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Abstract 

In this paper we approach the problem of Mixed Criticality (MC) forprobabilistic real-time systems where tasks 
execution times are described withprobabilistic distributions. In our analysis, the task enters high criticality mode 
ifits response time exceeds a certain threshold, which is a slight deviation from amore classical MC. This is for 
obtaining an application oriented MC system inwhich criticality mode changes depend on actual scheduled 
execution. This is incontrast to classical approaches which use task execution time to make criticalitymode 
decisions, because execution time is not affected by scheduling while theresponse time is. We use a graph-based 
approach to seek for an optimal MCschedule by exploring every possible MC schedule the task set can have. 
Theschedule we obtain minimizes the probability of the system entering high criticalitymode. In turn, this aims at 
maximizing the resource efficiency by the means ofscheduling without compromising the execution of the high 
criticality tasks andminimizing the loss of lower criticality functionality. The proposed approach isapplied to test 
cases for validation purposes. 
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Abstract. In this paper we approach the problem of Mixed Criticality (MC) for

probabilistic real-time systems where tasks execution times are described with

probabilistic distributions. In our analysis, the task enters high criticality mode if

its response time exceeds a certain threshold, which is a slight deviation from a

more classical MC. This is for obtaining an application oriented MC system in

which criticality mode changes depend on actual scheduled execution. This is in

contrast to classical approaches which use task execution time to make criticality

mode decisions, because execution time is not affected by scheduling while the

response time is. We use a graph-based approach to seek for an optimal MC

schedule by exploring every possible MC schedule the task set can have. The

schedule we obtain minimizes the probability of the system entering high criticality

mode. In turn, this aims at maximizing the resource efficiency by the means of

scheduling without compromising the execution of the high criticality tasks and

minimizing the loss of lower criticality functionality. The proposed approach is

applied to test cases for validation purposes.

1 Introduction

Real-time applications demand timing guarantees at all of their execution scenarios.

Classical approaches apply Worst Case Execution Times (WCET) in order to have

safe/pessimistic models of task executions. The actual task execution time may vary but

will always lie below the WCET as the instances when the actual execution time is equal

to WCET are unlikely [17, 15]. Predictability is assured with schedulability analysis that

applies worst-case models like WCETs.

A recent approach to timing analysis involves defining execution times using a

probabilistic Worst Case Execution Time (pWCET). The pWCET is a probabilistic

distribution which upper bounds all the possible execution times of a task [7]. The

pWCET generalizes the notion of WCET with multiple worst-case execution time values,

each with the associated worst case probability of being exceeded. The flexibility from

pWCET representations allow for probabilistic quantification of pessimism in the WCET

deterministic models. Moreover, the probabilistic models are less pessimistic because

they are close approximation to the actual task execution. They contain more information

about execution time than single-valued deterministic WCET.



The probabilistic schedulability analysis like [12, 18, 19, 4] applies on top of proba-

bilistic models like pWCETs. The results obtained thereafter are also probabilistic as

worst-case response time distributions. The probabilistic schedulability analysis exploits

the flexibility of probabilistic representations, aiming at reducing the pessimism. There

is always an associated cost of complexity when dealing with probabilistic distributions.

Operations like convolution add to this complexity. The probabilistic models deal with

more information given in the probability distribution than models using WCET. All the

possible scenarios of execution of tasks, given by the pWCET as well as schedule, have

to be taken into account.

In addition, today’s safety critical applications are being approached through the

Mixed Criticality (MC) perspective [5]. MC systems operate by switching between

various criticality modes depending on the resource requirements by the executing tasks.

Whenever there is a higher requirement of resources, the system switches to a mode of

higher criticality in order to guarantee the most critical tasks in the least. In this mode,

only the safety critical tasks are are executed and more resource for their execution is

provisioned [22].

The MC problem is supported by the Vestal’s model [22] in which a tuple of WCETs

describe the task execution behaviour. The WCETs in the tuple are less pessimistic at

lower criticalities, and are more pessimistic at higher ones in order to upper bound more

execution conditions. The system mode change to higher criticality is classically means

that all task in lower criticalities are discarded. This does not take into account if there is

room for allowing execution of low criticality tasks in system high mode. Obtaining a

solution for applied MC scheduling which is ensured safe as well as resource efficient is

a complex problem.

Both MC and probabilistic schedulability analysis tend to have a common charac-

teristic, that is to quantify the existing pessimism and utilize it to maximize resource

usage by making intelligent scheduling decisions. This also originates from the fact that

safety standards e.g., stemming from the IEC6150, ISO26262 or DO-178C standards,

demand a probability or frequency of the system failing at run-time. These standards

also extend to mixed criticality systems Some works are extending the Vestal’s model

to the probabilistic case [14, 8, 16]. Works involving probabilities in MC systems [1, 2,

14, 8] can be found among the citations in the MC survey [5]. Scheduling approaches in

[13], [10] and [3] focus on assigning safe and feasible task priorities.

1.1 Problem Discussion and Contribution

In this work, we look for a probabilistic MC scheduling analysis which provides a

reliable probabilistic picture of the system, and safe timing guarantees, especially for high

criticality tasks, or low probability of happening of critical events. In addition, it must be

able to exploit the common objective of the MC and probabilistic approaches, which is

leveraging probabilities into maximizing resource usage and minimizing pessimism.

Given a MC periodic non-preemptive task set on a uniprocessor, with each task

described with a pWCET, instead of a WCET, and given a maximum probability of

deadline miss for the tasks, how do we find a schedule such that the probability that the

system enters high criticality mode is minimum?



We aim for a minimization of the probability of system entering high criticality

because there are certain predefined actions that are taken when the system does enter

high criticality. Usually, these actions involve discarding the lower criticality tasks.

With our approach, we make such actions least likely. With this objective in mind, we

propose a graph-based task execution model. We begin constructing a graph based model

to represent the possible job orderings. The possible schedules are then represented

in exploration trees. These trees are explored to obtain a resource efficient schedule.

Using graphs allows us explore all the possible combinations of job scheduling. Only by

exploring all the combinations, we can confidently conclude for a schedule with the least

probability of the system switching mode to high criticality among all the possibilities.

Using the graph and other structures to model task executions, we are able to extract

crucial schedulability information like pWCRT and the probabilities associated. There

exist some approaches like [20, 9] which use graphs to express for task execution, but

they do so in a non-probabilistic and non-MC domain.

Our approach mainly consists of an offline analysis to obtain a schedule for the

jobs. The scheduled obtained is a sequence of jobs which are ensured to contain all

the high criticality jobs. In addition, the schedule results in the minimum probability

that the system enters high criticality mode. The exploration process has exponential

complexity. it originates from the complexity of the probabilistic models in addition to

the complexity of the MC approaches. However, the relatively high offline complexity

is a trade-off we make at the moment which will be improved in the future works. The

complexity of this exploration is somewhat reduced in parallel of the offline construction

of the schedule by discarding unfeasible schedules.

The online part of the schedule consists of execution of jobs in the sequence given

from the offline analysis. It simply executes the jobs given in the scheduling order. The

online complexity is drastically reduced through our method as the schedule is a simple

list to follow.

As in most works on MC scheduling, we assume a system with tasks of two crit-

icalities and modes. However, our work can easily extend to multi-criticality system.

Moreover, contrary to classical MC we use probabilistic Worst Case Response Time

(pWCRT) to make criticality decisions. Any increased resource demand from a jobs

occurs at run-time. The criticality mode change for a job is a reflection of this increased

demand. This run-time execution information is represented by the response time and

not execution time. With this, we also leverage probabilities into scheduling decisions

in order to maximize the resource usage. This is because the pWCRT is affected by the

schedule and the schedule defines the resource assignment to the jobs.

Outline of the Paper. The paper is divided as follows: Section 1 introduces the context

and states the problems which we answer in this paper. Section 2 gives the reader

the necessary background to understand this paper as well as the assumptions made.

Section 3 presents the graph-based model and the exploration trees. Section 4 details the

schedulability analysis from graph and tree representations, together with the offline and

online strategies developed. The paper is concluded in the Section 5.



2 Notations and Definitions

In this work we consider pWCETs to define task execution which is probability distribu-

tion.

For a discrete random variable C , the Probability Mass Function (PMF) fC (x) of C

gives the probability that x takes a certain value in C , fC (x)
de f
= P (x = C ); Σ

∞
−∞P (x) = 1.

Alternative representations to C are the discrete Cumulative Distribution Function (CDF)

FC (x)
de f
= Σ fC (c), and the discrete Inverse Cumulative Distribution Function (ICDF)

FC (x)
de f
= 1−FC (x). In the rest of the paper, calligraphic letters are for random variables,

while non-calligraphic letters are for deterministic variables. Figures 1 shown an example

of a certain distribution in PMF, discrete CDF and discrete ICDF forms.
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Fig. 1: Example of PDF, discrete CDF and discrete CCDF representations of a certain

distribution.

The task pWCET is a discrete random variable C tasking task execution values

with PMF fC (x) represents the probability that the task takes a certain WCET. In its

representation with CDF, FC (x) is the cumulative probability that the task respects

WCET x while executing; in the ICDF representation, FC (x) is the probability that the

task overcome WCET x. The deterministic WCET C from C is the maximum value of

C ; for it FC (C) = 1, and FC (C) = 0. Figure 2 shown a discrete form of a pWCET with

its maximum value as WCET.

The convolution of two PMFs fX (x) and gY (y), denoted by ⊗, refers to the summa-

tion of the random variables X and Y , given as: f ⊗g(u) = Σ
∞
v=−∞ f (v)g(u− v).
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Fig. 2: pWCET PMF.



2.1 Computational Model

We assume a fixed set of periodic tasks executing in a system with each instance of a

task called a job. All the tasks are known beforehand. We focus our analysis on the jobs.

A MC job Ji is represented with a tuple of parameters:

Ji = (Ci,ai,di,Li, li); (1)

Ci is the job pWCET probability distribution; the job arrives at time ai; has the deadline

di; and li is the criticality execution time threshold. The arrival time and the deadline is a

deterministic variable. The criticality level of the job is Li. We assume that the arrival of

the first job of each task is always at time zero. The tasks are scheduled periodically and

non-preemptively on a uniprocessor machine in which execution of jobs are suspended

at their respective deadlines.

For the jobs, we consider pWCET described with discrete distributions, although

our method applies to both, continuous and discrete distributions. We analyze the jobs

in the hyperperiod because the schedule repeats each hyperperiod. Since the jobs are

suspended at the deadline, the execution order does not change across the hyperperiods.

The sequence of the jobs remain the same and the execution room for each job is

sufficiently given within the hyperperiod. The execution behaviour of the jobs across the

hyperperiods can be different and our approach take that into account. The hyperperiod

is defined as the least common multiple of the periods of all the tasks.

Definition 1. For a probabilistic job Ji as defined in Equation (1), its probabilistic Worst

Case Response Time pWCRT is the the PMF fRi
(x) which gives the probability that Ji

will take certain time Ri, to end execution after its release. The CDF is FRi
(x) = Σ fRi

(c),
and the ICDF is FRi

(x) = 1−FRi
.

Because the response time is a probability distribution, which in turn comes from

pWCET of the jobs, the deadline miss also has an associated probability. This is easily

extracted from the response time. We assume a certain allowed maximum probability of

deadline miss for any job P max
dm is given. A job Ji is said to have missed its deadline if

1−Σ
di
x=0 fRi

(x)> P max
dm .

Criticality levels. We consider two level criticality case, HI and LO, with HI having

higher importance than LO. The high criticality job can execute in HI or LO mode, the

low criticality job execute only in LO mode. After its release, job executes in LO criticality

mode until the response time threshold li. A job execution exceeding this threshold is

said to execute in the high criticality mode. Evidently, li is a deterministic single-valued

parameter. The job criticality is given by Li which is its relative importance over others.

Li can take values HI or LO.

Definition 2. A job Ji is said to have entered HI criticality if its response time exceeds a

threshold li, fRi
(x)> li.

We explain criticality using the response time because we can make scheduling

decisions based on actual job execution. This implies, criticality decision takes into

account the affect of other job executions as well. Figure 3 shows an example of a job
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Fig. 3: pWCET and pWCRT representation for criticality mode change using thresholds

on pWCET and pWCRT distributions.

pWCET and pWCRT. It shows both the distributions with criticality thresholds. The

criticality obtained from threshold applied on response time contains more run-time

information than that obtained from pWCET.

In the hyperperiod there are n jobs, and the set of jobs is Λ. There are nHI high

criticality jobs in Λ, and nLO low criticality jobs in Λ; Λ
HI represents the set of high

criticality jobs, and Λ
LO represents the set of low criticality jobs; Λ = Λ

HI ∪Λ
LO, and

n = nLO +nHI.

Worst-case independence. The pWCETs are assumed to be independent [6]; this is be-

cause the pWCET represents the worst case execution scenario of the job. Independence

implies that the execution of one job does not inherently affect the execution of another

(dependence in this case would be in the cases like shared resources by the two jobs).

Any dependencies on execution and criticality mode changes due to scheduling of the

jobs is not assumed and is taken into account. Any execution delays which are caused

apart from the scheduling must already be included in the pWCET distribution.

3 Probabilistic Scheduling Model

We propose an exploration of graph models for possible job execution combinations.

We find a schedule which ensures the schedulability all the jobs. Then, it ensures that

the probability that the system enters high criticality is minimum. This is when the job

criticality is computed from its response time. We begin by defining the graph model.

We follow by elaborating the graph model into exploration tree.

3.1 Graph Model

The graph represents the possible job combinations as schedules of the system in each

hyperperiod. It uses nodes to represent the jobs and arcs to represent the possible ordering

of execution among them. A directed graph is defined as a tuple G = {V (G),E(G)},

where V (G) is a finite set of elements called nodes and E(G) is the finite set of ordered

pairs of elements of V (G) called arcs. The graph is acyclic because the schedule repeats



each hyperperiod. Since there is no passing of information across the hyperperiods, it is

not required to be represented through cyclic graph.

Nodes. Each node Ji ∈V (G) represents the execution of a job Ji ∈ Λ. Since the elements

of V (G) are one-to-one mapped to the elements of Λ, i.e. it represents the jobs, we

directly use Ji to represent the node.

The system can begin execution with any of the jobs which arrive at time zero, i.e. first

jobs of the tasks. The nodes representing these first jobs are called the early nodes.

The early nodes set S(G) is a subset of the node set V (G), S(G) ⊆ V (G) such that

∀Ji ∈ S(G) : ai = 0. The system can potentially begin execution by any of the jobs in

this set. Graphically, we identify the early nodes set S(G) with extra arcs entering in

Ji ∈ S(G) without the source node, see Figure 5 for an example. These arcs are not

considered part of the E(G) set.

Arcs. An arc {Ji,J j} ∈ E(G) represents a possible ordering of jobs, in particular, that

the job J j executes after the execution of the task Ji. Formally, for {Ji,J j} ∈V (G):

{Ji,J j} ∈ E(G) if

{

ai < d j if i 6= j

a j = ai +Ti if i = j.
(2)

An arc only exists when the deadline of the next job is greater than the arrival time of the

executing job (previous job). This is enforced to prevent the scheduling of a job which

has already passed its deadline. Also, in order to prevent scheduling the same job more

than once, no self loop (arcs connecting themselves) exist, 6 ∃{Ji,Ji} ∈ E(G). It should

be noted that, since the graph is directed, {Ji,J j} is not the same as {J j,Ji}. Also, the

arcs do not represent the time of execution of the jobs, they simply direct to the next job

to execute J j once the executing job Ji finishes. For {Ji,J j}, we define a successor node

as succ(Ji) = J j and a predecessor node pred(J j) = Ji.

3.2 Scheduling Tree

In order to search for a schedule, the graph is unfolded into trees defined as follows.

Definition 3 (Exploration Tree). The exploration tree Ts(G) of a graph G with an

early node Js ∈ S(G) is defined as Ts(G) = {V (Ts(G)),E(Ts(G))} : 1−Σ
di
x=0 fRi

(x) >
P max

dm ∀Ji ∈V (Ts(G)), where V (Ts(G)) is the set of nodes of Ts(G) and E(Ts(G)) is the

set of arcs of Ts(G) such that E(Ts(G))∃E(G) and V (Ts(G))∃V (G).

The exploration tree is constructed from the graph beginning with a root node of the

graph as the first job to execute in the schedule. Each node of the tree is labelled with the

job Ji it represents. A node is only added to the tree if it does not miss its deadline and a

corresponding arc exists in the graph, given that the corresponding node exists the graph.

At each time it is added to the tree, the deadline miss is checked for by the condition

1−Σ
di
x=0 fRi

(x)> P max
dm for a job Ji. If there is a deadline miss, the node/job is not added

because the system should never be scheduled beyond this job.

To relax the notation, from now on we simply write V (T ) and E(T ) to represent

nodes/jobs and arcs respectively of the tree. In particular, since the tree is a rooted tree,

its root is defined as the unique node with the label Js. Because the system can begin



with one of the jobs arriving at time zero, there are different possible roots of a tree; this

implies the number of possible trees is equal to the number of tasks because each task

has a first job arriving at time zero. These trees are collectively called a forest.

The set of all exploration trees is called the exploration forest:

F = {Ts1
(G),Ts2

(G), ...Tsk
(G)}, where s1, ...,sk are the indices of early jobs in S(G).

The trees represent possible orderings or sequences of jobs beginning with an early job

at the root. A leaf node in the tree is a node with no outgoing transitions, Jn is a leaf

node if succ(Jn) does not exist. Thus, a schedule is a path taken through the tree from a

node to a leaf node defined as follows.

Definition 4 (Path). A path in the T-th tree pathT (Ji,Jn) is a unique sequence of con-

nected arcs starting from a node Ji to a leaf node Jn:

pathT (Ji,Jn) = {{Ji,J j},{J j,Jk}, ...,{Jl ,Jn}} with {Jx,Jy} ∈ E(T ) for any x,y, i 6= j 6=
k · · · 6= n.

Whenever we refer to the notation pathT (Ji,Jn), we always refer to a unique path

with a node Ji and leaf node Jn. Two paths are same if their elements, which are the

sequences of arcs, are the same. We specify this because there are many possible paths

from the root node to a leaf node notated by the same job. Also, a path can begin at any

node and it ends at a leaf node.

For any node in the tree, there must not exist a same node in the path between itself

and the root node This is done to prevent scheduling the same job more than once, we

enforce the following definition. Formally, a node Ji is not added to the tree if it already

exists between the root and the desired point of addition:

J j = succ(Jn) if 6 ∃J j ∈ pathT (Js,Jn) : Jn is leaf node,Js ∈ S(G). (3)

Example 1. We use a set of jobs Λ1 shown in Figure 4 to explain our method. It consists

of five jobs (from two periodic tasks) in the hyperperiod of 30 time units. The jobs are

shown with their pWCET PMF in the figure to visualize a probabilistic execution and

not deterministic execution, the exact values of PMFs are not yet important. The jobs of

task τ1 ((J1,J4)), are HI criticality and those of task τ2 ((J2,J3,J5)) are LO criticality.
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J5
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0 10

15

20 30
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Fig. 4: Jobs of the set Λ1.
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jobs of Λ1.



The graph is a direct representation of all the possible ordering of the jobs in the

system, see Figure 5. There are nodes J1, J2, etc. for each job which are interconnected

by uni-directed arcs which refer to the order of executions; e.g., if J3 is executing, then it

can be followed by the jobs J1, J4 or J5. The system can begin execution with J1 or J2.

This set of early nodes of the jobs J1 and J2 are represented by the extra arcs entering

those nodes. In order to explore this graph to look for a schedule, it is unfolded into a

forest of trees.

For Λ1, a portion of the tree is represented in the Figure 6. The tree begins with a

root J1 followed by possible jobs which can execute, namely, J2, J3, J4, J5. This goes on

until the leaf nodes where any more addition of nodes will mean a repetition of the same

job in the schedule on the path. For the tree job set Λ1 the Figure 6, one possible path is

shown by a dotted line. The dotted line represents a path J1,J2,J4,J3,J5. It also shows

another possible tree with just its root J2.

With the construction of the exploration model complete, we now proceed extracting

certain metrics from the exploration trees in order to decide for a MC schedule.

4 Evaluation

We first the define the metrics necessary for system criticality and then apply them to

our model. We begin with obtaining a non-preemptive pWCRT for a job.

Classically, the pWCETs of the jobs are simply convoluted in order to obtain the

pWCRT. The convolution operation does not take different arrival times into account.

Thus, performing a convolution contains a hidden assumption that all the jobs arrive at

the same time, i.e. at a critical instant. This results in a pessimistic pWCRT. Our approach

to obtain the pWCRT involves handling the discrete distributions in a piece-wise manner.

To do so, we first define a tail PMF as follows.

Definition 5 (Tail Probability Mass Function). A tail distribution of the response time

fRi
(x) of a job Ji with Worst Case Execution Time WCETi for some time a j(0 < a j <

WCETi), is a PMF f
[a j ,WCETi]
taili

(x) given as:

f
[a j ,WCETi]

taili
(x) =

{

fRi
(x+a j) if 0 < x ≤WCETi

Σ
a j

y=0 fRi
(y) if x = 0.

(4)

The tail distribution represents a complete PMF which probabilistically delays

the execution of the next job in the schedule where the next job arrives at time a j. The

probability accumulated at the instant a j (x = 0 in the function) in the tail PMF represents

the probability that the job Ji has finished execution by then. As in Figure 7, the tail

distribution of job J1 (from Λ1 in Example 1) accumulates 0.1+0.15+0.15+0.2 = 0.6
time zero. By doing so we prevent any loss of information in the distribution. We use

this to obtain the pWCRT of the delayed job.

In order to obtain the response time of the jobs, we present the following theorem.

The approach we propose is similar to the ones used by [12, 14] but applied to every job

with respect to their arrival times. It is not same as the classical convolution because



convolution does not take the relative arrival times and the deadlines of the jobs into

account. Classical convolution between the pWCETs of two jobs contains a hidden

assumption that the jobs arrive at the same time. This is easily seen as the tail distribution

approaches full pWCET when the arrival times are equal. Since this is not always the

case, convolution results in a pessimistic response time distribution.

Theorem 1 (Non-Preemptive Probabilistic Worst Case Response Time). The pWCRT

of a job without preemption is represented by convolution between its pWCET and the

Tail PMF of the job executing immediately before.

Proof. Consider two jobs, Ji arriving at time ai and J j arriving at time a j, ai ≤ a j. A

representative example is shown in Figure 7 as J1 and J3 for the jobs in Λ1 of Example 1.

Probabilistically, Ji can continue to execute after the arrival time of J j. That means, there

exists a probabilistic delay to the execution of the job J j due to the execution of the job Ji.

However, the probabilistic delay only exists due to Ji executing between time a j and its

WCET (which is the maximum value of its pWCET). Thus, the state space which affects

the execution of J j is [a j,WCET ]. This state space contains the tail of the pWCRT of Ji.

In order for the state space to be complete it must respect the property that sum of all

the probabilities in the state space is equal to one. This implies, the tail of pWCRT of Ji

must be a PMF on its own. This distribution is given by the function f
[a j ,WCET ]

taili
(x).

The probability that J j ends execution at time a j depends on the probability that J j

finishes at time a j and Ji finishes at time a j OR Ji finishes at time a j + 1 OR at time

a j + 2 OR ... and so on. Similarly, J j ends execution at time a j + 1 depends on the

probability that J j finishes at time a j and Ji finishes at time a j + 1 OR at time a j + 2

OR ... and so on. This way we approach the classical convolution operation between the

pWCET fC j
(x) of J j and the tail function f

[a j ,WCET ]

taili
(x), given as:

fR j
(x) = fC j

(x)⊗ f
[a j ,WCETi]

taili
(x).
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Fig. 7: pWCRT from convolution of Tail and pWCET.

HILO

0
l time

0.15
0.05

P
ro

b
a
b
il
it

y

Fig. 8: High criticality from a
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job J1 of Λ1.

Our approach to obtain the pWCRT separates the part of the pWCRT PMF which

affects the execution of the next job. We do not lose any information in the distribution



as the probabilities before the time a j are accumulated 1. Moreover, we retain the

information within the time intervals in the distribution.

Using the pWCRT we apply the job criticality Definition 2 on the paths through the

exploration tree.

Definition 6 (Job Criticality). A job J j in a path pathT (Ji,Jn) is said to have entered

high criticality if its response time crosses the threshold l j, fR j
(x)> l j, the probability

of which is given as:

P HI
j (pathT (Ji,Jn)) = 1−Σ

l j

x=0 fR j
(x), (5)

where l j < d j and Jn is a leaf node.

Example 2. Figure 7 shows a scenario where job J3 executes after J1 from the jobs in

Λ1 in Example 1; for explanation, a pWCET PMF is assumed for J1. The Tail PMF for

the same is shown in the box. To obtain the pWCRT of J3, this PMF is then convoluted

with the pWCET of the job J3.

A pWCRT of the job J1 with its threshold is shown in Figure 8. The threshold is

shown by the dotted line labelled li = 12. From the Figure, the probability that this job

enters HI-criticality mode is 0.15+0.05 = 0.20.

From the job criticality defined using its pWCRT, we define the probability of the

system entering high criticality as follows.

Definition 7 (System Criticality). The system enters high criticality mode if at least

one high criticality job enters high criticality mode.

To elaborate the above definition, system enters high criticality if the first high

criticality job enters high criticality OR the second high criticality job enters high

criticality OR the third..., and so on. This represents a summation of probabilities.

However, the probability that a job enters high criticality is given from its pWCRT which

has its own sample space. In order to sum the probabilities of all the high criticality

jobs involved, we also need to sum the sample space. This is clear from the fact that

the summation of probabilities without considering the sample space can result in a

probability greater than one 2. For each job entering high criticality, the probability

adjusted for state space is ΣP HI
i (pathT )/(number of high criticality jobs). We use the

law P (A∪B) = P (A)+P (B)−P (A∩B) for any two events A and B with P () giving

their probability of occurrence[21]. Therefore, the probability that the system enters high

criticality is given as the summation of probability of each high criticality job entering

high criticality minus their product.

We apply these definitions to the graph and tree model. In our model, the schedule is

represented as paths. Because the paths represent the schedule, the probability that the

system enters high criticality is also a function of paths. However, not all the paths in the

exploration tree are available for scheduling because not all paths contain all the high

criticality jobs. The set of available paths are defined as follows.

1 The distribution function accumulates the probabilities in the intervals of discretization at the

worst case, e.g. probabilities at execution times 0.2,0.5,0.7,etc. are accumulated the time 1.
2 Same reasoning also applies to multiplication of probabilities, however the denominator 1 gets

multiplied too



Definition 8 (Available paths). Available paths is a set of all possible paths in a T -th

tree from the root node Js ∈ S(G) to a leaf node Jn, Pavail = {pathT (Js,Jn)} such that

∀k : Jk = Λ =⇒ ∃Jk ∈ pathT (Js,Jn); (6)

and

∀Jk ∈ pathT (Js,Jn) =⇒ 1−Σ
dk
x=0 fRk

(x)< Pmax
dm

Pavail is a set of possible schedules of the jobs in MC through the trees as the available

paths. The available paths are the paths in which contain all the jobs in it and all those

jobs meet their respective deadlines. In our context, the set of available paths represent

the possible candidates to find a schedule. It should be noted that the criteria of all jobs

meeting their deadlines is already met while constructing exploration tree. A node is not

added to the tree if it misses its deadline. To quantify the probability of these paths we

apply the definition of system criticality on the available paths as follows.

Definition 9 (Probability of system entering high criticality). For an available path

pathT (Js,Jn) ∈ Pavail , the probability Psys(pathT (Js,Jn)) that the system enters high

criticality by taking this path is given as:

Psys(pathT (Js,Jn)) = Σ j

P HI

j

nHI
−ΠP HI

j ,∀J j ∈ pathT (Js,Jn),∀J j ∈ Λ
HI; (7)

pathT (Js,Jn) ∈ Pavail .

Using the available paths and the system criticality metric defined above, we finally

obtain a mixed criticality (MC) schedule as follows.

Definition 10 (Mixed Criticality Schedule). A path PMC = pathT (Js,Jn) is the mixed

criticality schedule if Psys(pathT (Js,Jn)) is the minimum among all possible pathT (Js,Jn)∈
Pavail ∀i,∃Ji ∈ pathT (Js,Jn), and ∀i∃Ji ∈ Λ where Js ∈ S(G).

The MC schedule is a path PMC through the exploration tree which contains all

the jobs, no job misses its deadline and the probability of the system entering high

criticality is minimum. It represents the schedule that should be taken by the system

as the ordered sequence of execution of the jobs. To recall, the probability is minimum

given the criticality is defined using the response time. Thus, we have found a solution to

our problem which is a schedule represented by the path PMC. The path PMC by definition

is from root node to a leaf node, thus we do not need to notate them (unlike jobs Js and

Jn in pathT (Js,Jn)). Since this method is based on complete exploration, the schedule

is guaranteed to be the optimal by minimizing the probability of system entering high

criticality. Any impossible schedule is the one in which a job does not meet its timing

constraints. These impossible schedules are already excluded while building the tree as

we calculate response time in parallel.

Offline Schedule. As we see, the offline analysis results in a schedule PMC such that the

probability of system entering high criticality is minimum. The schedule ensures that no

job missed its deadline. It uses an exploration of tree based on a graph representation

of job executions. Because it is an exhaustive exploration, the minimum probability is

ensured.



Online Schedule. The online part of our method is straightforward. It takes the schedule

PMC obtained in the offline analysis and executes the jobs as given in the sequence. The

minimization of the probability of system entering high criticality has already been

performed in the offline and is not required to be done in the online. The jobs are

suspended if they reach their deadline and the sequence of jobs repeat each hyperperiod.

Example 3. We analyze the set of jobs Λ2 shown in Table 1 which consists of 4 periodic

tasks and 15 jobs with pWCET and implicit deadline as shown. There are 6 high

criticality jobs from task τ1 and 11 low criticality jobs from the rest of the tasks. To

recall, the job set is to be scheduled non-preemptively on a uniprocessor system and the

jobs are suspended at their deadlines. The threshold for the high criticality jobs of task

τ1 is set at 4 time units. The maximum allowed probability of deadline miss Pmax
dm for

any job is set at 1E −03.

Task Deadline pWCET Criticality

τ1 10

[

1 2 3 4 5 8

0.1 0.3 0.5 0.094 0.005 0.001

]

HI

τ2 20

[

1 2 3 4

0.1 0.4 0.4 0.1

]

LO

τ3 15

[

1 2 3 4

0.1 0.4 0.3 0.2

]

LO

τ4 30

[

1 2 3

0.1 0.7 0.2

]

LO

Table 1: Job set Λ2.

The proposed schedule PMC is:

J11,J41,J31,J32,J21,J12,J13,J42,J33,J22,J14,J15,J34,J23,J16. The probability that the sys-

tem enters high criticality is 0.0.00509. The pWCRT of some of the jobs is shown in

Figure 9. The pWCRT jobs of the high criticality task τ1 remains unchanged as their

pWCET as shown in Figure 9(a). The pWCRTs of jobs which have been affected by

probabilistic delay in execution are J21, J22, J23, J31, J33, J34 and J41 whose pWCRTs

are shown in Figures 9(b),9(c),9(d),9(e),9(f) and 9(g), respectively.

We obtain this result along with other possible schedules in which there is no deadline

miss but the probability of the system entering high criticality is higher. For example, an-

other possible schedule is: J11,J21,J12,J31,J41,J32,J13,J14,J22,J42,J15,J33,J34,J23,J16.

In this case the probability of system entering high criticality is 0.00605.

On computation, the tree for the job set Λ2 contains 716,132 nodes.

Overall, we observe that we can quantify the probability of something occurring in

the system, like deadline miss or entering high criticality. This gives us a global picture

of the MC system with pWCETs in terms of risk involved of system entering high

criticality when applying such a system. In addition, we can control it through observing

the pWCRTs and making the scheduling decisions accordingly.

Complexity. In general, MC problem lies beyond NP and PSPACE complexity and it is

NP in uniprocessor case [11]. The complexity of our approach depends on the number of
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Fig. 9: pWCRT PMF of various jobs in Λ2.

jobs n. The maximum complexity of building the graph is O(n!). However, this might not

always be the case because the tree is not built in the direction of a node which missed

its deadline. Thus, the complexity also depends on the maximum allowed probability

of deadline miss. The complexity of analyzing the tree and finding the paths is linear

to the number of leaf nodes in the tree. In addition to this, there exists computational

complexity of the convolution operation, which in turn depends on the possible values

a random variable can take. Assuming that all jobs release at one critical instant, the

convolution complexity is O(nn).
Actual complexity of the offline process is much less. Firstly, it is rarely the case that all

the jobs are release at the same time since they belong to periodic tasks in the hyperperiod.

Second, some combinations of sequences of jobs will result in a deadline miss. This

means that the exploration tree is not built in that direction.

5 Conclusion

We have utilized a graph base exploratory method to obtain a non-preemptive schedule

for MC probabilistic real-time system on uniprocessor machine, where task executions

are suspended at the deadline. The task criticalities are defined using the pWCRT. We do

this to make criticality decisions based on tasks demanding more resource at run-time.

The obtained schedule minimizes the probability of system entering high criticality

mode. This way, the actions needed to perform to cope with system high criticality are

made less likely for the application.

This work is one of the first steps to formalize the mixed criticality domain through

response time. We intend to perform comparisons with real benchmarks in the future.



In future work we will extend this model to optimize the decisions when the system

does enter high criticality. This future step is a hybrid approach where offline probability

minimization has been performed. The online step of the hybrid approach will take

care of the real-time response of the tasks and adjust the schedule accordingly to safer

scenarios without jeopardizing the system critical functionality. In parallel, work is to

be done to reduce the complexity through methods like ordered searches and merging

common and similar paths. We will also study task dependence in the probabilistic MC

system. We also aim to perform a sensitivity analysis on the criticality definition using

the task response times.
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