

Middleware for Large-scale Distributed
Systems

Masters Thesis

CISTER-TR-151106

César Ricardo da Silva Teixeira

Masters Thesis CISTER-TR-151106 Middleware for Large-scale Distributed Systems

© CISTER Research Center
www.cister.isep.ipp.pt

1

Middleware for Large-scale Distributed Systems

César Ricardo da Silva Teixeira

CISTER Research Center

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail:

http://www.cister.isep.ipp.pt

Abstract

Over the last few years the designing and implementation of applications have evolved to a new breed
of applications that are used by a huge number of users at the same time and are capable of being
executed in up to thousands of machines physically distributed, even geographically, such as the cloud
computing systems, the new concept of “big data” and smart cities. The existence of several
components of these systems, distributed in independent machines, brings inevitable issues in terms of
designing and implementation of those systems in order to achieve flexible, scalable, robust, reliable
and interoperable systems. It is extremely important to design and implement systems that can be
capable of providing a communication and coordination among all the components of the system. The
concept of implementing a Middleware seems to be a great option to solve most of these issues,
allowing a system to communicate with other systems in a really fast, robust and secure way. The main
goal of this thesis is to demonstrate that the usage of Middleware technologies to ensure the
communication in distributed systems brings a huge number of advantages, such as interoperability
between systems, robustness regarding the communication layer, scalability and high speed
communications.

	

	

	

Middleware	for	Large-scale	Distributed	Systems		

	

	

César	Ricardo	da	Silva	Teixeira		

	

	

Dissertação	para	obtenção	do	Grau	de	Mestre	em	

Engenharia	Informática,	Área	de	Especialização	em	

Arquitetura,	Sistemas	e	Redes		

	

	

	

Orientador:	Professor	Doutor	Luís	Lino	Ferreira	

Co-orientador:	Doutor	Michele	Albano	

	

	

	

Júri:		

Presidente:	

Professor	Doutor	Paulo	Alexandre	Fangueiro	Oliveira	Maio,	Instituto	Superior	de	Engenharia	

do	Porto	 		

Vogais:		

Professor	Doutor	Pedro	Alexandre	Guimarães	Lobo	Ferreira	Souto,	Faculdade	de	Engenharia	

do	Porto	

	

Porto,	Outubro	2015	

	

ii	

	 	

	

iii	

Acknowledgements	

I	would	like	to	take	this	opportunity	to	thank	all	the	people	that	helped	me	throughout	all	these	

years	of	work	to	achieve	a	master’s	degree.	

First	of	all,	I	would	like	to	thank	my	teacher	and	advisor,	Prof.	Dr.	Luís	Lino	Ferreira,	who	was	

extremely	comprehensive	and	tolerant	during	the	time	I	was	writing	and	working	on	this	thesis,	

providing	me	all	the	support	and	motivation	I	needed	to	accomplish	this	stage	of	my	life.	

Prof.	Dr.	Michele	Albano,	along	with	Prof.	Dr.	Luís	Lino	Ferreira	was	extremely	important	for	me	

to	 get	 along	with	 this	 thesis.	 He	was	 always	 interested	 and	 supportive,	 trying	 to	 teach	me	

everything	I	needed	to	work	and	to	be	able	to	complete	this	thesis.	

There	are	no	words	 to	describe	how	much	Prof.	Dr.	 Luís	Lino	Ferreira	and	Prof.	Dr.	Michele	

Albano	were	important	for	me	during	the	time	I	was	writing	this	thesis,	so	I	just	would	like	to	

thank	you	both	for	helping	me	and	most	of	all,	for	being	true	friends	that	I	would	never	forget.	

To	my	girlfriend,	Rita	Amaral,	who	I	love	the	most	and	who	was	always	there	for	me.	For	all	the	

support	and	motivation	that	I	needed	to	achieve	this	important	goal,	thank	you	my	love.	

To	my	parents	and	my	little	brother,	for	being	the	perfect	family	that	everyone	would	like	to	

have.	

At	last,	but	not	least,	I	would	like	to	thank	all	my	friends	for	the	support	and	great	times	we	

spent	together,	especially	Bruno	Saraiva	for	being	the	best	friend.	

	 	

	

iv	

	 	

	

v	

Resumo	

Nos	 últimos	 anos	 o	 aumento	 exponencial	 da	 utilização	 de	 dispositivos	 móveis	 e	 serviços	

disponibilizados	 na	 “Cloud”	 levou	 a	 que	 a	 forma	 como	 os	 sistemas	 são	 desenhados	 e	

implementados	mudasse,	numa	perspectiva	de	tentar	alcançar	requisitos	que	até	então	não	

eram	essenciais.	

Analisando	 esta	 evolução,	 com	 o	 enorme	 aumento	 dos	 dispositivos	 móveis,	 como	 os	

“smartphones”	e	“tablets”	fez	com	que	o	desenho	e	implementação	de	sistemas	distribuidos	

fossem	ainda	mais	importantes	nesta	área,	na	tentativa	de	promover	sistemas	e	aplicações	que	

fossem	mais	flexíveis,	robutos,	escaláveis	e	acima	de	tudo	interoperáveis.	A	menor	capacidade	

de	processamento	ou	armazenamento	destes	dispositivos	tornou	essencial	o	aparecimento	e	

crescimento	de	tecnologias	que	prometem	solucionar	muitos	dos	problemas	identificados.	

O	 aparecimento	 do	 conceito	 de	 Middleware	 visa	 solucionar	 estas	 lacunas	 nos	 sistemas	

distribuidos	mais	 evoluídos,	promovendo	uma	 solução	a	nível	 de	organização	e	desenho	da	

arquitetura	dos	sistemas,	ao	memo	tempo	que	fornece	comunicações	extremamente	rápidas,	

seguras	e	de	confiança.	Uma	arquitetura	baseada	em	Middleware	visa	dotar	os	sistemas	de	um	

canal	de	comunicação	que	fornece	uma	forte	interoperabilidade,	escalabilidade,	e	segurança	

na	troca	de	mensagens,	entre	outras	vantagens.	

Nesta	tese	vários	tipos	e	exemplos	de	sistemas	distribuídos	e	são	descritos	e	analisados,	assim	

como	uma	descrição	em	detalhe	de	 três	protocolos	 (XMPP,	AMQP	e	DDS)	de	 comunicação,	

sendo	dois	deles	(XMPP	e	AMQP)	utilzados	em	projecto	reais	que	serão	descritos	ao	longo	desta	

tese.	

O	principal	objetivo	da	escrita	desta	tese	é	demonstrar	o	estudo	e	o	levantamento	do	estado	

da	 arte	 relativamente	 ao	 conceito	 de	Middleware	 aplicado	 a	 sistemas	 distribuídos	 de	 larga	

escala,	 provando	 que	 a	 utilização	 de	 um	Middleware	 pode	 facilitar	 e	 agilizar	 o	 desenho	 e	

desenvolvimento	de	um	sistema	distribuído	e	traz	enormes	vantagens	num	futuro	próximo.	

	

Palavras-chave:	 Sistemas	 Distribuídos,	 Middleware,	 AMQP,	 XMPP,	 Publish-Subscribe,	

Arquitetura	Orientada	a	Serviços		

	 	

	

vi	

	 	

	

vii	

Abstract	

Over	the	last	few	years	the	designing	and	implementation	of	applications	have	evolved	to	a	new	

breed	of	applications	that	are	used	by	a	huge	number	of	users	at	the	same	time	and	are	capable	

of	being	executed	in	up	to	thousands	of	machines	physically	distributed,	even	geographically,	

such	as	the	cloud	computing	systems,	the	new	concept	of	“big	data”	and	smart	cities.	

The	existence	of	several	components	of	these	systems,	distributed	in	independent	machines,	

brings	inevitable	issues	in	terms	of	designing	and	implementation	of	those	systems	in	order	to	

achieve	flexible,	scalable,	robust,	reliable	and	interoperable	systems.	It	is	extremely	important	

to	 design	 and	 implement	 systems	 that	 can	 be	 capable	 of	 providing	 a	 communication	 and	

coordination	among	all	the	components	of	the	system.	

The	concept	of	implementing	a	Middleware	seems	to	be	a	great	option	to	solve	most	of	these	

issues,	allowing	a	system	to	communicate	with	other	systems	in	a	really	fast,	robust	and	secure	

way.	

The	main	goal	of	this	thesis	 is	to	demonstrate	that	the	usage	of	Middleware	technologies	to	

ensure	the	communication	in	distributed	systems	brings	a	huge	number	of	advantages,	such	as	

interoperability	between	systems,	 robustness	 regarding	 the	communication	 layer,	 scalability	

and	high	speed	communications.	

	

Keywords:	Distributed	Systems,	Middleware,	AMQP,	XMPP,	Publish-Subscribe,	Service-

oriented	Architecture	

	

	 	

	

viii	

	 	

	

ix	

Index	

1	 Introduction ... 1	

1.1	 Context ... 2	

1.2	 Motivation ... 4	

1.3	 Objectives ... 4	

1.4	 Thesis Overview .. 5	

2	 State of the Art ... 7	

2.1	 Distributed Systems .. 8	

2.2	 Distributed Systems Architectures .. 11	

2.3	 Distributed Systems Applications ... 15	

2.3.1	 Enterprise Information Systems ... 15	

2.3.2	 Massive Multiplayer Online Games .. 16	

2.3.3	 Smart Grids ... 17	

2.3.4	 Smart Cities .. 20	

2.3.5	 Cyber Physical Systems ... 22	

2.3.6	 Cloud-based Systems .. 23	

3	 Distributed Systems Middleware ... 25	

3.1	 Advanced Message Queueing Protocol (AMQP) .. 29	

3.2	 Extensible Messaging Presence Protocol (XMPP) .. 36	

3.3	 Data Distribution Service (DDS) ... 43	

4	 Design and Implementation of Components on the ENCOURAGE

Architecture .. 45	

4.1	 Architecture Overview .. 46	

4.1.1	 Virtual Devices Module ... 49	

4.1.2	 Database Handler .. 49	

4.1.3	 Middleware Plugin ... 50	

4.1.4	 Supervisory Control ... 51	

4.1.5	 Energy Brokerage & Business Intelligence ... 51	

4.1.6	 Complex Event Processor ... 52	

4.1.7	 Home Area Network Gateways .. 52	

4.1.8	 Devices .. 52	

4.2	 Routing Structure .. 53	

4.3	 Virtual Devices Module ... 55	

4.4	 Database Handler .. 60	

4.5	 Encoding & Decoding Library .. 61	

4.6	 RabbitManager Library .. 63	

4.7	 Performance Tests .. 68	

	

x	

5	 Design and Implementation of Components of the Arrowhead Project 73	

5.1	 Architecture Overview .. 74	

5.1.1	 Arrowhead Framework .. 76	

5.1.2	 Service Registry Core Service .. 77	

5.1.3	 Authorization/Authentication/Accounting Core Service 77	

5.1.4	 Orchestration Core Service .. 78	

5.1.5	 Virtual Market of Energy ... 78	

5.2	 Aggregator .. 79	

5.2.1	 REST Interfaces .. 82	

5.2.2	 Java Interfaces ... 84	

5.3	 Flex-Offer Agent (FOA) ... 84	

5.3.1	 REST Interfaces .. 86	

5.4	 Virtual Market of Energy Pilot ... 89	

5.4.1	 Washing Machine Distributed Energy Resource (DER) 91	

5.4.2	 Washing Machine Controller ... 91	

6	 Conclusions and Future Work ... 93	

6.1	 Future Work .. 96	

7	 Bibliografia ... 99	

	 	

	

xi	

Figures	Index	

Figure	1	-	Distributed	Systems	Challenges	..	9	

Figure	2	-	Example	of	a	Client-Server	Architecture	...	12	

Figure	3	-	Example	of	Three-tier	Architecture	...	13	

Figure	4	-	Peer-to-Peer	Architecture	...	14	

Figure	5	-	Service-oriented	Architecture	meta-model	(The	Linthicum	Group,	2007)	14	

Figure	6	-	Service	representation	in	SOA	...	15	

Figure	7	-	Enterprise	Resource	Planning	(ERP)	System	Architecture	...	16	

Figure	8	-	Example	of	MMOG	Architecture	...	17	

Figure	9	-	Example	of	a	Smart	Grid	Use-case	[35]	...	18	

Figure	10	-	Smart	Cities	impact	...	21	

Figure	11	-	Categories	of	Cyber	Physical	Systems	[52]	..	22	

Figure	12	-	Evolution	of	Systems	[56]	..	23	

Figure	13	-	Middleware	Types	...	26	

Figure	14	-	Remote	Procedure	Call	Oriented	Middleware	..	26	

Figure	15	-	Transaction-Oriented	Middleware	..	27	

Figure	16	-	Object-Oriented/Component	Middleware	..	27	

Figure	17	-	Message-Oriented	Middleware	..	28	

Figure	18	-	Advanced	Message	Queueing	Protocol	Architecture	..	31	

Figure	19	-	AMQP	Connection	with	multiple	AMQP	Channels	[68]	..	32	

Figure	20	-	AMQP	Direct	Exchange	...	33	

Figure	21	-	AMQP	Fanout	Exchange	..	34	

Figure	22	-	AMQP	Topic	Exchange	..	34	

Figure	23	-	XMPP	Network	Example	..	37	

Figure	24	-	Data	Distribution	Service	Architecture	..	44	

Figure	25	-	ENCOURAGE	Architecture	...	47	

Figure	26	-	ENCOURAGE	Cell	...	48	

Figure	27	-	ENCOURAGE	MacroCell	...	48	

Figure	28	-	Routing	Structure	of	ENCOURAGE	Middleware	..	53	

Figure	29	-	Virtual	Devices	Module	Architecture	..	56	

Figure	30	-	Database	Handler	Architecture	...	60	

Figure	31	-	MeterReadings	Class	Diagram	...	62	

Figure	32	-	EndDeviceControls	Class	Diagram	...	62	

Figure	33	-	RabbitManager	Dynamic	Design	...	64	

Figure	34	-	RabbitManager	Massively	Multi-threaded	Design	..	65	

Figure	35	-	RabbitManager	Multiple	Channel	Design	...	66	

Figure	36	-	RabbitManager	Final	Architecture	..	67	

Figure	37	-	Interval-	0ms	|	PrefetchCount	-	0	|	Delivery	Mode	-	Non	Persistent	69	

Figure	38	-	Interval-	30ms	|	PrefetchCount	-	0	|	Delivery	Mode	-	Non	Persistent	69	

Figure	39	-	Interval-	35ms	|	PrefetchCount	-	0	|	Delivery	Mode	-	Non	Persistent	70	

Figure	40	-	Interval-	50ms	|	PrefetchCount	-	0	|	Delivery	Mode	-	Non	Persistent	70	

	

xii	

Figure	41	-	Interval-	300ms	|	PrefetchCount	-	0	|	Delivery	Mode	-	Non	Persistent	70	

Figure	42	-	Arrowhead	Framework	Architecture	..	75	

Figure	43	-	Virtual	Market	of	Energy	[85]	..	78	

Figure	44	-	Aggregator	Class	Diagram	...	80	

Figure	45	-	Aggregator	Sequence	Diagram	..	81	

Figure	46	-	Aggregator	Manager	Resource	Tree	...	82	

Figure	47	-	FlexOfferManager	Class	Diagram	..	85	

Figure	48	-	Flex-offer	Manager	Resource	Tree	..	86	

Figure	49	-	DER	Manager	Resource	Tree	...	86	

Figure	50	-	Lego	Washing	Machine	(1)	..	90	

Figure	51	-	Lego	Washing	Machine	(2)	..	90	

	 	

	

xiii	

Tables	Index	

Table	1	-	ENCOURAGE	Performance	Tests	..	68	

Table	2	-	Flex-offer	management	resources	...	82	

Table	3	-	Flex-offer	aggregation	resources	..	83	

Table	4	-	Aggregated	flex-offers	resources	...	83	

Table	5	-	Scheduled	flex-offers	resources	...	83	

Table	6	-	Aggregator	Java	interface	...	84	

Table	7	-	Flex-offer	management	resources	...	87	

Table	8	-	DER	management	resources	..	88	

	 	

	

xiv	

	 	

	

xv	

Acronyms	and	Symbols	

Acronyms	List		

AGG	 	 Aggregator	

AMQP	 	 Advanced	Message	Queuing	Protocol		

DDS	 	 Data	Distribution	Service	

DER	 	 Distributed	Energy	Resource	

EBBI	 	 Energy	Brokerage	&	Business	Intelligence	

EDA	 	 Event Driven Architecture

FIFO	 	 First	in	First	Out		

FOA	 	 FlexOffer	Agent	

JAXB	 	 Java	Architecture	for	XML	Binding	

MPG	 	 Middleware	Plugin	

PubSub		 Publish	Subscribe	

QoS	 	 Quality	of	Service	

RabbitMQ	 Rabbit	Message	Queueing	

REST	 	 Representational State Transfer

SC	 	 Supervisory	Control	

SOA	 	 Service Oriented Architecture

VDM	 	 Virtual	Devices	Module	

VME	 	 Virtual	Market	of	Energy	

XEP	 	 XMPP	Extension	Protocol	

XML	 	 eXtensible	Markup	Language	

XMPP	 	 Extensible	Message	and	Presence	Protocol	

	 	

	

xvi	

	

	

1	

	

1 Introduction	

In	recent	years	a	new	breed	of	applications	are	being	developed	capable	of	being	executed	in	

up	to	thousands	of	machines	physically	distributed,	in	many	cases	located	all	over	the	world,	

supporting	millions	 of	 users.	 Global	 Internet	 services,	 cloud	 computing	 systems,	 "big	 data"	

analytics	platforms	in	data	centers	and	smart	city	environments	with	mobile	devices	are	some	

examples	of	large-scale	distributed	systems.		

These	 kind	 of	 systems	 relies	 on	 multiple	 components	 located	 on	 different	 computers	

communicating	and	coordinating	actions	with	each	other	in	order	to	achieve	a	common	goal.	

Systems	are	increasing	as	never	seen	in	the	past,	providing	new	features	almost	every	day,	that	

is	why	scalability	is	really	important	to	take	into	account.	

Users	are	more	intolerant	to	failures,	so	robustness	is	also	very	important.	Since	there	is	a	lot	

of	relevant	information	being	exchanged	between	users	and/or	system	components,	security	is	

also	of	paramount	importance	when	designing	and	implementing	these	systems.	A	critical	part	

of	 a	 distributed	 system	 is	 the	 communication	 between	 all	 the	 components.	 Recently,	 the	

Middleware	concept	has	been	emerging	among	developers	and	system	designers	to	provide	

fast,	scalable,	robust	and	secure	interconnection	between	systems.	The	usage	of	a	Middleware	

technology	 to	 ensure	 the	 communication	 among	 systems	 in	 a	 distributed	 system	 has	 the	

advantage	of	providing	an	abstraction	 in	 terms	of	what	kind	of	systems	are	communicating,	

enhancing	the	interoperability	in	distributed	systems.	

This	thesis	pretends	to	demonstrate	that	the	usage	of	Middleware	technologies	to	ensure	the	

communication	 in	 distributed	 systems	 brings	 a	 huge	 number	 of	 advantages,	 such	 as	

interoperability	between	systems,	 robustness	 regarding	 the	communication	 layer,	 scalability	

and	high	speed	communications.	

At	first,	an	Introduction	to	this	thesis	is	given,	explaining	the	context	in	which	this	thesis	was	

written.	Follows	the	State	of	the	Art	in	distributed	systems,	followed	by	a	detailed	description	

1	Introduction	

2	

of	 several	 different	 Middleware	 architectures.	 A	 detailed	 description	 of	 three	 different	

communication	protocols	(AMQP,	XMPP	and	DDS)	is	also	provided,	introducing	those	concepts	

and	usability.	

The	Distributed	Systems	Middleware	section	can	be	described	as	continuation	of	the	State	of	

the	Art	chapter,	providing	a	more	detailed	description	of	 types	of	Middleware	and	possible,	

protocols	and	examples	of	how	Middleware	may	be	used	for	distributed	systems.	

Furthermore,	 since	 this	 thesis	 is	 in	 the	 context	 of	 two	 projects	 (ENCOURAGE	 Project	 and	

Arrowhead	Project),	a	detailed	description	of	both	projects	is	given,	describing	and	explaining	

the	contributions	given	to	the	projects	in	two	different	sections,	Design	and	Implementation	of	

Components	on	the	ENCOURAGE	Architecture	and	Design	and	Implementation	of	Components	

on	the	Arrowhead	Project	respectively.	

At	last,	in	the	Conclusions	and	Future	Work	chapter,	the	importance	of	the	contributions	and	

also	 the	knowledge	acquired	during	 the	 time	 this	 thesis	was	written	 is	provided,	along	with	

some	more	future	work	that	may	be	done.	

1.1 Context	

In	 this	 subsection	a	brief	 description	of	 both	ENCOURAGE	and	Arrowhead	projects	 is	 given,	

providing	the	context	for	this	thesis.	Each	project	is	later	described	in	detail	in	sections	Design	

and	 Implementation	 of	 Components	 on	 the	 ENCOURAGE	 Architecture	 and	 Design	 and	

Implementation	of	Components	on	the	Arrowhead	Project,	respectively.	

The	ENCOURAGE	–	acronym	for	Embedded	iNtelligent	COntrols	for	bUildings	with	Renewable	

generAtion	 and	 storage	 –	 Project	 aims	 to	 develop	 a	 platform	which	will	 contribute	 for	 the	

optimization	 of	 energy	 use	 in	 buildings	 and	 consequently	 participate	 in	 the	 smart	 grid	

environments	in	a	near	future.	

With	 ENCOURAGE,	 it	 is	 supposed	 to	 save	 up	 to	 20%	 of	 energy	 consumption	 through	 the	

proposed	architecture,	providing	a	scalable,	performant	and	reliable	communication	between	

storage,	consumption	or	generation	devices	in	the	same	building	or	in	different	buildings.	An	

important	part	of	the	project	is	the	ability	to	have	a	systematic	and	a	performant	monitoring	

system	which	provides	near	real-time	information	regarding	all	devices,	possibly	showing	them	

to	users	through	different	ways,	such	as	social	networks.	

The	 project	 consists	 in	 three	 different	ways	 that	 cooperate	with	 each	 other	 to	 achieve	 the	

energy	savings	for	which	it	is	purposed.	Initially,	in	order	to	control	and	coordinate	actions	with	

larger	subsystems,	such	as	HVAC	(heating,	ventilating,	and	air	conditioning	systems),	lightning,	

renewable	 energy	 generation,	 thermal	 storage,	 energy	 saving,	 among	 others,	 a	 set	 of	

supervisory	control	strategies	were	developed.	

Middleware	for	Large-scale	Distributed	Systems	

3	

The	 same	 supervisory	 control	 strategies	 are	 also	 capable	 of	 orchestrating,	 in	 terms	 of	

operations,	 the	 large	 number	 of	 devices	 in	 this	 kind	 of	 systems.	 This	 features	 will	 help	 to	

optimize	 the	 energy	 use	 correlating	 the	 occupants	 comfort,	 the	 energy	 costs	 and	 the	

environmental	 impacts	with	other	 important	things	 like	peoples’	habits,	weather	conditions,	

characteristics	 of	 appliances,	 the	 local	 generations	 and	 storage	 of	 energy	 and	 market	

conditions.	

Basically	 the	 supervisory	control	 strategies	will	be	capable	of	deciding	what	 is	best	 for	each	

scenario,	aiming	the	energy	savings.	Another	important	part	of	the	project	is	the	concept	of	an	

intelligent	gateway,	which	holds	embedded	 logic	 supporting	 inter-building	energy	exchange.	

This	 subsystem	 will	 be	 responsible	 for	 the	 communication	 between	 buildings	 in	 order	 to	

negotiate	the	usage	of	electricity	that	is	produced	locally.	

Finally,	 a	 virtual	 representation	 of	 every	 device	 within	 the	 platform	 and	 the	 design	 and	

implementation	of	event-based	middleware	applications	will	enhance	the	advanced	monitoring	

and	diagnostics.	Providing	a	reliable	and	systematic	monitoring	of	the	information	exchanged	

between	 all	 components,	 the	 overall	 performance	will	 be	 controlled	 and	 diagnosed	 before	

something	happens,	which	will	result	in	a	sustained	long-term	energy	savings.	

While	ENCOURAGE	aims	to	provide	an	interoperable	platform	where	all	the	components	are	

linked	through	the	usage	of	middleware-based	architecture	and	applications,	the	Arrowhead	

Project	focus	mostly	on	cooperative	automation,	efficient	and	flexible	of	dynamic	interactions	

between	energy	producers	and	consumers,	between	people	and	systems,	between	systems	and	

systems,	etc.	

These	 types	 of	 complex	 interactions	 are	 examples	 of	 challenges	 that	 our	 society	 is	 facing,	

concerning	 energy	 and	 competitiveness.	 The	 Arrowhead	 project	 aims	 to	 provide	 a	 Service-

Oriented	architecture	model,	focused	on	the	interoperability,	adapted	in	terms	of	functions	and	

performance.	 The	 interoperability	 for	 which	 the	 project	 proposes	 is	 intended	 to	 be	

demonstrated	 though	 real	 experiments	 in	 several	 domains,	 such	 as	 electro-mobility,	 smart	

buildings,	infrastructures	and	smart	cities,	industrial	production,	energy	production	and	energy	

virtual	market.	

The	 proposed	 framework	 consists	 in	 three	 main	 services,	 named	 Core	 Services,	 which	 will	

enable	 the	 discovery,	 authentication	 and	 authorization,	 and	 the	 implementation	 of	 the	

innovative	process	of	orchestration	between	systems.	A	Service	Discovery	Service	is	capable	of	

registering	 and	 unregistering	 service	 producers	 and	 consumers	 along	with	 the	 discovery	 of	

service	producers	and	consumers	as	well.	An	Authorization	Core	Service	that	will	be	responsible	

for	managing	 and	 ensuring	 only	 secure	 communications	 and	 authorized	 systems	within	 the	

framework.	

Finally,	 an	Orchestration	 Service	 is	 responsible	 for	 providing	 relevant	 information	 on	which	

service	producer	or	consumers	a	system	should	establish	communication,	taking	into	account	

several	pre-defined	rules,	such	as	geographical	location,	CPU	load,	availability,	etc.		

1	Introduction	

4	

1.2 Motivation	

The	design	and	 implementation	of	distributed	 systems,	even	more	 in	 large-scale	distributed	

systems,	have	some	issues	in	terms	of	compatibility	of	systems,	communications	performance	

or	even	scalability.	These	kinds	of	issues	are	the	main	motivation	for	the	writing	of	this	thesis	

and	research	on	the	topic	of	Middleware	for	distributed	systems.	

The	usage	of	a	Middleware	may	bring	several	benefits	to	distributed	systems.	These	advantages	

have	to	be	studied,	discussed	and	correctly	chosen	for	different	scenarios.	The	advantages	in	a	

specific	 use-case	 might	 be	 a	 disadvantage	 in	 another	 situation,	 which	 means	 that	 the	

integration	of	a	Middleware	in	a	distributed	system	is	a	complex	task	that	should	be	considered,	

yet	it	needs	to	be	studied	and	discussed	for	a	long	time.	

In	a	distributed	system,	providing	compatibility	among	all	the	systems	involved	is	a	hard	task,	

sometimes	 it	might	not	be	possible.	With	 the	usage	of	a	Middleware,	 in	some	cases,	 it	may	

facilitate	the	integration	of	different	systems.	This	integration	might	be	easier	due	to	the	high	

level	of	transparency	that	a	Middleware	may	bring	to	a	system.	Basically,	all	the	systems	would	

use	 common	 communication	 mechanisms,	 allowing	 different	 systems,	 in	 different	

programming	languages	or	different	platforms	to	be	integrated.	

The	scalability	is	another	issue	of	distributed	systems.	Most	of	the	times,	any	distributed	system	

may	 need	 to	 scale	 at	 some	 time.	 This	 may	 happen	 due	 to	 an	 increase	 on	 the	 number	 of	

users/systems	in	a	distributed	system,	at	the	same	time,	the	huge	amount	of	information	being	

exchanged	 in	 the	 system,	 replication	 of	 data,	 or	 for	 security	 reasons	 as	 well.	 The	 usage	 of	

Middleware	technologies	may	be	a	good	solution	to	solve	this	kind	of	issues,	allowing	systems	

to	scale	without	systems	or	users	notice	that	modification.	

At	 last,	the	performance	in	distributed	systems	is	extremely	 important,	especially	 in	cases	 in	

which	the	distributed	system	is	in	the	context	of	industrial	applications	or	smart	grids,	where	a	

fast	and	reliable	communication	is	needed	for	long	periods	of	time.	This	is	another	motivation	

for	the	writing	of	this	thesis,	trying	to	prove	that	the	usage	of	Middleware	technologies	may	

bring	a	safe,	reliable	and	performant	communication	between	the	systems	involved	in	a	(large-

scale)	distributed	system.	

1.3 Objectives	

The	main	goals	of	this	thesis	are	the	study	and	compare	the	advantages	of	using	Middleware	

solutions	to	enable	and	facilitate	the	communication	in	large-scale	distributed	systems.		

Using	Middleware	technologies	in	distributed	systems	might	bring	several	advantages,	however	

it	 is	 important	 but	 extremely	 hard	 to	 design	 and	 conceptualize	 the	 overall	 architecture.	

Otherwise,	if	the	system	is	badly	designed,	it	might	become	extremely	hard	to	understand	how	

Middleware	for	Large-scale	Distributed	Systems	

5	

things	work,	to	debug	and	maintain	it.	This	thesis	pretends	to	demonstrate	and	explain	how	a	

Middleware	can	be	used	in	a	distributed	system,	in	order	to	take	advantage	of	its	features.	

To	be	able	 to	 think,	discuss	and	design	a	 large-scale	distributed	 system	architecture	using	a	

Middleware	 as	 the	 communication	 layer,	 it	 is	 important	 to	 study	 different	 Middleware	

technologies	and	protocols.	This	research	is	important	to	choose	the	right	protocol	depending	

on	the	scenario	a	designer	is	facing,	the	requirements	and	goals	of	the	distributed	system.	In	

this	 thesis,	 a	 detailed	 description	 of	 some	 protocols	 is	 given,	 allowing	 to	 acquire	 enough	

knowledge	to	choose	the	right	solution,	adapted	to	the	scenario	at	hand.	

This	thesis	has	been	supported	by	the	Arrowhead	and	ENCOURAGE	European	projects,	which	

provided	 the	 use-cases	 used	 in	 this	 thesis.	 Thesis	 also	 takes	 into	 account	 the	 overall	

performance	of	the	system	by	providing	several	performance	experiments	in	some	near	real	

scenarios.	

1.4 Thesis	Overview	

This	thesis	is	divided	in	six	chapters:	

The	 Introduction	chapter	presents	 the	 scope	of	 this	 thesis	by	describing	 its	 context	and	 the	

motivations	for	the	study	and	development	of	all	the	work	that	resulted	in	the	writing	of	this	

thesis.	A	brief	explanation	of	the	benefits	of	using	Middleware	for	distributed	systems	is	also	

given,	along	with	the	goals	that	were	defined	in	the	beginning	of	this	work.	

The	State	of	the	Art	chapter	introduces	the	current	state	of	technologies	that	are	used	in	large-

scale	distributed	systems.	A	full	description	and	characterization	of	distributed	systems	is	given	

in	this	section,	providing	a	detailed	description	of	possible	distributed	systems	architectures.	

The	 Distributed	 Systems	 Middleware	 chapter	 gives	 a	 detailed	 explanation	 of	 different	

Middleware	 architectures	 and	 how	 they	 are	 characterized.	 A	more	 detailed	 explanation	 of	

protocols	 like	AMQP	and	XMPP	is	provided,	since	those	are	the	two	used	protocols	for	both	

projects	discussed	in	this	thesis.		

The	Design	and	Implementation	of	Components	on	the	ENCOURAGE	Architecture	and	Design	

and	Implementation	of	Components	on	the	Arrowhead	Project	chapters	respectively	give	an	in-

depth	view	of	ENCOURAGE	and	Arrowhead	Projects,	providing	a	detailed	description	of	both	

architectures,	components	of	the	architectures	and	contributions	to	both	projects.	

Finally,	the	Conclusions	and	Future	Work	chapter	gives	the	conclusions	about	this	thesis	and	

provides	some	ideas	for	future	works.	

	 	

1	Introduction	

6	

	

	

7	

	

2 State	of	the	Art	

The	evolution	of	the	Internet	and	the	increase	on	the	number	of	computer	networks	over	the	

years	lead	to	new	challenges	on	the	design	and	implementation	of	distributed	systems.	Former	

distributed	systems	solution	were	designed	for	small	and	closed	networks	of	computers,	such	

as	 home	 or	 companies	 intranets,	 are	 no	 longer	 enough	 to	 support	 the	 appearance	 the	

necessities	of	large	distributed	systems,	composed	from	tiny	devices,	like	temperature	sensors,	

to	powerful	computing	clouds.	

The	way	distributed	systems	architectures	were	thought	had	to	change	to	embrace	large-scale	

distributed	systems,	such	the	web	search,	massively	multiplayer	online	games,	financial	trading,	

cloud	computing,	P2P	networks,	smart	devices,	wearable	devices,	embedded	systems,	smart	

grids,	smart	cities,	eHealth,	etc.	

Middleware-based	 architectures	 are	 been	 proven	 as	 a	 good	 solution	 to	 solve	 this	 problem,	

providing	 a	 highly	 decoupled	 way	 of	 designing	 and	 supporting	 the	 exchange	 of	 messages	

between	systems.	Middleware	systems	are	capable	of	 supporting	complex	 function	 like,	 the	

routing	the	messages,	security	and	QoS.	

Three	main	subsections	compose	this	chapter.	The	Distributed	Systems	subsection	describes	

what	 actually	 distributed	 systems	 are,	 including	 some	 definitions,	 how	 they	 can	 be	

characterized	and	what	are	the	pros	and	cons	of	this	kind	of	systems.	The	Distributed	Systems	

Architectures	 subsection	 presents	 a	 set	 of	 architectures	 that	 can	 be	 used	 when	 deploying	

distributed	systems,	in	different	scenarios.	

At	last,	the	Distributed	Systems	Applications	subsection	is	intended	to	provide	a	more	detailed	

description	of	several	examples	of	distributed	systems,	where	some	of	them	are	related	to	the	

projects	where	I	was	involved,	such	as	Smart	Grids	and	Smart	Cities.	

2	State	of	the	Art	

8	

Middleware	 brings	 several	 advantages	 to	 distributed	 systems	 architectures,	 but	 first	 it	 is	

important	to	explain	what	actually	distributed	systems	are,	how	they	can	be	characterized,	why	

they	are	 important	 and	where	we	 can	 find	examples	of	distributed	 systems	nowadays.	 This	

information	is	provided	in	the	next	subsection	of	Distributed	Systems.		

2.1 Distributed	Systems	

Applications	and	systems	are	evolving	faster	than	ever	and	all	kind	of	devices	are	in	constant	

communication,	 exchanging	 huge	 amounts	 of	 information.	 This	 evolution	 brings	 lots	 of	

challenges	regarding	interoperability,	scalability,	data	storage,	computational	power	(especially	

on	mobile	devices	like	smartphones,	tablets	or	low	power	devices)	[1],	etc.	

The	term	“distributed	systems”	was	originally	used	to	identify	computer	networks	where	the	

components	of	the	network,	usually	computers,	were	distributed	geographically	in	some	area	

[2].	Distributed	systems	are	systems	where	several	components	in	a	network	communicate	and	

coordinate	tasks	passing	only	messages	among	them	to	achieve	a	common	goal	[1].	

According	to	Tanenbaum,	Van	Steen,	a	distributed	system	can	be	defined	as	“a	collection	of	

independent	computers	that	appears	to	its	users	as	a	single	coherent	system”.	This	means	that	

for	an	end-user,	an	application	or	system	is	located	only	at	one	place	or	is	only	a	single	piece	of	

software,	whilst	in	fact	the	application	or	system	may	be	distributed	across	multiple	computers,	

physically	near	or	geographically	distributed	[3].	

The	 main	 motivation	 to	 design	 and	 implement	 distributed	 systems	 is	 the	 ability	 to	 share	

resources	between	computers,	systems	or	even	users.	A	resource	can	be	anything,	but	what	

really	matters	 is	 that	 resources	 are	 useful	 things	 that	 can	 be	 shared	 between	 systems	 in	 a	

network,	like	printers,	shared	disks	or	webpages	in	case	of	Internet.	The	Internet	of	Things	(IoT)	

is	another	concept	that	has	gained	lot	of	importance	in	the	past	decade	[4].	

Internet	of	Things	is	one	of	the	recent	and	most	important	motivations	for	the	deployment	of	

distributed	systems,	mainly	due	to	the	capabilities	it	can	provide	[4]	[5].	The	main	goal	of	IoT	is	

to	have	all	the	objects	around	us	connected	to	the	Internet	and	communicating	with	each	other	

without,	or	with	a	minimal,	human	intervention,	trying	to	provide	a	better	world	for	humanity.	

This	 objects,	 also	 known	 as	 smart-objects	 [6]	 due	 to	 its	 intelligence,	 should	 be	 capable	 of	

acquiring	information	of	what	we	like	or	want	and	act	according	to	that	to	provide	us	something	

in	return	[7].	

Figure	1	is	intended	to	highlight	the	most	common	challenges	of	distributed	systems.	

Middleware	for	Large-scale	Distributed	Systems	

9	

	

Figure	1	-	Distributed	Systems	Challenges	

In	Figure	1,	one	of	the	challenges	of	distributed	systems	is	the	heterogeneity	among	computers	

and	 networks,	 which	 can	 be	 applied	 to	 multiple	 scenarios,	 such	 as	 networks,	 computers	

hardware,	operating	systems,	programming	 languages	or	even	different	 implementations	by	

different	developers.	This	is	an	issue	for	the	design	of	distributed	systems,	which	aims	to	offer	

an	 infrastructure	 where	 all	 the	 systems	 may	 communicate	 with	 each	 other.	 The	 term	

middleware	tries	to	mask	this	heterogeneity	in	distributed	systems.	

Middleware	can	be	a	piece	of	software	that	gives	developers	a	high	abstraction	regarding	the	

differences	 between	 all	 systems	 that	 may	 interact,	 from	 hardware	 to	 operating	 systems,	

networks	or	programming	languages.	Another	approach	for	this	heterogeneity	challenge	is	the	

concept	of	mobile	code,	where	pieces	of	code	are	transferred	from	one	computer	to	another,	

for	example	with	virtual	machines,	to	be	executed.	

Transparency	is	another	challenge	when	designing	distributed	systems	that	aims	to	give	the	end	

user	 the	 perception	 of	 a	 unique	 system,	 even	 if	 it	 is	 composed	 by	 several	 independent	

components.	 The	 ANSA	 Reference	 Manual	 identifies	 eight	 forms	 of	 transparency,	 such	 as	

Access	 Transparency,	 Location	 Transparency,	 Concurrency	 Transparency,	 Replication	

Transparency,	 Failure	 Transparency,	 Mobility	 Transparency,	 Performance	 Transparency	 and	

Scaling	Transparency	[1].	

The	most	 important	 forms	of	 transparency	 are	 the	Access	 and	 Location,	where	 the	 local	 or	

remote	resources	can	be	accessed	identically	and	resources	can	be	accessed	without	knowing	

the	exact	location	of	them	[1].	

The	Concurrency	refers	to	the	fact	that	multiple	processes	may	interact	at	the	same	time	with	

shared	 resources	 and	Replication	 refers	 to	 the	existence	of	multiple	 instances	of	 resources,	

without	 knowledge	 of	 users	 or	 developers,	 to	 improve	 the	 reliability	 and	 performance	 of	 a	

system.	 Failure	 Transparency	 provides	 the	 ability	 to	 users	 or	 other	 programs	 to	 finish	

2	State	of	the	Art	

10	

completely	 their	 tasks	 even	 if	 some	 components	 of	 the	 whole	 system	 is	 down	 or	 broken,	

hardware	or	software	[1]	[3].	

The	Mobility	 Transparency	 allows	 the	 exchange	of	 resources	 among	users	 of	 other	 systems	

without	interfere	with	the	system	or	users	operations.	The	Performance	Transparency	allows	

the	reconfiguration	of	the	system	along	its	execution	if	needed.	At	last,	the	Scaling	Transparency	

refers	 to	 the	 ability	 to	 expand	 the	 system	without	 interfere	with	 the	main	 structure	 of	 the	

system	[1].	

The	Openness	is	another	challenge	of	distributed	systems	and	it	is	determined	by	the	possibility	

of	extending	the	main	system	by	adding	more	services	of	resources.	This	implies	the	distribution	

of	 documentation	 to	 developers	 in	 order	 to	 create	 new	 resources	 and	 make	 possible	 the	

integration	of	new	compliant	components	[1]	[3].	

The	Concurrency	 in	a	distributed	system	means	 that	each	 resource	of	 that	 system	might	be	

accessed	 by	 several	 clients	 at	 the	 same	 time.	 The	 distributed	 system	 must	 handle	 those	

concurrent	resource	accesses,	synchronizing	them	to	maintain	data	consistent	[1]	[3].	

Another	 challenge	 in	distributed	 systems	 is	 Security.	 The	 information	 that	 is	exchanged	and	

stored	in	a	distributed	system	needs	to	be	protected	and	secured,	since	it	might	be	extremely	

important	to	users.	The	security	in	resources	follows	three	main	characteristics:	confidentiality,	

protecting	resources	from	unauthorized	individuals;	integrity,	protecting	against	corruption	or	

its	modification;	and	availability,	keeping	a	resources	always	available	by	any	means	[1]	[3].	

Scalability	is	another	challenge	of	distributed	systems	and	also	one	of	the	most	important	ones.	

Distributed	systems	should	be	capable	of	expanding	in	cases	it	is	needed,	for	example	as	load	

vary.	 The	 difficulty	 of	 this	 challenge	 is	 the	 fact	 that	 when	 a	 system	 expands,	 it	 should	 not	

interfere	with	 the	main	 system.	 This	means,	 for	 example,	 that	 data	 should	be	 replicated	 to	

prevent	data	loss	[1].	

If	more	computational	processing	or	more	data	storage	capacity	is	needed,	distributed	systems	

are	perfect	to	handle	this	kind	of	 issues.	 In	any	system,	reliability	 is	also	very	 important	and	

once	again,	distributed	systems	are	helpful	since	redundant	components	can	be	added	at	any	

time,	for	example	using	virtualization	techniques.	

The	most	recent	evolution	of	the	virtualization	techniques,	which	allows	the	creation	of	multiple	

Virtual	Machines	 instead	of	having	multiple	physical	machines,	brought	 innovative	and	easy	

ways	 to	greatly	 facilitate	 the	deployment	of	distributed	systems	 [8].	This	kind	of	 techniques	

reduces	the	time	spent	of	systems	administration,	increases	the	uptime	and	allows	to	create	

multiple	Virtual	Machines	[9]	[10]	locally.	

Finally,	 the	 Resilience	 to	 Failures	 is	 another	 challenge	 identified	 in	 distributed	 systems.	 In	

distributed	 systems,	 failures	 of	 hardware	 or	 software	 components	 should	 be	 detected	 and	

handled	whenever	possible.	In	terms	of	data	corruption,	checksums	are	an	example	of	how	this	

Middleware	for	Large-scale	Distributed	Systems	

11	

can	be	detected.	In	any	way,	failures	should	be	hidden	to	the	end	users,	providing	some	features	

to	avoid	systems	to	fail	as	a	whole	[1].	

Distributed	 systems	 provide	 huge	 savings	 in	 terms	 of	 cost,	 since	 there	 is	 no	 need	 to	 have	

mainframes	to	make	all	 the	processing.	Compared	to	mainframes,	distributed	are	extremely	

powerful,	being	possible	 to	have	an	enormous	number	of	computers	processing	and	storing	

information	at	the	same	time.	In	this	way,	we	can	assume	that	distributed	systems	brought	an	

incredible	increase	of	performance.	

There	are	some	applications	that	are	used	every	day	and	are	naturally	distributed,	such	as	the	

Web,	 the	 email,	 instant	messaging	 (IM)	 applications	 or	 even	 social	 network,	 like	 Facebook,	

Google+,	Twitter,	etc.	 In	terms	of	cons,	distributed	systems	rely	on	networks.	Since	network	

capacity	is	limited,	this	can	be	a	bottleneck	in	this	kind	of	systems.	

A	big	 issue	 that	 concerns	every	 system	designer	or	administrator	 is	 the	 security	 [11].	When	

networks	 were	 composed	 by	 a	 small	 number	 of	 computers,	 it	 was	 easier	 to	 manage	 and	

maintain	security	policies,	however	in	distributed	systems,	it	isn’t	so	easy	to	achieve.	

Finally,	the	software	complexity	tends	to	increase	as	long	as	the	distributed	system	gets	bigger	

and	 there	 is	 a	 need	 to	 make	 every	 component	 of	 the	 architecture	 interactive.	 There	 are	

alternatives,	ways	of	reducing	that	complexity,	for	example	with	the	usage	of	a	middleware-

based	architecture,	exposing	the	same	interface	to	every	application.	

There	are	several	examples	of	distributed	systems,	such	as	Enterprise	Information	Systems,	the	

Massive	Multiplayer	Online	Games	(MMOGs),	Code	Offloading,	Smart	Grids	and	Smart	Cities,	

Cyber	Physical	Systems	and	more	recently	the	Cloud-based	systems.	Each	one	of	this	examples	

is	described	in	more	detail	in	a	separate	section	of	this	chapter.	

2.2 Distributed	Systems	Architectures	

Distributed	systems	can	be	designed	in	several	ways,	originating	multiple	types	of	architectures,	

depending	on	the	context	in	which	the	system	will	rely	on.	Distributed	systems	architectures	

might	be	centralized	or	decentralized.		

In	centralized	systems,	every	component	of	the	architecture	has	knowledge	of	the	state	of	the	

system	whilst	in	a	decentralized	system,	each	component	works	by	itself,	not	knowing	(it	can	

also	know,	but	that	is	not	the	strictly	needed)	the	state	of	other	components.	

Centralized	architectures	provide	a	 total	aware	of	 the	overall	 system	with	a	unique	point	of	

failure,	however	in	some	cases,	the	non-existence	of	a	single	point	of	failure	is	an	advantage,	

for	example	if	in	a	distributed	system	on	of	the	components	of	the	architecture	fails,	it	can	exist	

another	 similar	 or	 equal	 node	 that	 is	 able	 to	 perform	 the	 same	 tasks,	 resulting	 in	 a	 total	

awareness	of	the	failures	by	the	end	users	of	the	system	[12].	

2	State	of	the	Art	

12	

Within	centralized	architectures,	 relies	a	 common	and	widely	used	 type	of	architecture,	 the	

client-server	architecture.	Client-server	architectures	consist	on	having	components	providing	

services,	acting	as	servers,	and	other	components	acting	as	clients	that	use	services	provided	

by	servers	[13].	

In	this	kind	of	architectures,	clients	and	servers	may	be	located	in	the	same	machine	but	they	

can	be	distributed	in	different	machines	as	well.	Usually	clients	interact	with	servers	through	a	

request-response	model,	where	a	client	contacts	the	server	requesting	for	some	information,	

and	then	it	waits	for	an	answer	from	the	server.	In	the	end	the	client	receives	the	answer	and	

handle	it.	Figure	2	presents	an	example	of	how	a	client-server	architecture	looks	like.	

	

Figure	2	-	Example	of	a	Client-Server	Architecture	

Applications,	 which	 implements	 client-server	 architectures,	 can	 be	 structured	 in	 different	

layers,	each	one	with	a	specific	function.	The	three-tier	architecture,	also	known	as	multi-tier	

architecture	[14]	[15],	provides	three	different	layers,	the	user-interface	layer,	the	processing	

layer	and	finally	the	data	layer.	Each	layer	interacts	with	another	layer,	in	a	hierarchical	manner.	

The	user-interface	layer	provides	only	the	graphical	user	interface	(GUI)	to	the	user,	without	

having	 any	 processing	 or	 logic	 capabilities.	 The	 middle-layer,	 or	 the	 processing	 layer,	 is	

responsible	for	processing	the	entire	 logic	of	the	application	that	 is	then	sent	to	the	bottom	

layer,	 the	 data	 layer,	 responsible	 for	 the	 data	management	 of	 the	 application	 (for	 example	

through	databases,	files,	etc.).	

Figure	3	shows	an	example	of	the	three-tier	architecture.	

Middleware	for	Large-scale	Distributed	Systems	

13	

	

Figure	3	-	Example	of	Three-tier	Architecture	

In	the	cyber	physical	systems	context,	this	kind	of	client-server	architecture	is	commonly	used	

with	a	two-layered	view,	consisting	in	a	layer	responsible	only	for	the	user-interface,	since	it	is	

generally	 smaller	 devices	 without	 processing	 capabilities,	 and	 a	 procession	 and	 data	 layer,	

which	resides	in	the	server.	This	scenario	usually	results	in	more	loaded	network	traffic	due	to	

the	need	of	the	clients	to	send	the	entire	raw	data	to	the	server	for	the	processing.	

Another	example	of	 a	 centralized	architecture	 is	 the	Distributed	objects	 architecture,	which	

consists	 in	 several	 objects	 interacting	 with	 each	 other,	 but	 opposing	 to	 the	 client-server	

architecture,	 in	 this	 case	 objects	 are	 viewed	 as	 equal	 among	 them.	 There	 is	 no	 difference	

between	clients	and	servers,	since	every	object	in	the	architecture	might	act	as	server	or	client	

at	the	same	time.	

The	opposite	of	centralized	are	the	decentralized	architectures	which	means	that	in	this	kind	of	

architectures,	 the	 components	 of	 the	 architecture	 are	 not	 aware	 of	 the	 state	 of	 the	 other	

components.	Peer-to-peer	[16]	or	SOA	[17]	are	examples	of	decentralized	architectures.	

Peer-to-peer	architectures	consist	in	making	clients	interact	directly	with	other	clients	without	

the	need	to	use	a	server	as	a	bridge	[18].	The	peer-to-peer	technology	is	widely	used	in	several	

systems	like	instant	messaging,	gaming	of	distributed	data	management	and	bit	torrent	systems	

[19].	

This	kind	of	architectures	are	a	very	good	approach	for	multimedia	streaming,	giving	the	fact	

that	each	client	may	share	its	bandwidth	with	other	clients,	without	the	need	to	overload	the	

streaming	servers.	Figure	4	presents	an	example	of	how	a	Peer-to-Peer	architecture	may	be	

represented.	

2	State	of	the	Art	

14	

	

Figure	4	-	Peer-to-Peer	Architecture	

At	last,	Service-oriented	architecture	is	the	point	of	view	of	how	a	distributed	system	might	be	

designed.	According	to	Thomas	Erl	a	service-oriented	architecture	is	defined	as	“architectural	

model	 that	 aims	 to	 enhance	 the	 efficiency,	 agility	 and	 productivity	 of	 an	 enterprise	 by	

positioning	 services	 as	 the	 primary	 means	 through	 which	 solution	 logic	 is	 represented	 in	

support	of	the	realization	of	strategic	goals	associated	with	service-oriented	computing”	[17].	

This	means	that	the	integration	with	old	systems,	but	with	new	systems	as	well,	of	this	type	of	

architecture	will	bring	many	advantages	in	terms	of	performance	and	scalability.	

	

Figure	5	-	Service-oriented	Architecture	meta-model	(The	Linthicum	Group,	2007)	

The	fundamental	unit	of	SOA	is	the	actual	service.	A	service	is	defined	as	independent	software	

program	 that	 has	 its	 own	 capabilities	 depending	 on	 the	 context	 it	 is	 inserted	 in,	which	 are	

passive	of	 externally	 invocation	by	 consumers	of	 that	 service.	A	 service,	 however,	might	be	

composed	by	more	services,	forming	a	composed	service	[17].	Figure	6	depicts	two	different	

kinds	of	services,	the	normal	ones	and	the	composed	ones.	

Middleware	for	Large-scale	Distributed	Systems	

15	

	

Figure	6	-	Service	representation	in	SOA	

The	 implementation	 of	 service-oriented	 architectures	 brings	many	 advantages,	 such	 as	 the	

increased	federation,	the	higher	interoperability	and	the	openness	since	the	vendor	diversity	

increases.	

2.3 Distributed	Systems	Applications	

In	 this	 subsection	 the	 examples	 of	 distributed	 systems	 referred	 in	 the	 Distributed	 Systems	

Architectures	 subsection	 are	 described	 in	 more	 detail.	 Each	 one	 of	 the	 examples	 depicts	

different	ways	where	distributed	systems	can	be	applied.	

2.3.1 Enterprise	Information	Systems	

The	evolution	of	technology	during	the	last	decade	brought	some	challenges	to	how	companies	

provide	their	services	and	manage	internal	and	external	information.	Information	technologies	

started	to	be	integrated	into	each	service	or	process	inside	a	company	trying	to	provide	more	

agile	and	unified	systems,	becoming	easier	to	use	or	maintain.	

In	the	past,	companies	had	two	main	concerns	in	order	to	compete	with	other	companies,	the	

quality	of	the	products	and	the	price	they	provide.	Nowadays,	companies	must	be	more	focused	

not	 only	 on	 the	 quality	 and	 price	 of	 their	 products,	 but	 also	 on	 the	 flexibility	 and	 a	 quick	

response	to	customer	demands	[20].	This	new	approach	enhances	the	competitiveness	with	

other	companies	[21].	

Companies	are	now,	more	than	ever	interested	in	introducing	information	technologies	to	their	

processes,	 integrating	 their	 own	 internal	 systems	 and	 evolve	 to	 a	more	 centralized	 system	

where	 everything	 is	 possible	 to	 monitor	 and	 manage	 from	 a	 set	 of	 integrated	 dashboards	

accessing	multiple	company	processes	[21].	

Figure	7	depicts	an	Enterprise	Resource	Planning	system	architecture.	This	kind	of	systems	can	

have	impact	in	many	sectors	of	companies.	An	ERP	system	would	integrate	all	the	independent	

department	systems	of	a	company	 (as	a	distributed	system)	 in	order	 to	be	manageable	and	

monitored	through	a	unique	and	flexible	set	of	dashboards	[21].	

2	State	of	the	Art	

16	

	

Figure	7	-	Enterprise	Resource	Planning	(ERP)	System	Architecture	

An	example	of	an	ERP	systems	is	the	SAP	Enterprise	Resource	Planning	(ERP)	[22],	developed	

by	The	German	company	SAP	[23],		that	provides	several	modules,	each	module	operating	in	a	

specific	 sector	 or	 the	 company,	 such	 as	 financial	 management,	 manufacturing	 or	 human	

resources.	

The	SAP	ERP	claims	to	be	a	system	that	increases	the	competitiveness	with	integrated,	fast	and	

flexible	business	solutions;	accelerates	time	to	market	innovative,	individualized	products	and	

services;	simplifies	corporate	structure,	market	channel	and	business	scenario	management;	

improves	 corporate	 resource	 and	 asset	 utilization	 and	 obviously	 a	 greater	 customer	

satisfaction;	and	is	a	consolidated	foundation	for	the	latest	mobile,	cloud-based,	and	in-memory	

technologies	[22].	

NetSuite	is	a	cloud-based	ERP	system	and	it	is	the	most	deployed	ERP	system	all	over	the	world.	

They	claim	that	the	NetSuite	ERP	“delivers	the	proven,	comprehensive	financial	management	

capabilities	 required	 to	 grow	 a	 changing,	 complex	 business”.	 NetSuite	 ERP	 takes	 business	

beyond	 traditional	 accounting	 software	 by	 streamlining	 operations	 across	 your	 entire	

organization	 and	providing	 you	with	 the	 real-time	 visibility	 you	need	 to	make	better,	 faster	

decisions	[24].	

Microsoft	Dynamics	Great	Plains	 (GP)	 is	another	example	of	an	ERP	system,	which	claims	to	

“help	businesses	gain	greater	control	over	their	financials,	better	manage	their	inventory	and	

operations,	 and	 make	 informed	 decisions	 that	 help	 drive	 business	 success.	 It's	 quick	 to	

implement	and	easy	to	use,	with	the	power	to	support	your	growth	ambition”	[25].		

2.3.2 Massive	Multiplayer	Online	Games	

Massive	 Multiplayer	 Online	 Games	 are	 another	 example	 of	 how	 distributed	 systems	 are	

currently	 used.	 This	 kind	 of	 distributed	 systems	 are	 designed	 in	 a	 way	 that	 can	 support	

thousands	of	 users	 at	 the	 same	 time,	 experiencing	 an	 almost	 real	 interaction	with	 a	 virtual	

world.	In	most	cases,	this	virtual	worlds	are	shared	among	all	users,	and	the	fast	propagation	of	

Middleware	for	Large-scale	Distributed	Systems	

17	

actions	and	events	through	all	users	is	a	challenge	to	the	designers	of	this	kind	of	distributed	

systems.	

Some	important	examples	of	MMOGs	are	the	Sony’s	EverQuest	II	[26]	and	the	EVE	Online	[27]	

from	the	Finnish	company	CCP	Games	.	

	

Figure	8	-	Example	of	MMOG	Architecture	

Figure	8	depicts	an	example	of	a	MMOG	architecture	with	all	its	components	and	interactions.	

The	architectures	is	composed	by	a	set	of	distributed	servers,	each	one	of	them	responsible	for	

a	specific	task.	First	a	client	connects	to	a	Patch	Server,	which	is	responsible	for	the	verification	

of	clients’	game,	checking	 if	 the	game	 is	updated.	Then,	clients	connect	 to	the	Login	Server,	

which	is	responsible	to	query	the	database	in	order	to	check	if	that	client	is	already	registered.	

After	the	authentications,	a	client	connect	to	a	Proxy	Server	that	is	responsible	to	forward	data	

from	the	client	to	the	Game	Servers	and	backwards,	or	compressing	and	decompressing	data.	

Game	Servers	are	the	servers	where	clients	will	be	playing	and	interacting,	which	are	in	constant	

communication	with	the	World	Server.	

The	World	Server	is	the	master	server	in	the	cluster,	which	means	that	the	main	features	of	the	

game	are	handled	in	this	server.	The	existence	of	several	Game	Servers	provides	a	high	scalable	

and	performant	system,	by	adding	new	Game	Servers,	for	example	as	load	increases.	

Finally,	when	something	needs	to	be	persisted,	a	database	 is	used	to	keep	that	data	stored.	

However,	databases	might	be	a	bottleneck	due	to	excessive	accesses	or	queries,	and	to	avoid	it	

a	Synchronization	Server	might	be	used	to	synchronize	the	database	queries,	highly	reducing	

the	load	of	the	system,	providing	an	asynchronous	way	of	communicating	with	the	database,	

enabling	an	in-memory	change	of	users	or	objects	of	the	game	[28].	

2.3.3 Smart	Grids	

An	energy	grid	is	defined	as	network	composed	by	several	systems	interconnected	that	has	the	

capability	of	deliver	electricity	from	suppliers	(power	plants)	to	consumers	(houses,	buildings,	

2	State	of	the	Art	

18	

factories,	etc.)	 [29].	Former	energy	grids	have	evolved	and	a	new	concept	has	emerged,	the	

new	concept	of	smart	grids.	From	this	first	definition,	it	is	implicit	the	importance	of	distributed	

systems	in	the	designing	and	deployment	of	smart	grid	concept.	The	NIST	Framework	identified	

75	standards	that	are	useful	in	the	smart	grids	context,	providing	a	high-level	conceptual	[30].	

Smart	 grids	 are	 the	 future	 of	 electrical	 grids,	 evolving	 from	 a	 unidirectional	 production,	

transmission,	 distribution	 and	 consumption	 pipeline,	 from	 production	 plants	 (production	

domain),	 to	 a	 much	 more	 complex	 system	 where	 every	 actor	 of	 the	 grid	 can	 producer	 or	

consume	energy	 (consumption	domain)	at	 the	 same	 time,	 store	energy	or	exchange	energy	

with	other	actors.	

From	several	architectural	solutions	that	were	proposed,	where	systems	seems	to	be	the	key	

role	of	the	concept,	with	smart	grids	the	energy	grid	is	able	to	interact	directly	with	the	final	

user,	having	the	ability	to	interact	and	control	appliances,	such	as	washing	machines	or	heat	

pumps,	in	order	to	provide	a	more	efficient	energy	consumption	[31].	

A	Smart	grid	 is	a	very	complex	network	of	systems	 interacting	with	each	other	pursuing	the	

same	goal	of	providing	energy	efficiency	[32].	The	adoption	of	the	smart	grid	concept	brings	

new	 challenges,	 such	 as	 the	 low-level	 communication	 technologies	 [33],	 issues	 with	 the	

Distributed	Energy	Resources	[33]	or	electrical	vehicles	[34].	

	

Figure	9	-	Example	of	a	Smart	Grid	Use-case	[35]	

Even	 with	 multiple	 definitions,	 a	 smart	 grid	 is	 generally	 defined	 as	 a	 merge	 between	 the	

traditional	energy	distribution	network	and	the	capability	of	having	a	multi-directional	(instead	

of	the	unidirectional	 in	 former	energy	grids)	way	of	communication.	Giving	the	fact	that	the	

communication	between	entities	flows	from	both	sides,	the	grid	will	be	able	to	sense,	monitor	

and	exchange	information	about	the	energy	consumption	[36].	

Smart	 grids	 have	 a	 common	 characteristic	 that	 relies	 on	 embedded	 devices,	 sensors	 and	

actuators	that	are	responsible	for	managing	energy	and	controlling	appliances	in	users’	houses,	

usually	through	a	gateway.	This	means	that	gateways	are	one	way	to	centralize	communications	

in	 the	 smart	 grid	 architecture.	 Basically	 the	 goal	 is	 to	 have	 gateways	 that	 are	 capable	 of	

Middleware	for	Large-scale	Distributed	Systems	

19	

managing	a	subset	of	embedded	devices,	using	adequate	protocols,	and	that	are	connected	to	

the	internet	in	order	to	communicate	with	the	grid	services	[37].	

Lots	 of	 efforts	 have	 been	 made	 to	 implement	 the	 smart	 grid	 concept	 in	 many	 Europen	

countries,	however	several	issues	must	be	addressed	to	achieve	all	the	advantages	of	a	smart	

grid.	 These	 issues	 are	 related	 to	 the	 need	 to	 change	 and	 adapt	 existing	 infrastructures	 to	

support	 the	 integration	 of	 digital	 systems,	 support	 interaction	 between	 all	 the	 entities	 that	

make	part	of	 the	 grid	 (e.g.	 for	demand	 response	aplications),	 the	non-existence	of	 a	 virtual	

energy	market,	etc.	

According	 to	a	study	 regarding	 the	Convergence	 to	 the	European	energy	policy	 in	European	

countries	[38],	the	installation	of	smart	meters	in	countries,	green	commitments	or	distributed	

generation	of	energy	are	examples	of	challenges	that	each	country	faces	that	were	compared.	

This	study	proved	that	the	north	countries	of	Europe,	such	as	Finland,	Norway	and	Sweden	are	

making	a	big	effort	to	design	and	implement	a	virtual	market	of	energy	capable	of	managing	

the	energy	exchanges	among	those	countries	[38].	

In	a	distributed	system	like	a	smart	grid,	one	of	the	challenges	is	the	heterogeneity	among	all	

the	 systems	 that	 compose	 the	 smart	 grid,	 such	 as	 the	 protocols	 used	 for	 communication,	

exposed	 interfaces	 of	 each	 system,	 or	 even	 programming	 languages	 in	 which	 they	 are	

implemented.	

To	get	through	this	challenge,	standards	seem	to	be	one	of	the	best	ways	to	share	knowledge	

among	developers,	sharing,	for	example,	best	practices	which	leads	to	an	economic	efficiency	

too	 [39].	 Standards	 are	 what	 makes	 easier	 the	 integration	 of	 systems,	 enhancing	 the	

interoperability	of	those	systems,	exposing	an	“interface-like”	equal	to	all	systems	that	uses	it.	

According	to	Dr.	W.	Charlton	Adams,	Jr.	[40],	“In	order	for	the	Smart	Grid	to	be	successful,	there	

needs	to	be	a	set	of	well-established	standards	 in	place	that	all	 industries	and	organizations	

involved	can	utilize.".	Standards	are	the	critical	for	the	evolution	of	smart	grids	since	it	gives	the	

possibility	to	ensure	the	compatibility	and	interconnection	of	systems	implemented	worldwide.	

In	most	distributed	systems,	even	more	in	complex	ones	like	smart	grids,	standards	are	very	

important	 in	 order	 to	 provide	 interoperability	 and	 easier	 integration	 of	 systems.	 Instead	 of	

modelling	 systems	 in	 a	 plain	 formatted	 way,	 with	 standards	 is	 possible	 to	 define	 a	 more	

structured	 and	 hierarchical	 system.	 Also	 to	 establish	 the	 communication	 between	 systems	

becomes	faster	and	convenient,	since	every	one	speaks	a	common	language.	Finally,	in	terms	

of	 cost,	 standards	 tens	 to	 reduce	 the	 cost	of	 installation,	 configuration	and	maintenance	of	

devices.	

Follows	 a	 brief	 description	 of	 some	 of	 the	 current	 standards	 that	 can	 ensure	 the	

implementation	and	interoperability	to	smart	grids.	

2	State	of	the	Art	

20	

Common	Information	Model	

Common	Information	Model	[41],	or	CIM,	is	an	open-standard	that	aims	to	provide	a	unified	

and	consistent	way	of	how	information	exchanged	between	distributed	systems	is	viewed,	in	

order	to	any	CIM-compliant	system	be	able	to	retrieve	that	information	[42].	

The	CIM	Standard	is	composed	by	the	CIM	specification	[43]	and	CIM	schema	[44],	where	the	

specification	describes	 the	 language,	naming,	Meta	Schema	 (formal	definition	of	 the	model,	

defining	 terms	 used	 to	 express	 the	 model	 and	 their	 usage	 and	 semantics)	 and	 mapping	

techniques	 to	 other	 management	 models	 such	 as	 Simple	 Network	 Management	 Protocol	

Management	 Information	 Bases	 (SNMP	 MIBs)	 and	 Distributed	 Management	 Task	 Force	

Management	Information	Format	(DMTF	MIFs).	

IEC61850	

The	Communication	networks	and	systems	in	substations	standard	(IEC61850)	has	been	defined	

by	the	International	Electrotechnical	Commissions’s	(IEC)	[45]	and	aims	the	design	of	electrical	

substation	automation	systems	[46].	Since	abstract	data	models	define	it,	it	can	be	mapped	to	

a	large	number	of	protocols,	such	as	Manufacturing	Message	Specifications	(MMS),	Sampled	

Measured	Values	(SMV)	and	in	a	near	future	Web	Services.	

The	 core	 components	 of	 the	 IEC61850	 are	 an	 object	 mode	 that	 describes	 the	 information	

available	 through	 an	 abstraction	 definition	 of	 services,	 data	 and	 Common	 Data	 Class	 and	

independent	of	underlying	protocols;	a	specification	of	the	communication	among	intelligent	

electronic	devices	existent	 in	a	substation	automation	system;	and	a	configuration	 language	

that	allows	the	exchange	of	configuration	information.	

The	 IEC	61850	 is	 divided	 into	 ten	different	 standards,	 from	 the	Basic	 Principles	 to	Glossary,	

General	 Requirements,	 System	 and	 Project	 Management,	 Communication	 Requirements,	

Substation	 Automation	 System	 Configuration,	 Basic	 Communication	 Structure	 and	

Conformance	testing.	

The	advantages	of	using	this	standard	are	that	it	supports	a	comprehensive	set	of	substation	

functions	and	it	is	easy	to	design,	specific,	configure,	setup	and	maintain.	It	also	provides	a	high	

performant	multi-cast	messaging	communications	and	it	is	extensible	and	flexible	which	allows	

systems	evolution.	

2.3.4 Smart	Cities	

The	 concept	of	 smart	 cities	 does	not	have	 yet	 a	 clear	 definition	but	 according	 to	 Robert	G.	

Hollands	 it	 could	 be	 defined	 as	 the	 “utilization	 of	 networked	 infrastructure	 to	 improve	

economic	and	political	efficiency	and	enable	social,	cultural	and	urban	development”	[47].	In	

this	context,	the	term	infrastructure	might	be	defined	as	the	existent	elements	in	a	city,	such	as	

business	 services,	housing,	 leisure	and	 lifestyle	 services,	 and	 ICTs	 (mobile	and	 fixed	phones,	

satellite	TVs,	computer	networks,	e-commerce,	internet	services)	[48].	

Middleware	for	Large-scale	Distributed	Systems	

21	

The	development	and	implementation	of	smart	cities	bring	a	large	number	of	challenges	to	the	

traditional	 way	 everyone	 see	 a	 city	 and	 the	 infrastructures	 it	 holds	 since	 an	 uncountable	

number	of	devices	are	interconnected	and	communication	with	each	other	to	provide	valuable	

information	to	achieve	efficiency	in	several	elements	that	compose	a	city.	Smart	cities	can	be	

characterized	as	a	huge	number	of	devices	and	services	that	are	 interconnected	(distributed	

systems),	providing	easy	access	to	them	and	bringing	efficiency	in	several	aspects.	

The	Department	for	Business	Innovation	&	Skill	from	United	Kingdom	Government,	delivered	

in	2013	a	background	paper	where	they	present	some	of	the	challenges	that	the	concept	of	

smart	cities	will	bring	to	their	cities,	which	may	be	generalized	to	every	country	in	the	world	

[49].	

One	of	the	challenges	is	the	rapid	evolution	and	usage	of	technology	lead	to	unemployment	in	

all	sectors,	mainly	in	younger	people,	which	means	that	an	economic	restructuring	is	needed	to	

support	this	changes.	The	 increasing	number	of	population	moving	to	cities	from	more	rural	

zones	is	also	a	challenge	implying	lots	of	changes	in	how	the	housing	and	the	transport	sectors	

are	managed.	Due	 to	 crisis,	 city	 authorities	 are	getting	 lower	budgets	 that	makes	harder	 to	

follow	the	proper	response	to	the	new	changes	[49].	

	

Figure	10	-	Smart	Cities	impact	

Figure	10	presents	a	set	of	sectors	where	smart	cities	have	impact.	

In	terms	of	environment,	smart	cities	will	have	impact	in	areas	like	the	green	pollution	control	

or	the	climate	change	adaption,	aiming	to	reduce	the	energy	waste	(using	smart	meters)	and	

reducing	 emissions.	 Smart	 cities	 will	 affect	 the	 business	 industry	 regarding	 sustainability,	

information	communication	technologies	and	a	smart	economy.	The	innovation	on	how	people	

deal	with	daily	task	using	new	equipment	and	the	appearance	of	new	ways	to	handle	or	monitor	

health	problems	in	an	ageing	population	[49]	 is	another	value	that	smart	cities	bring.	 	 In	the	

sector	of	transports,	electric	vehicles	and	the	dynamic	control	of	traffic	are	also	examples	of	

2	State	of	the	Art	

22	

how	 smart	 cities	will	 help	 people’s	 life.	 Smart	 cities	will	 also	 bring	 new	ways	 to	 handle	 the	

education	 and	 the	 easier	 access	 to	 government	 services	 will	 help	 to	 create	 a	 happy	 and	

proactive	community.	

2.3.5 Cyber	Physical	Systems	

Cyber	physical	systems	have	multiple	ways	to	be	defined	but	commonly	it	is	defined	as	set	of	

components	in	a	computer,	both	hardware	and	software,	which	work	together	to	achieve	and	

a	common	goal	[50].	

The	term	microprocessor	is	usually	associated	to	personal	computers,	however,	even	if	it	is	not	

totally	wrong,	microprocessors	are	used	in	almost	every	device	or	appliance	we	daily	use.	Most	

recent	cars	can	have	more	than	50	microprocessors	[51],	to	control	and	monitor	transmissions	

through	 electronically	 controlled	 gearboxes,	 brakes	 through	 anti-lock	 systems,	 electric	

windows,	etc.	

Microwaves	ovens,	that	we	use	almost	every	day,	are	another	example	of	an	appliance	that	is	

controlled	by	this	type	of	systems	and	we	are	normally	not	aware	of	it	[50].	Embedded	systems	

are	 widely	 used	 in	 many	 other	 areas,	 from	 home	 automation	 to	 control	 appliances,	

entertainment	devices	 like	 smartphones	or	 tablets,	wearables	 for	 entertainment	or	medical	

purposes	 in	order	 to	diagnose	or	monitor	 some	body	aspects,	 such	as	heartbeat	 frequency,	

levels	on	diabetics.	

Figure	11	presents	a	set	of	devices	that	are	examples	of	cyber	physical	systems.	

	

Figure	11	-	Categories	of	Cyber	Physical	Systems	[52]	

In	the	context	of	smart	grids	and	smart	cities,	cyber	physical	systems	play	an	important	role.	

Smart	 meters,	 sensors	 or	 actuators	 are	 examples	 of	 this	 systems	 which	 provide	 relevant	

information	about	the	energy	consumption	(smart	meters)	helping	to	bring	more	efficiency	to	

energy	usage,	motion	detection,	smoke	detection,	temperature,	humidity	and	pressure	in	an	

area	 (sensors),	 or	 the	 control	 of	 appliances	 as	 washing	 machines,	 lightning	 or	 heaters	

(actuators).	Sensors	and	actuators	are	similar,	but	sensors	can	only	provide	information	about	

Middleware	for	Large-scale	Distributed	Systems	

23	

the	 environment	 they	 are	 integrated	 whilst	 actuators	 beside	 the	 capability	 of	 gather	

information	about	the	environment	it	is	also	capable	of	controlling	appliances	where	they	are	

integrated.	

Once	again,	cyber	physical	systems	are	an	example	of	distributed	systems	(real-time	distributed	

systems	or	multimedia	systems)	[53],	since	several	microprocessors	can	be	distributed	within	a	

device,	 belonging	 to	 the	 same	 system,	 but	 providing	 information	 and	 actuating	 in	 specific	

functions.	

2.3.6 Cloud-based	Systems	

“Cloud”	 computing	became	 relevant	when	Google	 announced	 that	 they	would	work	on	 the	

concept.	Since	then,	lots	of	efforts	were	made	in	terms	of	virtualization,	distributed	computing,	

grid	 computing,	 networking	 and	 obviously	 web	 and	 software	 services	 [54].	 The	 Cloud	

computing	concept	relies	in	a	Service-oriented	Architecture	[55]	providing	a	large	number	of	

orchestrated	functions,	through	services.	

Cloud	 services	 utilization	 is	 growing	 in	 popularity	 since	 the	 advent	 of	 the	Cloud	 computing.	

Figure	 12	 depicts	 the	 evolution	 since	 the	 appearance	 of	 the	 World	 Wide	 Web	 until	 the	

appearance	of	the	Cloud	computing	concept.	

	

Figure	12	-	Evolution	of	Systems	[56]	

In	this	Cloud	distributed	systems	model,	data	and	computation	are	no	longer	mandatory	in	all	

devices,	but	rather	somewhere	in	a	“cloud”,	though	the	existence	of	virtual	computers	in	data	

centers	worldwide.	

2	State	of	the	Art	

24	

This	new	model	changed	the	way	distributed	systems	were	designed,	offering	not	only	huge	

processing	capabilities	in	third-party	virtualized	computers,	but	also	in	terms	of	Cloud	storage	

services,	such	as	Dropbox	[57]	or	Box	[58],	providing	dozens	or	hundreds	of	gigabytes	of	storage	

in	the	Cloud	for	free.	

The	 large	 amounts	 of	 storage	 services	 available	 in	 the	 Cloud	 is	 an	 extremely	 important	

advantage	in	terms	of	distributed	systems,	since	it	allows	tons	of	information,	from	documents	

to	multimedia	elements,	like	videos	of	photos,	to	be	shared	among	Cloud	systems,	making	them	

accessible	from	anywhere.	

	

	

25	

	

3 Distributed	Systems	Middleware	

Distributed	 systems	 brought	 several	 issues	 to	 the	 design	 of	 system	 architectures,	 mainly	

regarding	 network	 and	 communication	 between	 components	 of	 the	 system.	 As	 part	 of	 the	

distributed	systems,	middleware	 is	a	piece	of	software	which	 is	 responsible	 for	enabling	the	

communication	and	cooperation	between	the	components	of	the	architecture	[32].	

This	software	layer	aims	to	provide	an	abstract	manner	for	developers	to	integrate	enterprise	

systems	without	having	the	knowledge	of	which	vendors	implemented	them,	for	how	long	or	

the	 protocols	 they	 use	 to	 exchange	 information	 [59].	 The	 usage	 of	 a	 middleware-based	

architecture	aims	to	solve	network	 issues	that	might	occur	 in	distributed	systems,	aiming	to	

enhance	 performance,	 scalability,	 reliability,	 security,	 mobility,	 quality	 of	 service	 (QoS)	 and	

multicasting.	

In	 terms	of	performance,	using	a	middleware	 it	 is	 supposed	 to	 reduce	 the	 latency	and	data	

transfer	rates.	Regarding	scalability,	if	the	systems	demands,	it	should	be	possible	to	add	any	

kind	of	nodes	to	the	system,	without	having	problems	with	integration.	In	this	kind	of	systems	

where	thousands	of	messages	may	be	exchanged	between	applications,	there	is	a	need	to	make	

sure	 that	 those	 messages	 arrive	 and	 in	 the	 correct	 order	 –	 reliability	 –	 and	 middleware	

technologies	aim	to	increase	it.	

Security	 is	 always	 a	 subject	 of	 great	 importance	 in	 distributed	 systems,	 maintaining	 the	

consistency	 and	 privacy	 of	 the	 data	 exchanged.	 There	 are	 ways	 to	 ensure	 security	 using	

firewalls,	encryption,	Virtual	Private	Networks	(VPNs)	which	already	provides	encryption.	

Another	issue	is	the	possibility	to	move	applications	from	one	place	to	another	without	stopping	

the	application	and	middleware	technologies	due	to	its	capability	of	replication	of	nodes,	tries	

to	solve	this	problem.	In	large-scale	distributed	systems,	applications	have	different	demands,	

which	means	that	must	be	a	way	to	guarantee	that	the	overall	system	fits	their	needs.	

3	Distributed	Systems	Middleware	

26	

At	last,	but	not	least,	multicasting.	Multicasting	is	the	ability	that	a	system	provides	to	enable	

the	communication	from	one-to-many	or	many-to-many	applications	at	the	same	time	[60].	

There	are	several	middleware	solutions	for	the	integration	that	simplify	the	integration	of	larger	

distributed	systems,	such	as	Remote	Procedure	Call	(RPC)	oriented	middleware,	Transaction-

oriented	 middleware	 (TOM),	 Object-Oriented/Component	 middleware	 (OOCM)	 and	 finally	

Message-Oriented	middleware	[32].	

Figure	13	presents	a	set	of	middleware	types.	

	

Figure	13	-	Middleware	Types	

A	Remote	Procedure	Call	oriented	middleware	is	characterized	by	a	set	of	functionalities	and	

infrastructures	that	enables	the	invocation,	in	a	synchronous	way,	of	procedures	from	remote	

systems.	 In	 cases	 where	 this	 type	 of	 middleware	 is	 used,	 most	 of	 the	 times	 client-server	

architectures,	any	system	makes	a	call	to	a	procedure	in	another	remote	system	and	waits	for	

the	 answer	 (synchronous	 communication)	 [32].	 It	 is	 possible	 though,	 to	 develop	 a	 multi-

threaded	system	to	simulate	an	asynchronous	communication,	however	this	kind	of	systems	

tend	 to	make	more	 difficult	 to	 systems	 to	 scale	 and	 usually	 presents	 a	 low-fault	 tolerance	

capability	[61].	

Figure	14	shows	two	examples	of	a	RPC	oriented	middleware	architectures.	

	

Figure	14	-	Remote	Procedure	Call	Oriented	Middleware	

In	distributed	systems	where	 it	 is	needed	to	provide	a	reliable	transaction	of	operations,	 for	

example	in	cases	in	which	databases	are	a	central	piece	of	the	architecture,	the	Transaction-

Middleware	for	Large-scale	Distributed	Systems	

27	

oriented	middleware	(TOM)	fits	perfectly	[32].	Comparing	to	the	RPC	oriented	middleware,	the	

TOM	 provides	 not	 only	 synchronous,	 but	 also	 an	 asynchronous	 communication	 between	

systems,	facilitating	the	integration	of	any	system	with	database	management	systems	[32].	

However,	 Transaction-oriented	middleware	due	 to	excessive	 control	 and	 redundancy	of	 the	

data	exchange,	to	ensure	safe	operations,	it	has	issues	regarding	scalability	both	in	the	volumes	

of	data	exchange	and	the	number	of	interaction	applications.	

Figure	15	shows	an	example	of	a	Transaction-Oriented	middleware.	

	

Figure	15	-	Transaction-Oriented	Middleware	

The	Object-Oriented	or	Component	middleware	 is	a	 flexible	type	of	middleware	that	can	be	

described	as	an	evolution	of	the	RPC	model,	extending	the	RPC	features	and	adding	some	new	

features	 based	 on	 the	 object-oriented	 programming	 paradigm,	 such	 as	 object	 references,	

inheritance	 or	 exceptions	 [32].	 It	 uses	 a	 synchronous	 communication	 though,	 and	 lacks	 of	

performance	when	used	in	some	cases	like	event-based	system.	

Figure	16	depicts	an	example	of	an	Object-Oriented/Component	middleware	architecture.	

	

Figure	16	-	Object-Oriented/Component	Middleware	

Finally,	a	Message-oriented	middleware	(MOM)	is	essentially	a	type	of	middleware	that	allows	

the	 exchange	 of	messages	 between	 applications	 in	 a	 distributed	 system	 [32].	 According	 to	

Edward	 Curry,	 a	 MOM	 can	 be	 defined	 as	 “any	 middleware	 infrastructure	 that	 provides	

messaging	capabilities”	[62].		

Figure	17	depicts	an	example	of	a	Message-Oriented	Middleware	architecture.	

3	Distributed	Systems	Middleware	

28	

	

Figure	17	-	Message-Oriented	Middleware	

In	a	MOM	system,	each	client	is	able	to	send	or	receive	message	other	clients	using	one	or	more	

servers	 that	 act	 as	 communication	 intermediaries	 and	 route	 message	 from	 one	 client	 to	

another.	Generally,	a	MOM	system	works	like	a	peer-to-peer	relationship	between	the	clients	

in	a	synchronous	or	asynchronous	way.	One	of	the	most	important	characteristics	of	this	type	

of	middleware	is	that	it	provides	that	in	any	system,	a	client	may	be	changed	without	affecting	

other	clients/systems,	due	to	its	loose	coupling	among	applications	[62].	

Comparing	 to	 the	 types	 of	 middleware	 describe	 above,	 a	 Message-oriented	 middleware	

provides	both	synchronous	and	asynchronous	communication	mechanisms.	Other	features	like	

data	transformation	of	message	contents	to	fit	the	receiving	application,	parallel	processing	of	

messages	 and	 the	 support	 of	 several	 levels	 of	 priority	 are	 also	 provided	 by	 the	 type	 of	

middleware	[32].	

To	simplify	the	 integration	of	 larger	distributed	systems,	message-oriented	middleware,	also	

known	 as	 MOMs,	 became	 a	 central	 piece	 of	 this	 architectures	 taking	 advantage	 of	 an	

asynchronous	way	of	communication,	providing	at	the	same	time	a	reliable,	scalable	and	robust	

implementation,	making	it	an	excellent	approach	for	several	types	of	systems.	

Message-oriented	 middleware	 support	 more	 than	 one	 communication	 paradigms,	 as	 it	 is	

depicted	in	Figure	13.	It	supports	paradigms	such	as	Message	Passing,	Message	Queuing	and	

Publish-Subscribe.	

The	Message	Passing	paradigm	allows	the	direct	 interaction	between	applications	through	a	

communication	 channel.	 The	 setup	and	 configuration	of	 this	 channel	 is	 responsibility	of	 the	

MOM,	however	it	does	not	hides	each	client	identity,	since	the	each	client	is	defined	explicitly	

[32].	

Another	paradigm	supported	by	a	MOM	is	Message	Queuing.	In	this	case,	the	communication	

is	made	through	the	use	of	message	queues.	Once	again,	the	MOM	is	responsible	for	facilitate	

the	 creation,	 access	 and	management	 of	 queues.	Message	 queues	 are	 the	 entities	 that	 are	

Middleware	for	Large-scale	Distributed	Systems	

29	

responsible	for	receive	and	dispatch	messages	to	all	clients	that	are	subscribe	to	it.	The	dispatch	

of	messages	 is	made	in	a	First	 in	First	Out	(FIFO)	manner	[32].	Message	loss	 in	the	system	is	

prevented	through	the	use	of	message	storage	in	queues	[62].	

At	 last,	Publish-Subscribe	is	another	paradigm	supported	by	a	Message-oriented	middleware	

and	it	is	an	extension	of	the	Message	Queuing	paradigm.	In	event-based	systems,	this	paradigm	

defines	that	a	message	is	treated	as	an	event	that	is	exchanged	between	clients,	being	published	

by	 some	clients	and	 received	by	other	clients	 that	are	eventually	 subscribed	 to	 that	 type	of	

event	[32].	It	can	have	multiple	configurations,	depending	on	the	context	where	the	system	is	

inserted:	topic-oriented;	content-oriented;	and	data-oriented.	

If	a	client	wants	to	receive	all	messages	exchanged,	it	can	subscribe	to	a	topic	(message	queue)	

receiving	all	messages	received	in	that	queue	–	topic-oriented.	If	a	client	wants	to	receive	only	

some	 types	 of	 messages,	 a	 filtering	 mechanism	 can	 be	 applied	 to	 the	 topic-oriented	

configuration,	providing	message	inspection	and	delivering	of	only	the	messages	that	match	the	

type	of	messages	the	client	needs	–	content-oriented.	Finally,	data-oriented	interaction	is	the	

configuration	where	data	 structures	are	 shared	among	clients	and	whenever	a	 structured	 is	

changed,	the	new	structured	is	sent	(published)	to	all	clients	subscribed	to	it	[32].	

In	a	Publish-Subscribe	paradigm,	a	client	that	publishes	messages	(publisher)	 is	not	aware	of	

the	clients	that	will	receive	messages	(consumers)	through	subscriptions.	In	a	system	using	a	

Publish-Subscribe	paradigm	within	a	Message-oriented	middleware	is	possible	to	achieve	a	high	

decoupled	architecture	since	the	clients	do	not	need	to	know	where	and	who	are	the	other	

clients	 It	 interacts	with	 (space	decoupling),	 if	clients	are	available	or	 receive	messages	 (time	

decoupling)	and	in	terms	of	synchronization,	it	allows	that	subscribers	might	be	notified	when	

message	are	ready	(synchronization	decoupling)	[32].	

There	 are	 several	 protocols	 that	may	be	used	 to	 implement	Message-oriented	middleware,	

however	only	the	Advanced	Message	Queuing	Protocol	(AMQP)	and	the	Extensible	Messaging	

and	 Presence	 Protocol	 (XMPP)	 are	 described	 in	 detail,	 due	 to	 this	 thesis	 context.	 A	 brief	

description	of	the	Data	Distribution	Service	is	also	given	for	context	purposes.	

Other	protocols	however,	such	as	the	proprietary	IBM	protocol	for	the	WebSphere	MQ	(IBM)	

[63],	the	Simple	(or	Streaming)	Text	Oriented	Messaging	Protocol	(STOMP)	[64]	or	the	Message	

Queue	Telemetry	Transport	(MQTT)	even	if	this	is	an	example	of	a	machine-to-machine	(M2M)	

protocol	[65],	could	also	be	described	in	this	section.	

3.1 Advanced	Message	Queueing	Protocol	(AMQP)	

The	Advanced	Message	Queueing	Protocol	(AMQP)	is	an	open	standard	application	layer,	which	

allows	messages	exchange	between	applications	or	organizations.	This	means	that	AMQP	is	a	

protocol	for	message-oriented	middleware	(MOM).	

3	Distributed	Systems	Middleware	

30	

This	section	was	based	in	the	documentation	of	the	AMQP	protocol	specification	provided	in	

RabbitMQ	official	website	[66],	 the	guide	provided	by	Michael	Klishin	and	Chris	Duncan	[67]	

and	the	Alvaro	Videla	and	Jason	J.W.	Williams	book	entitled	“RabbitMQ	In	Action	–	Distributed	

Message	for	Everyone”	[68].	

Since	 the	 1970s,	 there	 was	 an	 effort	 to	 provide	 solutions	 to	 solve	 the	 integration	 of	

incompatible	systems.	Messaging	solutions	like	the	IBM	WebSphere	were	extremely	expensive	

and	for	that	reason	it	was	not	the	perfect	solution.	Furthermore,	vendors	started	to	create	their	

own	protocols,	which	resulted	making	even	more	difficult	to	integrate	those	systems.	

Taking	these	issues	into	account,	AMQP	was	designed	to	be	an	open	standard	for	messaging	

middleware	and	to	enable	the	interoperability	among	several	technologies	and	platforms.	

The	most	 important	units	of	 this	protocol	are	 the	message	brokers.	Message	brokers	act	as	

bridge	between	two	applications,	receiving	messages	from	producers	(applications	that	send	

messages	 to	 the	broker)	 and	 routing	 those	 received	messages	 to	 the	 correct	 consumers	 (or	

applications	that	receive	and	handle	publishers’	messages).	

The	 AMQP	 protocol	 was	 used	 to	 act	 as	 the	 message	 bus	 to	 coordinate	 and	 enable	 the	

communication	 between	 all	 the	 components	 of	 the	 ENCOURAGE	 Project	 architecture.	 The	

advantages	 that	 this	protocol	provides	are	explained	 in	more	detail	 in	Section	4	Design	and	

Implementation	of	Components	on	the	ENCOURAGE	Architecture.	

The	 AMQP	 protocol	 consists	 of	 several	 entities,	 such	 as	 producers,	 consumers,	 exchanges,	

bindings	 and	queues.	 Each	entity	of	 the	architecture	plays	 a	different	 role	 and	when	acting	

together	 as	 one,	 enables	 the	 communication	 and	 cooperation	 between	 two	 or	 more	

applications.	Producers	are	applications	that	are	compliant	with	the	protocol,	and	that	publish	

messages	into	the	broker.	Messages	are	then	published	to	an	exchange	in	the	broker.	

The	exchanges	are	responsible	for	the	delivery	or	routing	of	copies	of	the	messages	to	queues,	

received	from	the	publishers.	The	routing	of	messages	from	the	exchanges	to	queues	follows	

some	pre-defined	rules,	called	bindings.	A	binding	is	the	rule	that	defines	the	connection	of	a	

queue	with	a	specific	exchange.	At	last,	queues	are	the	storage	elements	of	the	architecture,	

with	the	capability	of	storing	up	to	millions	of	messages	at	the	same	time.	

Messages	may	carry	several	types	of	attributes	as	metadata	in	which	some	of	the	attributes	can	

be	used	by	the	broker	for	routing	purposes,	however	the	content	of	the	message	is	completely	

ignored	by	 the	broker	and	 can	only	be	used	by	applications	 that	 received	 the	message.	 For	

instance,	a	message	may	be	defined	as	persistent	or	not,	which	means	that	if	the	message	is	

persistent,	and	is	published	into	a	persistent	exchange	and	is	routed	to	a	persistent	queue,	the	

message	will	be	store	in	disk,	otherwise	the	message	will	be	only	in	memory	and	will	not	be	

recovered	if	the	message	broker	fails.	

To	ensure	that	messages	are	exchanged	even	if	the	network	where	the	broker	relies	fails,	AMQP	

provides	message	 acknowledgements	 techniques.	When	 a	 consumer	 receives	 a	message,	 it	

Middleware	for	Large-scale	Distributed	Systems	

31	

automatically	notifies	the	broker	that	it	received	the	message,	however	this	notification	might	

be	sent	only	after	the	message	processing,	to	avoid	acknowledgements	of	messages	that	are,	

for	instance,	malformed.	Since	the	broker	waits	for	the	confirmation	from	the	consumer,	the	

message	remains	in	the	queue	until	the	consumer	notifies	the	broker	for	that	messages	or	a	

group	of	messages.	

After	the	notification,	the	broker	will	remove	completely	the	message	from	the	queue.	One	of	

the	goals	of	AMQP	is	to	provide	fault	tolerance	techniques,	so	if	a	message	cannot	be	routed	to	

any	 queue,	 for	whatever	 reason,	 publishers	when	 are	 publishing	messages,	may	 pass	 some	

specific	parameters,	choosing	if	the	non-routed	message	is	return	to	the	publisher,	completely	

removed	or,	using	some	extensions,	order	the	broker	to	send	that	message	to	a	“dead	letter	

queue”.	

Figure	18	presents	a	basic	idea	of	how	the	AMQP	protocol	works	as	bridging	applications,	using	

the	internal	entities	it	is	composed	by.	

	

Figure	18	-	Advanced	Message	Queueing	Protocol	Architecture	

AMQP	Consumers	

The	AMQP	consumers	are	the	applications	that	consume	messages	from	queues.	There	are	two	

types	of	consumption	of	messages,	either	by	pushing	messages	or	fetching	messages	as	 it	 is	

needed.	A	consumer	when	feels	the	need	to	consume	messages	from	a	specific	queue,	it	can	

subscribe	to	that	queue	and	from	that	moment,	every	message	that	arrives	to	that	exchange	

will	be	routed	to	the	consumer.	

AMQP	Producers	

Similar	to	AMQP	Consumers,	the	AMQP	Producers	are	applications	that	publish	messages	into	

the	broker,	more	precisely	into	exchanges.	On	the	message	creation,	the	publisher	might	define	

a	set	of	metadata	attributes	in	order	to	change	the	behavior	of	the	broker.	

AMQP	Connections	

The	AMQP	protocol	relies	on	TCP	IP	connections	to	ensure	the	reliable	delivery	of	messages.	

Due	to	the	using	as	 the	underlying	connections	the	TCP	 IP,	 it	 is	supposed	to	have	 long-lived	

connections.	Since	AMQP	aims	to	provide	security,	all	connections	use	authentication	and	can	

be	also	protected	with	TLS	(SSL)	encryption.	In	cases	when	an	application	needs	no	more	to	be	

3	Distributed	Systems	Middleware	

32	

connected,	 it	 should	 disconnect	 gracefully,	 avoiding	 the	 abruptly	 interruption	 of	 the	 TCP	

connection.		

AMQP	Channels	

AMQP	channels	function	in	the	protocol	may	be	defined	as	the	unit	that	carries	message	from	

and	to	clients	to	the	broker.	There	are	cases	when	applications	need	more	than	one	connection	

with	 the	 broker	 and	 to	 avoid	 having	many	 connections	 kept	 alive	 at	 the	 same	 time,	 AMQP	

channels	are	as	“lightweight	connections	that	share	a	single	TCP	connection”,	meaning	that	an	

AMQP	connection	might	be	composed	by	several	AMQP	channels	at	the	same	time.	Doing	that,	

only	one	connection	needs	to	be	kept	alive	whilst	each	channel	is	able	to	share	that	connection	

and	perform	different	tasks	at	the	same	time.	Each	channels	is	set	an	identifier	that	can	be	used	

by	applications	to	keep	track	of	what	is	happening	on	a	specific	channel	or	what	callbacks	to	

invoke.	

Figure	19	graphically	represents	how	an	AMQP	Connection	can	be,	embracing	multiple	AMQP	

Channels	at	a	time.	

	

Figure	19	-	AMQP	Connection	with	multiple	AMQP	Channels	[68]	

AMQP	Virtual	Hosts	(vHosts)	

The	concept	of	virtualization	is	also	present	and	is	provided	by	the	AMQP	protocol.	To	enable	

the	 separation	 of	 subsystems,	 AMQP	 provides	 a	 feature	 named	 virtual	 hosts.	 This	 features	

allows	 the	 creation	 of	 multiple	 subsystems	 embracing	 different	 groups	 of	 users,	 different	

exchanges	and	different	queues.	To	be	more	precise,	creating	multiple	subsystems	means	that	

a	broker	can	be	composed	by	several	(sub)brokers.	

AMQP	Exchanges	and	Exchanges	Types	

In	 the	 AMQP	 protocol,	 several	 Exchanges	 are	 defined	 to	 accomplish	 multiple	 purposes.	

Exchanges	are	the	entities	to	where	the	messages	are	published	by	clients	(publishers).	Once	

messages	are	published	into	Exchanges,	they	are	routed	to	zero	or	more	queues	depending	on	

the	 type	of	 Exchange	or	 rules	 applied	when	 a	 queue	 is	 bound	 to	 an	 Exchange.	 There	 some	

broker	 exclusive	 Exchanges	 that	 are	 identified	 by	 a	 prefix	 in	 the	 name	 of	 the	 Exchange,	 as	

“amq.”.	The	types	of	exchanges	are:	Default	Exchange;	Direct	Exchange;	Fanout	Exchange;	Topic	

Exchange;	and	Headers	Exchange.	

Middleware	for	Large-scale	Distributed	Systems	

33	

There	 are	 a	 number	of	 attributes	 that	 can	be	defined	when	 an	 Exchange	 is	 declared	 in	 the	

broker,	such	as	the	name	of	the	Exchange,	the	durability	that	defines	if	the	Exchange	will	survive	

when	the	broker	is	restarted	(if	not	they	are	transient	Exchanges),	auto-delete	to	determine	if	

the	Exchange	is	deleted	immediately	if	no	other	queue	need	it,	and	other	arguments	that	are	

broker-dependent.	

A	 Default	 Exchange	 basically	 is	 a	 Direct	 Exchange	 and	 it	 has	 no	 name.	 This	 Exchange	 is	

automatically	declared	by	the	broker	and	is	very	useful	for	basic	applications	since	every	time	

an	automatically	queue	is	created,	it	will	be	bound	to	that	Exchange	and	the	routing	key	will	be	

the	same	as	the	queue	name.	

A	Direct	Exchange	dispatches	all	messages	to	queues	based	on	message	routing	keys.	When	a	

queue	is	bound	to	a	Direct	Exchange	with	a	certain	routing	key,	every	time	a	message	arrives	

that	Exchange	with	a	rouging	key	equal	to	the	one	used	for	the	bind,	the	message	is	immediately	

routed.	 This	 kind	 if	 Exchanges	 are	mostly	 used	 for	 unicast	 situations	 but	 it	 can	 be	 used	 to	

multicast	though.	If	several	consumers	are	connected	to	the	Exchange	with	the	same	routing	

key,	messages	dispatch	is	load	balanced	in	a	round-robin	manner.	

Figure	20	represents	how	a	Direct	Exchange	works.	

	

Figure	20	-	AMQP	Direct	Exchange	

In	a	Fanout	Exchange,	a	copy	of	all	messages	that	are	published	into	the	Exchange	are	routed	

to	every	queue	that	is	bound	to	that	queue,	independently	of	the	routing	key	used.	This	type	of	

Exchange	is	widely	used	to	broadcast	messages	to	multiple	subscribers,	for	example	in	cases	of	

Massive	Multiplayer	Online	Games	(MMOGs).	With	Fanout	Exchanges,	events	or	configurations	

might	be	delivered	to	multiple	systems	in	near	real-time	in	a	variety	of	large-scale	distributed	

systems.	This	type	of	Exchange	is	represented	in	Figure	21.	

3	Distributed	Systems	Middleware	

34	

	

Figure	21	-	AMQP	Fanout	Exchange	

The	Topic	Exchange	is	an	Exchange	that	provides	features	to	filter	messages	that	are	published	

into	the	Exchange.	This	type	of	Exchange	is	used	to	routes	messages	to	one	or	more	queues,	

depending	on	the	routing	key	that	was	used	to	bind	the	queue	to	the	Exchange.	Whenever	a	

message	 is	 published	 into	 the	 Exchange,	 it	 will	 compare	 the	message	 routing	 key	with	 the	

routing	keys	used	to	bind	queues	to	the	Exchange	and	if	they	match	the	message	is	immediately	

routed	to	one	or	more	queues.	It	can	be	used	for	orchestrate	different	types	of	services	in	the	

cloud	or	the	parallel	processing	by	workers	that	handle	certain	tasks.	

Figure	22	represents	how	a	Topic	Exchange	might	work	within	the	AMQP	Protocol.	

	

Figure	22	-	AMQP	Topic	Exchange	

Finally,	the	Headers	Exchange	may	be	described	as	a	Direct	Exchange	with	extra	features.	While	

Direct	Exchanges	route	messages	based	on	a	routing	key,	in	which	a	routing	key	is	only	a	string,	

the	Headers	Exchange	is	able	to	route	messages	based	on	the	attributes	present	in	the	headers	

of	the	message.	The	headers	might	be	strings	as	well,	but	they	can	be	integers	or	in	some	cases	

hashes	or	dictionaries.	

Middleware	for	Large-scale	Distributed	Systems	

35	

AMQP	Queues	

In	AMQP,	Queues	are	the	entities	that	are	responsible	for	storing	and	keep	messages	until	they	

are	consumed	by	other	applications.	As	Exchanges,	Queues	have	also	attributes	 that	can	be	

defined	 when	 they	 are	 declared.	 Some	 of	 the	 attributes	 are	 common	 the	 attributes	 of	

Exchanges.	Similarly	to	Exchanges,	there	are	broker	exclusive	Queues	that	are	identified	by	a	

prefix	in	the	Queue	name	as	“amq.”.	

Each	 Queue	 can	 be	 declared	 with	 a	 name	 that	 identifies	 the	 Queue	 in	 the	 broker.	 If	 an	

application	does	not	set	the	name	attribute,	the	broker	will	randomly	give	a	name	to	the	Queue.	

A	durable	attribute	also	exists	to	define	if	the	Queue	persists	or	not	(transient	Queues)	after	

broker	 restarts.	An	auto-delete	 to	 specify	 if	 the	Queue	 is	deleted	 immediately	after	 the	 last	

consumer	disconnects.	Queues	have	an	extra	attribute	that	can	be	defined,	the	exclusive,	which	

means	that	the	Queue	can	only	be	used	by	one	consumer	(usually	by	the	one	that	declared	it)	

and	it	is	immediately	deleted	after	that	consumer	disconnects.	

An	important	question	is	that	if	both	an	Exchange	and	a	Queue	are	marked	as	durable,	in	which	

they	survive	to	broker	restarts,	that	does	not	mean	that	messages	will	also	survive	that	restart.	

In	fact,	for	a	message	survive	a	broker	restart,	all	three	entities	must	be	defined	as	durable,	the	

Exchange,	the	Queue	and	the	message	itself.	

AMQP	Bindings	

The	Bindings	were	approached	when	Exchange	types	were	described	and	are	the	rules	that	are	

used	as	part	of	the	routing	process	made	by	Exchanges.	Bindings	can	be	viewed	as	the	filters	

that	helps	select	which	messages	an	application	will	receive	in	a	specific	Queue.	This	feature	

allows	the	definition	of	complex	situations	that	would	be	harder	to	implement	if	publishers	sent	

messages	directly	to	Queues.	

AMQP	Message	Attributes	and	Payload	

Messages	 are	 the	 entities	 that	 are	 exchange	 between	 applications	 and	 may	 hold	 a	 set	 of	

attributes	as	well.	Some	attributes	of	messages	are:	Content-type	and	Content-encoding	that	

are	commonly	used	to	inform	consumers	of	the	message	encoding	(JSON,	XML,	etc.);	Routing-

key;	 Delivery	 mode	 to	 set	 if	 the	 message	 is	 persistent	 or	 not;	 Message	 priority	 to	 enable	

prioritization	 of	message	 dispatching;	Message	 publishing	 timestamp	 for	 example	 to	 define	

when	the	message	was	created;	Expiration	period	to	determine	whenever	a	message	should	be	

dropped;	and	a	Publisher	application	id	which	identified	the	entity	the	sent	the	message.	

Messages	that	are	defined	as	persistent	may	lead	to	a	decrease	of	performance	on	the	system	

since	every	persistent	message	 is	store	 in	the	disk.	 It	 is	 important	to	refer	that	a	message	 is	

stored	 in	 the	disk	only	 if	 a	 combination	of	durable	Exchange,	durable	Queue	and	Persistent	

message	is	verified.	

3	Distributed	Systems	Middleware	

36	

AMQP	Broker	Implementations	

The	AMQP	protocol	is	fully	implemented	by	the	known	broker	RabbitMQ.	Another	broker	that	

implements	the	protocol	is	the	Qpid	Apache	Project	which	aims	to	provide	features	like	multi-

platform	support,	message	queuing,	fast	routing	and	distribution	of	messages,	clustering	and	

federation.	Although	Qpid	seems	to	be	quite	a	good	choice,	only	RabbitMQ	is	approached	since	

it	was	the	broker	used	in	the	ENCOURAGE	Project,	described	in	detail	in	Section	3.	

• RabbitMQ	Broker	

The	 RabbitMQ	 is	 a	 message	 broker	 software	 that	 aims	 to	 provide	 robust	 messaging	 for	

applications	and	is	was	developed	to	be	easy	to	use	and	fit	the	purpose	of	being	could	scale	and	

multi-platform.	 It	 is	 an	open	 source	 software	under	 the	Mozilla	Public	 License.	RabbitMQ	 is	

written	in	Erlang	which	“is	a	programming	language	used	to	build	massively	scalable	soft	real-

time	systems	with	requirements	on	high	availability.	Some	of	its	uses	are	in	telecoms,	banking,	

e-commerce,	computer	telephony	and	instant	messaging.	Erlang's	runtime	system	has	built-in	

support	for	concurrency,	distribution	and	fault	tolerance”	[69].	

The	 RabbitMQ	broker	 is	 the	 leading	 implementation	 of	 the	 AMQP	 protocol,	 however	 using	

some	adapters	it	supports	several	other	protocols,	such	as	XMPP,	SMTP,	STOMP	or	HTTP.	It	is	

also	 important	 to	note	 that	RabbitMQ	 is	widely	 supported	by	a	 fully	active	 community	 that	

helps	to	improve	and	evolve	the	broker.	

3.2 Extensible	Messaging	Presence	Protocol	(XMPP)	

The	Extensible	Messaging	and	Presence	Protocol	(XMPP)	[70]	is	a	protocol	for	near-real-time	

messaging,	 presence,	 and	 request-response	 services	 [71]	 that	was	 specified	 by	 the	 Internet	

Engineering	 Task	 Force	 (IEFT)	 [72].	 Originally	 it	 was	 developed	 in	 the	 Jabber	 open	 source	

community.	The	XMPP	uses	the	Extensible	Markup	Language	(XML)	as	the	base	format	for	the	

message	exchange.	Essentially,	XMPP	 is	a	protocol	 that	aims	 to	provide	an	 infrastructure	 to	

allow	the	exchange	of	small	pieces	of	XML	among	entities	in	close	real-time	[73].	

This	section	was	mostly	based	in	the	documentation	of	the	XMPP	protocol	specification	[71],	

and	 two	 books	 “XMPP:	 The	 Definitive	 Guide	 –	 Building	 RealTime	 Applications	 with	 Jabber	

Technologies”	[73]	and	“Professional	XMPP	Programming	with	JavaScript	and	jQuery”	[74].	

Due	 to	 XMPP	 provided	 features,	 it	 has	 been	 used	 to	 build	 large-scale	 distributed	 systems,	

Internet	gaming	platforms	(i.e.	MMOGs),	search	engines	and	video	or	audio	conferences.	The	

huge	 usage	 of	 XMPP	 in	 a	 large	 number	 of	 applications	 that	 are	 created	 or	 being	 created	

demonstrates	how	flexible,	versatile	and	powerful	this	protocol	can	be	[74].	

The	 XMPP	 protocol	 is	 for	 Message-oriented	 middleware	 systems,	 like	 the	 AMQP,	 and	 is	

categorized	as	a	message	passing	paradigm,	since	the	identity	of	clients	are	always	known	by	

other	clients.	In	fact,	even	if	XMPP	is	used	for	peer-to-peer,	or	client-server	architectures,	it	can	

Middleware	for	Large-scale	Distributed	Systems	

37	

be	extended	with	new	features	through	the	definition	of	XMPP	Extensions	(XEPs),	which	are	

needed	to	enable	XMPP	to	be	used	in	very	large	number	of	different	scenarios,	such	as	multi-

user	chat	rooms	(XEP-0045	[75])	or	the	publish-subscribe	(XEP-0060	[76])	paradigm.	

Several	XEPs	were	defined	and	can	be	used	to	extend	new	features	to	the	XMPP	protocol,	for	

example	to	used	HTTP	over	XMPP,	XMPP	over	Bosh,	Service	Discovery	and	a	set	of	extensions	

to	support	Internet	of	Things	(IoT)	scenarios	[77].	

The	 XMPP	 is	 the	 protocol	 used	 in	 the	 Arrowhead	 Project	 that	will	 be	 discussed	 in	 detail	 in	

Section	5	Design	and	Implementation	of	Components	of	the	Arrowhead	Project,	to	provide	an	

infrastructure	 that	 is	 flexible,	 highly	 scalable,	 robust	 and	 capable	 of	 handling	 a	multicasting	

environment,	where	multiple	clients	are	able	to	communicate	with	multiple	clients	at	the	same	

time.	In	the	case	of	the	Arrowhead	Project,	a	specific	XEP	(XEP-0332:	HTTP	over	XMPP	transport	

[78])	was	implemented	to	support	an	HTTP	over	XMPP	[78]	communication,	providing	a	similar	

Representational	 State	 Transfer	 (REST)	 communication	 between	 clients,	 over	 the	 XMPP	

protocol.	

The	 XMPP	protocol	 usually	 is	 used	 for	 scenarios	 of	 decentralized	 client-server	 architectures	

[73],	such	as	the	World	Wide	Web	or	email	services,	however	it	can	be	used	for	peer-to-peer	

communication	between	two	servers	or	two	clients.	The	usage	of	XML	on	exchanged	messages	

in	XMPP	derives	from	the	large	knowledge	that	developers	have	in	this	message	format	and	the	

interoperability	that	 it	allows	since	most	applications	use	XML	as	the	base	format	[74].	Each	

client	in	uniquely	identified	by	a	Jabber	Identification	(JID)	[32].	

The	communication	in	an	XMPP-based	architecture	is	usually	composed	by	clients	and	servers	

and	 is	made	possible	through	the	use	of	streams.	 In	a	normal	communication,	between	two	

clients,	there	are	two	streams,	one	for	each	direction	of	the	communication.	Messages	are	then	

passed	through	steams,	the	XMPP	Stanzas	that	carry	the	content	of	the	message	from	one	client	

to	another	or	to	a	server	[32]	[74].	

	

Figure	23	-	XMPP	Network	Example	

Figure	23	shows	an	example	of	how	a	communication	is	established	between	clients	and	servers	

in	the	XMPP	Protocol.	 In	this	figure	each	client	 is	connected	to	a	server	that	 is	consequently	

connected	with	other	servers.	

3	Distributed	Systems	Middleware	

38	

When	one	client	 intents	to	communicate	with	another	client,	 first	 it	sends	a	message	to	the	

server	it	is	connected	to.	The	server	will	then	take	care	of	the	message	routing	to	the	correct	

client.	To	ensure	security,	a	server	after	receiving	a	message	from	one	client,	finds	the	correct	

server	where	 the	other	 client	 that	will	 receive	 the	message,	 is	 connected.	Once	 it	 finds	 the	

server,	 the	 server	will	 send	 the	message	 to	 the	 correct	 server,	which	will	 then	 forward	 the	

message	to	the	final	client.	

Given	the	fact	that	each	server	communicates	directly	to	the	correct	server	where	the	client	

which	 will	 receive	 the	 message,	 it	 ensure	 security	 in	 communications	 since	 it	 avoids,	 for	

example,	spamming	that	might	occur	if	the	message	was	forward	by	other	intermediary	servers	

[74].	

The	XMPP	protocol	also	provides	security	and	authentication	mechanisms,	using	the	encryption	

of	 messages	 through	 the	 usage	 of	 the	 Transport	 Layer	 Security	 (TLS)	 and	 the	 Simple	

Authentication	and	Security	Layer	(SASL),	respectively	[74].	

The	XMPP	network	

The	XMPP	network	can	be	described	as	the	combination	of	different	actors,	namely	servers,	

clients,	components	and	server	plugins.	Each	one	of	this	actors	may	be	created	and	modified	

by	developers	[74].	

• Servers	

Servers	are	the	entities	present	in	an	XMPP	network	that	are	responsible	for	routing	stanzas	

from	one	client	to	another,	not	only	when	clients	are	connected	to	the	same	server,	but	also	

when	clients	are	connected	to	servers	distributed	[73]	[74].	

A	group	of	servers	that	communicate	with	each	other,	form	an	XMPP	network,	whilst	public	

XMPP	servers	that	are	interconnected	form	a	federated	XMPP	network.	There	are	several	public	

XMPP	servers	available	on	the	Internet,	in	which	nay	client	can	connect	[73]	[74].	

The	XMPP	servers	are	intended	to	allow	clients	to	connect	to	them,	although	it	is	possible	for	a	

developer	 to	 implement	 some	applications	or	 services	 that	use	 the	 server-to-server	 type	of	

communication	in	order	to	provide	a	more	improved	efficiency	in	communications,	reducing	

the	routing	overhead	on	the	server	[73]	[74].	

There	 are	 several	 implementations,	 or	 servers,	 of	 the	XMPP	protocol,	 such	 as	 the	eJabberd	

server,	the	Openfire	server	or	Tigase.	This	three	examples	of	server	implementations	are	open	

source	and	widely	used	over	the	Internet,	providing	most	of	the	XMPP	features.	They	can	be	

installed	and	executed	in	almost	every	platform,	from	Windows	to	Linux	or	even	Mac	OSX	[74].	

The	eJabberd	and	Openfire	servers	will	be	briefly	described	in	more	detail	further	in	this	section.	

• Clients	

Middleware	for	Large-scale	Distributed	Systems	

39	

Clients	in	an	XMPP	network	are	entities	that	can	connect	to	a	server	through	the	usage	of	the	

client-to-server	protocol.	This	clients	are	usually	applications,	such	as	instant	messaging,	or	in	

some	cases	automated	applications,	also	known	as	bots	 [74].	This	client	applications	usually	

connect	and	authenticate	to	servers	anywhere	that	are	responsible	for	handling	client	sessions	

or	the	roster	(entity	in	the	server	that	holds	information	of	who	is	available	in	a	friends	list,	in	

cases	of	instant	messaging	systems).	

• Components	

The	XMPP	components	are	entities	 that	can	be	 implemented	by	developers	 in	order	 to	add	

some	other	features	to	servers.	Components	also	connect	to	XMPP	servers,	but	it	does	not	need	

the	 full	 SASL	 authentication	 mechanism,	 using	 most	 of	 the	 times	 a	 simple	 password	 to	

authenticate	to	servers.	

Components	communication	with	servers	through	the	component	protocol	defined	in	the	XEP-

0114:	Jabber	Component	Protocol	[79].	This	entities	have	their	own	unique	identification	within	

the	server	and	are	viewed	externally	as	sub-servers.	

The	 Components	 can	 also	 be	 configured	 and	 implemented	 to	 route	 stanzas	 in	 the	 server,	

allowing	messaging	transformation	before	it	is	delivered	to	the	client	destination.	

• Plugins	

The	XMPP	servers	can	be	extended	not	only	by	Components,	but	also	by	other	entities,	 the	

Plugins.	 However,	 while	 Components	 are	 external	 applications	 that	 can	 speak	 the	 same	

protocol	of	the	servers,	Plugins	are	usually	written	in	the	same	programming	language	as	the	

server	and	since	they	run	inside	server	processes,	they	can	modify	the	behavior	or	the	server	

as	well	[73].	

Since	Plugins	do	not	need	to	communication	through	any	network	socket,	they	can	result,	when	

needed,	in	high	performant	solutions.	

The	XMPP	Addressing	

Since	 the	 communication	between	XMPP	 clients	 and	 servers	happens	over	 a	network,	 each	

client	needs	a	unique	identifier	that	can	be	used	to	locate	the	client	or	to	forward	a	stanza	to	

it.	This	unique	identifier	is	called	a	JabberID,	or	only	JID	[73].	

Usually	the	JID	is	composed	by	a	domain	for	servers,	and	a	pair	of	user	and	domain	for	clients.	

To	avoid	complex	identifiers,	XMPP	relies	on	the	Domain	Name	System	(DNS)	and	it	provides	

an	easy	way	to	identify	any	system	through	its	JID.	Follows	an	example	of	how	a	JID	is	composed:	

(1) For	servers:		 example.org	

(2) For	clients:			 user@example.org	

3	Distributed	Systems	Middleware	

40	

In	the	client	example,	it	represents	a	user	that	is	registered	in	the	server	“example.org”.	

The	XMPP	protocol	provides	another	interesting	feature	in	terms	of	addressing,	the	resources	

[73]	[74].	When	a	client	connects	to	an	XMPP	server,	it	can	provide	a	resource	or	the	server	will	

automatically	provide	a	random	one	based	on	that	particular	connection.	This	resource	can	be	

a	 normal	 string	 and	 it	 is	 attached	 to	 the	 end	 of	 the	 JID	 and	 it	 could	 be	 something	 like	 the	

following	example:	

(1) Client	connected	in	his	laptop:	 	 user@example.org/laptop	

(2) Client	connected	in	his	smartphone:	 user@example.org/smartphone	

This	kind	of	configuration	allows	the	applications	to	route	stanzas	to	different	devices	that	are	

connected	simultaneously.	With	 resources,	 connections	might	 represent	different	devices	 in	

different	locations,	which	means	that	users	can	be	categorized	by	capabilities,	presence.	A	great	

example	of	how	resources	can	be	useful	is	when	an	application	receives	notifications,	but	on	

laptops	does	not,	this	means	that	the	stanzas	regarding	notifications	were	only	routed	to	the	

connections	that	represent	mobile	devices.	

The	XMPP	Stanzas	

The	XMPP	Stanzas,	or	the	communication	primitives	of	XMPP	[73],	are	part	of	the	core	of	the	

XMPP	protocol,	and	can	be	of	several	types:	Message	Stanzas,	Presence	Stanzas	and	Info/Query	

(IQ)	Stanzas	 [74].	Each	XMPP	Stanza	 is	used	depending	on	 the	context	of	 the	application	or	

scenario.	

The	three	types	of	stanzas	share	a	set	of	attributes	that	have	the	same	meaning	when	used	in	

all	 of	 them:	 the	 “id”	 attribute	 to	 identify	 the	 stanza	 for	 distinguish	 messages;	 the	 “from”	

attribute	defines	the	address	of	the	client	which	sent	a	stanza;	the	“to”	attribute	defines	that	

address	of	 the	 client	destination,	 to	where	 the	message	 should	be	 forward;	 and	 the	 “type”	

attribute	defines	if	it	is	a	message,	presence	or	IQ	stanza	[74].	

• Message	Stanzas	

Message	Stanzas	are	used	for	the	normal	communication	between	two	entities	[74].	This	type	

of	stanzas	are	of	a	“fire-and-forget”	type,	which	means	that	when	an	entity	send	a	message	to	

another,	it	does	not	receive	any	information	to	acknowledge	if	the	message	was	received	or	not	

[73]	[74].	

Within	Message	Stanzas,	the	message	can	be	defined	as	a	“normal”	message	(by	default),	when	

a	single	message	expecting	or	not	acknowledge	is	sent,	as	a	“chat”	message,	when	the	message	

is	exchange	for	example	in	an	instant	messaging	chat	between	two	entities,	as	a	“groupchat”	if	

the	message	is	exchanged	within	the	context	of	a	multi-user	chat	room,	as	a	“headline”	message	

to	send	alerts	or	notifications	and	does	not	expect	a	reply	of	any	kind,	and	finally	as	an	“error”	

message,	if	any	error	occurs	after	sending	a	message	[73].	

Middleware	for	Large-scale	Distributed	Systems	

41	

The	content	of	a	Message	Stanza	is	inside	two	optional	XML	elements,	the	body	and	the	thread	

elements.	The	body	element	is	used	to	carry	the	actual	message	content	that	may	be	human-

readable,	 whilst	 the	 thread	 might	 be	 used	 to	 correlate	 messages	 like	 emails,	 being	 each	

different	 thread	 within	 a	 unique	 conversation	 [74].	 Follows	 an	 example	 of	 how	 an	 XMPP	

message	can	be.	

<message from=’cesar@isep.ipp.pt/office’

 to=’rui@homenetwork.pt’

 type=’chat’>

<body>Hi there, how are you?!</body>

<thread>4fd61b376fbc4950b9433f031a5595ab</thread>

</message>

• Presence	Stanzas	

The	 Presence	 Stanzas	 are	 the	 type	 of	 messages	 that	 allows	 the	 XMPP	 protocol	 to	 provide	

availability	features	to	applications.	Basically	this	type	of	messages	is	used	to	notify	or	inform	

other	 entities	 that	 it	 is	 available/online	 or	 not/offline.	 In	 some	 cases	 users	 can	 even	define	

custom	messages,	informing	other	entities	that	is,	for	example	away	or	listen	to	music	[74].	

Presence	 Stanzas	 can	 be	 of	 different	 types	 like	Message	 Stanzas:	Normal	 Presence	 Stanzas,	

Extending	Presence	stanzas,	Presence	Subscriptions	or	Directed	Presence.	Providing	different	

types	of	Presence	Stanzas,	the	XMPP	protocol	presents	itself	as	a	high	flexible	technology	for	

integrating	different	kinds	of	applications	[73]	[74].	

In	Normal	Presence	Stanzas	a	user	can	inform	the	server	that	it	is	available	or	not.	It	is	possible	

also	to	send	some	extra	elements	in	the	presence	message,	informing	if	it	is	available	but	is	not	

supposed	 to	 be	 disturbed	 and	 a	 status	 message	 to	 be	 displayed,	 if	 wanted,	 in	 the	 client’s	

destination	[74].	

The	Extending	Presence	Stanzas	are	used	to	add	some	other	extra	information	to	the	Normal	

Presence	Stanzas.	With	this	type	of	Stanzas	additional	information	might	be	sent,	for	example	

to	inform	what	music	the	client	is	listening	for,	and	it	can	be	used	to	display	that	information	to	

other	clients	in	chats	or	other	applications	[74].	

Another	type	of	Presence	Stanzas	are	the	Subscription	Presence	Stanzas.	This	type	of	Stanzas	

allows	 several	 configurations	 regarding	 availability	 of	 entities	 in	 the	 XMPP	 server.	 In	 cases	

where	 Presence	 Subscription	 is	 used,	 the	 server	 broadcasts	 the	 presence	 information	 of	 all	

contacts	 that	 have	 a	 subscription	 to	 a	 specific	 user.	 It	 is	 important	 to	 refer	 that	 those	

subscriptions	 and	 unidirectional,	 which	 means	 that	 if	 a	 user	 subscribes	 to	 another	 users’	

presence,	 only	 the	 user	 that	 requested	 the	 subscription	will	 receive	 information	 about	 the	

presence	of	the	other	user.	To	establish	a	bidirectional	subscription,	each	user	should	request	

the	presence	subscription	to	the	other	client	[73]	[74].	

Follows	some	examples	of	Presence	Stanzas.	The	first	example	shows	how	a	user	requests	the	

presence	subscription	to	another	user,	and	the	second	example	shows	the	message	received	

when	a	subscription	was	accepted	and	established.	The	third	example	shows	how	a	user	can	

3	Distributed	Systems	Middleware	

42	

notify	the	server	that	he	is	available	from	that	moment	and	the	fourth	example	shows	how	the	

user	performs	the	opposite	action,	informing	the	server	that	he	is	not	available	anymore.	The	

last	example	shows	how	a	user	informs	the	server	that	he	is	away	and	the	reason	for	being	away	

is	that	he	is	taking	a	bath	[73]	[74].	

<presence from=’cesar@isep.ipp.pt/office’

 to=’rui@homenetwork.pt’

 type=’subscribe’/>

<presence from=’rui@homenetwork.pt/home’

 to=’cesar@isep.ipp.pt/office’

 type=’subscribed’/>

<presence/>

<presence type=’unavailable’/>

<presence>

<show>away</show>

<status>Taking bath</status>

</presence>

At	last,	there	are	the	Directed	Presence	Stanzas.	In	this	kind	of	Stanzas,	are	like	normal	Presence	

Stanzas	but	 they	are	not	 sent	 to	 the	 server,	 they	are	 sent	directly	 to	another	user	or	entity	

instead.	This	type	of	Presence	Stanzas	might	be	useful	to	notify	other	entities	when	users	or	

applications	forget	to	notify	explicitly	other	entities	that	they	are	no	longer	available.	

• Info/Query	(IQ)	Stanzas	

Finally,	the	XMPP	protocol	provides	the	Info/Query	or	only	IQ	Stanzas.	This	type	of	Stanzas	is	

used	to	provide	an	infrastructure	for	a	request-response	type	of	communication,	similar	to	the	

HTTP	methods	GET,	POST	and	PUT	[74].	IQ	Stanzas	unlike	Message	Stanzas	can	contain	only	one	

payload	[74].	

The	IQ	Stanzas,	like	the	other	Stanzas	may	have	different	types:	“get”,	“set”,	“result”	or	“error”.	

An	IQ	Stanza	of	type	“get”	is	used	to	request	some	information,	and	the	“set”	type	is	used	to	

request	or	provide	some	information	[74].	The	“result”	and	“error”	types	are	responses	to	the	

“get”	 and	 “set”	 types.	 Whenever	 an	 IQ	 Stanza	 of	 type	 “get”	 or	 “set”	 is	 sent,	 it	 must	 be	

responded	with	another	IQ	Stanza	of	type	“result”	or	“error”	depending	on	the	result	of	the	

request	[73]	[74].	

Follows	an	example	of	how	an	IQ	Stanza	may	be	created	and	used	by	a	user	to	get	the	list	of	

contacts	it	has	on	his	roster,	sending	an	IQ	Stanza	of	type	“get”	to	the	server.	Then	the	server	

replies	with	the	list	of	contacts	in	the	roster.	

<iq from="cesar@isep.ipp.pt/office"

 id="rr82a1z7"

 to="cesar@isep.ipp.pt"

 type="get">

<query xmlns="jabber:iq:roster"/>

</iq>

Middleware	for	Large-scale	Distributed	Systems	

43	

<iq from="cesar@isep.ipp.pt"

 id="rr82a1z7"

 to="cesar@isep.ipp.pt/office"

 type="result">

<query xmlns="jabber:iq:roster">

<item jid="girlfriend@girlfriendhouse.pt"/>

<item jid="father@jobnetwork.pt"/>

<item jid="mother@homenetwork.pt"/>

<item jid="friend@friendnetwork.pt"/>

</query>

</iq>

	

XMPP	Broker	Implementations	

• ejabberd	

Ejabberd	is	an	open	source	Jabber/XMPP	server	and	it	is	the	most	used	implementation	of	the	

XMPP	protocol	[80]	under	the	GNU	General	Public	License	(GPLv2).	It	is	written	in	the	Erlang	

[69]	language	and	it	claims	to	be	a	stable,	massively	scalable	and	infinitely	extensible	server	for	

the	XMPP	protocol	that	can	be	used	for	several	different	scenarios,	such	as	mobile	messaging,	

social	networks,	massively	multiplayer	online	gaming,	among	many	others	[80].	

The	ejabberd	server	if	a	modern,	fault-tolerance	server,	manageable,	highly	versatile	and	very	

modular,	providing	almost	every	extension	of	 the	XMPP	protocol.	Ejabberd	was	made	to	be	

compliant	which	means	 that	 it	 aims	 to	 be	 interoperable.	 In	 terms	 of	 security,	 the	 ejabberd	

server	 provides	 several	 solutions,	 mainly	 using	 TLS	 encryption	 of	 messages	 and	 SASL	 for	

authentication	of	clients	[80].	

• Openfire	

The	Openfire	[81]	is	also	an	open	source	XMPP	server	written	in	Java	under	the	license	of	the	

Open	Source	Apache	License.	Openfire	is	an	instant	messaging	server,	easy	to	install,	setup	and	

use.	 Like	 ejabberd,	 the	Openfire	 server	 provides	 a	 rock	 solid	 solution,	 claiming	 to	 be	highly	

secure	and	with	a	high	performance.	

3.3 Data	Distribution	Service	(DDS)	

The	Data	Distribution	System	for	Real-Time	Systems	(DDS)	[82]	is	a	standard	that	was	defined	

by	the	Object	Management	Group	(OMG)	organization	and	claims	to	be	a	high	performance	

middleware	 for	 predictable	 distribution	 of	 data	 between	 applications	 [32].	 This	 standard	 is	

mainly	used	to	 implement	the	Publish-Subscribe	model	for	communications	 in	real-time	and	

embedded	systems	and	provides	a	set	of	QoS	policies.	

3	Distributed	Systems	Middleware	

44	

The	DDS	is	a	data-oriented	middleware	based	on	the	Data	Centric	Publish-Subscribe	(DCPS)	[32]	

model	where	 it	 implements	 a	 distributed	peer-to-peer	 architecture	providing	 a	 reliable	 and	

efficient	 communication	among	applications	 [83].	DDS	provides	high	 interoperability	 among	

heterogeneous	systems	through	the	existence	of	a	Global	Data	Space	(GDS),	where	multiple	

applications	publish	(publishers)	messages	into	the	GDS,	and	other	applications	(subscribers)	

are	able	to	access	the	same	GDS	and	subscribe	to	the	information	they	are	interested	[83].	Every	

time	a	publisher	changes	data	in	the	DDS,	the	DDS	is	responsible	for	propagating	that	changed	

data	to	all	subscribers	[32].	

In	DDS,	the	data	available	in	the	GDS	follows	a	data	model	based	on	structures.	Each	structure	

is	identified	by	a	topic	that	uniquely	identify	the	structure	(when	a	client	needs	to	change	some	

data,	it	uses	the	topic	to	deliver	the	data	to	the	correct	DDS	server)	and	a	type	that	provides	

structural	information	that	is	used	by	the	middleware	to	perform	actions	on	that	data	(used	by	

a	client	to	perform	a	preliminary	check	on	the	data)	[32].	A	set	of	QoS	policies	is	provided	by	

DDS	 aiming	 the	 guarantee	 of	 data	 delivery,	 real-time	 systems	 performance,	 bandwidth	

reservation,	redundancy	and	data	persistence.	

Figure	24	presents	how	DDS	architecture	is	defined	and	works.	

	

Figure	24	-	Data	Distribution	Service	Architecture	

The	 DDS	 is	 characterized	 by	 providing	 an	 overall	 decoupled	 data-centric	 publish-subscribe	

paradigm.	A	high	decoupled	 architecture	between	publishers	 and	 subscribers	 is	 provided	 in	

space	since	both	may	be	located	anywhere.	Neither	publishers	nor	subscribers	are	obligated	to	

be	available	at	any	time,	so	DDS	provides	is	high	decoupled	architecture	in	time.	Publishers	and	

subscribers	may	be	implemented	in	different	languages	and	in	multiple	operating	systems	or	

deployed	in	different	hardware	since	DDS	also	provides	a	high-decoupled	architecture	in	terms	

of	platform	[83].	

	

	 	

	

45	

	

4 Design	and	Implementation	of	

Components	on	the	ENCOURAGE	

Architecture	

The	ENCOURAGE	–	acronym	for	Embedded	iNtelligent	COntrols	for	bUildings	with	Renewable	

generAtion	 and	 storage	 –	 project	 aims	 to	 develop	 an	 interoperable	 platform	where	 all	 the	

components	 are	 linked	 through	 the	 usage	 of	 a	 middleware-based	 architecture.	 Using	 the	

ENCOURAGE	platform,	it	is	supposed	to	save	up	to	20%	of	energy	consumption.	The	proposed	

architecture	 provides	 scalable,	 performant	 and	 reliable	 communication	 between	 storage,	

consumption	or	generation	devices	in	the	same	building	or	in	different	buildings.	This	type	of	

architecture	proved	to	be	useful	in	the	ecosystem	of	the	smart	grid.	

One	of	 the	goals	 that	 the	ENCOURAGE	project	aims	 to	pursue,	 is	 to	achieve	a	platform	that	

provides	a	performant	monitoring	of	all	devices	in	a	smart	grid	scenario.	This	means	that	near	

real-time	 information	 about	 the	 status	 of	 each	 device	 should	 be	 provided.	 This	 collected	

information	might	be	presented	to	the	end	users	through	several	technologies,	such	as	social	

networks	or	web	interfaces.	

Initially,	 in	 order	 to	 control	 and	 coordinate	 actions	 with	 larger	 subsystems,	 such	 as	 HVACs	

(Heating,	Ventilating,	and	Air	Conditioning	systems),	 lightning,	renewable	energy	generation,	

thermal	 storage,	 energy	 saving,	 among	 others,	 a	 set	 of	 supervisory	 control	 strategies	were	

developed,	the	latter	being	the	strategies	to	orchestrate	the	operations	of	different	subsystems	

in	a	Cell.	Some	examples	of	operations	are	the	HVAC	systems,	lightning	or	renewable	energy	

generation,	among	others.		

The	 SC	will	 schedule	 energy-consuming	 appliances	 in	 a	 Cell,	 taking	 into	 account	 the	 energy	

produced	 locally	by	 the	user.	 The	SC	will	 be	 focused	either	on	 supply	 side	 (local	 generation	

control),	demand	side	(load	management),	or	combination	of	both	(energy	management).	

4	Design	and	Implementation	of	Components	on	the	ENCOURAGE	Architecture	

46	

This	feature	serves	the	optimization	of	the	energy	consumption,	since	collected	data	can	enable	

correlating	the	occupants	comfort,	the	energy	costs	and	the	environmental	impacts	with	other	

important	 things	 like	 peoples’	 habits,	 weather	 conditions,	 status	 of	 appliances,	 the	 local	

generation	and	storage	of	energy	and	market	conditions.		

Another	 important	part	of	 the	project	 is	 the	 concept	of	 an	 intelligent	gateway,	which	holds	

embedded	logic	supporting	inter-building	energy	exchange.	This	subsystem	will	be	responsible	

for	 the	 communication	 between,	 for	 example,	 buildings	 in	 order	 to	 negotiate	 the	 usage	 of	

electricity	produced	locally.	

Finally,	 the	 platform	 maintains	 a	 virtual	 representation	 of	 every	 real-world	 device	 that	 is	

connected	to	the	platform,	with	the	current	status	of	each	of	them	updated	in	near-real	time,	

to	enhance	the	monitoring	and	diagnostics	capabilities.	By	providing	a	reliable	and	systematic	

monitoring	of	the	information	exchanged	between	all	components,	the	overall	performance	is	

controlled	and	diagnosed	before	something	happens,	which	will	result	in	a	sustained	long-term	

energy	 savings.	 The	 rest	 of	 this	 section	 provides	 details,	 and	 an	 analysis,	 of	 the	 described	

architecture.	

The	project	developed	four	pilots,	the	first	two	designed	for	campus	and	non-residential	places,	

and	the	main	goal	is	to	provide	a	well	designed	and	implemented	platform	that	could	be	used	

in	any	system.	Near	the	end	of	the	project	two	more	pilots	tested	the	platform	in	residential	

buildings,	and	the	platform	collected	data	from	sensors	and	made	informed	decisions	to	change	

the	state	of	appliances.	

When	I	was	first	involved	in	the	ENCOURAGE	Project,	the	architecture	was	already	defined,	and	

I	 was	 in	 charge	 of	 designing	 the	 routing	 structure	 of	 the	 middleware	 to	 enable	 the	

communication	 between	 all	 the	 components,	 and	 also	 the	 implementation	 of	 some	 core	

components	of	the	architecture.	

In	Section	3.1,	a	brief	description	of	each	component	of	the	architecture	is	given	to	explain	the	

context	and	the	features	of	each	component.	However,	the	focus	of	the	description	will	be	on	

the	components	where	I	gave	my	contribution	at	the	time	I	was	involved	in	the	project,	thus	

the	 Virtual	 Devices	 Module,	 the	 Database	 Handler	 and	 the	 libraries	 for	 the	 Encoding	 and	

Decoding	 of	 messages	 and	 the	 Rabbit	 Manager	 library.	 An	 in-depth	 and	 more	 technical	

description	 of	 each	 component	 and	 library,	 along	 with	 their	 design,	 is	 provided.	 A	 brief	

discussion	on	some	tests	performed	is	given	as	well.	

4.1 Architecture	Overview	

The	ENCOURAGE	Platform	was	designed	to	be	a	highly	scalable	architecture,	to	be	fast	and	fault	

tolerant,	and	to	be	as	decoupled	as	possible	in	order	to	fulfil	the	needs	for	current	and	future	

large	scale	Smart	Grid	applications,	allowing	the	control	of	thousands	of	houses,	each	one	with	

tens	of	devices	providing	or	consuming	information.	

Middleware	for	Large-scale	Distributed	Systems	

47	

	

Figure	25	-	ENCOURAGE	Architecture	

To	 fulfill	 those	 requirements,	 Figure	 25	 presents	 the	 final	 architecture	 for	 the	 ENCOURAGE	

Platform,	it	shows	its	main	components	and	the	messaging	infrastructure,	which	was	used	to	

establish	 the	 communication	 between	 the	 components	 in	 an	 abstract	 way.	 The	 interaction	

between	the	architecture	components	and	systems	from	the	outside	world	is	also	presented	

through	the	representation	of	the	Home	Area	Networks	and	its	devices	connected	to	the	so-

called	Middleware	Plugins,	which	are	the	components	of	the	architecture	that	are	responsible	

for	handle	the	data	collected	in	the	gateways	and	transform	the	data	to	be	compliant	with	the	

standard	(CIM).	This	components	are	also	responsible	to	act	as	the	bridge	between	external	

systems	and	the	ENCOURAGE	platform.	

The	 middleware	 layer	 presented	 in	 the	 architecture,	 in	 this	 case	 a	 RabbitMQ	 broker,	 is	

responsible	for	ensuring	the	communication	between	all	components	of	the	architecture,	such	

as	 the	 Virtual	 Devices	 Module,	 the	 Supervisory	 Control,	 the	 Energy	 Brokerage	 &	 Business	

Intelligence	 and	 Middleware	 Plugins.	 The	 middleware	 allows	 the	 integration	 and	

communication	 with	 external	 applications,	 and	 it	 is	 responsible	 for	 the	 internal	 platform	

communication	as	well.	The	middleware	uses	a	distributed	publish/subscribe	pattern,	providing	

a	transparent	(in	2.1	Distributed	Systems)	implementation	of	distributed	applications.	

Current	 home	 automation	 and	 smart	 building	 infrastructures	 are	 commonly	 developed	 and	

implemented	 as	 separate	 systems	with	 their	 own	 user	 interfaces	 and	 gateways	 (e.g.	 HVAC	

systems,	water/gas/energy	metering	 systems,	 etc.).	 The	 ENCOURAGE	 Project	 also	 allows	 to	

have	multiple	gateways	 in	each	house	or	building,	each	responsible	 for	a	subset	of	 the	HAN	

devices.	It	is	thus	possible	to	support	multiple	gateways	to	take	care	of	different	tasks	such	as	

energy	production,	energy	consumption	or	home	automation	devices	control,	or	 just	merge	

devices	from	different	vendors,	supported	through	the	gateways	of	each	vendor.	

4	Design	and	Implementation	of	Components	on	the	ENCOURAGE	Architecture	

48	

The	gateways	may	be	aggregated	into	a	single	logical	entity,	named	Cell,	representing	a	house	

or	single	building.	A	Cell	represents	an	entity	that	pertains	to	the	same	stakeholder	and	that	is	

economically	independent	from	other	Cells.	Figure	26	depicts	an	example	regarding	how	a	Cell	

may	 be	 composed	 by,	 with	 some	 appliances	 and	 gateways	 connected	 together	 and	 to	 the	

ENCOURAGE	platform.	

	

Figure	26	-	ENCOURAGE	Cell	

Furthermore,	several	Cells	may	be	grouped	into	a	single	MacroCell	entity,	in	cases	where	the	

combined	energy	management	might	be	needed,	enabling	the	energy	exchange	between	Cells	

inside	a	MacroCell.	The	ENCOURAGE	platform	may	collect	data	from	an	entire	MacroCell	and	

also	send	to	the	entire	MacroCell	a	set	of	commands	to	change	the	state	of	some	appliances.	

The	MacroCells	may	be	defined	as	a	group	of	cooperating	users	that	are	connected	through	the	

distribution	domain.	

	

Figure	27	-	ENCOURAGE	MacroCell	

Middleware	for	Large-scale	Distributed	Systems	

49	

In	 terms	 of	 the	 energy	market,	 the	 ENCOURAGE	 Project	 has	 also	 the	 capability	 to	 provide	

extended	 market	 opportunities	 by	 providing	 energy	 management	 capabilities	 through	 the	

Supervisory	Control	and	the	Energy	Brokerage	&	Business	Intelligence	components.	

In	 this	 subsection	a	brief	explanation	of	all	 the	components	presented	 in	 the	architecture	 is	

given,	with	each	component	explained	in	a	different	subsection,	providing	a	definition,	main	

features	and	usability	of	each	component	within	the	project	architecture.	

4.1.1 Virtual	Devices	Module	

The	 Virtual	 Devices	 Module	 (VDM)	 is	 the	 central	 component	 for	 data	 management	 in	 the	

ENCOURAGE	 architecture,	 being	 responsible	 for	 several	 and	 crucial	 tasks	 within	 the	

ENCOURAGE	 platform.	 The	 VDM	 acts	 as	 message	 router,	 caches	 state	 of	 the	 system,	 and	

enables	the	permanence	of	the	historical	data	of	the	system.	

The	VDM	 is	 responsible	 for	establishing	 the	correct	 connections	between	modules.	 For	 that	

purpose,	 it	 parses	 messages	 incoming	 from	 the	 message	 infrastructure	 and	 forwards	 the	

messages	 to	 the	components	 that	are	 interested	 in	 the	 information.	Moreover,	Middleware	

Plugin	components,	which	are	explained	later	in	this	section,	do	not	keep	information	of	which	

devices	they	handle,	and	the	VDM	is	in	charge	of	keeping	track	of	the	correspondence	between	

the	gateways	and	devices	that	the	MPG	controls,	allowing	it	to	route	commands	to	the	correct	

devices.	

Another	 important	 feature	 of	 the	 Virtual	 Devices	 Module	 is	 that	 since	 it	 keeps	 track	 of	

everything	that	is	exchanged	through	the	middleware,	and	of	the	current	status	of	each	device	

in	the	smart	grid.	Whenever	the	VDM	is	interrogated	regarding	current	status	of	a	device,	for	

example	a	temperature	sensor,	it	will	answer	the	query	from	its	current	internal	cache,	without	

the	need	to	contact	the	device	installed	in	a	HAN.	

Finally,	 the	 VDM	 stores	 all	 messages	 into	 the	 ENCOURAGE	 database.	 To	 avoid	 database	

performance	issues	and	to	separate	implementations,	the	VDM	uses	another	complementary	

component,	 called	 Database	 Handler.	 The	 communication	 with	 the	 Database	 Handler	

component	 is	 established	 by	 the	 ENCOURAGE	middleware	 as	 well.	 This	 component	 will	 be	

described	in	more	details	later	in	this	section,	since	it	was	one	of	the	main	contributions	to	the	

project.	

4.1.2 Database	Handler	

The	 information,	 contained	 in	 all	 messages	 exchanged	 between	 the	 components	 of	 the	

architecture	 is	 stored	 for	monitoring	or	 future	analysis.	 In	order	 to	achieve	 that,	 the	Virtual	

Devices	Module	is	capable	of	handling	those	messages,	parse	the	information	and	then	store	it	

into	the	ENCOURAGE	database,	through	the	usage	of	a	so	called	Database	Handler	component,	

also	depicted	in	Figure	25.	

4	Design	and	Implementation	of	Components	on	the	ENCOURAGE	Architecture	

50	

Most	of	the	times,	the	interaction	between	systems	and	databases,	and	databases	themselves,	

represents	 a	 challenge	 faced	 by	 developers.	 To	 avoid	 a	 possible	 bottleneck	 of	 the	 whole	

platform	 in	 terms	 of	 performance	 and	 processing	 capabilities,	 the	 Database	 Handler	

component	 is	 implemented	 as	 an	 external	 component	 with	 respect	 to	 the	 Virtual	 Devices	

Module,	allowing	it	to	store	information	in	a	database.	

The	 Database	 Handler	 can	 be	 defined	 as	 a	 bridge	 between	 the	 VDM	 and	 the	 ENCOURAGE	

database,	 extending	 database	 functionalities	 and	 reducing	 the	 VDM	processing	 capabilities.	

This	 component	 of	 the	 architecture	 has	 all	 the	 capabilities	 to	 consume	messages	 from	 the	

message	broker,	in	this	particular	case	a	RabbitMQ	broker,	and	store	them	into	the	database,	

without	 interfere	with	the	other	components	of	 the	architecture.	This	provides	a	separation	

between	the	events	processing	and	handling	from	the	database	features.	

This	approach	of	separating	the	database	functionalities	from	the	actual	processing	modules	of	

the	architecture	provides	a	highly	decoupled	and	scalable	design	of	the	architecture,	allowing	

to	 change	 the	 database	 type	 and	 database	 location	 or	 even	 database	 replication	 without	

interfering	with	the	platform	operation.	

This	component	will	be	described	in	more	details	later	in	this	section,	since	it	was	another	of	

my	contributions	to	the	project.	

4.1.3 Middleware	Plugin	

The	 goal	 of	 the	 ENCOURAGE	 Platform	 is	 to	 interact	 with	 external	 entities,	 applications	 or	

systems.	This	can	be	a	complex	task,	in	terms	of	interoperability,	due	to	different	protocols	or	

different	 data	 formats	 that	 these	 external	 entities	 may	 use	 in	 their	 communications.	

Middleware	Plugins	are	the	components	of	the	architecture	that	are	responsible	for	acting	as	a	

bridge	between	these	entities	and	the	ENCOURAGE	Platform.	

The	Middleware	Plugins	 are	 capable	of	 performing	 several	 operations,	 such	 as	 the	parse	of	

messages	encoded	 in	custom	formats,	sent	by	entities,	applications	or	systems	that	want	to	

interact	with	the	ENCOURAGE	services.	It	is	also	capable	of	translating	those	messages	into	the	

common	 language	 (Common	 Information	Model)	 that	 is	 supported	 inside	 the	 ENCOURAGE	

Platform.	 This	 transformation	 is	 possible	 through	 the	 usage	 of	 the	 encoding	 and	 decoding	

library,	which	was	another	contribution	that	I	gave	to	the	project.	

Since	the	Middleware	Plugin	acts	as	a	bridge	between	the	outside	world	and	the	ENCOURAGE	

Platform,	it	is	also	capable	of	communication	with	the	RabbitMQ	broker.	This	communication	

is	established	through	the	usage	of	the	RabbitManager	library,	which	is	also	described	in	more	

detail	in	this	section	since	it	is	also	a	contribution	to	the	project.	

At	 last,	 the	Middleware	Plugins	establishes	a	bidirectional	 communication	between	external	

entities	and	 the	ENCOURAGE	Platform.	 It	 is	 also	 capable	of	 forwarding	messages	 consumed	

from	the	middleware,	sent	by	the	Virtual	Devices	Module,	to	the	correct	devices	through	the	

Middleware	for	Large-scale	Distributed	Systems	

51	

gateways.	Messages	consumed	from	the	middleware	are	in	the	CIM	format,	so	the	Middleware	

Plugins	once	again	 transform	 those	messages	 into	 the	external	entities	 specific	 formats	and	

forward	them.	

4.1.4 Supervisory	Control	

The	Supervisory	Control	(SC)	component	is	responsible	for	the	control	of	each	device	(in	this	

case	actuators)	within	each	house	or	building	and	it	has	the	capability	of	issuing	commands	to	

order	changes	on	appliances	that	devices	are	connected	to.	The	issued	commands	are	sent	to	

devices	through	the	ENCOURAGE	middleware.	

Three	 modules	 constitute	 the	 Supervisory	 Control:	 the	 Local	 Generation,	 the	 Energy	

Management	and	the	Load	Management.	The	Load	Generation	module	is	responsible	for	the	

local	 energy	 production	 by	 renewable	 resources.	 The	 Energy	 Management	 module	 is	

responsible	for	the	execution	of	the	energy	brokerage	plan,	acquired	by	working	together	with	

the	Energy	Brokerage	component	of	the	architecture.	At	last,	the	Load	Management	module	of	

the	Supervisory	Control	is	responsible	for	enabling	the	demand	side	management.	

4.1.5 Energy	Brokerage	&	Business	Intelligence	

The	Energy	Brokerage	&	Business	Intelligence	(EBBI)	is	the	architecture	component	responsible	

for	 the	 management	 of	 the	 participation	 of	 Cells	 or	 MacroCells	 on	 the	 energy	 brokerage.	

Possible	 retrofits,	 equipment	 replacements	 and	 other	 capital	 investment	 actions	 are	 also	

features	covered	and	provided	by	the	EBBI	component.	

The	 three	 different	 modules	 support	 the	 EBBI	 component	 features:	 the	 Forecasting,	 the	

Decision	Support	and	the	Business	Intelligence	modules.	The	Forecasting	module	is	the	module	

responsible	for	predicting	the	amount	of	energy	that	will	be	consumed	or	produced	during	a	

certain	period	of	time,	based	on	historical	data	and	real-time	data	(for	example,	consuming	data	

from	the	ENCOURAGE	middleware).	

The	Decision	Support	for	Energy	Brokerage	module	is	responsible	for	making	decisions	on	the	

energy	exchange,	taking	into	account	the	exchanged	energy	between	buildings	that	are	over	

producing	energy	and	the	ones	that	are	under	producing	energy,	trying	to	maintain	a	certain	

balance	between	producers	and	consumers	of	energy,	enhancing	the	energy	consumption.	

Finally,	the	Business	Intelligence	module	(BI)	is	responsible	for	the	preparation	and	delivery	of	

reports,	 Key	 Performance	 Indicators	 (KPIs)	 and	 non-real	 time	 alerts,	 which	may	 be	 used	 to	

analyze	the	performance	and	operation	of	the	whole	ENCOURAGE	platform.	

4	Design	and	Implementation	of	Components	on	the	ENCOURAGE	Architecture	

52	

4.1.6 Complex	Event	Processor	

Events	are	not	necessarily	simple	and	independent.	In	some	cases,	multiple	events	may	define	

and	 generate	 more	 complex	 events.	 These	 events	 are	 called	 complex	 events	 and	 may	 be	

generated	by	the	Complex	Event	Process	component,	present	on	the	ENCOURAGE	architecture,	

through	 the	 processing	 and	 correlation	 of	 events	 in	 real-time.	 The	 configuration	 of	 this	

component	 is	 allowed	 through	 the	 supply	 of	 so	 called	 “rules”,	which	 are	 then	 used	 by	 the	

component	to	process	and	correlate	incoming	events	into	complex	outgoing	events.	

An	example	of	this	type	of	events	are	alarm	systems	where	multiple	events	and	conditions	must	

match	and	be	evaluated	as	true	at	the	same	time	to	trigger	the	actual	alarm.	This	information	

may	be	collected	by	the	Complex	Event	Processor	from	multiple	external	systems,	consuming	

it	from	the	ENCOURAGE	middleware	infrastructure.	Furthermore,	this	information	(events)	is	

compiled,	processed	and	correlated	to	generate	new	events	that	eventually	will	be	forwarded,	

as	commands,	to	the	external	systems	or	actuators.	

4.1.7 Home	Area	Network	Gateways	

The	ENCOURAGE	platform	provides	a	middleware	that	acts	as	a	bridge,	not	only	linking	all	the	

components	 of	 the	 architecture,	 but	 also	 establishing	 a	 communication	 between	 all	 the	

components	of	the	architecture	and	the	outside	world.	Each	house	or	building	may	have	one	or	

several	 gateways,	 which	 orchestrate	 the	 functioning	 of	 the	 devices	 located	 in	 houses	 or	

buildings.	

The	gateways	collect	raw	data	from	devices	they	control/handle	and	send	it	to	the	Middleware	

Plugins,	 which	 translate	 that	 data	 into	 CIM	 and	 then	 pushes	 it	 into	 the	 ENCOURAGE	

middleware.	The	gateways	are	also	capable	of	receiving	commands	from	Middleware	Plugins	

and	redirect	those	commands	to	the	specific	actuators	in	houses	or	buildings	they	control.	

The	communication	between	the	gateways	and	devices	may	be	established	following	different	

protocols,	such	as	the	Smart	Energy	Profile	of	ZigBee	(SEP),	and	it	is	the	responsibility	of	who	

implements	 the	 gateway	 to	 setup	 everything	 in	 order	 to	 correctly	 communicate	 with	 the	

devices	it	wants	to	monitor	or	manage.	

4.1.8 Devices	

The	 devices	 are	 the	 endpoint	 of	 the	 architecture	 design,	 where	 two	 types	 of	 devices	 are	

distinguished.	Sensors	and	actuators	are	the	two	types	of	devices.	

Sensors	are	small	pieces	of	hardware	which	are	able	collect	information	from	the	environment	

where	they	are	inserted	and	passing	that	collected	information	to	the	system,	when	request	

by,	for	example,	the	HAN	Gateways.	

Middleware	for	Large-scale	Distributed	Systems	

53	

Some	examples	of	these	types	of	devices	are,	among	many	others,	the	temperature	sensors	to	

collect	information	about	the	temperature	of	some	room	or	area	within	a	house	or	building;	

humidity	 sensors	 to	 collect	 information	about	 the	humidity	of	 a	place;	proximity	 sensors	 to	

detect	objects	that	are	closer	to	the	sensor;	or	motion	sensors	which	can	detect	objects	that	

are	moving	near	the	sensor,	used	for	example	in	alarm	systems.	

Actuators	are	much	similar	to	sensors,	however	these	kinds	of	devices	are	not	only	capable	of	

collecting	data	from	the	environment,	but	they	are	also	capable	of	performing	some	changes	

on	some	appliances.	Actuators	give	the	possibility	to	systems	to	send	commands	that	are	then	

executed,	applying	a	change	in	the	state	of	some	appliances.	

An	example	may	be	a	washing	machine	that	has	an	actuator,	which	receives	commands	to	start	

or	stop	a	specific	program	for	that	appliance.	

4.2 Routing	Structure	

In	 the	ENCOURAGE	Platform	applications	communicate	through	a	middleware	that	acts	as	a	

message	bus.	In	this	project,	the	RabbitMQ	broker	was	used,	which	is	an	implementation	of	the	

AMQP	protocol.	To	provide	the	communication	between	all	the	applications,	a	set	of	queues	

and	exchanges	were	defined.	

Figure	 28	 presents	 the	 defined	 routing	 structure	 for	 the	 ENCOURAGE	 Platform	with	 all	 the	

applications	that	are	connected	to	the	middleware	and	all	the	queues	and	exchanges	that	are	

used	by	them	to	enable	the	communication.	Figure	28	also	presents	all	the	bindings	between	

queues	and	exchanges	within	the	middleware.	

	

Figure	28	-	Routing	Structure	of	ENCOURAGE	Middleware	

4	Design	and	Implementation	of	Components	on	the	ENCOURAGE	Architecture	

54	

The	Virtual	Devices	Module	consumes	from	all	the	queues	created	in	RabbitMQ	server	and	it	

pushes	 messages	 into	 some	 exchanges,	 such	 as	 the	 VDDatabaseExchange,	 the	 SCOrders	

exchange	and	 the	VDOrders	exchange.	Each	exchange	has	a	queue	bound	 to	 it,	 such	as	 the	

VDDatabase_Queue	that	has	a	binding	to	the	VDDatabaseExchange	and	the	SensorData_Queue	

is	bound	to	the	SensorData	exchange.	All	bindings	use	a	wildcard	as	the	routing	key,	since	no	

filtering	of	messages	is	needed	in	this	case.	

The	Virtual	Devices	Module	is	responsible	for	the	routing	of	commands	from	the	ENCOURAGE	

Platform,	generated	by	the	Supervisory	Control,	to	the	correct	devices.	To	do	that,	the	VDM	

uses	the	VDOrders	exchange,	which	is	used	by	the	MPGs	to	consume	those	commands.	

There	is	also	another	exchange,	the	MNG_Exchange,	which	is	used	by	any	other	application	that	

pretends	to	create,	modify	or	delete	some	entities	on	the	configuration	of	the	VDM	itself,	such	

as	MacroCells,	Cells,	Devices,	etc.	The	Virtual	Devices	Module	consumes	messages	 from	the	

MNG_Queue,	which	is	bound	to	the	MNG_Exchange	using	a	wildcard	as	he	routing	key	for	the	

binding,	since	it	wants	to	consume	everything	that	arrives	to	that	exchange.	

The	DatabaseHandler	application	consumes	messages	from	the	VDDatabase_Queue,	which	is	

consequently	bound	to	the	VDDatabaseExchange	using	a	wildcard	as	the	routing	key	as	well.	

The	 Virtual	 Devices	 Module	 pushes	 SQL	 statements	 to	 the	 VDDatabaseExchange	 that	 is	

responsible	for	the	forwarding	of	those	messages	to	the	VDDatabase_Queue.	Since	the	routing	

key	 used	 for	 the	 binding	 between	 the	 queue	 and	 exchange,	 all	messages	 published	 to	 this	

exchange	are	forward	to	the	specific	queue.	

The	Supervisory	Control	application	 interacts	with	 two	exchanges	and	one	queue	 to	 receive	

messages	 from	the	VDM.	A	SCOrders	exchange	was	defined,	along	with	a	SCOrders_Queue,	

which	 is	 bound	 to	 the	 SCOrders	 exchange.	 When	 VDM	 pushes	 messages	 to	 the	 SCOrders	

exchange,	this	exchange	forwards	those	messages	to	the	SCOrders_Queue	that	are	consumed	

by	the	Supervisory	Control	application	as	soon	as	possible.	

On	the	other	hand,	when	the	Supervisory	Control	application	has	any	command	to	send	to	any	

device,	it	generates	a	message	with	a	command	and	publishes	it	to	the	Commands	exchange.	

The	binding	between	the	SCOrders	exchange	and	the	SCOrders_Queue	uses	a	wildcard	as	the	

routing	key,	so	any	message	that	arrive	to	this	exchange	are	forward	to	the	SCOrders_Queue	

queue.	

Middleware	 Plugins	 are	 responsible	 for	 aggregate	 data	 sent	 by	 the	 gateways	 in	 houses	 or	

buildings.	Then	it	transforms	the	raw	data	received	into	CIM	messages,	using	the	Encoding	&	

Decoding	library,	and	publishes	them	to	the	SensorData	exchange.	MPGs	are	also	responsible	

for	the	configuration	of	the	entities	that	are	virtualized	on	the	VDM.	To	accomplish	that,	MPGs	

generate	configuration	messages	with	entities	it	pretends	to	virtualize	and	publishes	them	to	

the	MNG_Exchange.	

Finally,	MPGs	are	also	capable	of	consuming	commands	from	the	ENCOURAGE	Platform	and	

forward	 them	 to	 the	 correct	 devices.	 To	 do	 that	 it	 consumes	 messages	 from	 the	

Middleware	for	Large-scale	Distributed	Systems	

55	

VDOders_Queue,	which	is	bound	to	the	VDOrders	exchange	using	specific	routing	keys	to	filter	

what	messages	it	intends	to	receive.	

The	routing	key	is	built	based	on	the	gateways	that	the	MPGs	are	controlling,	and	are	formed	

as	“gateway_id.#”.	The	gateway_id	represents	the	gateway	that	is	controlling	the	device	that	is	

supposed	to	receive	the	command.	The	wildcard	means	that	all	messages	for	devices	controlled	

by	that	specific	gateway	are	receive	by	the	MPG.	

Most	of	the	applications	are	using	a	wildcard	as	the	routing	key	since	there	is	no	need	to	filter	

messages	in	this	case.	However,	one	example	of	how	routing	keys	can	be	used	is	for	example	

the	 Supervisory	 Control.	 If	 there	 is	 an	 instance	 of	 the	 Supervisory	 Control	 application	 that	

pretends	to	control	only	some	buildings	or	houses,	it	can	filter	the	messages	to	consume	using	

a	specific	house	or	device.	Assuming	that	the	Supervisory	Control	wants	to	control	devices	from	

MacroCell	 “A”,	 and	 only	 from	 Cell	 “B”,	 it	 needs	 to	 use	 a	 routing	 key	 as	 “A.B.#”	 and	 it	 will	

consume	only	messages	from	all	the	devices	inside	Cell	B.	

4.3 Virtual	Devices	Module	

The	Virtual	Devices	Module	(VDM),	considered	in	this	thesis	as	the	central	component	of	the	

ENCOURAGE	 architecture,	 is	 responsible	 for	 several	 and	 crucial	 tasks	 within	 ENCOURAGE	

platform,	 such	 as	 the	 virtualization	 of	 all	 the	 physical	 entities	 that	 are	 connected	 or	 were	

connected	to	the	ENCOURAGE	platform,	the	configuration	(create,	delete	and	modify)	of	the	

virtualized	 entities,	 keeping	 track	 of	 every	 data	 that	 is	 exchanged	 inside	 the	 ENCOURAGE	

middleware,	storing	that	information	into	ENCOURAGE	database,	and	routing	the	messages	or	

commands	to	the	correct	components.	

Figure	 29	 depicts	 the	 internal	 architecture	 of	 the	 Virtual	 Devices	 Module	 (VDM)	 and	 the	

communication	 with	 the	 ENCOURAGE	 middleware’s	 Exchanges	 and	 Queues.	 The	 VDM	

consumes	 from	all	 the	queues	 in	 the	middleware	and	publishes	 to	 the	Exchanges	 related	to	

other	components	of	the	overall	architecture,	thus	implementing	routing	functions.	

4	Design	and	Implementation	of	Components	on	the	ENCOURAGE	Architecture	

56	

	

Figure	29	-	Virtual	Devices	Module	Architecture	

This	implementation	of	the	VDM	component	uses	the	RabbitManager	library	to	communicate	

with	the	middleware,	which	was	implemented	and	used	by	all	the	partners	that	contributed	to	

the	project.	This	library	will	be	discussed	and	explained	in	detail	further	in	this	chapter.	The	goal	

of	the	RabbitManager	library	was	to	facilitate	the	integration	and	communication	of	any	system	

implemented	in	Java	and	using	the	RabbitMQ	server	as	message	broker.	

Since	the	VDM	is	responsible	for	the	virtualization	of	all	the	physical	entities	that	are	connected	

to	the	ENCOURAGE	platform	and	are	being	controlled	or	monitored	by	it	the	current	state	of	

the	“world”	must	be	known	by	the	component.	This	configuration	can	be	provided	at	any	time,	

both	 at	 component’s	 boot	 and	 at	 runtime,	 through	 a	 specialized	 exchange	 called	

“MNG_Exchange”.	

The	 configuration	 is	 possible	 through	 the	 usage	 of	 an	 XML	 file,	 structured	 following	 the	

hierarchy	defined	in	the	ENCOURAGE	Project.	This	configuration	may	contain	information	about	

a	 complete	MacroCell	 and	 its	 composing	entities,	 a	 single	Cell	or	even	a	 single	device.	Each	

element	 of	 the	 configuration	 file	 represents	 an	 entity	 in	 the	 real	 world	 that	 needs	 to	 be	

virtualized,	 which	means	 that	 it	 is	 an	 entity	 that	 would	 be	monitored	 or	 controlled	 by	 the	

ENCOURAGE	platform.	

Some	 of	 the	 entities	 considered	 into	 an	 ENCOURAGE	 Middleware	 are	 organized	 in	 a	 tree	

structure,	 with	 MacroCells	 containing	 Cells	 that	 contain	 Rooms.	 Each	 Room	 may	 contain	

Appliances	 that	 contain	 ShadowDevices.	 Each	 device	 is	 related	 to	 a	 Manufacturer	 and	 a	

Gateway.	

Middleware	for	Large-scale	Distributed	Systems	

57	

Assuming	that	a	new	MacroCell	or	a	new	device	has	to	be	added	to	the	platform	for	monitoring	

or	control,	two	examples	of	how	a	configuration	file	can	be	sent	to	the	Virtual	Devices	Module	

through	the	ENCOURAGE	middleware	are	given.	

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<root>

 <!-- MacroCells -->

 <ConfMacroCell macrocell_id="DKD" macrocell_desc="DANISH DEMONTRATOR"

region="DK" />

 <!-- Cells -->

 <ConfCell cell_id="DKDEM07" macrocell_id="DKD"

cell_latitud="56.9730630000" cell_longitud="9.9595370000"

cell_surface="96.00" cell_volumen="228.00"

cell_building_shade_coefficient="0" cell_wall_insulation_thickness="0"

cell_desc="JADEVEJ 14" />

 <ConfCell cell_id="DKDEM08" macrocell_id="DKD"

cell_latitud="56.9728620000" cell_longitud="9.9595240000"

cell_surface="96.00" cell_volumen="228.00"

cell_building_shade_coefficient="0" cell_wall_insulation_thickness="0"

cell_desc="JADEVEJ 16" />

 <ConfCell cell_id="DKDEM09" macrocell_id="DKD"

cell_latitud="57.0045120000" cell_longitud="9.7367230000"

cell_surface="169.00" cell_volumen="405.60"

cell_building_shade_coefficient="0" cell_wall_insulation_thickness="0"

cell_desc="Vestervej" />

 <!-- Rooms -->

 <ConfRoom room_id="UPCTC0101" cell_id="DKDEM07" room_surface="19.00"

room_volume="59.00" room_max_ocup="1" room_desc="Student's appartment" />

 <ConfRoom room_id="DKDEM0101" cell_id="DKDEM07" room_surface="96.00"

room_volume="228.00" room_max_ocup="1" room_desc="1 adult > 90 years

retired" />

 <ConfRoom room_id="DKDEM0201" cell_id="DKDEM08" room_surface="96.00"

room_volume="228.00" room_max_ocup="2" room_desc="2 adult > 70 years

retired" />

 <ConfRoom room_id="DKDEM0301" cell_id="DKDEM09" room_surface="96.00"

room_volume="228.00" room_max_ocup="1" room_desc="1 adult > 60 years

retired" />

 <ConfRoom room_id="DKDEM0401" cell_id="DKDEM09" room_surface="96.00"

room_volume="228.00" room_max_ocup="1" room_desc="1 adult > 70 years

retired" />

 <!-- Manufacturers -->

 <ConfManufacturer manufacturer_id="" manufacturer_make=""

manufacturer_model="" manufacturer_firmware="" manufacturer_desc="" />

 <!-- Gateways -->

 <!-- Appliances -->

 <ConfAppliance appliance_id="ADKDJ010101" appliance_power="4"

subcategory_id="F1" appliance_desc="Solar panel Inverter"

appliance_investment="0" room_id="DKDEM07"

appliance_activacion_date="19001010" appliance_leaving_date="90001231" />

 <ConfAppliance appliance_id="ADKDJ0101010" appliance_power="1"

subcategory_id="TOT" appliance_desc="Total" appliance_investment="0"

room_id="DKDEM08" appliance_activacion_date="19001010"

appliance_leaving_date="90001231" />

4	Design	and	Implementation	of	Components	on	the	ENCOURAGE	Architecture	

58	

 <!-- Devices -->

 <ConfShadowDevice device_id="DKDJ010101" device_desc="Solar panel

Inverter status" appliance_id="ADKDJ010101" manufacturer_id=""

device_output="false" gateway_id="" />

 <ConfShadowDevice device_id="DKDJ010102" device_desc="Floor heating

Energy" appliance_id="ADKDJ010101" manufacturer_id="" device_output="false"

gateway_id="" />

 <ConfShadowDevice device_id="DKDJ010103" device_desc="Electrical meter

consumption from grid Energy from grid" appliance_id="ADKDJ0101010"

manufacturer_id="" device_output="false" gateway_id="" />

</root>

This	first	example	shows	how	to	create	the	virtualization	of	a	new	MacroCell	that	is	already,	or	

pretends	 in	 the	 future,	 interacting	 with	 the	 ENCOURAGE	 Platform.	 As	 it	 depicts,	 first	 the	

MacroCell	is	defined,	giving	a	set	of	attributes	to	the	“ConfMacroCell”	element,	defining	all	the	

needed	information	to	that	MacroCell.	Then,	a	set	of	Cells,	the	“ConfCell”,	that	are	common	to	

the	MacroCell	are	also	presented,	each	one	of	them	defining	a	set	of	attributes	as	well.	Each	

Cell	must	define	a	“macrocell_id”	attribute,	defining	which	MacroCell	that	Cell	belongs	to.	

Usually,	each	Cell	represents	a	house	or	a	building,	so	after	Cells,	the	next	element	to	define	

are	rooms,	with	 the	element	“ConfRooms”,	which	also	needs	 to	define	a	“cell_id”	attribute,	

defining	 to	 which	 cell	 this	 room	 belongs.	 Following	 the	 hierarchy	 defined	 on	 ENCOURAGE,	

under	rooms	we	can	define	for	example,	gateways,	through	“ConfGateway”.	

The	 gateway	must	 also	 specify	 the	 “room_id”	 attribute,	 to	define	which	 room	 this	 gateway	

belongs	to.	Each	gateway	may	belong	to	different	manufacturers,	and	it	is	possible	to	define	a	

new	manufacturer,	which	gets	stored	into	the	database.	

In	each	room,	several	appliances	may	exist,	from	computers,	heaters	or	any	type	of	sensors.	To	

virtualize	each	appliance,	we	can	send	 in	 this	message,	one	“ConfAppliance”.	One	appliance	

usually	 exists	 inside	 some	 room,	 so	 each	 appliance	 must	 specify	 the	 “room_id”	 attribute	

defining	to	which	room	it	belongs.	

Finally,	the	devices	are	defined	using	a	“ShadowDevice”	element.	A	“ShadowDevice”	represents	

a	 real	device	 in	 the	 real	world,	 such	as	 sensors	or	 actuators,	which	 can	be	present	 in	 some	

appliances.	 Since	 devices	 belong	 to	 appliances,	 each	 “ShadowDevice”	 must	 specify	 the	

“appliance_id”	attribute,	defining	to	which	appliance	the	device	is	related	to.	

It	is	also	possible	to	send	the	configuration	of	individual	elements	of	the	real	world,	such	as	a	

new	appliance	or	a	new	device.	To	be	able	to	do	that,	a	single	element	message	can	be	sent	to	

the	VDM.	Follows	an	example	of	a	message	 to	configure	a	new	existent	device	 related	 to	a	

specific	appliance.	

	

<!-- Devices -->

 <ConfShadowDevice device_id="DKDJ010101" device_desc="Solar panel

Inverter status" appliance_id="ADKDJ010101" manufacturer_id=""

device_output="false" gateway_id="" />

Middleware	for	Large-scale	Distributed	Systems	

59	

The	presented	examples	show	how	to	configure	and	virtualize	real	world	elements	inside	the	

ENCOURAGE	platform.	The	relation	between	elements	 is	given	specifying	a	specific	attribute	

defining	 the	 parent	 element.	 This	 kind	 of	 relation	 and	 independency	 of	 elements	 when	 a	

configuration	 message	 is	 built,	 provides	 a	 high	 level	 of	 configuration	 and	 customization.	

Different	elements	may	be	configured	and	associated	to	already	existing	elements.	

In	cases	that	a	new	configuration,	for	example	of	a	device,	is	sent	to	the	VDM	and	it	defines	that	

it	 device	 is	 related	 to	 a	 non-existent	 appliance	or	 gateway,	 the	VDM	 receives	 the	message,	

stores	 it	 into	 the	 database	 but	 signals	 and	 warns	 that	 the	 new	 device	 is	 missing	 some	

information	 or	 the	 parent	 element	 doesn’t	 exist.	 This	warning	 allows	 to	 alert	who	 sent	 the	

configuration	that	with	the	current	information	it	is	not	possible	have	a	complete	control	and	

monitoring	of	that	device,	since	it	doesn’t	know	to	where	messages	should	be	forward.	

From	 the	 moment	 that	 a	 configuration	 is	 sent	 and	 handled,	 the	 VDM	 has	 in	 memory	 all	

structures	 it	needs	 to	 represent	each	entity	and	 is	now	able	 to	 start	 receiving	and	handling	

messages	from	those	entities.	All	messages	that	are	pushed	into	the	“SensorData”	Exchange	

are	consumed	and	handled	by	the	VDM.		

All	 messages	 exchanged	 within	 the	 ENCOURAGE	 Platform	 are	 in	 the	 Common	 Information	

Model	(CIM)	format,	so	the	VDM	is	able	to	parse	and	transform	those	formatted	messages	into	

the	structures	virtualizing	the	real	world	entities.	

To	transform	and	parse	messages	in	the	CIM	format,	the	VDM	uses	the	Encoding	&	Decoding	

library,	which	 is	 explained	 further	 in	 this	 chapter.	 Each	message	 that	 is	 consumed	 from	 the	

“SensorData”	Exchange	is	parsed,	using	the	JAXB	framework,	and	new	objects	are	created	to	

be	manipulated	by	the	VDM.	The	JAXB	framework	allows	the	definition	of	bindings	between	

XML	elements	and	Java	classes,	allowing	to	parse	and	instantiate	entire	XML	documents	to	Java	

objects	 and	 Java	 classes	 to	 XML	 documents.	 Fields	 that	 contain	 the	 information	 it	 brings	

compose	a	message,	and	the	fields	will	be	described	in	the	Encoding	&	Decoding	library.	

Having	extracted	the	information	from	the	messages	received,	the	VDM	updates	the	current	

values	on	the	structures	 in	memory,	keeping	always	 the	 last	value	and	other	 information	as	

status	of	every	real	entity.	The	idea	to	keep	that	information	in	memory	gives	the	possibility	to	

ask	the	VDM	at	any	time	for	the	current	values	of	any	entity,	and	VDM	will	be	able	to	provide	

the	information	in	the	shortest	time	possible,	without	querying	the	devices	located	in	the	HANs.	

The	 Enconding	 &	 Decoding	 library	 is	 also	 capable	 of	 generating	 SQL	 messages	 from	 the	

extracted	information	of	received	messages.	Those	statements	are	forwarded	to	the	Database	

Handler	 component	 through	 the	 “VDDatabaseHandler_Exchange”,	 also	 present	 in	 the	

middleware.	 Pushing	 database	 communications	 and	 accesses	 to	 another	 component	 of	 the	

architecture,	reduces	the	processing	time	of	each	messages	handled	in	the	VDM.	

In	cases	that	the	database	crashes	or	is	down	for	some	reason,	the	VDM	keeps	working	without	

any	 problem,	 and	 SQL	 messages	 are	 kept	 inside	 the	 “VDDatabaseHandler_Queue”	 in	 the	

RabbitMQ	broker.	 To	 keep	messages	 in	 queues	 until	 any	 application	 consumes	 it,	 the	VDM	

4	Design	and	Implementation	of	Components	on	the	ENCOURAGE	Architecture	

60	

marks	 those	 messages	 as	 persistent.	 Since	 both	 “VDDatabaseHandler_Exchange”	 and	

“VDDatabaseHandler_Queue”	are	also	durable,	messages	are	then	kept	in	queue	until	they	are	

consumed.	More	 information	on	 these	mechanisms	can	be	 found	 in	 the	Advanced	Message	

Queueing	Protocol	section.	

In	the	next	section	the	Database	Handler	component	is	described	in	more	detail.	

4.4 Database	Handler	

The	Database	Handler	component	is	responsible	for	inserting,	updating	and	deleting	data	from	

and	 to	 the	 ENCOURAGE	 database.	 Similar	 to	 the	 VDM,	 the	 Database	 Handler	 uses	 the	

RabbitManager	 library	 to	 interact	 with	 the	 ENCOURAGE	 middleware,	 through	 the	

VDDatabaseQueue,	which	is	bound	to	the	VDDatabaseExchange.	Both	Exchange	and	Queue	are	

configured	as	durable	in	order	to	keep	messages	stored	until	the	component	consumes	them.	

In	 Figure	 30,	 the	 internal	 architecture	 of	 the	 Database	 Handler	 is	 provided,	 along	with	 the	

interaction	with	the	ENCOURAGE	middleware	and	its	structures.	

	

Figure	30	-	Database	Handler	Architecture	

This	component	connects	with	the	middleware	and	consumes	from	the	VDDatabaseQueue.	This	

queue	is	bound	to	the	VDDatabaseExchange	exchange,	using	a	wildcard	as	the	routing	key.	This	

means	that	all	messages	that	are	pushed	into	that	exchange	are	forward	to	the	bound	queue,	

without	any	filtering.	The	messages	received	by	this	component	are	simple	strings	with	the	SQL	

statements	generated	by	the	Encoding	&	Decoding	library	in	the	VDM	component.	

Internally,	the	component	consumes	messages	from	the	RabbitMQ	queue	and	adds	them	into	

a	 concurrent	 queue	 shared	 with	 a	 worker	 thread	 called	 Database	 Access	 Layer.	 Then	 the	

Middleware	for	Large-scale	Distributed	Systems	

61	

Database	Access	Layer	module	of	the	Database	Handler	pulls	messages,	one	by	one,	from	the	

concurrent	queue	and	executes	the	SQL	statements	in	the	database.	To	ensure	the	functioning	

of	the	component,	the	concurrent	queue	 is	used	to	allow	both	RabbitMQ	consumer	threads	

and	Database	Access	Layer	module	to	access	the	queue,	avoiding	concurrent	accesses	to	the	

same	Java	structure	at	the	same	time.	

The	concurrent	queue	could	be	removed	and	the	component	could	handle	one	message	at	a	

time,	but	the	AMQP	protocol	assumes	that	it	is	better	to	have	queues	getting	emptied	as	fast	

as	possible.	This	architecture	allows	the	component	to	consume	messages	as	soon	as	they	arrive	

to	the	queue,	maintaining	them	in	memory	to	be	handled	by	the	component.	

The	 Database	 Handler	 doesn’t	 have	 any	 logic	 and	 message	 processing,	 it	 just	 consumes	

messages	and	executes	the	contained	SQL	statements.	This	component	is	extremely	important	

to	reduce	the	VDM	processing	and	to	remove	a	possible	database	bottleneck	on	the	system.	It	

also	ensures	that	all	messages	containing	SQL	statements	are	stored	into	the	database	and	kept	

in	the	middleware	queue	if	the	component	fails.	

4.5 Encoding	&	Decoding	Library	

The	content	of	all	the	messages	that	are	exchanged	within	the	ENCOURAGE	middleware	must	

be	Common	Information	Model	compliant,	particularly	on	IEC	61968.	However	there	are	cases	

where	messages	are	not	in	this	format,	such	as	the	configuration	of	virtualized	entities	or	the	

messages	used	to	execute	performance	tests	on	the	platform.	Apart	from	that,	all	messages	are	

encoded	in	the	XML	format.	

This	subsection	is	devoted	at	explaining	the	types	of	CIM	messages	that	are	used	in	the	project,	

and	 some	UML	 class	 diagrams	 are	 given	 to	 better	 explain	 how	 they	 are	 structured	 for	 this	

specific	 case.	 Two	 types	 of	 messages	 will	 be	 detailed,	 namely	 MeterReadings	 and	

EndDeviceControls.	

Figure	31	depicts	the	class	diagram	for	the	MeterReadings	CIM	messages.	This	kind	of	message	

is	used	to	encode	data	received	by	the	MPGs	from	several	gateways.	 In	 this	messages,	data	

regarding	the	environment,	electricity	measurements,	weather	data	or	any	kind	of	forecasting,	

are	respectively	encoded.	

Each	MeterReadings	message	is	composed	by	one	Meter	object,	describing	the	entity	it	refers	

to,	being	a	MacroCell,	Cell,	Device,	etc.	Zero	or	more	EndDeviceEvents	and	Readings	objects	

also	compose	a	MeterReadings	message.	The	EndDeviceEvents	contains	general	 information	

regarding	events,	such	as	alarms	or	state	changes	of	appliances,	and	can	be	described	in	plain	

text.	 The	 information	 contained	 in	 the	 Readings	 message	 represents	 values	 sensed	 by	 the	

sensors,	which	can	be	of	numerical	or	Boolean	type.	

4	Design	and	Implementation	of	Components	on	the	ENCOURAGE	Architecture	

62	

	

Figure	31	-	MeterReadings	Class	Diagram	

The	CIM	message	of	type	EndDeviceControls	has	its	class	diagram	given	in	Figure	32.	This	type	

of	message	 is	 used	 to	 set	 values	 onto	 other	modules.	 The	 Supervisory	 Control	 component,	

which	is	capable	of	generating	command	messages	to	send	to	devices,	usually	actuators,	is	one	

of	the	components	that	it	uses	the	EndDeviceControls	messages	to	send	commands.	

	

Figure	32	-	EndDeviceControls	Class	Diagram	

For	example,	 the	Supervisory	Control	 can	 create	 this	 type	of	messages	 to	 switch	on/off	 the	

devices,	and	to	present	custom	text	messages	to	end	users	through	user	interface	installed	on	

HAN	devices’	displays.	Another	example	is	related	to	the	computation	performed	by	the	EB&BI	

indicating	how	much	energy	should	be	consumed	by	some	appliance,	which	can	be	sent	to	the	

Supervisory	Control	encoded	in	this	type	of	message.	

Middleware	for	Large-scale	Distributed	Systems	

63	

4.6 RabbitManager	Library	

The	RabbitManager	library	was	one	of	the	most	important	contributions	to	the	project	and	it	

was	developed	to	 facilitate	 the	 integration	of	any	 Java	application	 that	aimed	to	access	and	

communicate	with	the	ENCOURAGE	Platform.	The	main	goal	of	this	library	was	to	provide	an	

easy	way	to	communicate	with	the	RabbitMQ	broker.	Its	requirements	were	to	provide	all	the	

necessary	features	to	publish	or	consume	messages	from	the	middleware.	

It	was	a	priority	for	the	library	to	provide	an	easy	way	to	configure	the	publishers	and	consumers	

that	were	supposed	to	be	created,	to	configure	the	needed	connections	and	channels	and	the	

configuration	of	the	exchanges	and	queues	it	would	use.	It	was	created	a	configuration	file	that	

allowed	the	configuration	of	several	attributes,	such	as	the	number	of	messages	each	consumer	

would	consume	at	a	time	(prefetch_count)	or	if	the	messages	produced	by	the	publishers	are	

persistent	or	not	(message	persistency).	

This	configuration	file	may	be	missing,	since	the	RabbitManager	library	would	configure	itself	

using	default	values.	In	our	case,	we	decided	to	set	a	default	prefect	count	attribute	with	a	value	

of	20,	which	means	that	every	consumer	would	retrieve	20	messages	at	a	time	from	the	queue	

it	is	consuming.	Another	configurable	attributed	is	the	QoSEnable,	which	orders	the	RabbitMQ	

broker	to	dispatch	messages	in	a	round-robin	manner	among	all	the	consumers	connected.	

In	terms	of	message	persistency,	for	performance	purposes,	we	decided	to	set	non-persistent	

messages	 as	 default	 behavior,	 since	 every	 time	 a	 persistent	 message	 is	 published	 into	 the	

middleware	the	broker	writes	the	message	to	the	disk,	and	it	would	reduce	the	performance	of	

the	broker	when	the	number	of	messages	published	gets	high.	

The	development	of	the	RabbitManager	library	was	articulated	through	four	main	generations,	

looking	 for	 configurable	 and	 high	 performant	 communication	 with	 the	 middleware.	 This	

evolution	process	will	be	described	in	this	subsection.	All	the	approaches	were	developed	and	

tested	 using	 a	 full	 VDM	 application,	 which	 led	 to	 find	 other	 issues	 to	 be	 solved	 in	 both	

RabbitManager	 library	 and	 the	 VDM	 architectures.	 The	 results	 of	 the	 performed	 tests	 are	

discussed	in	the	Performance	Tests	within	this	chapter.	

4	Design	and	Implementation	of	Components	on	the	ENCOURAGE	Architecture	

64	

	

Figure	33	-	RabbitManager	Dynamic	Design	

Figure	33	depicts	the	first	approach	to	the	RabbitManager	library.	In	this	approach,	using	the	

RabbitManager	 library	 it	was	possible	 to	 create	publishers	 and	 consumers	of	 the	RabbitMQ	

broker.	Each	publisher	and	each	consumer	instantiated	a	new	thread	to	enable	the	concurrent	

creation	 and	 execution	 of	 several	 publishers	 and	 consumers	 at	 the	 same	 time,	 in	 a	 single	

application.	

Furthermore,	 each	 publisher	 and	 consumer	 communicated	 with	 the	 RabbitMQ	 broker	 by	

creating	 a	 new	 AMQP	 Connection	 with	 a	 single	 AMQP	 Channel.	 Whenever	 a	 publisher	 or	

consumer	was	 not	 needed	 anymore,	 both	 AMQP	 Channels	 and	 Connections	were	 correctly	

closed	and	the	publisher	or	consumer	thread	terminated.	

This	approach	led	to	some	issues.	First,	the	VDM	was	creating	a	JAXB	Context	instance	every	

time	a	new	message	was	consumed	and	handled.	Since	the	class	loader	for	the	JAXB	Context	

instantiation	took	a	lot	of	time,	it	affected	the	time	needed	to	process	each	message,	creating	

a	delay	if	several	messages	arrive	at	the	same	time.	

Thus,	since	each	publisher	and	consumer	created	a	new	thread,	in	cases	where	a	huge	number	

of	 publishers	 and	 consumers	were	 created,	 it	 affected	 in	 the	 CPU	 load	 of	 the	machine	 and	

several	problems	with	 the	 thread	handling.	The	 threads	created	by	publishers	were	created	

only	to	publish	messages,	but	consumers	created	a	different	thread	for	each	message	handling.	

To	solve	this	problem,	the	 internal	architecture	of	the	RabbitManager	 library	was	 improved,	

resulting	in	a	new	architecture	that	solved	some	of	the	issues	we	had	faced.	This	new	approach	

is	depicted	in	Figure	34.	

Middleware	for	Large-scale	Distributed	Systems	

65	

	

Figure	34	-	RabbitManager	Massively	Multi-threaded	Design	

The	new	architecture	was	similar	to	the	previous	one,	except	the	fact	that	the	JAXB	Context	

instantiation	 became	 a	 single	 instance	 shared	 among	 all	 the	 threads	 that	 were	 handling	

messages.	The	JAXB	framework	 is	thread-safe,	allowing	multiple	threads	to	concurrently	use	

the	same	JAXB	Context	instance.	

This	reduced	the	time	for	the	handling	of	each	message,	however	the	huge	number	of	threads	

instantiated	by	each	publisher	and	consumer	persisted.	In	cases	where	a	consumer	receives	for	

example	20	messages	at	the	same	time,	20	threads	had	to	be	created,	which	resulted	in	high	

loads	of	CPU	and	thread	handling	issues.	

Considering	that	each	publisher	instantiated	a	new	thread,	if	10	messages	were	published,	this	

means	 that	 10	 publishers	 were	 created	 and	 consequently	 10	 threads	 establishing	 AMQP	

Connections	were	also	created.	The	same	problem	was	 faced	 in	 terms	of	consumers,	where	

each	 consumer	was	 a	 new	 thread	 establishing	 the	AMQP	Connection	 and	 thus	 several	 new	

threads	to	consume	and	handle	each	message	consumed.	

This	 issue	 led	us	 to	 create	 a	 new	architecture,	 this	 time	using	 a	 Thread	Pool	 to	 control	 the	

number	of	created	threads,	and	not	to	create	any	more	thread	at	runtime.	In	terms	of	the	AMQP	

Connections	 and	 Channels,	 there	 were	 also	 some	 improvements	 regarding	 the	 way	 how	

Connections	and	Channels	were	used.	This	new	architecture	is	depicted	in	Figure	35.	

4	Design	and	Implementation	of	Components	on	the	ENCOURAGE	Architecture	

66	

	

Figure	35	-	RabbitManager	Multiple	Channel	Design	

This	 solution	 brought	 a	more	 stable	 version	 and	more	 controlled	 in	 terms	 of	 CPU	 load	 and	

monitoring.	

Furthermore,	a	new	way	to	use	AMQP	Connections	and	Channels	was	developed	and	tested.	In	

previous	 versions	 of	 the	 library,	 each	 publisher	 and	 consumer	 created	 their	 own	 AMQP	

Connections	with	a	single	Channel,	but	this	approach	reduces	the	performance	when	a	huge	

number	of	publishers	and	consumers	are	created	or	deleted,	not	only	in	terms	of	CPU	load	but	

also	regarding	network	load.	

In	following	generation,	to	provide	a	more	stable	and	reliable	library,	we	implemented	only	one	

AMQP	 Connection	 for	 all	 publishers,	 and	 one	 AMQP	 Connection	 for	 each	 consumer.	 This	

solution	reduced	the	number	of	connections	established	between	the	VDM	application	and	the	

middleware.	Each	AMQP	Connection	embraces	multiple	AMQP	Channels,	something	similar	to	

a	 fiber	optical	 cable,	 giving	us	 the	opportunity	 to	 replace	different	 connections	 for	multiple	

channels.	

In	 terms	 of	 network	 delay,	 a	 normal	 AMQP	 Connection	 takes	 two	 round-trips	 to	 be	 fully	

established.	AMQP	Channels	 take	only	one	 round-trip,	which	means	 that	 replacing	multiple	

connections	bearing	one	channel	each	with	multiple	channels	inside	a	single	connection	was	a	

step	further	toward	an	efficient	solution.	The	AMQP	Channels	are	also	thread-safe	and	enable	

a	bi-directional	communication	with	the	middleware.	

With	 the	 new	 approach,	 several	 issues	were	 solved	 from	 the	 previous	 architectures	 of	 the	

library.	In	terms	of	the	VDM	application	and	message	handling,	multiple	JAXB	Context	instances	

were	replaced	by	a	single	and	shared	 instance,	 reducing	the	time	needed	to	handle	a	single	

message.	Regarding	thread	issues,	the	usage	of	a	Thread	Pool	allowed	to	have	a	full	control	in	

managing	the	number	of	threads	that	were	created	and	executed.	

Middleware	for	Large-scale	Distributed	Systems	

67	

Finally,	this	architecture	provided	a	simpler	and	more	performant	way	to	deal	with	the	creation	

of	multiple	AMQP	Connections	with	a	single	AMQP	Channel.	Instead,	a	few	number	of	AMQP	

Connections	were	created	and	several	AMQP	Channels	were	created	within	the	same	AMQP	

Connection,	taking	advantage	of	the	thread-safe	capability	provided	by	the	AMQP	Channels.	

The	 network	 load	 was	 also	 reduced	 giving	 the	 fact	 that	 few	 connections	 were	 needed	 to	

establish	the	communication	between	applications	and	the	middleware.	

A	final	small	but	equally	important	improvement	was	implemented	in	the	final	generation	of	

the	library,	whose	structure	is	depicted	in	Figure	36.	

	

Figure	36	-	RabbitManager	Final	Architecture	

With	the	previous	configuration,	should	a	publisher	publish	several	messages	at	a	time,	it	needs	

to	create	an	AMQP	Channel	for	each	message,	reducing	the	performance	of	the	application	and	

increasing	 the	 load	on	 the	network.	To	 solve	 these	 issues,	a	 single	AMQP	Connection	and	a	

single	AMQP	Channel	were	created	for	each	publisher,	allowing	it	to	publish	all	messages	over	

an	already	opened	channel.	

In	this	final	architecture	we	faced	the	best	performance	and	we	provided	to	our	users	an	easy,	

configurable,	reliable	and	high	performant	library.	It	could	be	used	in	any	Java	application	and	

would	provide	an	easy	way	to	interact	with	a	RabbitMQ	broker.	In	fact,	this	library	was	used	by	

all	partners	of	the	project	ENCOURAGE	and	in	all	project	pilots,	and	accelerated	the	integration	

of	other	applications	with	the	ENCOURAGE	Platform.	

The	evolution	of	the	presented	approaches	was	possible	due	to	extensive	performance	tests	

that	 were	 performed	 within	 a	 reduced,	 yet	 realistic	 scenario.	 A	 brief	 explanation	 of	 the	

performance	tests	is	given	in	the	next	subsection,	providing	information	about	the	performance	

of	the	library	in	a	simulated	scenario,	the	obtained	results	and	conclusions	drawn	from	the	tests.	

4	Design	and	Implementation	of	Components	on	the	ENCOURAGE	Architecture	

68	

4.7 Performance	Tests	

In	 this	 section,	 the	performance	 tests,	 the	environment	 in	which	 they	were	performed,	 the	

analysis	and	the	results	are	explained	in	more	detail.	These	tests	were	performed	as	long	as	the	

Rabbit	Manager	library	was	implemented,	resulting	in	a	more	robust,	reliable	and	easy-to-use	

library	that	was	further	used	by	almost	all	partners	in	the	ENCOURAGE	Project	to	integrate	their	

own	systems	with	the	ENCOURAGE	Middleware,	a	RabbitMQ	broker.	

The	performance	tests	were	performed	in	a	virtual	machine	with	2GB	of	RAM	and	2.4GHz	CPU.	

Table	1	depicts	the	test	cases	that	were	executed.	

	

Table	1	-	ENCOURAGE	Performance	Tests	

Number	of	messages	 Interval	between	messages	 Prefetch	count	 Persistency	

10000	

0ms	

0	

	

	

	

20	

Yes	

	

	

No	

30ms	

35ms	

50ms	

300ms	

The	main	goal	of	this	tests	was	to	analyze	and	infer	if	the	library	was	capable	of	handling	a	huge	

number	of	messages	and	how	much	time	it	would	take	to	pass	through	all	the	components	of	

the	 ENCOURAGE	 architecture,	 simulating	 a	 real	 scenario.	 In	 these	 tests	 a	 message	 was	

generated	in	the	CIM	format	in	a	MPG,	which	was	responsible	for	pushing	those	messages	into	

the	RabbitMQ	broker	to	be	forward	to	the	Virtual	Devices	Module.	

As	soon	as	a	message	arrives	to	the	Virtual	Devices	Module,	it	parses	the	message,	stores	the	

information	 contained	 in	 the	message	 into	 the	database,	pushing	 the	SQL	 statement	 to	 the	

Database	Handler	module	through	the	broker.	Then	the	VDM	passes	the	received	message	to	

a	simulated	Supervisory	Control,	which	for	tests	purposes	waits	for	an	estimated	time	of	80ms	

to	simulate	the	SC	processing.	

The	SC	then	is	responsible	to	push	a	command	to	the	RabbitMQ	broker	to	be	forward	to	the	

VDM	again,	which	is	then	sent	to	a	specific	MPG	(the	one	that	sent	the	message).	The	VDM	is	

the	only	module	in	the	architecture	that	is	capable	of	keeping	track	of	who	is	sending	messages	

and	is	capable	of	route	the	commands	issued	by	the	SC	to	the	correct	MPG.	

The	described	exchange	of	messages	can	be	summarized	as:	after	a	message	being	generated	

by	a	MPG,	sent	to	the	VDM,	where	it	is	parsed,	stored	and	forward	to	the	SC,	the	SC	processes	

the	message	and	 issues	a	 command	 that	 is	 forward	 to	 the	VDM	once	again.	The	VDM	then	

Middleware	for	Large-scale	Distributed	Systems	

69	

parses	the	command	sent	by	the	SC,	stores	it	and	forwards	it	to	the	correct	MPG.	It	is	important	

to	notice	that	all	the	message	exchanges	were	made	through	the	RabbitMQ	broker.	

Figure	37,	Figure	38,	Figure	39,	Figure	40	and	Figure	41	depict	the	results	obtained	with	the	

following	setup:	

• Prefetch	count:	0	

• Delivery	Mode:	Non	persistent	

• Interval	 between	 messages	 published:	 0ms,	 30ms,	 35ms,	 50ms	 and	 300ms,	

respectively;	

	

Figure	37	-	Interval-	0ms	|	PrefetchCount	-	0	|	Delivery	Mode	-	Non	Persistent	

	

Figure	38	-	Interval-	30ms	|	PrefetchCount	-	0	|	Delivery	Mode	-	Non	Persistent	

4	Design	and	Implementation	of	Components	on	the	ENCOURAGE	Architecture	

70	

	

Figure	39	-	Interval-	35ms	|	PrefetchCount	-	0	|	Delivery	Mode	-	Non	Persistent	

	

Figure	40	-	Interval-	50ms	|	PrefetchCount	-	0	|	Delivery	Mode	-	Non	Persistent	

	

Figure	41	-	Interval-	300ms	|	PrefetchCount	-	0	|	Delivery	Mode	-	Non	Persistent	

It	was	noticed	that	when	messages	were	marked	as	persistent,	which	means	that	the	RabbitMQ	

broker	saves	the	messages	on	disk,	the	system	degrades	its	performance	significantly,	so	for	

that	reason	the	results	are	not	presented	here,	since	the	system	performance	was	very	 low.	

The	same	reason	applies	to	the	prefetch	count.	When	the	tests	were	executed	with	a	prefetch	

count	of	20,	each	consumer	consumes	batches	of	20	messages	at	once,	reducing	the	number	

of	messages	 in	the	broker	but	 impacting	the	systems	performance,	since	 it	keeps	consumed	

messages	in	memory.	

Middleware	for	Large-scale	Distributed	Systems	

71	

It	was	concluded	that	the	systems	starts	to	degrade	if	messages	were	published	with	an	interval	

less	 than	 35	 milliseconds,	 passing	 from	 increasing	 significantly	 the	 amount	 of	 time	 each	

message	took	since	it	is	published	by	the	MPG	and	the	correlated	command	arrives	the	same	

MPG.	

These	 tests	were	 important	 to	 determine	 if	 the	 proposed	 ENCOURAGE	 architecture	 using	 a	

RabbitMQ	broker	as	the	message	bus	is	capable	of	handling	a	huge	number	of	messages	in	a	

robust,	reliable	and	scalable	manner.	This	means	that	a	single	Virtual	Devices	Module	instance	

and	 a	 single	 Supervisory	 Control	 are	 capable	 of	 handling	 a	 huge	 number	 of	 devices	 largely	

distributed	in	several	cells	in	the	ENCOURAGE	architecture.	

In	the	next	chapter,	the	Arrowhead	Project	is	approached.	

	 	

4	Design	and	Implementation	of	Components	on	the	ENCOURAGE	Architecture	

72	

	

	

73	

	

5 Design	and	Implementation	of	

Components	of	the	Arrowhead	Project	

The	Arrowhead	Project	aims	to	develop	a	way	to	facilitate	the	cooperation	between	embedded	

systems,	 a	 highly	 scalable	 architecture,	 and	 aims	 to	 promote	 high	 levels	 of	 interoperability	

among	 different	 systems.	 With	 these	 objectives	 in	 mind,	 it	 present	 both	 similarities	 and	

differences	 to	 the	 ENCOURAGE	 Project.	While	 the	 ENCOURAGE	 Project	 aims	 to	 enable	 one	

architecture	 where	 several	 systems	 communicate	 through	 a	 message	 bus,	 the	 Arrowhead	

Project	 aims	 to	 develop	 a	 service-oriented	 framework	 enabling	 multiple	 architectures	 and	

supporting	 several	 common	 functionalities	 such	 as	 to	 enable	 the	 registry	 and	 lookup	 of	

systems/services,	 the	 authorization,	 the	 authentication	 and	 even	 the	 orchestration	 of	

systems/services.	

This	section	aims	to	provide	an	architectural	design,	implementation	and	interfaces	between	

components	of	 the	ARROWHEAD	Pilot	 for	 the	Virtual	Market	of	Energy	–	Generation	1.	The	

main	 goal	 of	 the	 pilot	 is	 to	 demonstrate	 the	 flex-offer	 [85]	 concept,	 which	 has	 the	 goal	 of	

balancing	 energy	 demand	 and	 supply,	 through	 for	 example,	 the	 synchronization	 of	

consumption	 with	 production	 of	 energy.	 The	 balancing	 is	 achieved	 through	 shifting	

consumption	loads	to	periods	of	the	when	energy	is	cheaper.	

The	flex-offer	approach	aims	to	reduce	the	energy	costs	of	industrial	or	domestic	installations,	

and	it	helps	flattening	out	energy	consumption,	refraining,	or	at	least	minimizing,	the	usage	and	

the	negative	impact	of	the	peaking	power	plants.	Several	entities	communicate	through	a	so-

called	 Virtual	 Market	 of	 Energy,	 which	 allows	 the	 scheduling	 of	 energy	 consumption	 or	

production.	 The	 flex-offers	 represent	 the	 flexibilities	 and	 schedules	 of	 energy	 of	 systems	

involved	through	formal	data	structures.	

The	 flex-offer	 approach	 involves	 energy	 consumers,	 aggregators,	 and	 a	 so-called	 flexibility	

market.	 Sensors	 collect	 energy	 consumption	data	 from	Distributed	 Energy	Resource	 (DERs).	

5	Design	and	Implementation	of	Components	of	the	Arrowhead	Project	

	

74	

Then,	this	data	is	transformed	into	device-specific	energy	requests	that	are	encoded	using	flex-

offers.	Flex-offers	contain	information	about	the	consumption	profile	of	the	device,	their	time	

and	the	amount	of	flexibility	in	energy	consumption.	

Aggregators	aggregate	micro	flex-offers,	i.e.	flex-offers	produced	by	appliances	into	macro	flex-

offers.	These	macro	flex-offers	are	large	enough	to	be	submitted	to	an	energy	market	and	to	

comply	with	market	regulations.	The	aggregation	process	can	be	performed	by	one	of	several	

aggregators.	The	aggregator	choice	may	depend	on	several	factors,	e.g.	type	of	appliance	or	its	

location.	The	aggregated	flex-offers	are	then	sent	to	a	market.	The	market	aims	to	minimize	the	

total	 costs	 to	 the	 end	 user	 by	 scheduling	 the	 energy	 consumptions	 while	 respecting	 the	

constraints	 specified	 in	 the	 flex-offers	 (minimum/maximum	 power,	 earliest/latest	 start	 of	

energy	consumption,	etc.).	

Finally,	 the	plan	with	 scheduled	energy	consumption	 is	disaggregated	by	 the	aggregators	 to	

build	up	multiple	individual	DER	plans,	which	are	then	sent	to	the	respective	DER	controllers	

that	drive	the	machines	involved	in	an	industrial	process,	the	households	or	to	an	intelligent	

building.		

In	 the	 following	 subsections,	 a	general	 architecture	overview	of	 the	pilot	 is	 given,	providing	

some	 technical	 details	 on	 how	 the	 systems	 interact	 and	 cooperate.	 Then,	 a	 more	 detailed	

description	of	the	components,	which	comprise	the	contributions	related	to	this	thesis,	is	also	

provided.	

In	the	next	subsection,	a	detailed	description	of	the	Arrowhead	Framework	is	given,	explaining	

each	one	of	the	composing	elements	of	the	framework,	how	they	will	work	and	what	are	they	

important	to.	

5.1 Architecture	Overview	

Figure	 42	 presents	 the	 Arrowhead	 Framework,	 which	 is	 the	 infrastructure	 responsible	 for	

supporting	the	 interoperability	among	all	 the	systems	that	need	to	communicate	with	other	

systems	in	an	Arrowhead	network.	It	follows	a	service-oriented	architecture	approach	in	which	

three	main	services	are	provided.	These	services	are	called	the	Core	Services	of	the	Arrowhead	

Framework,	 which	 provide	 the	 main	 functionalities	 to	 all	 systems	 that	 aim	 to	 enter	 an	

Arrowhead	network.	Those	services	are	the	Authorization,	Authentication	and	Accounting;	the	

Service	Discovery	and	the	Orchestration	services.	

Middleware	for	Large-scale	Distributed	Systems	

75	

	

Figure	42	-	Arrowhead	Framework	Architecture	

These	three	Core	Services	allow	systems	to	register	their	own	services,	lookup	for	other	services	

(Service	Discovery),	authorize	or	authenticate	their	services	(Authorization,	Authentication	and	

Accounting).	 An	 orchestration	 service	 (Orchestration)	 is	 also	 provided,	 facilitating	 the	

configuration	 of	 service	 connections,	 making	 it	 easier	 to	 connect	 to	 the	 most	 appropriate	

services.	

This	architecture	is	proposed	to	enhance	the	scalability	of	most	automation	applications,	aiming	

to	 obtain	 high	 performance	 on	 the	 exchange	 of	 information	 between	 all	 services	 and	 the	

interoperability	among	all	the	interconnected	services.	

Each	one	of	the	Core	Services	exposes	a	set	of	REST	interfaces	(interfaces	with	other	protocols	

(CoaP,	MQTT)	are	under	development),	providing	all	the	features	that	are	needed	to	connect	

to	the	framework.	This	type	of	architecture	allows	systems	to	scale	without	major	problems,	

facilitating	the	 integration	of	new	systems	to	the	network,	or	the	 increase	the	complexity	of	

systems	in	the	network.	

A	basic	use	case	of	how	a	system	may	connect	to	the	Arrowhead	Framework	and	communicate	

with	 another	 system	 is	 depicted	 in	 Figure	 42.	 Assuming	 a	 System	 A	 that	 aims	 to	 enter	 an	

Arrowhead	network,	 it	would	need	 to	publish	 (1)	 its	own	services	 (let’s	assume	a	Service	X)	

through	the	Service	Discovery	Core	Service,	giving	a	service	type	as	an	identifier	of	the	service.	

From	this	moment,	the	service	provided	by	System	A	is	discoverable	for	any	other	system	that	

wants	 to	 consume	 that	 service,	 through	 specified	 service	 type	 provided	 at	 the	 time	 it	 was	

registered	and	published.	Then,	System	B	wants	to	communicate	or	consume	from	the	service	

provided	by	the	System	A.	

5	Design	and	Implementation	of	Components	of	the	Arrowhead	Project	

	

76	

The	System	B	needs	to	contact	 the	Service	Discovery	Core	Service	 (2)	 in	order	to	 lookup	for	

service	providers	of	Service	X.	The	Service	Discovery	will	 then	 reply	 (3)	with	a	 set	of	 service	

providers	for	that	kind	of	service.	At	this	moment,	System	B	may	request	a	specific	configuration	

from	the	Orchestration	Core	Service	(4).	If	any	configuration	exists,	the	Orchestration	Service	

should	provide	information	about	what	is	the	best	service	provider	(5)	for	Service	X	(for	instance	

based	on	the	geolocation	of	System	B).	

If	there	isn’t	any	configuration	on	the	Orchestration,	the	System	B	should	be	able	to	choose	one	

of	the	service	providers	of	Service	X,	and	should	also	already	have	all	the	information	needed	

to	contact	that	provider	(addresses,	protocols	used,	type	of	data	returned,	etc.).	System	B	will	

then	try	 to	establish	a	connection	 (6)	with	System	A	 (provider	of	Service	X).	The	connection	

between	the	System	B	and	the	System	A	is	validated	using	some	certificates	(7)	on	System	A,	

allowing	System	A	to	accept	or	reject	the	connection	request.	If	the	certificates	are	valid,	the	

System	A	should	contact	(8)	the	Authorization,	Authentication	and	Accounting	Core	Service	in	

order	to	validate	if	System	B	is	authorized	to	consume	the	available	service.	

As	soon	as	the	System	A	completes	all	the	verifications	(9),	it	would	accept	(10)	the	connection	

request	sent	by	System	B,	allowing	it	to	start	the	consumption	of	Service	X	by	the	System	A.	At	

last,	System	B	will	start	the	consumption	of	the	desired	Service	X.	

Last,	a	Middleware,	in	this	case	an	XMPP	broker	supports	the	communication	of	System	A	with	

System	B.	 	Each	system	represents	an	entity	of	the	XMPP	server,	exchanging	messages	(flex-

offer	messages),	providing	a	highly	scalable,	reliable	and	extremely	fast	communication	among	

systems.	

Since	both	systems	were	implemented	following	a	REST	interface,	it	was	needed	to	implement	

an	XMPP	Extension,	more	specifically	the	XEP-0332	–	HTTP	over	XMPP,	enabling	the	integration	

with	the	XMPP	broker.	This	approach	is	described	in	the	following	sections.	

In	the	next	subsections,	a	brief	description	of	Arrowhead	Framework	is	given,	along	with	a	brief	

description	of	each	one	of	the	three	Core	Services	provided	by	the	Arrowhead	Framework.		

5.1.1 Arrowhead	Framework	

The	Arrowhead	Framework	is	the	most	important	part	of	the	Arrowhead	Project,	since	it	allows	

the	management	 and	 configuration	 of	 all	 the	 systems	 that	 are	 connected	 to	 an	Arrowhead	

network.	

The	Arrowhead	Framework,	depicted	in	Figure	42,	is	composed	by	three	main	services,	called	

the	Core	Services.	Those	services	are	the	Authorization,	Authentication	and	Accounting	Core	

Service,	the	Service	Discovery	Core	Service	and	the	Orchestration	Core	Service.	

Each	one	of	the	Core	Services	provides	a	set	of	functionalities,	exposing	a	set	of	REST	interfaces	

to	 which	 any	 system	 is	 able	 to	 connect	 and	 take	 advantage,	 in	 order	 to	 enter	 a	 specific	

Middleware	for	Large-scale	Distributed	Systems	

77	

Arrowhead	network	and	communicate	with	other	systems	in	the	network.	Any	system	that	is	

able	to	communicate	with	the	Arrowhead	Framework	Core	Services	becomes	an	Arrowhead	

compliant	system.	

The	main	goals	of	 the	Arrowhead	Framework	 is	 to	allow	all	kinds	of	systems	to	provide	and	

lookup	 for	 any	 kind	 of	 services,	 facilitating	 the	 orchestration	 of	 services	 among	 all	 the	

connected	systems,	and	enhancing	the	security	through	a	set	of	validations	using	certificates.	

The	Arrowhead	Framework	architecture	follows	a	Service-oriented	approach,	enabling	any	kind	

of	system	to	communicate	with	the	Framework	and	register	itself	or	lookup	for	other	services,	

provided	by	any	kind	of	system,	aiming	the	high	scalability	of	systems.	

In	the	next	subsections,	a	brief	description	of	each	one	of	the	three	Core	Services	is	given.	

5.1.2 Service	Registry	Core	Service	

The	Service	Discovery	Core	Service	if	the	service	provided	by	the	Arrowhead	Framework	that	

enables	systems	to	register	their	services	or	lookup	for	other	services	that	are	provided	by	other	

systems.	

Whenever	a	system	wants	to	publish	its	own	service(s),	it	should	contact	the	Service	Discovery	

Core	Service	providing	all	the	information	needed	to	describe	the	services	it	wants	to	publish.	

This	information	is	important	in	order	to	allow	other	systems	to	know	the	available	services	on	

the	Arrowhead	network.	

The	protocol	used	by	the	system	provider,	the	type	and	formats	of	data	provided	by	the	service,	

the	 addresses	 and	 the	 service	 identifier	 are	 some	 examples	 of	 information	 that	 should	 be	

provided	by	the	system	that	wants	to	publish	its	own	service(s).	This	information	will	then	be	

provided	to	other	systems	that	are	looking	up	for	service	providers	of	this	type	of	service.	

The	main	 goals	 of	 this	 Core	 Service	 are	 to	 keep	 track	 of	 all	 services	 that	 are	 provided	 and	

registered	 on	 the	 Arrowhead	 network,	 being	 able	 to	 provide	 additional	 information	 about	

services	 or	 the	 system	 that	 provides	 the	 service,	 in	 order	 to	 allow	 the	 interaction	 among	

systems.	The	existence	of	this	kind	of	Service	Discovery	service	aims	to	enhance	the	scalability	

of	a	large-scale	distributed	system,	keeping	track	of	everything	that	is	exposed	and	provided	by	

each	one	of	the	interconnected	systems.	

5.1.3 Authorization/Authentication/Accounting	Core	Service	

The	Authorization,	Authentication	and	Accounting	Core	Service	is	the	Arrowhead	Framework	

service	that	aims	to	support	and	facilitate	the	security	procedures	 in	any	kind	of	network.	 It	

exposes	a	set	of	features	to	set	rules	to	configure	if	a	system	is	authorized	to	consume	a	service	

provided	by	another	system,	if	a	system	is	authenticated	through	a	set	of	certificates,	etc.	

5	Design	and	Implementation	of	Components	of	the	Arrowhead	Project	

	

78	

The	authorization	part	of	 the	Core	Service	may	be	used	by	a	 system	to	verify	 if	 some	other	

system	 that	wants	 to	 consume	 its	 own	 service	 is	 allowed	 or	 not.	 Then,	 if	 it	 is	 allowed,	 the	

authentication	of	the	system	that	wants	to	consume	the	service	may	be	verified	through	a	set	

of	certificates	and	key	stores.	

5.1.4 Orchestration	Core	Service	

The	Orchestration	Core	Service	is	the	Arrowhead	Framework	service	that	is	responsible	for	the	

creation	and	management	of	rules	that	define	and	control	the	way	how	systems	interact	with	

other	systems	in	the	network.	

Basically,	in	the	Orchestration	Core	Service	it	is	possible	to	define	rules	specifying,	for	instance,	

the	best	service	provider	for	a	certain	service	consumer.	This	kind	of	rules	may	be	defined	based	

of	 the	 geo	 location	 of	 both	 service	 provider	 and	 consumer,	 network	 traffic	 load,	 current	

condition	of	the	service	provider	(if	it	supports	more	connections	from	service	consumers,	etc.),	

among	other	features.	

The	usage	of	 this	Core	Service	allows	 the	orchestration	of	 service	providers	and	consumers,	

facilitating	the	management	and	control	among	all	the	systems	in	terms	of	performance	and	

scalability	of	the	whole	network.	

5.1.5 Virtual	Market	of	Energy	

For	managing	 flex-offers,	 it	 was	 proposed	 the	 usage	 of	 a	 general	 Virtual	Market	 of	 Energy	

system,	which	is	depicted	in	Figure	43,	by	providing	a	set	of	Service	Oriented	Architecture	(SOA)	

interfaces,	 responsible	 for	 interconnecting	 several	 (existing	 and	 new)	 European	 Electricity	

Market	Actors	[85].		

	

Figure	43	-	Virtual	Market	of	Energy	[85]	

Middleware	for	Large-scale	Distributed	Systems	

79	

		

The	 Prosumers	 or	 the	Distributed	 Energy	 Resources	 (DERs)	 can	 both	 consume	 and	 produce	

electricity.	 Examples	 of	 Prosumers	 are	 residential	 houses,	 commercial	 buildings,	

manufacturing,	and	process	industries.	These	generate	flex-offers	and	consume	schedules	[85].	

The	Aggregators	are	specialized	entities	capable	of	aggregating	several	(micro)	flex-offers	from	

Prosumers	into	larger	(macro)	flex-offers.	It	is	also	capable	of	disaggregating	(macro)	flex-offer	

schedules,	e.g.,	received	from	the	Electricity	Market.	An	aggregator	might	be	an	integrated	part	

of	a	Balance	Responsible	Party	(BRP)	[85].

5.2 Aggregator	

The	Aggregator	component	is	entrusted	for	acting	as	a	bridge	between	the	FlexOfferAgent	and	

the	 Virtual	Market	 of	 Energy.	 This	 section	 describes	 the	 interfaces	 and	 functionality	 of	 the	

Aggregator	component.	

This	component	is	capable	of	executing	the	following	actions:	

• Receive	(micro)	flex-offer	requests,	sent	by	a	FlexOfferAgent;	

• Accept	or	reject	flex-offers;	

• Aggregate	(micro)	flex-offers	into	(macro)	flex-offers;	

• Disaggregate	macro	flex-offer	schedules	into	micro	flex-offer	schedules;	

• Send	assigned	(micro)	flex-offer	schedules	to	a	FlexOfferAgent;	

• Send	flex-offers	to	and	receive	assigned	flex-offer	schedules	from	the	Virtual	Market	of	

Energy	(to	be	implemented	in	Generation	2);	

• Request	the	power	consumption	and	the	state	of	a	 flex-offer	 (to	be	 implemented	 in	

Generation	2).	

Figure 44 presents a class diagram for the Aggregator component, containing all its classes.

5	Design	and	Implementation	of	Components	of	the	Arrowhead	Project	

	

80	

Figure	44	-	Aggregator	Class	Diagram	

Once	an	AggregatorManager instance	is	started,	an	AggResourceManager instance,	

an	 XmppManager	 instance,	 and	 an	 HTTPServer	 instance	 are	 created.	 The	

AggregatorManager	instance	handles	the	REST	calls	over	XMPP,	leveraging	the	other	two	

classes.	The	XmppManager	instance	is	responsible	for	enabling	the	communications	between	

the	Aggregator	and	the	FlexOfferManager	via	the	XMPP	protocol.	The	HTTPServer	

takes	care	of	encoding	and	interpreting	the	REST	calls,	which	can	also	be	performed	by	Web-

based	user	interface.	

At	current	state	of	development,	the	AggregatorManager	component	can	listen	for	requests	via	

both	XMPP	and	HTTP	protocols,	for	instance	performed	using	a	web	browser.	

Figure	 45	 presents	 a	 sequence	 diagram	 for	 the	 interactions	 between	 the	

AggregatorManager,	FlexOfferManager,	and	Virtual	Market	of	Energy.	

Middleware	for	Large-scale	Distributed	Systems	

81	

	

Figure	45	-	Aggregator	Sequence	Diagram	

A	 flex-offer	 request	 is	 created	 by	 the	 FlexOfferManager	 and	 sent	 to	 the	

AggregatorManager	through	an	XMPP-REST	based	interface,	using	JAX-RS	library.	JAX-RS	

stands	 for	 “Java	API	 for	 RESTful	Web	 Services”.	 JAX-RS	 is	 a	 Java	 programming	 language	API	

which	provides	support	for	creating	web	services	according	to	the	REST	architectural	pattern,	

and	its	provides	annotations	to	simplify	the	development	and	deployment	of	web	service	clients	

and	endpoints.	

A	flex-offer	request	message	consists	of	an	XMPP	IQ	stanza,	which	is	used	as	an	envelope	to	the	

message	containing	an	HTTPRequest	object	as	payload	of	the	stanza.	The	HTTPRequest	

contains	a	FlexOffer	object	inside.	The	FlexOfferManager	creates	these	messages.	

The	Virtual	Market	of	Energy	replies	to	the	AggregatorManager	through	the	REST	interface	

of	the	latter.	The	answer	is	a	set	of	flex-offer	schedules,	encoded	into	a	new	XMPP	IQ	stanza	

containing	 a	 HTTPResponse	 object	 and	 based	 on	 a	 XMPP-REST	 interface.	 When	 the	

AggregatorManager	receives	the	schedules,	it	is	responsible	for	disaggregating	them	and	

sending	the	disaggregated	schedules	to	the	correct	FlexOfferManager.		

5	Design	and	Implementation	of	Components	of	the	Arrowhead	Project	

	

82	

At	any	moment,	the	AggregatorManager	may	query	the	state	of	a	flex-offer	or	the	power	

consumption	of	a	flex-offer	execution.	Both	requests	may	be	performed	through	an	XMPP	IQ	

message	 and	 an	 HTTPRequest,	 addressing	 a	 resource	 to	 retrieve	 data	 from	 a	

FlexOfferManager	instance.	

The	communications	with	an	AggregatorManager	are	performed	through	its	interfaces,	which	

are	described	in	the	following	subsections.	

5.2.1 REST	Interfaces	

The	 AggregatorManager	 component	 provides	 a	 set	 of	 interfaces	 on	 the	 four	 base	

resources	 that	 are	 provided,	 to	 be	 used	 according	 to	 the	 REST	 paradigm.	 For	 better	

understanding	of	how	the	resources	are	organized,	Figure	46	presents	a	resource	tree	for	the	

AggregatorManager.	

Figure	46	-	Aggregator	Manager	Resource	Tree	

In	 this	 subsection,	 we	 will	 provide	 a	 more	 detailed	 description	 of	 each	 interface	 of	 the	

AggregatorManager	 component.	 Since	 the	 overall	 architecture	 assumes	 a	 REST-based	

architecture,	 a	 pointer	 (URL)	 to	 the	 resources	 needed	 to	 access	 those	 interfaces	 is	 also	

specified.	

Each	 interface	 is	 related	 to	 a	 specific	 feature	 of	 the	 AggregatorManager.	 There	 are	

interfaces	to	operate	on	flex-offers,	flex-offer	schedules,	flex-offer	aggregation,	etc.	

	

1. Flex-offers	management	resources	

Table	2	-	Flex-offer	management	resources	

Resource	 Verb	 Method	 Input	 Type	 Output	

/flexoffers	 GET	 getFlexOffers	 -	 -	 List	of	received	flex-offers	

The	AggregatorManager	 supports	 the	 handling	 of	 flex-offers.	 The	 ”getFlexOffers”	

interface	method	is	accessible	through	a	“/flexoffers” resource,	using	a	GET	request,	and	

Middleware	for	Large-scale	Distributed	Systems	

83	

retrieves	a	set	of	flex-offers.	The	AggregatorManager	receives	multiple	flex-offer	requests	

and	stores	them.	This	method	returns	everything	on	that	list.	

2. Flex-offer	aggregation	resources	

Table	3	-	Flex-offer	aggregation	resources	

Resource	 Verb	 Method	 Input	 Type	 Output	

/aggregate	 POST	 triggerAggregation	 -	 -	
Returns	true	if	flex-offers	were	

successfully	aggregated	

	

Normally,	after	receiving	several	flex-offer	requests,	the	AggregatorManager	aggregates	

them	 into	 a	 macro	 flex-offer.	 The	 The	 ”triggerAggregation”	 is	 used	 to	 trigger	 the	

Aggregator	to	place	a	flex-offer	 into	the	market,	without	having	to	wait	 for	receiving	a	fixed	

number	of	flex-offers	from	households.	This	is	particularly	useful	for	demonstration	proposes	

or	in	cases	when	the	issuers	of	the	request	require	a	fast	answer.	

The	 ”triggerAggregation”	 interface	 method	 is	 accessible	 through	 sending	 a	 POST	

request	on	an	“/aggregate”	resource,	and	it	is	used	to	initiate	the	process	of	aggregating	

received	flex-offers	into	a	macro	flex-offer,	to	be	sent	to	the	Virtual	Market	of	Energy.	

	

3. Aggregated	flex-offers	resources	

Table	4	-	Aggregated	flex-offers	resources	

Resource	 Verb	 Method	 Input	 Type	 Output	

/aggfos	 GET	 getAggFlexOffers	 -	 -	 List	of	aggregated	flex-offers	

/aggfos	 DELETE	 deleteFlexOffers	 -	 -	
Returns	true	if	flex-offers	were	

successfully	deleted	

This	 interface	 is	 used	 to	 manipulate	 aggregated	 flex-offers.	 The	 method	

”getAggFlexOffers”	is	accessible	using	a	GET	request,	and	retrieves	a	list	of	aggregated	

flex-offers.	To	delete	all	 flex-offers,	the	“deleteFlexOffers”	 interface	method	from	the	

AggregatorManager	must	be	used,	which	is	invoked	on	the	same	”/aggfos”	resource,	

but	through	a	DELETE	request.	

	

4. Scheduled flex-offers

Table	5	-	Scheduled	flex-offers	resources	

Resource	 Verb	 Method	 Input	 Type	 Output	

/schedule	 POST	 triggerScheduling	 -	 -	
Returns	true	if	flex-offers	were	

successfully	scheduled	

5	Design	and	Implementation	of	Components	of	the	Arrowhead	Project	

	

84	

The	”triggerScheduling”	method	is	responsible	for	generating	a	schedule	for	each	one	

of	 the	 aggregated	 flex-offers	 on	 the	 Aggregator	 and	 setting	 the	 state	 of	 each	 flex-offer	 as	

”Assigned”	through	a	FlexOffer	class	method	”setFlexOfferState”.		After	all	the	flex-

offers	 are	 disaggregated,	 the	 flex-offer	 schedules	 are	 ready	 to	 be	 sent	 to	 the	

FlexOfferManagers.	

The	”triggerScheduling”	method	may	be	accessed	through	the	“/schedule”	resource	

using	a	POST	request,	and	the	method	allows	to	make	a	quick	schedule	of	the	flex-offers,	and	

to	trigger	the	process	that	disaggregates	them.	This	interface	is	mostly	used	for	demonstration	

purposes,	to	force	the	last	part	of	the	process	to	start	immediately.	

5.2.2 Java	Interfaces	

Apart	from	REST	interfaces,	the	AggregatorManager	has	an	AggIf	Java	interface,	which	

allows	 the	 communication	 between	 modules	 implemented	 locally	 inside	 the	

AggregatorManager.	A	set	of	methods	were	implemented	on	the	AggIf	interface,	whose	

description	is	be	given	in	this	section.	

	

Table	6	-	Aggregator	Java	interface	

AggIf	Java	Interface	

Method	 Input	 Type	 Output	

getAggregatedFlexOffers	 -	 -	 List	of	aggregated	flex-offers	

getAggregatedFlexOffer	 flexOfferId	 Integer	 Aggregated	flex-offer	

generateId	 -	 -	 Flex-offer	id	

The	”getAggregatedFlexOffers”	method	 is	 invoked	to	retrieve	a	 list	of	aggregated	 flex-offers	

from	the	AggregatorManager.	However,	if	a	specific	aggregated	flex-offer	is	needed,	the	

”getAggregatedFlexOffer”	 method	 should	 be	 invoked,	 using	 the	 desired	 flex-offer	 id	 as	 a	

parameter.	Finally,	the	AggregatorManager	component	is	responsible	for	assigning	an	id	

to	each	flex-offer	that	has	been	received.	To	assign	an	id	to	each	flex-offer,	the	”generateId”	

method	produces	an	Integer	that	will	be	used	as	the	flex-offer	id.	

5.3 Flex-Offer	Agent	(FOA)	

The	FlexOfferManager	is	the	component	that	is	responsible	for	acting	as	a	bridge	between	

the	FlexOfferAgent	and	the	AggregatorManager.	This	component	is	entrusted	with	

managing	a	set	of	DERs	and	thus	it	controls	interactions	with	the	physical	devices.	

Middleware	for	Large-scale	Distributed	Systems	

85	

Moreover,	a	FlexOfferManager	is	meant	to	be	associated	with	an	Arrowhead	subsystem	

that	 advertises	 the	 services	 of	 the	 FlexOfferManager	 through	 the	 Arrowhead	 Service	

Discovery,	and	manages	security.	However,	note	that	Arrowhead	framework	is	not	connected	

in	this	pilot	generation,	which	is	described	later	on	this	thesis..	

Figure 47	presents	a	class	diagram	for	the	FlexOfferManager	component.

Figure	47	-	FlexOfferManager	Class	Diagram	

Once	 a	FlexOfferManager	 is	 started,	 a	FlexOfferResourceManager	 instance,	 an	

XmppManager	 instance	 and	 an	 HTTPServer	 instance	 are	 created.	 The	

FlexOfferManager	 instance	handles	the	REST	calls	over	XMPP,	leveraging	the	other	two	

classes.	 The	 XmppManager	 is	 responsible	 for	 enabling	 the	 communication	 between	 the	

FlexOfferMAnager	and	the	AggregatorManager.	The	HTTPServer	is	responsible	to	

interpret	 REST	 calls	 generated	 through	 HTTP	 request,	 for	 example	 from	 a	Web-based	 user	

interface.	

This	component	manages	the	flex-offers	and	all	the	DERs	attached	to	the	component,	and	it	

provides	interfaces	with	a	set	of	methods	used	to	access	each	functionality.	Like	in	the	case	of	

the	AggregatorManager,	all	methods	from	this	component	are	accessed	in	a	REST-based	

manner.	In	this	section	we	describe	the	methods	of	each	interface.	

5	Design	and	Implementation	of	Components	of	the	Arrowhead	Project	

	

86	

5.3.1 REST	Interfaces	

The	FlexOfferManager	 component	provides	a	 set	of	 interfaces	on	 the	 two	 resources	

(flex-offers	and	DERs)	that	are	provided,	to	be	used	according	to	the	REST	paradigm.	For	the	

sake	of	clarity	on	how	the	resources	are	organized,	Figure	48	and	Figure	49	present	the	resource	

tree	provided	by	the	FlexOfferManager	component.	Two	base	resources	are	provided,	enabling	

flex-offer	 and	 DER	 handling	 functionalities	 on	 the	 component.	 The	 “/flexoffers”	 base	

resource	provides	functionalities	to	generate	flex-offers,	assign	flex-offers	schedules,	order	the	

execution	of	flex-offers	or	retrieve	flex-offers.	

Figure	48	-	Flex-offer	Manager	Resource	Tree	

The	”/ders”	base	resource	enables	the	FlexOfferManager	to	interact	with	the	DERs	attached	

to	it.	This	resource	allows	the	generation	of	DER	programs	or	DER	profiles	retrieve	information	

on	the	state	of	execution	of	flex-offers,	etc.	

	

Figure	49	-	DER	Manager	Resource	Tree	

A	FlexOfferManager	component	provides	two	different	interfaces,	one	to	access	flex-offer	

functionalities	and	another	one	to	manage	DERs	attached	to	the	component.	Each	interface	is	

accessed	 via	REST,	 using	different	 resources	 and	REST	 verbs	 combinations.	A	more	detailed	

description	of	each	interface,	methods	and	how	they	can	be	accessed	is	given	throughout	this	

subsection.	

	

Middleware	for	Large-scale	Distributed	Systems	

87	

1. Flex-offer	management	resources	

Table	7	-	Flex-offer	management	resources	

Resource	 Verb	 Method	 Input	 Type	 Output	

/flexoffers	 GET	
getFlexOffers	 -	 -	

List	of	flex-

offers	

/flexoffers	 DELETE	

deleteFlexOffers	 -	 -	

Returns	true	if	

flex-offers	

were	

successfully	

deleted	

/flexoffers/{foid}/{startda

te}/{enddate}	

GET	

createFlexOfferR

esource	

foid	
Intege

r	

True/false	
start

date	
String	

endd

ate	
String	

/flexoffers	

/{foid}/execute	

GET	 executeFlexOffer

Resource	
foid	

Intege

r	
True/false	

/flexoffers	/{foid}	 GET	
getFlexOffer	 foid	

Intege

r	
Flex-offer	

/flexoffers	/{foid}	 PUT	
setFlexOffer	 foid	

Intege

r	
-	

/flexoffers	/{foid}	 DELETE	
deleteFlexOffer	 foid	

Intege

r	
-	

/flexoffers	/{foid}/state	 GET	
getFlexOfferState	 foid	

Intege

r	

Flex-offer	

State	

/flexoffers	/{foid}/state	 PUT	
setFlexOfferState	 foid	

Intege

r	
-	

/flexoffers	

/{foid}/schedule	

GET	 getFlexOfferSche

dule	
foid	

Intege

r	

Flex-offer	

Schedule	

/flexoffers	

/{foid}/schedule	

PUT	 setFlexOfferSche

dule	
foid	

Intege

r	
-	

/flexoffers	

/{foid}/schedule	

DELETE	 deleteFlexOfferSc

hedule	
foid	

Intege

r	
-	

To	 access	 methods	 on	 this	 interface,	 a	 base	 ”/flexoffers”	 resource	 is	 provided.	 The	

interface	method	”getFlexOffers”	 is	 accessible	 through	an	 “/flexoffers”	 resource,	

using	 a	 GET	 request,	 and	 retrieves	 a	 list	 of	 flex-offers.	 To	 delete	 all	 flex-offers,	 the	

”deleteFlexOffers”	 method	 may	 be	 invoked	 on	 the	 FlexOfferManager.	 The	

resource	 to	 invoke	 this	method	 is	 the	 same	as	 above	 (”/flexoffers”)	 but	 in	 this	 case	 a	

DELETE	request	should	be	used.	

The	interface	method	”createFlexOfferResource”	is	used	to	command	the	generation	

of	 a	 new	 flex-offer,	 by	 using	 a	 GET	 request	 on	 the	

”/flexoffers/{foid}/{startdate}/{enddate}”	 resource,	 passing	 some	

5	Design	and	Implementation	of	Components	of	the	Arrowhead	Project	

	

88	

parameters	like	flex-offer	id,	start	date	and	end	date.	The	method	“executeFlexOfferResource”	

is	used	by	means	of	a	GET	request	on	a	“/flexoffers/{foid}/execute”	resource	to	

order	the	execution	of	a	flex-offer.	The	flex-offer	id	specifies	which	flex-offer’s	execution	should	

be	started.	

To	 access	 a	 specific	 flex-offer,	 the	 method	 “getFlexOffer”	 is	 accessed	 through	 a	 GET	

request	 of	 the	 flex-offer	 id	 on	 a	 “/flexoffers/{foid}”	 resource.	 The	 method	

“setFlexOffer”	 is	 invoked	 to	 create	 a	 new	 flex-offer	 on	 the	FlexOfferManager,	 by	

executing	a	PUT	on	the	“/flexoffers/{foid}”	resource,	and	passing	the	flex-offer	id	as	a	

parameter	to	the	resource.	A	flex-offer	is	deleted	through	the	method	“deleteFlexOffer”,	

by	using	a	DELETE	request	on	the	“/flexoffers/{foid}”	resource	with	the	flex-offer	id	

as	 a	 parameter.	 To	 set	 or	 get	 the	 state	 of	 a	 flex-offer,	GET	 and	 PUT	 requests	 are	 executed	

through	 the	 method	 “getFlexOfferState”	 on	 “/flexoffers/{foid}/state”	

resource,	passing	the	flex-offer	 id	as	a	parameter,	and	the	new	state	 in	the	case	of	 the	PUT	

request.	

Regarding	flex-offer	schedules,	three	methods	are	available	on	this	interface,	to	be	used	on	the	

“/flexoffers/{foid}/schedule”	 resource.	A	GET	 request	 is	used	 to	 retrieve	a	 flex-

offer	schedule,	by	passing	the	flex-offer	id	as	a	parameter	to	the	resource.	A	PUT	request	is	used	

to	create	a	new	flex-offer,	passing	the	flex-offer	id	as	a	parameter.	Finally,	to	delete	a	flex-offer	

schedule,	a	DELETE	request	is	used,	passing	the	flex-offer	id	to	be	deleted	as	a	parameter.	

	

1. DER	management	resources	

	

Table	8	lists	all	interface	methods	to	be	used	while	managing	DER	resources,	together	with	the	

input	parameters,	and	the	output	types.	A	more	detailed	description	of	each	method	and	how	

it	can	be	accessed	is	described	in	the	following.	

	

Table	8	-	DER	management	resources	

Resource	 Verb	 Method	 Input	 Type	 Output	

/ders	 GET	 getDers	 -	 -	
AbstractDER	

Object	

/ders	/bulbders	 GET	 getBulbDers	 -	 -	 List	of	Bulb	DERs	

/ders/bulbders/{bulbderid}/profile/

programs	
POST	 createBulbProgram	

bulbder

id	

Integ

er	

Returns	true	if	

program	was	

successfully	

created	

/ders/	

/bulbders/{bulbderid}/profile/progr

ams	

DELET

E	
deleteBulbPrograms	

Bulbder

ir	

Integ

er	

Returns	true	if	all	

bulb	programs	

were	successfully	

deleted	

Middleware	for	Large-scale	Distributed	Systems	

89	

/ders/bulbders/{bulbderid}/profile/

programs	
GET	 getBulbPrograms	

bulbder

id	

Integ

er	

Bulb	program	if	It	

exists	

/ders/	

/bulbders/{bulbderid}/flexoffer/{dur

ation}	

GET	
getWashingMachineFl

exOffer	

bulbder

id	

Integ

er	 FlexOffer	object	if	

successfully	

created	duratio

n	

Integ

er	

The	 interface	method	 ”getDers”	 is	 accessible	 through	 the	 “/ders”	 resource	using	a	GET	

request,	and	it	retrieves	an	AbstractDER	object.	To	retrieve	the	list	of	all	BulbDER	instances,	

the	”getBuldDers”	interface	method	from	the	FlexOfferManager	may	be	used	through	

a	GET	request.	To	create	a	new	program	for	a	BulbDER,	the	”createBulbProgram”	method	

can	 be	 invoked	 with	 a	 POST	 request,	 on	 a	

”/ders/bulbders/{bulbderid}/profile/programs”	resource.	A	BulbDER	id	must	

be	passed	as	a	parameter	 to	 the	 resource.	To	delete	a	 specific	BuldDER	program,	 the	 same	

resource	can	be	used,	but	in	this	case	the	request	must	be	of	type	DELETE.	To	retrieve	all	the	

programs	 from	 a	 specific	 BulbDER,	 a	 method	 ”getBulbPrograms”	 is	 available	 and	 can	 be	

accessed	 using	 a	 GET	 request	 on	 a	

”/ders/bulbders/{bulbderid}/profile/programs”	 resource,	 passing	 the	

BulbDER	 id	 as	 a	parameter	 to	 the	 resource.	 Finally	 to	 get	 a	WashingMachine	 flex-offer,	 the	

”getWashingMachineFlexOffer”	method	can	be	invoked	using	a	GET	request,	through	

a	”/ders/ /bulbders/{bulbderid}/flexoffer/{duration}”	resource,	passing	

it	a	DER	id	and	a	duration	as	a	parameter.	

5.4 Virtual	Market	of	Energy	Pilot	

In	the	context	of	the	Arrowhead	Project	a	pilot	was	implemented	to	demonstrate	the	usability	

of	 flex-offers	within	 a	Virtual	Market	 of	 Energy.	 To	 demonstrate	 the	 flex-offer	 concept,	 the	

implement	pilot	consists	on	having	a	washing	machine,	built	in	Legos,	simulating	a	real	washing	

machine	appliance,	using	a	FlexOfferAgent,	a	so-called	Washing	Machine	DER	and	a	Washing	

Machine	Controller.	

The	main	goal	of	this	pilot	is	to	present	a	simple	scenario	where	a	user	chooses	an	interval	in	

which	 he	wants	 to	 execute	 a	 program	 in	 the	washing	machine.	 Since	 the	 program	 and	 the	

interval	for	the	program	to	be	executed	are	defined,	one	or	several	flex-offers	are	generated	

and	 are	 then	 pushed	 to	 an	 Aggregator	 through	 a	 FlexOfferAgent.	 The	 Aggregator	 is	 then	

responsible	to	collect	several	flex-offers	from	several	DERs	that	will	be	aggregated,	creating	a	

so-called	macro	flex-offer.	

The	 Aggregator	 pushes	 the	macro	 flex-offer	 to	 the	 Virtual	Market	 of	 Energy,	which	 is	 then	

responsible	for	giving	the	best	interval	for	the	chosen	program	to	be	executed.	However,	the	

5	Design	and	Implementation	of	Components	of	the	Arrowhead	Project	

	

90	

purpose	 of	 this	 pilot	 is	 to	 demonstrate	 the	 capabilities	 of	 the	 flex-offer	 concept,	 so	 the	

communication	between	the	Aggregator	and	the	Virtual	Market	of	Energy	is	not	implemented.	

	

Figure	50	and	Figure	51	depicts	the	prototype	built	for	the	pilot.	This	prototype	is	composed	by	

a	 Raspberry	 Pi	 to	 execute	 the	Washing	Machine	DER	 and	 the	Washing	Machine	 Controller,	

several	electronic	pieces	and	a	Lego	motor	to	control	the	“washing	machine”.	The	Raspberry	Pi,	

through	the	presented	connections	using	GPIOs	controls	the	motor.	

	

	

Figure	50	-	Lego	Washing	Machine	(1)	

	

Figure	51	-	Lego	Washing	Machine	(2)	

In	 this	 section,	 a	 brief	 description	 of	 the	Washing	Machine	 DER	 and	 the	Washing	Machine	

Controller	is	provided.	

Middleware	for	Large-scale	Distributed	Systems	

91	

5.4.1 Washing	Machine	Distributed	Energy	Resource	(DER)	

For	the	washing	machine	prototype,	a	DER	was	implemented.	This	DERManager	is	responsible	

for	 generating	 flex-offers	 based	 on	 an	 existing	 profile.	 For	 demonstration	 purposes,	 two	

different	programs	were	defined	and	assigned	to	the	profile.	Those	two	programs	were	created	

in	 order	 for	 the	 DER	 to	 be	 able	 of	 generating	 specific	 flex-offers	 for	 the	 washing	 machine	

prototype.	

To	 generate	 flex-offers,	 a	 specific	 algorithm	 was	 implemented	 in	 the	 Washing	 Machine	

DERManager.	This	algorithm	creates	basic	flex-offers	compatible	with	the	prototype,	basically	

defining	intervals	where	the	motor	should	work	or	not.	Every	flex-offer	is	generated	based	on	

the	programs	and	profile	previously	defined.	

The	Washing	Machine	DERManager	component	is	capable	of	generate	flex-offer	for	the	Lego	

washing	machine,	receive	and	convert	flex-offer	schedules	sent	by	the	Aggregator,	and	assign	

the	schedule	to	the	Washing	Machine	Controller	Manager.	

5.4.2 Washing	Machine	Controller	

The	 Controller	 component	 is	 manufacturer	 specific,	 which	 means	 that	 each	 controller	

implementation	depends	on	the	type	of	device,	protocols	used	or	types	of	commands	a	device	

receives.	The	Controller	is	also	responsible	for	measuring	the	consumption.	

The	Washing	Machine	ControllerManager	 component	 is	 responsible	 for	 interacting	with	 the	

real	 appliance,	 in	 this	 case	 being	 the	 Lego	 washing	 machine	 prototype.	 To	 enable	 this	

communication,	 the	Lego	motor	was	connected	to	 the	Raspberry	Pi	 through	GPIO	pins.	This	

setup	allows	 the	Controller	application	 to	execute	commands	on	 the	motor.	To	 this	aim,	an	

open	 source	 library	 named	 Pi4J	 was	 used.	 This	 library	 provides	 all	 the	 features	 needed	 to	

interact	with	real	devices	through	a	Raspberry	Pi.	

The	 ControllerManager	 component	 is	 responsible	 for	 establishing	 and	 managing	 the	

communication	between	the	Raspberry	Pi	and	the	FlexOfferManager.	Basically,	the	Controller	

can	receive	a	schedule,	generate	a	plan	based	on	that	schedule,	and	eventually	execute	it.	

For	this	demonstration,	a	basic	algorithm	was	implemented	to	generate	and	execute	plans.	For	

demonstration	 purposes,	 based	 on	 the	 duration	 defined	 for	 the	 schedule,	 the	 Controller	

generates	a	similar	plan	every	time	a	schedule	is	received.	Basically	it	receives	the	schedule	and	

generates	a	plan	(refer	to	AbstractPlan	class)	with	4	intervals	of	execution.	First	the	motor	works	

for	5	seconds	to	the	right,	and	then	pauses	for	1	second.	

After	 the	pause,	 the	motor	works	another	5	seconds	 to	 the	 left	and	pauses	again	1	second.	

Finally	it	works	two	more	times,	3	seconds	to	the	right	and	then	3	seconds	to	the	left,	without	

pauses	between	them.	As	soon	as	the	plan	execution	starts,	another	process	on	the	Controller	

is	started,	and	it	is	responsible	for	measuring	the	consumption	of	the	motor.	

5	Design	and	Implementation	of	Components	of	the	Arrowhead	Project	

	

92	

	

	

93	

	

6 Conclusions	and	Future	Work	

In	the	context	of	distributed	systems,	the	traditional	problem	of	communication	and	the	novel	

problem	of	 integration	 represent	 the	most	 important	 -	 and	 the	most	difficult	 -	part	of	 their	

design	 and	 implementation.	 These	 difficulties	 become	 harder	 to	 overcome	when	 designing	

large-scale	distributed	systems.	

In	this	thesis,	the	main	goal	was	to	study	and	analyze	Middleware	solutions	to	provide	an	easier	

way	 to	 design	 architectures	 for	 large-scale	 distributed	 systems.	 The	 thesis	 couples	 general	

analysis	with	a	practical	approach	that	leads	to	the	implementation	of	the	solution	over	some	

real	scenarios.	Focus	was	given	to	middleware	application	to	large-scale	distributed	systems,	

and	 deep	 insights	 on	 usage	 of	 the	 main	 communication	 protocols	 leveraged	 in	 this	 thesis	

(AMQP	and	XMPP).	

The	work	described	in	this	thesis	was	developed	in	the	context	of	two	European	projects,	the	

ENCOURAGE	 Project	 and	 the	 Arrowhead	 Project,	 which	 were	 essential	 for	 the	 study	 and	

analysis	of	real	scenarios	where	Middleware	solutions	are	useful	and	a	good	choice	for	these	

architectures.	

In	 the	 context	 of	 both	 projects,	 some	 requirements	 were	 prioritized,	 such	 us	 the	 system	

performance	of	distributed	operations,	the	Quality	of	Service	for	communications,	its	scalability	

and	 the	 interoperability,	 which	 allows	 these	 systems	 to	 interconnect	 with	 different	

technologies.	

The	research	on	Middleware	technologies	provided	the	needed	knowledge	to	understand	and	

explain	 why	 a	 solution	 might	 be	 better	 in	 one	 case	 or	 another,	 depending	 on	 the	 project	

requirements	and	the	goals	each	project	has	to	achieve.	In	both	ENCOURAGE	and	Arrowhead	

project	sections,	these	choices	are	explained	considering	the	context	of	both	projects.	

In	the	ENCOURAGE	project,	the	monitoring	and	controlling	of	the	devices	belonging	to	the	large	

scale	 distributed	 system,	 such	 as	 sensors,	 actuators	 and	 energy	 readers,	 were	 achieved	

6	Conclusions	and	Future	Work	

	

94	

successfully	 through	 the	 usage	 of	 the	 RabbitMQ	 broker,	 which	 allowed	 all	 systems	 to	

communicate	 with	 each	 other.	 Some	 performance	 tests	 were	 made,	 with	 the	 objective	 of	

showing	its	high	performance,	stability,	scalability	and	availability	achieved	using	a	Middleware	

based	architecture,	in	this	particular	case	based	on	a	RabbitMQ	broker	implementing	the	AMQP	

protocol.	

The	flex-offer	concept,	central	to	the	implementation	of	virtual	energy	markets,	was	proved	in	

the	first	generation	pilot	for	the	Arrowhead	project,	where	two	systems	successfully	exchanged	

flex-offer	messages	to	simulate	a	real	case	scenario.	In	the	scenario	two	system	interacted,	the	

first	 to	 provide	 its	 time	 flexibility	 for	 consumption	 energy,	 and	 the	 second	 for	 aggregating	

several	flex-offers	and	sending	them	to	an	energy	market.	Furthermore,	the	integration	with	

the	Arrowhead	Framework	proved	that	the	usage	of	a	set	of	Core	Services	providing	features	

like	 service	 discovering,	 authorisation,	 authentication,	 accounting	 and	 orchestration	 allows	

systems	 to	 find	 each	 other,	 coordinate	 services	 operations	 and	 initiate	 a	 safe	 and	 reliable	

communication	with	another	service	provider	system	of	interest.	

The	intensive	research,	design	and	discussions	of	the	architectures	and	the	implementations	

achieved	 along	 with	 thesis,	 allowed	 me	 to	 develop	 knowledge	 in	 different	 areas	 and	

technologies	that	were	almost	unknown	to	me.	

Follows	a	list	of	contributions	of	this	thesis:	

Easy	to	use	and	RabbitMQ	Java	library:	

The	RabbitMQ	Java	library	(subchapter	4.6)	may	be	considered	the	major	contribution	for	the	

ENCOURAGE	project	(chapter	4),	and	consequently	for	this	thesis	as	far	as	implementation	is	

concerned.	This	library	was	fully	implemented	by	me	and	was	leveraged	by	all	partners	involved	

in	 the	 project	 to	 integrate	 their	 systems	 with	 a	 RabbitMQ	 message	 broker.	 One	 main	

characteristic	of	the	library	is	that	it	facilitates	to	use	and	integrate	with	a	new	or	existing	Java	

project.	

The	different	 implementation	 steps	of	 this	 library,	described	 in	detail	 in	 subsection	4.6	 (the	

RabbitManager	Library	subchapter	of	the	Implementation	and	Design	of	Components	on	the	

ENCOURAGE	Architecture	chapter),	allowed	the	optimization	of	the	library	and	most	important,	

it	 allowed	 to	 perform	 several	 tests	 to	 determine	 the	 efficiency	 of	 the	 broker	 in	 different	

scenarios	and	the	capability	of	the	implemented	modules	for	the	project.	

Implementation	of	key	modules	of	the	ENCOURAGE	architecture:	

The	implementation	of	the	Virtual	Devices	Module	(subchapter	4.1.1)	and	the	Database	Handler	

(subchapter	4.1.2)	modules	of	the	ENCOURAGE	architecture	were	also	focal	for	this	thesis.	The	

Virtual	 Devices	 Module	 was	 the	 central	 module	 of	 the	 architecture,	 which	 keeps	 track	 of	

everything	 that	 happens	within	 the	 architecture	 since	 every	message	exchange	between	all	

systems	should	pass	for	this	module.	This	module	virtualizes	the	real	devices	connected	to	the	

system	and	also	allows	 the	monitoring	of	 those	devices	 through	a	web-based	 interface.	The	

Middleware	for	Large-scale	Distributed	Systems	

95	

Database	Handler	provided	a	basic	but	efficient	way	to	deal	with	the	database	that	supported	

the	ENCOURAGE	project,	acting	almost	like	a	load-balancer	for	the	database.	

Design	of	the	architecture	for	the	Arrowhead	Project:	

In	the	context	of	the	Arrowhead	project,	my	contributions	were	on	the	architectural	and	design	

parts.	Several	 interactions	and	meetings	with	several	partners	 involved	 in	 the	project	 led	 to	

decision	regarding	the	best	architecture	and	technologies	to	use	in	the	implementation	of	the	

Arrowhead	Framework	and	applications.	

In	terms	of	the	implementation	of	modules	of	the	architecture,	part	of	the	flex-offer	concept	

pilot	(subchapter	5.4)	was	implement	by	me,	particularly	the	Lego	Washing	machine	prototype,	

which	 was	 used	 to	 demonstrate	 a	 simulated	 case	 of	 how	 the	 implemented	 systems	 could	

control	and	monitor	an	actual	washing	machine.	I	was	responsible	for	the	implementation	of	

the	pilot	where	a	Lego	motor	was	controlled	by	a	Raspberry	Pi	through	its	GPIOs,	applying	on	

the	Lego	Washing	Machine	the	result	of	a	 flex-offer	schedule	obtained	after	some	flex-offer	

messages	 exchanged.	 This	 pilot	 is	 discussed	 in	 the	 Washing	 Machine	 Distributed	 Energy	

Resource	(DER)	and	the	Washing	Machine	Controller	subchapters	of	the	Implementation	and	

Design	of	Components	of	the	Arrowhead	Project	chapter	(chapter	5).	

Integration	of	systems	with	the	Arrowhead	Framework:	

In	 the	 Arrowhead	 Project	 pilot,	 each	 system	 described	 and	 partially	 implemented	was	 also	

integrated	with	the	Arrowhead	Framework	Core	Services,	using	a	Service-Oriented	Architecture	

supported	 over	 the	 XMPP	 protocol,	 which	 was	 used	 to	 establish	 communications	 between	

systems.	

Technical	reports,	conference	papers	and	a	journal	paper:	

Finally,	 some	technical	 reports	and	papers	were	published	reporting	 the	 results	of	 the	work	

done	during	the	time	of	this	thesis:	

• Conference	and	Workshop	Papers	

o Luis	 Lino	 Ferreira,	 Laurynas	 Siksnys,	 Per	 Pedersen,	 Petr	 Stluka,	 Christos	

Chrysoulas,	 Thibaut	 Le	 Guilly,	 Michele	 Albano,	 Arne	 Skou,	 César	 Teixeira,	

Torben	Pedersen,	“Arrowhead	Compliant	Virtual	Market	of	Energy”,	explaining	

the	advantages	of	the	Virtual	Market	of	Energy	in	the	context	of	the	Arrowhead	

project.	[85]	

• Journal	Papers	

o César	 Teixeira,	 Michele	 Albano,	 Arne	 Skou,	 Lara	 Pérez	 Dueñas,	 Francesco	

Antonacci,	 Rodrigo	 Ferreira,	 Keld	 Lotzfeldt	 Pedersen,	 Sandra	 Scalari,	

“Convergence	 to	 the	 European	 Energy	 Policy	 in	 European	 countries:	 case	

6	Conclusions	and	Future	Work	

	

96	

studies	 and	 comparison”,	 comparing	 the	 several	 approaches	 to	 energy	

markets,	green	certificates,	energy	incentives,	etc.	in	European	countries.	[38]	

o Luis	Lino	Ferreira,	Luis	Miguel	Pinho,	Michele	Albano,	César	Teixeira,	“Adaptive	

offloading	for	infotainment	systems”,	providing	a	service-oriented	architecture	

pattern	solution	 for	an	adaptable	offloading	mechanism,	taking	 into	account	

the	QoS	requirements	of	the	applications.	[84]	

In	the	next	subchapter,	some	ideas	of	what	might	be	done	in	the	future	within	the	context	of	

this	thesis,	related	to	the	projects	in	which	this	thesis	is	based	on.	

6.1 Future	Work	

Although	 the	 ENCOURAGE	 project	 is	 officially	 finished,	 its	 software	 is	 still	 in	 use	 in	 real	

installations	and	in	other	projects.	Nevertheless,	it	is	possible	to	add	new	features	and	perform	

more	work	to	improve	the	system	and	the	knowledge	about	it.	In	the	context	of	the	Arrowhead	

project,	a	set	of	possible	ideas	to	further	develop	the	system	are	also	described.	

ENCOURAGE	Project	

Performance	tests:	

In	terms	of	performance	tests,	taking	into	account	that	the	performance	tests	were	performed	

in	a	local	scenario,	I	propose	to	portray	some	more	performance	tests	in	real	scenarios	with	up	

to	thousands	of	devices	publishing	their	data,	for	both	the	ENCOURAGE	general	architecture,	

and	for	the	RabbitMQ	library	that	was	implemented	for	the	project.	

Implementation	optimizations:	

The	tests	on	performed	on	the	RabbitMq	library	allowed	to	improve	its	performance	but	further	

improvements	are	possible	making	it	possible	for	the	ENCOURAGE	middleware	to	process	more	

requests	 with	 enhanced	 reliability.	 I	 foresee	 that	 the	 performance	 of	 the	 system	 can	 be	

improved	 by	 changing	 the	 threading	 mechanisms	 to	 better	 scale	 for	 multicore	 processors.	

Additionally,	 the	 system	 should	 also	 be	 able	 to	 dynamically	 scale	 in	 a	 distributed	 system.	

Improvement	in	performance	can	also	be	achieved	by	optimizing	the	parsing	operations.	

QoS	features:	

Taking	into	account	the	ENCOURAGE	project,	it	would	be	interesting	to	make	some	efforts	to	

add	 Quality	 of	 Service	 features	 to	 the	 ENCOURAGE	 communication	 architecture,	 seeking	 a	

reliable	and	stable	architecture	and	more	predictability	on	communication	delays.	

	

	

Middleware	for	Large-scale	Distributed	Systems	

97	

Arrowhead	Project	

Performance	tests:	

Regarding	the	Arrowhead	project,	since	no	performance	tests	were	possible,	it	would	be	great	

to	perform	some	tests	 in	a	simulated	and	 local	scenario,	or	within	some	real	scenarios.	This	

could	be	important	to	prove	the	performance	of	the	system,	its	reliability	and	the	concept	of	

the	 Service-Oriented	 Architecture	 for	 embedded	 systems.	 It	 is	 important	 to	 note	 that	 this	

implementation	is	planned	to	be	tested	by	the	end	of	the	project	timeline.	

Orchestration	service:	

The	 Orchestration	 Core	 Service	 in	 the	 Arrowhead	 Project	 is	 not	 fully	 used	 in	 the	 current	

implementation,	and	it	would	be	important	to	harvest	fully	the	advantages	of	the	Orchestration	

service,	 for	 example	 to	 enable	 a	 Flex-Offer	 Agent	 to	 request	 information	 about	 the	 best	

configuration	in	terms	of	which	Aggregator	it	should	communicate,	e.g.	taking	into	account	the	

geographical	area	and	type	of	 load.	Nevertheless,	 it	 is	 important	to	note	that	at	 the	time	of	

writing	for	this	thesis	the	Orchestration	service	was	not	fully	developed.	

Core	services:	

In	 the	 Arrowhead	 Project,	 besides	 the	 three	 described	 Core	 Services	 (Service	 Registry,	

Authorisation,	Authentication	and	Accounting	Service,	and	Orchestration	Service),	other	Core	

Services	were	proposed,	such	as	the	Event	Handler	System	and	the	QoS	Service.	The	main	goal	

of	the	Event	Handler	System	is	to	provide	a	service	in	which	it	is	possible	to	register	all	kinds	of	

events	that	may	happen	within	an	Arrowhead	Framework.	The	QoS	Service	might	be	helpful	to	

establish	a	set	of	configurations	to	guarantee	robust	and	reliable	communications	among	all	

systems	connected	to	the	framework.	

QoS	features:	

Taking	into	account	the	Arrowhead	project,	it	would	be	interesting	to	make	some	efforts	to	add	

some	Quality	 of	 Service	 features	 to	 the	 established	 communications,	 seeking	 a	 reliable	 and	

stable	architecture	and	communications,	trying	to	improve	the	predictability	on	communication	

delays.	

	 	

6	Conclusions	and	Future	Work	

	

98	

	

	

99	

7 Bibliografia	

	

[1]		 G.	Colouris,	J.	Dollimore	e	G.	Blair,	"Distributed	Systems	–	Concept	and	Design	5th	

Edition",	Morgan	Kaufmann	Publishers,	pp.	1-33,	2012.		

[2]		 N.	A.	Lynch,	"Distributed	Algorithms",	Morgan	Kaufmann,	1996.		

[3]		 A.	Tanenbaum	e	M.	Van	Steen,	“Distributed	Systems:	Principles	and	Paradigms,	2	

Edition,”	Prentice	Hall,	2007,	pp.	2-66.	

[4]		 Carnot	Institutes’	Information	Communication	Technologies	and	Micro	Nano	

Technologies,	“Smart	networked	objects	and	internet	of	things,”	2010.		

[5]		 L.	Atzori,	A.	Iera	e	G.	Morabito,	“The	Internet	of	Things:	A	survey,”	Computer	Networks,	

vol.	54,	nº	15,	pp.	2787-2805,	2010.		

[6]		 G.	Kortuem,	F.	Kawsar,	D.	Fitton	e	V.	Sundramoorthy,	“Smart	objects	as	building	blocks	

for	the	Internet	of	things,”	Internet	Computing,	IEEE,	vol.	14,	nº	1,	pp.	44	-	51,	2009.		

[7]		 D.	Le-Phuoc,	A.	Polleres,	M.	Hauswirth,	G.	Tummarello	e	C.	Morbidoni,	“Rapid	

prototyping	of	semantic	mash-ups	through	semantic	web	pipes,”	WWW	'09	Proceedings	

of	the	18th	international	conference	on	World	wide	web,	pp.	581-590,	2009.		

[8]		 D.	I.	Wolinsky,	A.	Agrawa,	P.	O.	Boykin,	R.	J.	Davis,	A.	Ganguly,	V.	Paramygin,	Y.	P.	Sheng	

e	R.	J.	Figueiredo,	“Design	of	Virtual	Machine	Sandboxes	for	Distributed	Computing	in	

Wide-area	Overlays	of	Virtual	Workstations,”	p.	8,	2006.		

[9]		 R.	Figueiredo,	P.	Dinda	e	J.	Fortes,	“A	case	for	grid	computing	on	virtual	machines”,	

Distributed	Computing	Systems,	2003.	Proceedings.	23rd	International	Conference,	pp.	

550	-	559,	2003.		

7	Bibliografia	

	

100	

[10]		D.	Marshall,	“Top	10	Benefits	of	Server	Virtualization,”	2	November	2011.	[Online].	

Available:	http://www.infoworld.com/article/2621446/server-virtualization/top-10-

benefits-of-server-virtualization.html.	[Accessed	on	28	January	2015].	

[11]		B.	Lampson,	M.	Abadi,	M.	Burrows	e	E.	Wobber,	“Authentication	in	Distributed	Systems:	

Theory	and	Practice,”	ACM	Transactions	on	Computer	Systems,	vol.	25,	pp.	165-182,	

1992.		

[12]		P.	Artigas	e	M.	Ferdman,	“Centralized	vs	Decentralized:	Allocation	in	Distributed	

Systems,”	2000.		

[13]		G.	M.	Weiss	e	J.	W.	Lockhart,	“A	Comparison	of	Alternative	Client/Server	Architectures	

for	Ubiquitous	Mobile	Sensor-Based	Applications,”	UbiComp	'12	Proceedings	of	the	

2012	ACM	Conference	on	Ubiquitous	Computing,	pp.	721-724,	2012.		

[14]		Z.	F.	Chen,	X.	M.	Zhang,	Q.	C.	Chen,	T.	F.	Ma,	H.	Wang	e	X.	Feng,	“Design	and	

Implementation	of	an	Elementary	School	Online	Registration	and	Enrollment	Position	

Allocation	System	Based	on	Three-Tier	Architecture,”	Applied	Mechanics	and	Materials,	

pp.	1843-1848,	August	2013.		

[15]		B.	Xu	e	C.	Lin,	“An	extended	practical	three-tier	architecture	based	on	middleware”,	

Software	Engineering	and	Service	Science	(ICSESS),	2013	4th	IEEE	International	

Conference,	pp.	243	-	246,	2013.		

[16]		R.	Nandakumar,	K.	K.	Chintalapudi,	V.	Padmanabhan	e	R.	Venkatesan,	“Dhwani:	Secure	

Peer-to-Peer	Acoustic	NFC”,	SIGCOMM	'13	Proceedings	of	the	ACM	SIGCOMM	2013	

conference	on	SIGCOMM,	vol.	43,	pp.	63-74,	2013.		

[17]		T.	Erl,	SOA:	Principles	of	Service	Design,	Prentice	Hall,	2007.		

[18]		C.	Wu,	B.	Li	e	S.	Zhao,	“Characterizing	Peer-to-Peer	Streaming	Flows,”	IEEE	Journal	on	

Selected	Areas	in	Communications,	vol.	25,	pp.	1612-1626,	2007.		

[19]		A.	Yahyavi	e	B.	Kemme,	“Peer-to-peer	architectures	for	massively	multiplayer	online	

games:	A	Survey,”	ACM	Computing	Surveys	(CSUR),	vol.	46,	nº	1,	2013.		

[20]		Y.	Yusufa,	A.	Gunasekaranb	e	M.	S.	Abthorpec,	“Enterprise	information	systems	project	

implementation:	A	case	study	of	ERP	in	Rolls-Royce,”	Internation	Journal	of	Production	

Economics,	vol.	87,	nº	3,	p.	251–266,	2004.		

[21]		S.	R.	Magal	e	J.	Word,	Integrated	Business	Processes	with	ERP	Systems,	Wiley,	2012.		

[22]		“SAP	ERP,”	SAP,	[Online].	Available:	http://www.sap.com/portugal/pc/bp/erp.html.	

[Accessed	on	5	February	2015].	

Middleware	for	Large-scale	Distributed	Systems	

101	

[23]		“SAP	AG,”	SAP,	[Online].	Available:	http://go.sap.com/index.html.	[Accessed	on	5	

February	2015].	

[24]		NetSuite,	“NetSuite	ERP,”	NetSuite	Inc.,	2015.	[Online].	Available:	

http://www.netsuite.com/portal/products/netsuite/erp.shtml.	[Accessed	on	5	February	

2015].	

[25]		Microsoft,	“Microsoft	Dynamics	GP,”	Microsoft,	2015.	[Online].	Available:	

http://www.microsoft.com/en-us/dynamics/erp-gp-overview.aspx.	[Accessed	on	5	

February	2015].	

[26]		“EverQuest	Online,”	Sony	Online	Entertainment,	989	Studios,	[Online].	Available:	

https://www.everquest.com/home.	[Accessed	on	12	February	2015].	

[27]		“EVE	Online,”	CCP	Games,	2015.	[Online].	Available:	https://www.eveonline.com/.	

[Accessed	on	12	February	2015].	

[28]		“A	Journey	Into	MMO	Server	Architecture,”	Nexeon	Technologies,	Inc.,	30	May	2013.	

[Online].	Available:	http://www.mmorpg.com/blogs/FaceOfMankind/052013/25185_A-

Journey-Into-MMO-Server-Architecture.	[Accessed	on	13	February	2015].	

[29]		S.	M.	Kaplan,	“Smart	Grid.	Electrical	Power	Transmission:	Background	and	Policy	Issues,”	

2009.	

[30]		National	Institute	of	Standards	and	Technology,	“NIST	Framework	and	Roadmap	for	

Smart	Grid	Interoperability	Standards,	Release	3.0,”	2014.	

[31]		United	States	Department	of	Energy,	“Smart	Grid,”	[Online].	Available:	

http://energy.gov/oe/services/technology-development/smart-grid.	

[32]		M.	Albano,	L.	L.	Ferreira,	L.	M.	Pinho	e	A.	R.	Alkhawaja,	“Message-oriented	middleware	

for	smart	grids,”	Computer	Standards	&	Interfaces,	vol.	38,	pp.	133-143,	2015.		

[33]		V.	Gungor,	“A	Survey	on	Smart	Grid	Potential	Applications	and	Communication	

Requirements,”	IEEE	Trans.	on	Industrial	Informatics,	vol.	9,	nº	1,	pp.	28-42,	2013.		

[34]		F.	Kennel,	D.	Gorges	e	S.	Liu,	“Energy	Management	for	Smart	Grids	With	Electric	Vehicles	

Based	on	Hierarchical	MPC,”	IEEE	Trans.	on	Industrial	Informatics,	vol.	9,	nº	3,	pp.	1528-

1537,	2013.		

[35]		“Smart	Grid	Project,”	Provincial	Electricity	Authority	(PEA),	2014.	[Online].	Available:	

http://www.powergenasia.com/conference/smartmeter.html.	[Accessed	on	2015].	

7	Bibliografia	

	

102	

[36]		A.	Bari,	J.	Jiang,	W.	Saas	e	A.	Jaekel,	“Challenges	in	the	Smart	Grid	Applications:	An	

Overview,”	International	Journal	of	Distributed	Sensor	Networks,	p.	11,	2014.		

[37]		M.	Albano,	L.	L.	Ferreira	e	L.	M.	Pinho,	“Convergence	of	Smart	Grid	ICT	architectures	for	

the	last	mile,”	Industrial	Informatics,	IEEE	Transactions,	vol.	11,	nº	1,	pp.	187-197,	2015.		

[38]		C.	Teixeira,	M.	Albano,	A.	Skou,	L.	P.	Dueñas,	F.	Antonacci,	R.	Ferreira,	K.	L.	Pedersen	e	S.	

Scalari,	“Convergence	to	the	European	Energy	Policy	in	European	countries:	case	studies	

and	comparison,”	Social	Technologies	Resarch	Journal,	vol.	4,	nº	1,	pp.	7-18,	2014.		

[39]		“IEEE	Standards	Association,”	IEEE,	2015.	[Online].	Available:	http://standards.ieee.org/.	

[40]		S.	Browna,	D.	Pykea	e	P.	Steenhof,	“Electric	vehicles:	The	role	and	importance	of	

standards	in	an	emerging	market,”	Energy	Policy,	vol.	38,	nº	7,	pp.	3797-3806,	2010.		

[41]		“Common	Information	Model	Standard,”	Distributed	Management	Task	Force,	Inc.,	

2015.	[Online].	Available:	http://www.dmtf.org/standards/cim.	[Accessed	on	February	

2015].	

[42]		J.J.Simmins,	“The	impact	of	PAP	8	on	the	Common	Information	Model	(CIM),”	Power	

Systems	Conference	and	Exposition	(PSCE),	2011	IEEE/PES,	2011.	

[43]		Distributed	Management	Task	Force,	Inc.,	“Common	Information	Model	(CIM)	

Infrastructure	Specification,”	Distributed	Management	Task	Force,	Inc.	(DMTF),	2005.	

[44]		Distributed	Management	Task	Force,	Inc.,	“Common	Information	Model	(CIM)	

Schemas,”	Distributed	Management	Task	Force,	Inc.	(DMTF),	2015.	

[45]		“IEC	Technical	Committee,”	IEC	TC	57,	2015.	[Online].	Available:	

http://tc57.iec.ch/index-tc57.html.	

[46]		“Core	IEC	Standards,”	International	Electrotechnical	Commission,	2015.	[Online].	

Available:	http://www.iec.ch/smartgrid/standards/.	[Accessed	on	February	2015].	

[47]		R.	G.	Hollands,	“Will	the	real	smart	city	please	stand	up?,”	City:	analysis	of	urban	trends,	

culture,	theory,	policy,	action,	vol.	12,	nº	3,	pp.	303-320,	2008.		

[48]		A.	Caragliu,	C.	D.	Bo	e	P.	NijKamp,	“Smart	cities	in	Europe,”	3rd	Central	European	

Conference	in	Regional	Science	–	CERS,	2009.	

[49]		Department	for	Business	Innovation	&	Skills,	“Smart	Cities	-	Background	Paper,”	United	

Kingdom	Government,	2013.	

Middleware	for	Large-scale	Distributed	Systems	

103	

[50]		M.	Barr	e	A.	Massa,	Programming	Embedded	Systems:	With	C	and	GNU	Development	

Tools,	O'Reilly,	2007.		

[51]		S.	Heath,	"Embedded	Systems	Design",	Newnes,	2003,	pp.	1-30.	

[52]		EdgeFX,	“Understanding	of	Embedded	Systems,”	EdgeFX	Kits	&	Solutions,	2015.	[Online].	

Available:	http://www.edgefxkits.com/blog/embedded-systems-with-applications/.	

[53]		H.	Koptez,	"Real-Time	Systems:	Design	Principles	for	Distributed	Embedded	

Applications",	Springer,	2011.		

[54]		M.	A.	Vouk,	“Cloud	computing	—	Issues,	research	and	implementations,”	Information	

Technology	Interfaces,	2008.	

[55]		Microsoft,	“Chapter	1:	Service	Oriented	Architecture	(SOA),”	Microsoft,	[Online].	

Available:	https://msdn.microsoft.com/en-us/library/bb833022.aspx.	[Accessed	on	

February	2015].	

[56]		A.	L.	Diaz,	“Lessons	Learned:	Business	Agility	through	Open	Standards	&	Cloud,”	

[Online].	Available:	http://www.slideshare.net/angelluisdiaz/up2011-diazibm-

cloudstandards.	

[57]		“Dropbox	Official	Website,”	[Online].	Available:	https://www.dropbox.com.	[Accessed	

on	April	2015].	

[58]		“Box	Official	Website,”	[Online].	Available:	https://www.box.com.	[Accessed	on	April	

2015].	

[59]		S.	Ghosh,	Distributed	Systems:	An	Algorithmic	Approach,	Second	Edition,	CRC	Press,	

2014.		

[60]		L.	Harte,	"Introduction	to	Data	Multicasting",	Althos	Publishing,	2008.		

[61]		K.	Geihs,	“Middleware	Challenges	Ahead,”	pp.	24-31,	2001.		

[62]		E.	Curry,	“Message-oriented	Middleware,”	pp.	1-35,	2004.		

[63]		IBM,	“IBM	Websphere	Message	Broker,”	IBM,	[Online].	Available:	

http://www.ibm.com/software/integration/wbimessagebroker.	

[64]		“Simple	(or	Streaming)	Text	Oriented	Messaging	Protocol	(STOMP),”	[Online].	Available:	

https://stomp.github.io/.	

[65]		“Message	Queue	Telemetry	Transport	(MQTT),”	[Online].	Available:	http://mqtt.org/.	

7	Bibliografia	

	

104	

[66]		“RabbitMQ	–	AMQP	Concepts,”	[Online].	Available:	

http://www.rabbitmq.com/tutorials/amqp-concepts.html.	

[67]		M.	K.	Duncan	e	C.	,	“AMQP	0.9.1	Model	Explained,”	[Online].	Available:	

http://www.rubydoc.info/github/ruby-

amqp/amqp/master/file/docs/AMQP091ModelExplained.textile.	

[68]		A.	Videla	e	J.	J.	W.	Williams,	"RabbitMQ	in	Action:	Distributed	messaging	for	everyone",	

Manning,	2012.		

[69]		“Erlang	Official	Website,”	[Online].	Available:	http://www.erlang.org/.	

[70]		“Extensible	Messaging	and	Presence	Protocol	(XMPP)	Official	Website,”	[Online].	

Available:	http://xmpp.org/.	

[71]		P.	Saint-Andre,	“Extensible	Messaging	and	Presence	Protocol	(XMPP):	Core,”	[Online].	

Available:	http://www.ietf.org/rfc/rfc3920.txt.	

[72]		“International	Engineering	Task	Force	(IEFT)	Official	Website,”	[Online].	Available:	

http://ieft.net/.	

[73]		P.	Saint-Andre,	K.	Smith	e	R.	Tronçon,	"XMPP:	The	Definitive	Guide	-	Building	Real-Time	

Applications	with	Jabber	Technologies",	O'Reilly,	2009.		

[74]		J.	Moffitt,	Professional	XMPP	Programming	with	JavaScript	and	jQuery,	Wrox,	2010.		

[75]		“XEP-0045:	Multi-User	Chat	Specification,”	[Online].	Available:	

http://xmpp.org/extensions/xep-0045.html.	

[76]		“XEP-0060:	Publish-Subscribe	Specification,”	[Online].	Available:	

http://www.xmpp.org/extensions/xep-0060.html.	

[77]		“XMPP	Extensions	(XEPs)	Official	Website,”	[Online].	Available:	http://xmpp.org/xmpp-

protocols/xmpp-extensions/.	

[78]		“XEP-0332:	HTTP	over	XMPP	transport,”	[Online].	Available:	

http://xmpp.org/extensions/xep-0332.html.	

[79]		“XEP-0114:	Jabber	Component	Protocol,”	[Online].	Available:	

http://xmpp.org/extensions/xep-0114.html.	

[80]		“Ejabberd	Official	Website,”	[Online].	Available:	https://www.ejabberd.im.	[Accessed	on	

April	2015].	

Middleware	for	Large-scale	Distributed	Systems	

105	

[81]		“Ignite	Realtime:	Openfire	Official	Website,”	[Online].	Available:	

http://www.igniterealtime.org/projects/openfire/.	

[82]		“Data	Distribution	Service	for	Real-Time	Systems	Specification,”	Object	Management	

Group,	Inc.	(OMG),	2005.	

[83]		J.	Sanchez-Monederoa,	J.	Povedano-Molinab,	J.	M.	Lopez-Vegab	e	J.	M.	Lopez-Solerb,	

“Bloom	filter-based	discovery	protocol	for	DDS	middleware,”	Journal	of	Parallel	and	

Distributed	Computing,	vol.	71,	nº	10,	pp.	1305-1317,	2011.		

[84]		L.	L.	Ferreira,	L.	M.	Pinho,	M.	Albano	e	C.	Teixeira,	“Adaptive	offloading	for	infotainment	

systems,”	SIGBED	Review,	ACM.,	vol.	Volume	12,	nº	Issue	3,	pp.	pp	19-23,	2015.		

[85]		L.	L.	Ferreira,	L.	Siksnys,	P.	Pedersen,	P.	Stluka,	C.	Chrysoulas,	T.	Le	Guilly,	M.	Albano,	A.	

Skou,	C.	Teixeira	e	T.	Pedersen,	“Arrowhead	Compliant	Virtual	Market	of	Energy,”	9th	

IEEE	International	Conference	on	Emerging	Technologies	and	Factory	Automation	(ETFA	

2014).	19	to	21,	Sep,	2014,	Flexible	And	Interoperable	Automation	Systems,	Barcelona,	

Spain,	2014.		

	

	

	

