
Integration of TCP/IP and PROFIBUS Protocols

N. Pereira 1, F. Pacheco 1, L. M. Pinho 1, A. Prayati 2, E. Nikoloutsos 2, A. Kalogeras 2,
E. Hintze 3, H. Adamczyk 3, L. Rauchhaupt 3

1 School of Engineering
Polytechnic Institute of Porto

Portugal

2 Industrial Systems Institute,
University of Patras

Greece

3 Institut f. Automation u.
Kommunikation e. V. Magdeburg

Germany

Abstract

Recent technological developments are pulling
fieldbus networks to support a new wide class of
applications, such as industrial multimedia applications.
These applications are usually supported by the widely
used TCP/IP stack. It is thus essential to provide support
to TCP/IP based applications, in fieldbus networks.

This paper presents an effort that is being carried out
to integrate the TCP/IP and PROFIBUS stacks, in order
to support industrial multimedia applications, whilst
guarantying the timing requirements of control-related
traffic.

1. Introduction

Recent developments in the factory floor technologies
together with the widespread use of TCP/IP and the
Internet are increasing the eagerness to support a new
wide class of applications, such as industrial multimedia
applications, in fieldbuses such as PROFIBUS [1].
Examples of such applications for the industrial
environment include monitoring applications, interfacing
to microphones and cameras, remote access to
maintenance data including graphics and videos, etc.
These applications are usually supported by the widely
used TCP/IP stack. Thus, the most effective way to
integrate such applications within the PROFIBUS
communication stack is to tunnel the TCP/IP telegrams
into PROFIBUS telegrams.

The TCP/IP - PROFIBUS integration must be
correctly specified, in order to provide not only the
adequate Quality of Service to the supported TCP/IP
applications but also to guarantee the timing
requirements of the PROFIBUS control-related traffic.
Furthermore, other details that must be assessed are:

− Performance issues due to the small maximum
transmission unit size of PROFIBUS (when
compared to typical TCP/IP environment)

− A solution to adapt the master/slave paradigm of
PROFIBUS to the symmetric nature of a IP
network

− The integration must be transparent from the
application point of view

In this paper we present the on-going work to integrate a
standard TCP/IP stack (Windows NT NDIS) with the
PROFIBUS stack. Section 2 provides a brief
presentation of the architecture of the proposed solution.
Section 3 presents a discussion of the use of Windows
network drivers, while Section 4 presents the current
implementation of the architecture.

2. Architecture

The proposed solution is to use a dual stack
architecture (Fig. 1) with a Dispatcher sub-layer
connecting the TCP/IP stack and the PROFIBUS Stack
over the Fieldbus DLL. This architecture adds extra sub-
layers (IP Mapper, IP ACS and Dispatcher) to the
standard TCP/IP and PROFIBUS stacks.

TCP/IP
Applications

Fieldbus native Applications

TCP/IP
Stack

AL
Network
Mana-
gement

 Fieldbus DLL

Fieldbus PHY

IP Mapper

Layer 7 protocols

LLI DDLM

empty

User

Layer 7

Layers 3-6

Layer 2

Layer 1

IP ACS

Dispatcher

DP Mapper

Fig. 1. PROFIBUS and TCP/IP integration

Since this paper focuses in the implementation
currently being performed, the interested reader may
refer to [2-4] where the architecture of the RFieldbus
solution is presented with more detail.

2.1. IP Mapper

The IP-Mapper sub-layer resides directly below the
TCP/IP Protocol Stack mapping the TCP/IP services into
the PROFIBUS DLL services. It performs the
identification, fragmentation and re-assembly of the IP
packets to/from PROFIBUS DLL frames. In addition, an
appropriate mapping of the Data Link Layer services has
to be performed, in order for these datagrams to be
properly transmitted. This layer is also responsible for
the integration of the client-server model of the IP
protocol into the fieldbus communication model. Since
the communication model of PROFIBUS is master-
slave, it is required to provide extra functionalities to
compensate the lack of initiative in slave stations.

2.2. IP ACS

The Admission Control and Scheduling (ACS) sub-
layer resides between the IP Mapper and the Dispatcher.
This sub-layer is responsible for the control/limitation of
the network resources usage by the TCP/IP applications.
Each IP packet is classified examining IP Header fields
like destination address and port. Given this
classification the corresponding fragments are placed in
a specific queue.

Moreover, this sub-layer implements the appropriate
scheduling policies, in order to provide the desired
Quality of Service for the multimedia applications [5].

2.3. DP Mapper

The DP Mapper module is responsible for identifying
the type of DP traffic, feeding the appropriate dispatcher
queue, accordingly to the DP priority.

2.4. Dispatcher

The Dispatcher sub-layer interfaces the PROFIBUS
DP Mapper and the IP ACS to the PROFIBUS Data Link
Layer (DLL) (Fig. 1). For transmission, it provides 5
queues concerning the priority of service requests:

− DP high priority (DPH),
− DP low priority (DPL),
− IP high priority (IPH) IP QoS traffic,
− DP best effort (DPBE)
− IP best effort (IPBE).

The Dispatcher transfers requests from these queues to
the DLL, limited by the master allocation time. The
requests are transferred at least within the Dispatcher
Cycle Time and according to the queue priority. In the
receiving side, the Dispatcher identifies the type of
message (DP or IP), sending them to the DP Mapper or
to the IP ACS, respectively.

3. Windows NDIS interface

In order to obtain a transparent integration of the IP
and PROFIBUS stacks, the implementation of the dual
stack is being performed at the operating system driver
level. Therefore, standard DP and TCP/IP applications

do not require changes. It also allows the use of the
already available interfaces for the development of
network drivers, also facilitating future unforeseen
developments.

The implementation is being performed in the
Microsoft Windows NT 4 operating system (OS). Within
this OS, networking protocols use the Network Device
Interface Specification (NDIS) [6] to communicate with
network card drivers. Much of the OSI model
functionality is implemented in this interface, which
allows an easier development of network card drivers.

NDIS defines a fully abstracted environment for
network driver development. For every external function
that a Network Interface Card (NIC) driver needs to
perform, it can rely on NDIS routines to perform the
operation. These drivers can be recompiled with a
system-compatible compiler to run in any NDIS
environment.

User-Mode Client

NetBios
Emulator
User-Mode DLL

Sockets
Emulator
User-Mode DLL

Kernel-Mode TDI
Client

(Including NT Redirector)

User Mode
Kernel-

LAN Protocols

NDIS Intermediate

NDIS Miniport

Native Media
Aware

Protocol

Network Card

Lan Media Type

Native Media Type

N
D
I
S
I
n
t
e
r
f
a
c
e

Transport Driver
Interface (TDI)

NetBios
Emulator
Kernel-Mode DLL

NetBios
Emulator
Kernel-Mode DLL

 Fig. 2. Windows NT network driver components

The overall structure of the Microsoft Windows NT
network driver support is presented in Fig. 2. Within it,
three types of NDIS drivers may exist: NIC drivers,
Intermediate drivers and Upper-level drivers.

NIC drivers directly manage Network Interface
Cards. NIC drivers can be either Miniport drivers or
legacy Full NIC drivers. The older Full NIC drivers were
built with all the required functionalities to support
different network cards. With a Miniport driver, much of
these functionalities have been moved to the NDIS
library, thus drivers are smaller and easier to write.

Intermediate protocol drivers interface between an
upper-level driver such as a legacy transport driver and a
Miniport. A typical reason for developing an
intermediate protocol driver is to perform media
translation between an existing legacy transport driver
and a Miniport that manages a NIC for a new media type
unknown to the transport driver.

An upper level protocol driver implements a
Transport driver Interface, or possibly another
application-specific interface at its upper-edge to provide
services to users of the network.

pr
io

rit
y

4. RFieldbus Prototype implementation

The implementation of the RFieldbus prototype is
based on existing portable software, which supports
PROFIBUS master and slave functionality [7]. As
depicted in Fig. 3, it consists of three main parts: the
PROFIBUS firmware, the NDIS Miniport driver and the
NDIS Intermediate driver. In addition a card driver DLL
is necessary for the PROFIBUS control application.

The NDIS Intermediate driver interfaces with the
TCP/IP upper layers and implements the IP Mapper and
IP ACS functionalities. The NDIS Miniport is
responsible for interfacing with both the Intermediate
driver and the DP native Applications.

���
���Privat DPRAM interface

 U
ser M

ode Kernel M
ode

PC
 / Notebook - W

indow
s N

T4.0

��
��
��
��
��

N
D

IS w
rapper NDIS miniport driver

 NDIS inter-
mediate driver

 TCP/IP Stack

�������������������������
�������������������������

Card driver dll

PROFIBUS
application

ISA / PCI / PCMCIA board
PROFIBUS firmware with PhL1

RS232RS485

LLS board + Radio Modem
PhL3

Wired segment

Wireless
segment

TCP/IP
applicationTCP/IP

applicationTCP/IP
application

Fig. 3. Architecture of the RFieldbus prototype

4.1. Intermediate Driver

The Intermediate driver (Fig. 4) is responsible for
interfacing with the upper protocols (i.e. TCP/IP) on its
upper edge, and with the Miniport driver on its lower
edge. Both the IP Mapper and the IP ACS modules rely
on a common driver support, and interacting using a
defined interface. The Intermediate driver’s entry/exit
functions are NDIS standard calls.

In order to send datagrams, the Transport layer uses
the send function registered by the Intermediate driver,
by using a standard NDIS call. In the opposite case,
where a reassembled IP Datagram is ready to be
forwarded to TCP/IP, another standard NDIS call is
used. To deliver and receive fragments IP ACS uses
standard NDIS calls to communicate with the lower
Miniport in a similar manner.

The interface between the IP Mapper and IP ACS
modules is performed by using a well-defined interface.
Upon reception of fragments from the lower layers, the
IPM_Unconfirmed_Fragment_Delivery_Ind primitive is used by
the IP ACS to forward them to the IP Mapper. By
calling this primitive, the IP ACS passes to the IP
Mapper the pointer to the fragment as well as its source
address. This extra information is necessary for the
identification of the fragment.

Transport Layer
(i.e. TCP/IP)

NDIS Miniport Driver

NIC

N
D
I
S

NDIS Intermediate Driver
Miniport upper edge

Protocol lower edge

Miniport upper edge

IP Mapper

IP ACS

IPM_Fragment_Delivery_Ind
IPM_Fragment_Delivery_Cnf

IPM_Fragment_Delivery _Req

Fig. 4. Intermediate driver

On the other hand, for fragments destined to the lower
layers, the IPM_Unconfirmed_Fragment_Delivery_Req service
primitive is used to send them to the IP ACS. For every
fragment sent to the IP ACS, the IP Mapper expects a
confirmation (indicated by the primitive
IPM_Unconfirmed_Fragment_Delivery_Cnf.). This confirmation,
sent by the IP ACS, depends on the delivery status of the
fragment to the lower layers.

4.2. Miniport driver

The PROFIBUS Miniport driver has to perform two
main tasks:

− to set up the hardware access according to the
different board types and

− to manage the exchange of service primitives
between the TCP/IP protocol and the PROFIBUS
firmware.

The architecture of the Miniport driver is shown in Fig.
5. The access from the network protocols (via the
Intermediate driver) is made using an NDIS Miniport
interface managed by the NDIS wrapper. The access
from the PROFIBUS application, running in user mode,
is made using a WDM interface.

Miniport Driver
NDIS miniport interfaceWDM interface

Privat interface
Services primitives

H
W

 reset
H

W
 init

IP
config

IP
packets

PROFIBUS
application

Network protocols
and applications

PROFIBUS
firmware

���
Dual Ported RAM

Firm
ware init

Service prim
itives

Fig. 5. Architecture of the Miniport driver

The PROFIBUS application is the responsible for
initialising and controlling the network board. The driver
is started with the Windows boot process. However, it
rejects all send packet requests from the network
protocols until the PROFIBUS firmware is initialised.

After a successful firmware initialization, the device
driver delivers packet send requests from the network
protocols to the PROFIBUS firmware, and delivers

received packet indications to the upper protocols. Send
packets are returned together with state information,
when receiving the related send confirmations.

Receiving service primitives from the PROFIBUS
firmware is implemented by polling the report area of
the Dual Port RAM interface.

4.3. Support to DP and IP Traffic

Fig. 6 shows the architecture of the RFieldbus
firmware prototype. The uncolored modules are
unchanged and provide the standard functionality of the
PROFIBUS-DP protocol. The colored modules are new
implementations corresponding to the RFieldbus
specification.

��
��

IPMP

STM

PhL1
DLL

DID
DPM

AC2
DDLM
USIF

DLX

Privat DPR interface

RS232
PhL3 config

RS485
PROFIBUS telegrams

ISA
 / PC

I / PC
M

C
IA

 board
P

R
O

FIBU
S firm

w
are

Fig. 6. Architecture of the RFieldbus firmware

The IPMP module is the PROFIBUS application layer
extension that realizes the transparent transmission of IP
packets via PROFIBUS [8]. It uses standard Data Link
Layer services with a special service access point (SAP)
and manages configurable application relationships to
the remote stations.

The DP-Mapper (DPM) module adds a message cycle
time parameter to each send request of the standard DP
protocols. This allows the DP/IP-Dispatcher (DID)
module to dispatch the DP and IP frames according to
the required QoS.

The requests are transferred from the DPM or IPM
into the dispatcher queues, if the dispatcher cycle timer
is running and the master allocation time is not
exceeded. The DID checks the queues when the
dispatcher cycle time is expired and puts the requests
into one of the DLL queues (high/low priority) as long as
the target message cycle time of a request does not
exceed the remaining target rotation time. In addition,
the traffic of each dispatcher queue is monitored,
because the traffic of each dispatcher queue can be
limited by a separate limitation time.

In receiving direction the DID has to identify the
confirmations and indications and has to pass them from
the PROFIBUS DLL to the standard DP modules or to
the IPM module respectively.

The DPM and DID modules can be disabled. In this
case the requests are transferred from the standard DP
and IPM modules directly to the DLL module.

A Station Management (STM) module has been
implemented to reset and configure the newly introduced

RFieldbus modules. In addition, a control interface has
been implemented to pass the management functions to
the radio physical layer (PhL3), which is situated on a
separate hardware (Fig. 3).

5. Summary and Current Work

This paper presented the architecture of a proposed
solution to incorporate support to TCP/IP based
applications within PROFIBUS networks. The provided
solution allows to guarantee the timing requirements of
control-related traffic and to support Quality of Service
in the multimedia applications.

Currently, such solution is being implemented within
the Windows NT NDIS interface. Additionally, two field
trials are being implemented in order to demonstrate the
suitability of the proposed approach for the development
of multimedia-enabled industrial communication
systems.

Acknowledgements

This work was partially supported by FCT (project
CIDER POSI/1999/CHS/33139) and by the European
Commission (project RFieldbus IST-1999-11316).

References

[1] “General Purpose Field Communication System, Volume
2” – Profibus, European Norm EN 50170, 1996.

[2] RFieldbus Deliverable D1.3, “General System
Architecture for the RFieldbus System”, Technical
Report, Sep. 2000.

[3] Pacheco, F., Tovar, E., Kalogeras, A and Pereira, N.,
“Supporting Internet Protocols in Master-Slave Fieldbus
Networks”. Proceedings of 4th IFAC FET Conference,
2001.

[4] E. Nikoloutsos, A. Prayati, A. Kalogeras, V. Kapsalis, S.
Koubias, G. Papadopoulos, ”Integrating IP Traffic into
Fieldbus Networks”, IEEE – ISIE, Italy 2002

[5] E. Tovar, F. Pacheco, F. Vasques and L. Ferreira,
“Industrial Multimedia over Factory-Floor Information
Networks”, 10th IFAC INCON Conference, 2001.

[6] Microsoft Windows NT Driver Development Kit
documentation. Microsoft, 2000.

[7] Deike, P. ; Hähniche, J. ; Hintze, E. ; Pöschmann, A. :
Development of a portable PROFIBUS protocol software
(in German). DFAM Research Report Nr. 9/96, Frankfurt
(Germany), 1996.

[8] Krogel, P.; Pöschmann, A.; Rauchhaupt, L.: Open
Internet Protocol Fieldbus System Tunneling
Specification. Addendum to Open Internet API
considering the real-time conditions of field devices" (in
German). DFAM Research Report Nr. 18/2002,
Frankfurt (Germany), 2002

	Introduction
	Architecture
	IP Mapper
	IP ACS
	DP Mapper
	Dispatcher

	Windows NDIS interface
	RFieldbus Prototype implementation
	Intermediate Driver
	Miniport driver
	Support to DP and IP Traffic

	Summary and Current Work
	Acknowledgements
	References

