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I. INTRODUCTION

The increasing gap between processor and main memory

operating speeds motivated the introduction of caches in

modern processors. Program data and/or instructions that are

loaded in caches are readily available to the processor in

comparison to fetching it from the main memory, thereby

resulting in a faster execution time for the tasks running on the

processor. Most commercial-of-the-shelf (COTS) processors

use caches to decrease average-case memory access latency.

However, as caches have a limited capacity in comparison

to the main memory, it results that not all the data and

instructions of all tasks can simultaneously reside in the cache.

Tasks compete for space in the cache and one task might

potentially evict cache content loaded by the others tasks. This

can cause big variations in the execution time of the task,

depending on whether the instruction and/or data it requires

are already loaded in the cache (cache hit) or not (cache miss).

In systems where preemptions are allowed, the preempted

tasks may suffer additional cache misses if its useful memory

blocks (i.e., blocks that are used more than once by the task

during its execution) are evicted from the cache due to the

execution of the preempting tasks. These evictions cause extra

accesses to the main memory, which result in additional delays

during the task execution. This extra cost is usually referred

to as cache-related preemption delays (CRPDs).

The literature on CRPD calculation is well developed.

Several approaches have been proposed to compute accurate

upper-bounds on CRPDs.

In [1], we introduced the notion of cache persistence to

reduce the pessimism involved in the state-of-the-art worst-

case response time (WCRT) analyses for fixed-priority pre-

emptive systems. In the proposed analysis, along with the

effect of preemptions on the memory demand of the preempted

task τi, we also considered the variation in memory demand

of different jobs of the preempting tasks executing during

the response time of the task τi. This variation in memory

demand is mainly due to the existence of persistent cache

blocks (PCBs). PCBs are the memory blocks of a task τj that,

once loaded by τj , will never be invalidated or evicted from

the cache when τj executes in isolation [1]. Unless evicted by

other tasks running concurrently with τj , those cache blocks

can thus be reused by subsequent jobs of τj resulting in a

lower memory demand.

By definition, PCBs of a task τj cannot be evicted by

the task itself but these PCBs can be evicted by other tasks

concurrently running in the system. PCB evictions will result

in an extra memory overhead for task τj executing during

the response time of another lower-priority task τi. In [1], we

defined this extra memory overhead as the Cache Persistence

Reload Overhead (CPRO) and showed how it can be integrated

into the WCRT analysis in the context of fixed priority

preemptive systems.

The WCRT analysis presented in [1] accounts for both CR-

PDs and CPRO and dominates the state-of-the-art approaches

(e.g., [2]–[5]) that only account for CRPDs. However, it can

still result in overestimations due to the fact that it assumes

that there is no mutual dependency between the CRPD and

CPRO. Therefore, CRPD and CPRO are separately calculated

and accounted for in the WCRT analysis. As shown later in

this paper, the actual CPRO does in fact depend on what has

already been evicted from the cache during earlier preemp-

tions. Therefore, this inaccurate assumption results in double

accounting for the same cache block evictions in situations

where there is an overlap between persistent and useful cache

blocks of a task.

Therefore, in order to compute tighter bounds on the mem-

ory overhead, and hence on the WCRT of each task executing

in a preemptive system, we propose a novel analysis that

captures the cache blocks whose evictions are accounted twice

(both in CRPD and CPRO) during the response time of a

task τi. We further present a first solution to integrate the

calculation of CRPD and CPRO and hence ensure that each

cache block eviction is considered only once.

II. SYSTEM MODEL

In this work, we focus on single-core platforms with a single

level (L1) instruction/data cache. The cache is assumed to be

direct-mapped, which means that each memory block in the

main memory can be mapped to only one specific block in

the cache.

We consider sporadic tasks with constrained deadlines

where each task has a fixed priority. Any priority assignment

scheme (e.g., Rate Monotonic or Deadline Monotonic) is

acceptable. We also assume that the tasks are independent and

do not suspend themselves during their execution. A task τi
is defined by a triplet (Ci, Ti, Di), where Ci is the worst-case

execution time (WCET) of τi, Ti is its minimum inter-arrival

time and Di is the relative deadline of each instance (or job)

of τi. We assume that the tasks have constrained deadlines,

i.e., Di ≤ Ti. We further decompose each task’s WCET

into separate terms for processing and memory demand,



respectively. The worst-case processing demand Pi denotes

the worse-case execution time of τi considering that every

memory access is a cache hit. Consequently, it only accounts

for execution requirements of the task and does not include

the time needed to fetch data and instructions from the main

memory. MDi is the worst-case memory demand of any job

of task τi, that is, the maximum time during which any job

of τi is performing memory operations. The values for Ci, Pi

and MDi are calculated assuming τi executes in isolation. It is

also important to note that the worst-case processing demand

and the worst-case memory demand may not necessarily be

experienced on the same execution path of τi. Therefore, it

holds that Ci ≤ Pi +MDi.

The worst-case response time (WCRT) of task τi is defined

as the longest time between the arrival and the completion of

any of its jobs.

We consider that preemption costs only refer to additional

cache reloads due to those preemptions. Other overheads, e.g.,

due to context switches and scheduler invocations, are assumed

to be included in the task’s WCET. The worst-case reload time

of a cache block from main memory is denoted by dmem .

For convenience, we define the following set of tasks:

• hp(i): the set of tasks with a priority higher than that of τi.

• hep(i): the set of tasks with priorities higher than or equal

to that of τi.

• aff(i, j): the set of tasks with priorities higher than or equal

to the priority of τi (including τi), but strictly lower than

that of τj . This set contains the intermediate priority tasks,

that can execute during the response time of τi but may also

be preempted by τj .

III. USEFUL CONCEPTS

A. Cache Related Preemption Delays

The state-of-the-art is quite extensive with approaches that

focus on analyzing the impact of CRPDs on the WCET and

WCRT of tasks in preemptive systems. CRPDs caused by a

high priority task τj executing during the response time of a

low priority task τi is denoted by γi,j .

In one of the earliest works, Lee et al. [4] introduced the

concept of useful cache blocks (UCBs), defined as follows.

Definition 1 (Useful cache block). A memory block m is

called a useful cache block (UCB) at program point P, if it is

cached at P and will be reused at program point Q that may

be reached from P without eviction of m.

The concept introduced in [4] was later improved by Alt-

meyer et al. [6]. However, in this work we only need the

basic concept provided in [4]. Lee et al. [4] used the notion of

UCBs to bound the preemption cost, proving that γi,j is given

by the maximum number of UCBs that can be evicted when

τj preempts τi. Busquets et al. [2] and Tomiyama et al. [3]

rather introduced the notion of evicting cache block (ECBs).

Definition 2 (Evicting cache block). Any cache block accessed

during the execution of the task and which can then evict the

memory block cached by another task is called Evicting Cache

Block (ECB).

The CRPD γi,j caused by τj is therefore upper-bounded by

the number of ECBs of τj .

Other approaches [5], [7]–[9] used both the UCBs of the

preempted tasks and ECBs of the preempting tasks in order to

come up with more precise bounds on CRPDs. Due to space

constraints, we will only discuss the UCB-union approach.

To calculate the preemption cost γi,j , the UCB-union ap-

proach [7] uses the ECBs of the preempting task τj and

the UCBs of all tasks in aff (i, j) possibly affected by the

preemption caused by τj (see Equation (1)).

γi,j = dmem ×
∣

∣

∣

(

⋃

∀k∈aff (i,j)

UCBk

)

∩ ECB j

∣

∣

∣
(1)

where, UCBk and ECB j are the sets of UCBs and ECBs of

task τk and τj , respectively.

B. Cache Persistence

Authors of [1], introduced the notion of cache persistence

and defined the concept of persistent and non-persistent cache

blocks (PCBs and nPCBs) as follows.

Definition 3 (Persistent cache block). A memory block of a

task τi is persistent if once loaded by τi, it will never be

invalidated or evicted from the cache when τi executes in

isolation.

Definition 4 (Non-persistent cache block). A non-persistent

cache block (nPCB) of task τi is an ECB that is not a PCB.

That is, it is a memory block that may need to be reloaded at

some point during the execution of τi (in the same or different

job), even when τi executes in isolation.

Based on the definition of non-persistent cache blocks

(nPCBs), we also introduced the notion of residual memory

demand (MDr
i ) of a task τi.

Definition 5 (Residual memory demand). The residual mem-

ory demand MDr
i of task τi is the worst-case memory demand

over all the jobs of τi when all its PCBs are already loaded

in the cache memory.

The number of PCBs and the residual memory demand

(MDr
i ) of a task can be used to bound its total memory demand

M̂D i(t) in isolation during a time interval of length t:

M̂D i(t)
def
= min

{⌈

t
Ti

⌉

MD i ;
⌈

t
Ti

⌉

MDr
i+ | PCB i | ×dmem

}

(2)

It is proved in [1] that M̂D i(t) upper bounds the memory

demand of task τi while executing in isolation assuming τi
starts its execution with an empty cache. Similarly, the notion

of CPRO is also formally defined in [1] as:

Definition 6 (Cache-persistence reload overhead). The Cache-

persistence reload overhead, denoted by ρj,i, is the maximum

memory overhead of any task τj due to evictions of its PCBs

resulting from the execution of all tasks in hp(i)\ τj , while τj
is executing during the response time of τi.

The cache-persistence reload overhead (ρj,i) can be calcu-

lated using any of the three approaches presented in [1]. In

this work, we concentrate on the CPRO-union approach, which



uses the PCBs of task τj and the union of the ECBs of all

tasks in hp(i) \ τj to calculate ρj,i:

ρj,i = dmem ×

∣

∣

∣

∣

PCB j ∩
(

⋃

∀τk∈hep(i)\τj

ECBk

)

∣

∣

∣

∣

(3)

For a detailed description on the proof of Equations (2) and

(3), readers are referred to [1].

IV. THE PROBLEM

The WCRT analysis presented in [1] is given by the

following formulation1:

Ri = Ci +
∑

∀j∈hp(i)

{⌈

Ri

Tj

⌉

(Pj + γi,j) + M̂Dj(Ri) + ρ̂j,i(Ri)
}

(4)

where ρ̂j,i(Ri) is the total CPRO suffered by every high

priority task τj ∈ hp(i), and is given by the following

equation:

ρ̂j,i(Ri)
def
=

(⌈

Ri

Tj

⌉

− 1

)

× ρj,i (5)

For a detailed description on the formulation of Equa-

tions (4) and (5), the reader is referred to [1].

The WCRT formulation in Equation (4) separately accounts

for both the CRPD γi,j and the CPRO ρj,i where both

these quantities are calculated using Equation (1) and (3),

respectively. By definition, CRPD accounts for the evictions

of UCBs whereas CPRO accounts for the evictions of PCBs.

In situations where we have an overlap between the UCBs

and PCBs of some tasks, the formulation in Equation (4) will

sometime account for the same evictions twice (both in γi,j
and ρj,i) and hence results in an overestimation on the total

memory overhead due to both CRPD and CPRO. This situation

is illustrated using the example given below.

Example 1. Consider a task set τ comprising three tasks

{τ1, τ2, τ3} with τ1 having the highest priority and τ3 the

lowest. Fig. 1 presents an example schedule together with the

evolution of the cache content over time. Cache blocks that

have been evicted either due to CRPD or CPRO and must be

reloaded from main memory are highlighted in red. The set of

persistent cache blocks (PCBs) are highlighted in green.

Initially, the cache is empty and with τ3 being the first task

to arrive it loads all its ECBs in the cache. When τ2 preempts

τ3 for the first time, it also loads its ECBs. Similarly, τ2 is

soon preempted by the highest priority task τ1 which in turn

loads all its ECBs into the cache. Note that ECBs of task τ1
and UCBs/PCBs of task τ2 are mapped to the same cache

sets, i.e., {7, 8, 9, 10}. Thus, when τ2 resumes its execution

after the completion of the first job of τ1 it needs to reload all

its UCBs, i.e., UCB2 = {7, 8, 9, 10} from the main memory

(highlighted in red) as they were evicted during the execution

of τ1. These extra memory accesses will be accounted for as

CRPD.

Since, the first job of τ2 loads all its ECBs (PCBs and

nPCBs) into the cache, subsequent jobs of τ2 may have a

lower memory demand due to the existence of persistent cache

1We present only a simplified form of the original WCRT formulation
presented in [1]

blocks, i.e., PCB2 = {7, 8, 9, 10}. However, each job will also

need to reload all the PCBs that may have been evicted due

to other tasks executions. This is accounted for as CPRO.

From the execution schedule and cache contents shown in

Fig. 1, we conclude that the total memory overhead (i.e.,

the number of cache blocks that are evicted and need to be

reloaded), which accounts for both CRPD and CPRO, during

the response time of τ3 comes out to be equal to 12 (i.e., the

number of blocks in red).

Note that, since τ2 is the only task with useful cache blocks

(UCB2 = {7, 8, 9, 10}), it is also the only task incurring a

CRPD. Using Equation (1), we get

γ3,1 = |(UCB2 ∪ UCB1) ∩ ECB1| = 4

and

γ3,2 = |UCB3 ∩ ECB2| = 0

As three jobs of both task τ1 and τ2 execute during the

response time of task τ3, the total CRPD is given by

CRPD total,3 = 3× γ3,1 = 12

which is indeed the number of UCBs of τ2 evicted by τ1 during

the response time of τ3 (see Fig. 1).

Similarly, using Equation (3), we get

ρ3,1 = |(ECB2 ∪ ECB1) ∩ PCB3| = 0

and

ρ2,1 = |(ECB3 ∪ ECB1) ∩ PCB2| = 4

Consequently, it follows that the only cache persistence reload

overhead during the response time of task τ3 comes from the

eviction of PCBs of task τ2. Furthermore, as three jobs of τ2
executes during the response time of τ3, using Equation (5)
the total CPRO is given by

CPRO total,3 = 2× ρ2,3 = 8

Finally, adding CRPD and CPRO, the total memory over-

head during the response time of task τ3, comes out to

be CRPD total,3 + CPRO total,3 = 20 cache blocks to be

reloaded, which is a clear overestimation over the 12 cache

blocks that were actually evicted and reloaded during τ3’s

response time.

Example 1 shows that when accounting for both CRPD and

CPRO separately, state-of-the-art approaches may consider the

eviction of the same cache blocks twice and thus result in an

overestimation of the total memory overhead. For instance, in

the above example, UCBs of task τ2, i.e., {7, 8, 9, 10} are also

its PCBs. Therefore, the eviction of cache block {7, 8, 9, 10}
are considered twice, once in γ3,1 and then ρ2,3, resulting in

an overestimation on the total memory overhead during the

response time of τ3.

V. INTEGRATING THE CALCULATION OF CRPD AND CPRO

Two interesting properties can be observed in the example

of Section IV:

O1. Same cache block evictions are accounted twice (in both

CRPD and CPRO), only in situations where some PCBs

of a task are also its UCBs (as for task τ2 in Example 1).



Fig. 1. Schedule and cache contents of {τ1, τ2, τ3} with C1 = 1, C2 = 2, C3 = 8, T1 = 6, T2 = 6, T3 = 25, ECB1 = {7, 8, 9, 10}, ECB2 =

{7, 8, 9, 10}, ECB3 = {1, 2, 3, 4, 5}, UCB1 = {}, UCB2 = {7, 8, 9, 10}, UCB3 = {}, PCB1 = {}, PCB2 = {7, 8, 9, 10} and PCB3 = {}

O2. Tasks in aff(i, j) have a lower priority than τj and hence

cannot preempt τj . On the other hand, tasks in hp(j) have

a higher priority than τj and can preempt τj . Therefore,

only tasks in hp(j) may cause CRPDs for τj and may

thus participate to both the CRPD and CPRO of τj .

Using the above observations, when calculating the extra

memory overhead (specifically CPRO) of a task τj executing

during the response time of another task τi, we can improve

the CPRO-union approach (Eq. (3)) by removing the effect

of the evictions that have already been considered during the

CRPD calculation (Eq. (1)). This leads us to the following

theorem.

Theorem 1. Assuming that CRPDs are calculated with
Eq. (1), the cache persistence reload overhead associated to
each job of τj ∈ hp(i) released during the response time of
τi is upper-bounded by

ρ
imp
j,i = dmem ×

∣

∣

∣

∣

PCB j

⋂

(

(

⋃

∀k∈aff (i,j)

ECBk

)

⋃

(

⋃

∀l∈hp(j)

ECB l \ UCB j

)

)

∣

∣

∣

∣

(6)

Proof sketch. By Observation O2, only the tasks in hp(j)
may be the cause of both CRPDs and CPROs over τj ,
and by Observation O1, PCBs of τj that are also UCBs
of τj were already assumed to be evicted when computing
CRPDs with Eq. (1). Thus, when computing the effect of
tasks in hp(j) (Observation O2) on the CPRO of τj (i.e.,
(

PCB j ∩ (
⋃

∀l∈hp(j) ECB l)
)

), UCBs of τj that are also

PCBs (Observation O1) may be removed so as to avoid to
account for evictions that were already considered in the
CRPD calculation (i.e., Eq. (1)).

VI. CONCLUSION

We highlighted the pessimism of independently calculating

CRPDs and CPROs. We proposed a first solution to reduce

that pessimism by integrating the calculation of CRPDs and

CPROs. This is achieved by considering the cache block evic-

tions that have already been accounted for in the CRPD calcu-

lation, when calculating CPROs. However, the proposed result

is limited to the UCB-union and CPRO-union approaches. Two

methods that are known to be simple but pessimistic [1], [5].

As future work, we will formally prove the correctness of the

proposed approach and extend it to more evolved methods for

the CRPD and CPRO computation. A thorough evaluation of

the proposed result will also be conducted in order to quantify

the actual gain over the state-of-the-art, as it is expected that

the identified problem and its impact on the response time

analysis may be very context dependent.
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