx . delay ;
4 return maxdelay ;

Algorithm 4: isMPRFCompliant(fid,flowLogTbl,curTime)
numGen flowLogTbl [fid]. numOccurences ;
firstArrival timeStampArray[1] ;
timeDuration curTime� firstArrival ;
numMax MaxPcktRel(fid, timeDuration);
if (numMax < numGen) then return FALSE ;
return TRUE;

scenarios that can occur for a flow f in a router nx depend on the order in which the
previous flows progressed through the network before f reaches nx. Hence, whenever
a flow f reaches a router nx, all possible contexts have to be investigated in order to
determine all the future scenarios that could arise at router nx.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:15

Algorithm 5: UpdateLogTbl(f,flowLogTbl,curTime)
// For the entry of flow f in flowLogtbl

1 Increment numOccurences ;
2 Append curTime to the timeStampArray ;
3 Reset NextfeasibleArrival to curTime + MinInterRel(f) ;

Algorithm 6: isMITRCompliant(fid,flowLogTbl,curTime)
if (FirstOccurence(fid, flowLogTbl))||(curTime � fid.NextfeasibleArrival) then

UpdateLogTbl(fid, flowLgTbl, curTime) ;
return TRUE ;

end
return FALSE ;

First, lines 21 and 22 check whether fa can legally block the analyzed flow f consid-
ering the time of its last arrival in the considered context (here, curCtx). If fa can arrive
and passes the round trip time test (line 21) as described in Algorithm 6, the task char-
acteristics of the flow are checked. Specifically, line 22 checks if the task originating
fa can indeed generate that many packets in the time specified by calling the function
defined in Algorithm 4. If both checks of lines 21 and 22 succeed, then fa is allowed
to progress in line 24, after updating the current context delay parameter (line 23).
Ultimately, the passage of fa returns a set of contexts (line 24), when flow fa reaches
its destination (which is reflected when its last link is null (lines 1-5)).

All these returned contexts end with flow fa reaching its destination and each one
corresponds to a different scenario in the subsequent routers along the path of fa. All
these resulting contexts are added to the scenario list SCList (line 28) as they must all
be considered (line 17) while analyzing the next flow fc of the current scenario. When
all the flows of the currently considered interfering scenario have been considered, all
the contexts resulting from this scenario are added to the global list GCList (line 30).
That list is finally returned (line 32), as it contains all the possible flow sequence pro-
gressions in the routers traversed by f after progressing through the link l, starting
with the context curCtx. The list GCList that is ultimately returned (to Algorithm 3) at
the end of the analysis, contains all possible scenarios in which f can reach its destina-
tion, with the corresponding delays. Finally, Algorithm 3 selects the scenario with the
highest delay to return an upper-bound on the traversal time of the analyzed flow f .

8. A MORE EFFICIENT ALGORITHM: BRANCH, PRUNE AND COLLAPSE
8.1. Description
The recursive calculus based method proposed by [Ferrandiz et al. 2009] scales well at
the cost of providing a very pessimistic WCTT. In contrast, the proposed branch and
prune (BP) algorithm returns a very tight WCTT at the cost of a high time complex-
ity and memory usage. The reason for the improved computational efficiency in the
method by [Ferrandiz et al. 2009] is that it does not carry any history of the previous
flows and only retains only the maximum delay incurred at each router. From the two
extreme approaches it may be inferred that a hybrid solution exists which can drop
some history of the contexts (only) periodically while retaining the maximum delay
seen so far as the analysis progresses. Such an approach is explored in this section.

As seen earlier, the identification of infeasible scenarios in BP was possible due to
the explicit book-keeping of contexts of all investigated scenarios. The “Branch, Prune
and Collapse” (BPC) algorithm presented (conceptually) in this section is motivated by
the observation that, while the complexity of the BP algorithm is indeed exponential,
for most flows, the number of scenarios to be considered is manageable (as seen in the
experiments of Section 9). To handle the corner cases (in terms of time complexity) we
propose as a trade-off, a more general BPC algorithm with a tunable parameter that

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16

we term “Scenario Information Retention Limit” (SIRL). The SIRL acts as a threshold
on the number of scenarios whose contexts are retained.

In the BP algorithm, all the investigated scenarios and their contexts are back prop-
agated and the algorithm proceeds by combining them with the local scenarios after
pruning it and then allowing the next feasible flow to progress. As a deviant version of
this algorithm, which is hereafter referred to as BPC, when the number of investigated
scenarios reaches a pre-set limit of SIRL, a dummy scenario with a unique dummy flow-
id is created. The context of this scenario populates (i) the delay field to the maximum of
the delays of the investigated scenarios and (ii) the other fields, relating to the history
information i.e the past occurrences, timestamps, etc to NULL (or zero, as appropriate)
– This marks the “collapse” phase of the BPC algorithm in which a set of investigated
scenarios is “collapsed” into a new single dummy scenario with zero history informa-
tion and a conservative delay estimate. As opposed to the branch and prune algorithm,
only this dummy scenario is back propagated to the higher nodes and the algorithm
gets back in to the branch and prune phase until the number of investigated scenarios
again exceeds SIRL, thereby triggering another collapse phase.

The necessity to create a new dummy scenario. Note, that at an intermediate stage
of analysis when the SIRL reaches its pre-set threshold, a single scenario that will
provably lead to the WCTT cannot be detected. That is, during the collapse phase, from
the set of the constituent collapsed scenarios, a specific single scenario (containing a
tightly coupled local maximum delay, flow sequences and other history information)
cannot be specifically carried forward. This is due to the fact that in the later analysis
stages such a scenario with the local maximum might be subject to pruning because
of its flow history and thereby not contribute to the global maximum delay. In order to
prevent this, we drop the history information (thereby reducing the chances of further
optimization due to the loss of history retained in the collapsed scenarios) while only
retaining the local maximum delay in a totally new dummy scenario. To summarize,
the BPC method thereby creates a dummy scenario which inherits the delay of the
local maximum, but drops the history of the flows constituting that scenario (context).

8.2. An example to illustrate the BPC method

Fig. 6. Example for “Branch, Prune and Collapse”

We illustrate the working of the BPC
method with the example of the flow-set
presented in Figure 6 – let us analyze
flow f which traverses through routers
n
1

and n
2

to finally reach its destina-
tion n

3

. As observed in Figure 6, flows fc
and fd can potentially block flow f thrice:
twice indirectly by blocking the passage
of fa and fb at n

2

(fa and fb block f di-
rectly at node n

1

), and finally directly
at n

2

during f ’s passage. Thus, fc and
fd are promising candidates for pruning

(lines 21 and 22 of Algorithm 2). Additionally, let us assume that SIRL = 5. At node
n
1

, BPC constructs the LIS as LIS(f, n
1

) = h{fa, fb, f}, {fb, fa, f}, {fa, f}, {fb, f}, {f}i
and it starts exploring the first scenario {fa, fb, f}. At this time, the list SCList is
reset to the current context (at line 17 of Algorithm 2). Note, that the list SCList

will ultimately contain all generated contexts arising from the execution of this
scenario {fa, fb, f}, before being appended to the global list of contexts GCList at
line 30. Firstly, a recursive call is performed to node n

2

with fa being the ana-
lyzed flow. This will result in a new LIS constructed at node n

2

as LIS(fa, n2

) =

h{fc, fd, fa}, {fd, fc, fa}, {fc, fa}, {fd, fa}, {fa}i. Similarly, LIS is generated for the flow
fb at n

2

, resulting with LIS(fb, n2

) = h{fc, fd, fb}, {fd, fc, fb}, {fc, fb}, {fd, fb}, {fb}i.
These scenarios are back-propagated to the node n

1

, and should be combined before f
progresses to n

2

itself. As both LIS sets contain 5 elements, the combined set of scenar-

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:17

ios may contain 25 scenarios (5 contexts from fa combined with 5 from fb). It is obvious
that for extremely complex flows, this back-propagation may produce a large number
of scenarios, resulting in a combinatorial explosion, which is the drawback of the BP
method. Given that SIRL = 5 in this example, the collapsing requirement is met. Those
25 scenarios are collapsed into a single one containing the dummy flow fX and its delay
is set to maximum delay amongst the collapsed scenarios. When f finally progresses to
n
2

and encounters the blocking flows fc and fd, the algorithm checks the history in its
sequence {fX , f} and since there is no prior information regarding fc and fd, the anal-
ysis considers that these two flows are arriving for the first time and thus allows them
to pass and interfere. The resulting scenarios would be {fX , fc, fd, f}, {fX , fd, fc, f},
{fX , fc, f}, {fX , fd, f} and {fX , f}. In contrast, BP would have retained the informa-
tion regarding all scenarios, thus prohibiting the second interference caused by fc and
fd, but at the expense of investigating 25⇥ 5 = 125 scenarios.

This example clearly shows (i) how loss of past information can reduce the chances
of pruning infeasible scenarios and (ii) how the number of scenarios to be explored sig-
nificantly decreases with the decease in the SIRL parameter – and more specifically in
loaded networks in which the context of large scenarios have to be back-propagated to
higher level nodes and combined to evolve the final scenarios. Conceptually, an SIRL

set to 1 implies BPC = BP while at the other end, an SIRL set to one tends towards
obtaining the WCTT using the method proposed by [Ferrandiz et al. 2009], where no
information about the past occurrence of any flow is retained. This approach is pro-
vided to the designer to handle the comparably small number of cases in which the BP
algorithm may be inefficient. To formally validate the flexibility this offers, it will be
seen in the experiment sections how lower SIRL will compute bounds tending towards
those computed by [Ferrandiz et al. 2009], while with higher SIRLs we will have tighter
WCTTs computed by BP. With this parameter, the system designer has the flexibility
to trade-off computation time vs. pessimism in the computed WCTT.

8.3. Proof of Safety of “Branch, Prune and Collapse” (BPC) algorithm
In this section, we explain why the BPC method, by discarding some history informa-
tion upon reaching the SIRL threshold, may output more pessimistic WCTT estimates
compared to BP, but will under no circumstance lead to an unsafe WCTT estimate.

Let us denote by wcs the scenario (flow sequence) leading to the WCTT at run time
which is by definition a feasible scenario. In order to prove that BPC is safe, we must
prove that the BPC method does not eliminate this scenario wcs from the set of inves-
tigated scenarios – the method should never return a WCTT which is lower than that
corresponding to the traversal time of wcs.

Firstly, it should be noted that, if we disable the two pruning mechanisms at lines
21 and 22 of Algorithm 2 and if SIRL is set to 1, then our BPC algorithm boils down
to an exhaustive enumeration of all possible scenarios at each router, and thus con-
siders all possible blocking scenarios in the context of the analyzed flow (brute-force
approach which is inherently safe). The pruning mechanisms of lines 21 and 22 use
the precedence and time stamp information to identify some infeasible flow sequences
and reduce the list of scenarios that need to be explored and facilitates the objective of
obtaining tighter WCTTs. By definition, wcs is a feasible flow sequence and therefore,
it will not be eliminated by these pruning techniques.

Given the loss of history information, the BPC method is unable to identify as many
infeasible scenarios as the BP method. These infeasible scenarios (flow sequences) have
flows that actually cannot occur at run time due to the task properties and hence add to
extra-delays and bloat up the traversal time. Eventually, the set of scenarios explored
will consider the set of feasible scenarios which includes wcs but will also include some
infeasible scenarios, which are not identified due to loss of previous history and prece-
dence information. Finally, on taking the maximum traversal time of all the scenarios,
the method will return a value which is higher than or equal to the WCTT correspond-
ing to wcs – hence the method is safe.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18

To summarize, BP investigates all feasible (including the wcs) and infeasible sce-
narios and prunes all infeasible scenarios by retaining the history information, and
thereby is safe. BPC investigates all feasible and infeasible scenarios and prunes some
of infeasible scenarios and as a consequence is still safe but more pessimistic.

8.4. Proof of termination of Algorithm GetContexts (Algo. 2)
The system is modeled as a graph G(N ,L) with finite sets of nodes and bi-directional
links and a set F of flows. Let S be the set of pairs hf, `i, with f 2 F and ` 2 L, such
that hf, `i 2 S if and only if ` 2 path(f). Since | L | and | F | are finite, it holds that
| S | is finite as well. A progress of a flow f from a link ` to a subsequent link `0 on
its path is equivalent to the progress from the pair hf, `i to the pair hf, `0i. If a flow
f 0 blocks flow f on the link `, it corresponds to the progress from the pair hf, `i to the
pair hf 0, `i 2 S. For a given flow f and a current link `, the algorithm progresses in
a forward manner to the next link next(f, `) in the path of the flow f by invoking the
function getContexts() at lines 8 and 24. Starting from any pair hf, `i 2 S (i.e. with f
and ` as input), our algorithm investigates all the pairs, i.e. set of inputs, hf 0, next(f 0, `)i
with f 0 6= f as a consequence of the round-robin arbitration policy. Then, the algorithm
repeats the same (in a recursive manner) for each of these pairs hf 0, next(f 0, `)i and, as
a consequence of the deadlock-free property of XY routing, we know that the initial pair
hf, `i will never be re-visited. Additionally, since all the explored contexts are popped
in line 20, the queue of pending scenarios is emptied and the algorithm eventually
terminates.

9. SIMULATIONS AND RESULTS
We conducted several experiments with the dual objectives of comparing our method
with the approach in [Ferrandiz et al. 2009] and studying the impact of varying differ-
ent parameters on the WCTT of analyzed tasks. The simulation parameters have been
summarized in the following table:

Network Size 8*8 mesh
Routing and switching mechanism XY Routing, round robin arbitration

Router switching delay and transfer delay 1ns and 3ns (in-line with SCC [Intel 2010]))
Packet size and channel capacity 512 bytes, 1 Gbps
Implementation platform details Intel dual-core desktop & Java (Max heap-size:4GB)

9.1. Comparison of BPC with the Approach of Ferrandiz et. al
As the improvements cannot be quantified in the general sense, since they are highly
flow-set specific, we performed experiments on a wide range of different flow-sets in
order to understand the trends and the ranges of improvement achieved by employing
the proposed approach.

Test 1 (Network with moderate number of flows): We generated 200 random
flow-sets, each having 64 flows. The flows originate from each tile but terminate at a
random destination. The minimum inter-arrival time is a randomly generated param-
eter, varying between 5 to 20 microseconds. We computed the upper-bounds on WCTT
of each flow using both the approaches and compared the results. For our approach, we
selected a SIRL = 10000.

In order to quantify the range of improvements, we computed a metric which we refer
to as the “Percentage Improvement Ratio” (PIR) given by (dU � d10000O) ⇤ 100/dU , where
dU denotes the upper-bound on WCTT returned by the approach in [Ferrandiz et al.
2009] which we also refer to as unoptimized wctt, and d10000O is the value returned by
our algorithm for SIRL = 10000, which we call optimized wctt. Therefore a PIR = 25%

implies that our approach provided 25% lower (i.e. tighter) WCTT upper-bound.
Figure 7a summarizes our findings. We observed that for 31.84% of the flows, the

bounds computed by both methods are equal, that is d10000O = dU and PIR = 0%. We
have also demonstrated the percentage of flows and the improvement they achieved,
in order to provide a deeper insight into the performance of our algorithm. As evident
from Figure 7a, 1.29% of the flows had a PIR in the range (1�10%), 13.22% in the range

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:19

(a) Network with moderate number of flows (b) Network with high number of flows

Fig. 7. Distribution of WCTT improvement on the flows. The legends represent improvement ranges.

(11 � 20%) and so on. At the high end of the PIR scale, 3.55% of the analyzed flows
returned 71� 100% tighter WCTT bounds.

The WCTT* parameter: If the computation terminates with the number of investi-
gated scenarios not exceeding SIRL (implying that no collapses occur during the entire
flow analysis), the method returns a value of the traversal time as would be computed
by BP – we denote this result by WCTT*. In other words, all possible scenarios were an-
alyzed and the one inducing the highest worst-case delay was recognized. Conversely,
in cases when collapses occur, the returned WCTT presents only an upper-bound on
the worst-case delay, without any additional details on how tight that bound is. When
viewed from that perspective, the approach in [Ferrandiz et al. 2009] presents a spe-
cial case of the proposed approach where SIRL = 1. Therefore, [Ferrandiz et al. 2009]
returns WCTT* only when the number of investigated scenarios is equal to “1”.

In the 31.84% of the flows for which both methods returned equal values of WCTT,
for 3/4th of them, (23.96% of all the flows), the recursive-calculus method was able
to capture WCTT*, inferring that these scenarios were simple and triggered the in-
vestigation of only one scenario. Therefore, in these cases there was no further scope
for improvement. For the rest of the 68.16% flows, our algorithm returned tighter es-
timates. Based on the experiments, we can say that our algorithm performed equally
well or dominated the method proposed by [Ferrandiz et al. 2009]. Also, for the selected
SIRL value, the proposed approach managed to capture WCTT* in 92.13% of the cases,
inferring that any additional increase in SIRL would not provide significantly tighter
WCTT bounds, but would require exponentially greater amount of time.

The offline analysis completed within 24 hours, averaging a little bit more than 7

minutes per flow-set (each with 64 flows). The most complex flow-set took around an
hour for completion, suggesting that the execution times may vary drastically when
applied to flow-sets with identical characteristics but different flow routes, sometimes
even by a high order of magnitude due to increase in the indirect contentions.

Test 2 (Network with high number of flows): The main purpose of this test was
to check the efficiency of our algorithm when applied to a network with higher number
of flows. In this test, we again generated 200 random flow-sets, 128 flows each, with two
flows originating from each tile and terminating at a random destination. The mini-
mum inter-arrival time is randomly generated parameter varying between 25 and 250

microseconds. For all flows, the values of dU and d10000O were computed and compared.
The simulation completed in 5 days, averaging 36 minutes per flow-set, where the most
complex consumed around 3 hours, demonstrating that our approach is scalable and
applicable to practical scenarios involving hundreds of concurrent flows.

As in the previous test-set, the PIR metric is used here to quantitatively express
the improvements of the proposed method over the recursive calculus method [Ferran-
diz et al. 2009]. We observed that for 9.23% of the flows, no improvements were made
(PIR = 0%). For most of the flows without improvement (8.11%) the method [Ferrandiz
et al. 2009] managed to capture WCTT*, with the same conclusion that for these sim-

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20

 0%

 20%

 40%

 60%

 80%

 100%

Lim4 Lim20 Lim100 Lim200 Lim1,000 Lim2,000 Lim4,000 lim10,000

P
er

ce
n

ta
g

e
o

f
fl

o
w

s

91−100% improvement
81−90% improvement
71−80% improvement
61−70% improvement
51−60% improvement
41−50% improvement
31−40% improvement
21−30% improvement
11−20% improvement
1−10% improvement
No improvement

 0%

 20%

 40%

 60%

 80%

 100%

Lim4 Lim20 Lim100 Lim200 Lim1,000 Lim2,000 Lim4,000 lim10,000

P
er

ce
n
ta

g
e

o
f

fl
o
w

s

91−100% improvement
81−90% improvement
71−80% improvement
61−70% improvement
51−60% improvement
41−50% improvement
31−40% improvement
21−30% improvement
11−20% improvement
1−10% improvement
No improvement

Fig. 8. Our proposed approach with varying SIRL vs. method by [Ferrandiz et al. 2009]
ple, one-scenario cases no improvements were possible. For the rest, i.e. 90.77% of the
analyzed flows, it holds that d10000O < dU , that is the upper-bound on the worst-case of
the analyzed flows was tighter with our approach and the distribution is reflected in
Figure 7b. It is interesting to see that more than 13% of the flows showed an improve-
ment of 61� 70%, while more than 8% of the flows show an improvement greater than
70%. Due to more complex traffic patterns resulting from increased amount of traf-
fic, our approach with SIRL = 10000 recognized WCTT* for 41.71% of the flows, which
is significantly smaller when compared with the same of moderately loaded network.
This suggests that the improvements can be achieved by increasing SIRL, but at the ex-
pense of additional computational complexity and memory consumption. Although the
proposed approach takes a longer computation time, it clearly dominates the recursive
calculus method in terms of obtaining tighter results. The selection of SIRL creates a
trade-off between the computation time and the accuracy of the analysis.

Test 3 (Impact of SIRL on WCTT estimates) The objective of this set of experi-
ment is to understand the impact of varying SIRL on the computed WCTT. The general
intuition is that retaining more information about the scenarios provides more oppor-
tunities for eliminating invalid scenarios and therefore leads to tighter estimates. To
validate this idea, we implemented our algorithm and executed it, by providing a differ-
ent value of SIRL for each run and compared them against the results obtained by the
approach in [Ferrandiz et al. 2009]. The results have been demonstrated in Figure 8
and like the previous experiments use the PIR metric for performance.

We observed that as the SIRL increases, the percentage of flows which show no im-
provements over the values computed by [Ferrandiz et al. 2009] decreases. Thus, with
an SIRL = 4, the WCTT computed for 43.6% flows exhibit no improvements, while with
SIRL = 2000 only 9.29% of the flows show no improvements (and the rest 90% of flows
have tighter WCTTs). Note the marked shift in the distribution of improvements to-
wards higher increased PIRs as the SIRLs increase. This is in accordance with the
algorithm rationale that the retention of information about past flows in the scenarios
can provide opportunities for tightening the WCTT. But as seen in the shift from 4000 to
10000, the PIR improvements do not differ much, as the opportunities for cutting down
infeasible scenarios are exhausted. It can be then also inferred that choosing limits be-
yond a given SIRL will only burden the system memory of retaining information about
those scenarios which may not lead to the WCTT. So a judicious decision must be taken
by the system designer considering the tightness of results required and the time in
which the tests must be performed.

Test 4 (Inter-SIRL ratios)
In the previous experiment, we compared the results of our approach with different

SIRL values against the approach of [Ferrandiz et al. 2009]. In order to get a deeper
insight into the impact of the SIRL parameter, we compared the results of our approach
with different SIRL values against each other and plotted the results in Figure 9. The
results coincide with the intuition, suggesting that greater values of SIRL improve the
chances of capturing WCTT*, i.e. no collapses during the calculation occur (Figure 9a).

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:21

1 1000 2000 3000 4000 5000 6000 7000 8000 9000 100000

5

10

15

20

25

30

35

40

Limit size

Qu
an

tity
 o

f c
ap

tu
re

d
W

CT
T*

, in
 %

 o
f t

ot
al

flo
w−

se
t

(a) Recognized worst-cases (WCTT*) across SIRLs

Anomalies Equal 1−10% 11−20% 21−30% 31−100%0

10

20

30

40

50

60

Qu
an

tity
 o

f f
low

s,
in

%
 o

f t
ot

al
flo

w−
se

t

Improvement

SIRL1 = 100 / SIRL2 = 40
SIRL1 = 256 / SIRL2 = 100
SIRL1 = 640 / SIRL2 = 256
SIRL1 = 1600 / SIRL2 = 640
SIRL1 = 4000 / SIRL2 = 1600
SIRL1 = 10000 / SIRL2 = 4000

(b) Improvements across SIRLs

Fig. 9. Inter-SIRL ratios
This claim is confirmed with a logarithmic growth in the number of non-collapsed sce-
narios across SIRLs.

Figure 9b shows that the relative improvements across SIRLs diminish as SIRL in-
creases. That is, our method with SIRL = 100 shows improvement against the same
method with SIRL = 40 in 60% of the cases, while the improvement is reported only
in 30% of the cases when comparing results of SIRL = 10000 and SIRL = 4000. Thus,
the number of scenarios with no improvement increases with SIRL. Conversely, the
number of scenarios with improvements decreases with SIRL across all improvement
ranges, suggesting that it may not be essential to perform the analysis with very high
values of SIRL beyond a certain value. The benefits of analyzing with higher SIRL di-
minish as SIRL increases (especially for scenarios comprising of single-occurring flows).

As already stated, the value of the SIRL influences the frequency of scenario col-
lapses. However, one interesting observation is the fact that higher SIRL does not nec-
essarily always lead to a tighter WCTT upper-bound. We explain this with a following
example. Consider the flow f in the example depicted by Figure 6. Let us assume that
fc and fd are potential candidates for pruning. Now, assume that greater SIRL per-
forms a collapse between occurrences of fa and fb. As the history information is lost,
the flows fc and fd will contribute to the delays of both the flows, fa and fb. On the other
hand, a smaller SIRL might trigger a collapse before (and after) the appearance of both
fa and fb. In this case, it may successfully prune one appearance of fc and fd, thereby
resulting in the situation (which we refer to an “anomaly”) where a smaller value of
SIRL returns a tighter WCTT estimate. As is visible from the results, the number of
anomalies never exceeds more than 8% in all the considered cases.

R1 R2 R4R3

R5 R6
R8

R7

R12

R16

fA fB
fC

fD

fE fF
fG fH

fI

l1 l2 l3

l7

l8

l9

l6l5l4

Fig. 10. Example Flow Set in a portion of the grid

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22

9.2. Case Study with a specific flow-set
Figure 10 shows one of the flow-sets analyzed over a 4*4 grid that we shall use to
demonstrate some interesting properties. Additional details like the core and cache
engine were omitted to make the figure simpler. In the rest of the paper, we drop the
prefix f and directly refer to the flow by its alphabetical name. In this flow set, we
analyzed the flow A which originates in router R1 and terminates at the core associated
with router R16. B,C,D,E, F,G,H and I are the other flows which also terminate at
node R16. In this example, in the worst-case scenario, every flow can be potentially
blocked by flow I (originating at R12) which is closest to the destination, then by flow
H and so on. To provide a fair comparison with the approach in [Ferrandiz et al. 2009],
we consider that every flow is by nature unregulated and non-blocking. By applying the
approach in [Ferrandiz et al. 2009] or using our approach without any optimizations,
one of the scenarios which resulted in the WCTT for flow A was:
{IHIEIDIHIEICIHIEIDIHIEIBIHIEIDIHIEICIHIEIDIHIEIA}.

This scenario is a manifestation of the “task-level” and “network level” pessimism
and exemplifies the case of an over-estimated WCTT when infeasible blockings are not
curtailed. Flows I and H are positioned in a manner which enables them to frequently
block the other flows. This scenario also presents a useful example for exploring the
delay on the WCTT of flow A if the task-profiles and task parameters of the blocking
flows are varied.

9.3. Impact of Varying Packet Arrival Rates

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50 60 70 80 90

B
lo

ck
in

g
flo

w
 o

cc
ur

en
ce

s

MITR in microseconds
(a) No. of blockings by flow I vs. its MinInterRel(I)

 90
 100
 110
 120
 130
 140
 150
 160
 170
 180
 190

 0 10 20 30 40 50 60 70 80 90

W
C

TT
 in

 m
ic

ro
se

co
nd

s

MITR in microseconds

Unoptimized
Optimized

(b) WCTT of flow A vs. Packet Arrival rate of flow I
Fig. 11. WCTT of flow A decreases with increase in MIA time of flow I

The flows originating closer to the destination of the analyzed flow in Figure 10 have
a higher tendency to block it directly and indirectly (by blocking the other flows which
are also in the path). To verify this, we tuned the MinInterRel() (MIA in the figure) of
flow I, increased it steadily and carried out the experiment, while keeping the nature
of the other parameters constant. Figure 11a shows that as MinInterRel(I) increases,
the number of times it can block the other flows is invalidated and thus the WCTT of
flow A decreases as expected as seen in Figure 11b. In contrast, since the approach
in [Ferrandiz et al. 2009] does not take into account the task characteristics, it allows
these invalid blockings to progress and as a result, irrespective of the change in the
flow parameters, the computed WCTT remains constant (see solid line in Figure 11b).

9.4. Impact of Varying Task Patterns
The WCTT of a packet of a given flow is also affected by the packet release profiles
of the other flows. To study this effect, we conducted the following tests in which we
analyzed the WCTT of flow A (in Figure 10) by changing the packet profiles of the
blocking flows. In addition to the non-regulated non-blocking profile assumed for all

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:23

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 0 50000 100000 150000 200000M
ax

 n
um

be
r o

f p
ac

ke
ts

: M
PR

F(
f,t

)

 Time in nanoseconds

S1
S2
S3

(a) Profiles S1, S2, S3

 0

 50000

 100000

 150000

 200000

 250000

 0 50000 100000 150000 200000M
ax

 n
um

be
r o

f p
ac

ke
ts

: M
PR

F(
f,t

)

 Time in nanoseconds

Default profile

(b) Default profile

Fig. 12. MaxPcktRel() function applied to different profiles

0

20

40

60

80

100

120

140

160

180

200

W
CT

T i
n m

icr
os

ec
on

ds

Fig. 13. WCTT of Flow A by varying the flow profiles of the blocking flows

the flows in [Ferrandiz et al. 2009], we defined three packet profiles S1, S2 and S3
(where S stands for Sparse) by generating synthetic pattern arrivals and computing
the MaxPcktRel(f, t) for each of these profiles using the method proposed in [Dasari
et al. 2011]. Figure 12 depicts the profiles, in which the X-axis represents the time-
line (in nanoseconds) and the Y-axis shows an upper bound on the number of packets
that can be generated in time t. The default profile, shown in Figure 12b, models the
unregulated non-blocking profile. Figure 13 summarizes the results of different tests
carried by varying the parameters of the blocking flows. The Y-axis represents the
computed values of the WCTT of flow A. The X-axis contains the test name and should
be read as < approach >< profile >< flows >, where approach 2 {Unopt,Opt} refers to
the approach in [Ferrandiz et al. 2009] and our approach, respectively. All unmentioned
flows by default have the profile presented in Figure 12b. So OptS2IH refers to a test
case with our approach, the flows I and H have profile S2 and the other flows have the
default profile.

As previously noted, the WCTT estimated by the Unopt method remained constant.
Both the approaches computed the same WCTT for flow A for the default task profile.
However, when we assigned the flows different profiles, Opt outperformed Unopt in
all the tests. This test case was designed to emphasize the importance of reducing the
“task pessimism” described earlier. When applying the S1 profile to flow I, the WCTT of
flow A reduced, since many occurrences of flow I were not feasible and were eliminated
by the tests in our approach. We then applied the profile S1 to flows H and D, but this
did not further impact the WCTT of flow A since they did not intercept flow A more than
the admissible number of times. The effects of applying profile S1 can be observed in
the WCTT values corresponding to tests OptS1I, OptS1IH, OptS1IHD and OptS1All
in Figure 13. The S2 profile, by nature limits the generation of packets further and

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24

additionally reduced the number of blockings of flows I and H. The profile S3 which is
an extremely sparse packet profile, caused a major impact by drastically reducing the
number of blockings and the resulting WCTT decreased further. The effects of applying
profile S3 can be observed in the WCTT values corresponding to tests OptS3I, OptS3IH,
OptS3IHD and OptS3All in Figure 13.

9.5. Comparison with Related work
The proposed approach considers the impact due to direct and indirect blockings as
in [Lu et al. 2005]. Unlike the works proposed by [Diemer and Ernst 2010], [Shi and
Burns 2008], [Paukovits and Kopetz 2008] or [Goossens et al. 2005], it does not need
any hardware support for predictability, which is not commonly not present in existing
platforms. Conversely our approach can be applied to a wider range of commercially
available platforms. Furthermore, the proposed approach does not incur the delay of
flushing out the preempted flits as done by pre-emption based techniques [Knauber
and Chen 1999]. We make no assumptions on the state of the buffers as [Rahmati
et al. 2009] and do not restrict the model to flows generating periodically arriving
packets only. Due to the MaxPcktRel(f, t) function, even flows which generate pack-
ets randomly can be captured and thus our analysis is not restricted to affine-arrival
curves as in [Qian et al. 2010]. Through experiments we have demonstrated that our
approach computes tighter bounds when compared with the approach of [Ferrandiz
et al. 2009], which assumes a model that is closely related to ours. Additionally, the
idea of retaining the history information of flows to prune further infeasible flows lends
novelty to our approach and the concept of having SIRL as a tunable parameter makes
the approach flexible.

10. CONCLUSIONS
In this paper, we highlighted the problem of contention in a NoC as used in many-
core architectures. We proposed a solution to compute the worst-case traversal time of
a packet for such NoCs. This solution uses a branch and prune approach (BP) which
improves on the work presented in [Ferrandiz et al. 2009] by leveraging the task char-
acteristics and thereby provides tighter estimates on the computed WCTT. In order to
tackle the complexity issues of BP in corner cases, we extended it to a branch, prune
and collapse method (BPC), which via a configurable parameter provides a trade off
between the computation time/memory usage and the WCTT tightness. A large set of
experiments demonstrate the performance of the proposed algorithms in comparison
with the approach of [Ferrandiz et al. 2009]. In particular, our work dominates their
approach by yielding tighter WCTT estimates at the cost of extra computation time,
the effects of which can be mitigated by the optimized version i.e. BPC. BPC on one
hand limits the computational complexity, while on the other hand still provides the
benefits of tighter WCTT bounds.

ACKNOWLEDGMENTS
This work was partially supported by National Funds through FCT and ERDF (European Regional De-
velopment Fund) through COMPETE (Operational Programme ’Thematic Factors of Competitiveness’),
within project Ref. FCOMP-01-0124-FEDER-022701; by FCT and COMPETE (ERDF), within REPO-
MUC project, ref. FCOMP-01-0124-FEDER-015050 ; by FCT and ESF (European Social Fund) through
POPH (Portuguese Human Potential Operational Program), under PhD grants SFRH/BD/71169/2010 and
SFRH/BD/81087/2011.

REFERENCES
BENINI, L. AND DE MICHELI, G. 2002. Networks on chips: a new soc paradigm. Computer 35, 1, 70 –78.
BOUDEC, J.-Y. L. AND THIRAN, P. 2004. Network calculus - a theory of deterministic queuing systems for

the internet. In Lecture Notes in Computer Science, LNCS. Springer Verlag.
DALLY, W. 1992. Virtual-channel flow control. IEEE Transactions on Parallel and Distributed Systems 3, 2,

194 –205.
DALLY, W. AND SEITZ, C. 1986. The torus routing chip. Distributed Computing 1, 187 –196.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:25

DASARI, D., ANDERSSON, B., NELIS, V., PETTERS, S. M., EASWARAN, A., AND LEE, J. 2011. Response time
analysis of COTS-based multicores considering the contention on the shared memory bus. In IEEE 10th
International Conference on Trust, Security and Privacy in Computing and Communications. 1068–1075.

DIEMER, J. AND ERNST, R. 2010. Back suction: Service guarantees for latency-sensitive on-chip networks.
In Fourth ACM/IEEE International Symposium on Networks-on-Chip (NOCS). 155 –162.

DRAPER, J. T. AND GHOSH, J. 1994. A comprehensive analytical model for wormhole routing in multicom-
puter systems. J. Parallel Distrib. Comput. 23, 2, 202–214.

FERRANDIZ, T., FRANCES, F., AND FRABOUL, C. 2009. A method of computation for worst-case delay anal-
ysis on spacewire networks. 19–27.

FERRANDIZ, T., FRANCES, F., AND FRABOUL, C. 2011. Using network calculus to compute end-to-end delays
in spacewire networks. SIGBED Rev. 8, 3, 44–47.

FERRANDIZ, T., FRANCES, F., AND FRABOUL, C. 2012. A sensitivity analysis of two worst-case delay com-
putation methods for spacewire networks. In Euromicro Conference on Real-Time Systems. 47–56.

GOOSSENS, K., DIELISSEN, J., AND RADULESCU, A. 2005. Aethereal network on chip: concepts, architec-
tures, and implementations. IEEE Design Test of Computers 22, 5, 414 – 421.

HU, J. AND MARCULESCU, R. 2003. Energy-aware mapping for tile-based noc architectures under perfor-
mance constraints. In 8th Design Automation Conference. 233–239.

INTEL. 2010. The single-chip-cloud computer.
http://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/intel-labs-single-
chip-cloud-article.pdf.

KNAUBER, K. AND CHEN, B. 1999. Supporting preemption in wormhole networks. In The Twenty-Third
Annual International Computer Software and Applications Conference, COMPSAC. 232 –238.

LEE, S. 2003. Real-time wormhole channels. Journal Of Parallel And Distributed Computing 63, 299–311.
LU, Z., JANTSCH, A., AND SANDER, I. 2005. Feasibility analysis of messages for on-chip networks using

wormhole routing. 960–964.
PAUKOVITS, C. AND KOPETZ, H. 2008. Concepts of switching in the time-triggered network-on-chip. In 14th

IEEE International Conference on Embedded and Real-Time Computing Systems and Applications. 120
–129.

PELLIZZONI, R., SCHRANZHOFER, A., CHEN, J.-J., CACCAMO, M., AND THIELE, L. 2010. Worst case delay
analysis for memory interference in multicore systems. In Conference on Design, Automation and Test
in Europe. 741–746.

QIAN, Y., LU, Z., AND DOU, W. 2010. Analysis of worst-case delay bounds for on-chip packet-switching
networks. IEEE Transactions onComputer-Aided Design of Integrated Circuits and Systems 29, 802 –
815.

RAHMATI, D., MURALI, S., BENINI, L., ANGIOLINI, F., DE MICHELI, G., AND SARBAZI-AZAD, H. 2009. A
method for calculating hard QoS guarantees for networks-on-chip. 579 –586.

SALMINEN, E., A., K., AND T., H. 2008. Survey of Network-on-Chip Proposals. www.ocpip.org.
SCHLIECKER, S., NEGREAN, M., AND ERNST, R. 2010. Bounding the shared resource load for the perfor-

mance analysis of multiprocessor systems. In Conference on Design, Automation and Test in Europe.
759–764.

SHI, Z. AND BURNS, A. 2008. Real-time communication analysis for on-chip networks with wormhole switch-
ing. In Second ACM/IEEE International Symposium on Networks-on-Chip. 161 –170.

TILERA. 2011. Tile processor: user architecture manual.
www.tilera.com/scm/docs/UG101-User-Architecture-Reference.pdf.

WENTZLAFF, D., GRIFFIN, P., HOFFMANN, H., BAO, L., EDWARDS, B., RAMEY, C., MATTINA, M., MIAO,
C.-C., III, J. F. B., AND AGARWAL, A. 2007. On-chip interconnection architecture of the tile processor.
IEEE Micro 27, 15–31.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

