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Abstract: The increasing use of mobile cooperative robots in a variety of applications also implies an

increasing research effort on cooperative strategies solutions, typically involving communications

and control. For such research, simulation is a powerful tool to quickly test algorithms, allowing

to do more exhaustive tests before implementation in a real application. However, the transition

from an initial simulation environment to a real application may imply substantial rework if early

implementation results do not match the ones obtained by simulation, meaning the simulation was not

accurate enough. One way to improve accuracy is to incorporate network and control strategies in the

same simulation and to use a systematic procedure to assess how different techniques perform. In this

paper, we propose a set of procedures called Integrated Robotic and Network Simulation Method

(IRoNS Method), which guide developers in building a simulation study for cooperative robots and

communication networks applications. We exemplify the use of the improved methodology in a

case-study of cooperative control comparison with and without message losses. This case is simulated

with the OMNET++/INET framework, using a group of robots in a rendezvous task with topology

control. The methodology led to more realistic simulations while improving the results presentation

and analysis.

Keywords: networked robotic systems; robot cooperation; communication network simulation;

simulation framework; simulation method

1. Introduction

The increasing use of teams of mobile cooperative robots in a variety of applications including

area coverage, exploration and cooperative transport, is also pushing research on cooperative control

solutions. In general, cooperative robots may be considered as a set of movable sensors that exchanges

information to complete a task. Nevertheless, these solutions are built on top of a communication

network that has several imperfections such as delays and packet losses, ending up having a significant

impact on team behavior [1], especially on decentralized control cases that rely heavily on explicit

communication between robots [2].

These solutions are developed, tested, and validated through simulations, emulations, testbeds,

or real robots [3–5]. Although these four concepts are not mutually exclusive, choosing to use one or

all of them depends on material and financial resources available, study deadlines, project knowledge

and personal experience. A convenient combination is to carry out simulations first, for their flexibility,

and then implement the real system. However, moving from simulation to implementation can be

time and effort consuming, despite new model-based engineering approaches that try to automatize

this transition, but which are still limited in their capabilities. The effort increases significantly when
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an unknown design problem is only identified later at testing time, forcing redesigns, new simulations

and more implementation.

One approach to soften simulation to implementation transition is to improve simulation accuracy,

aiming at results that are more realistic. This approach has been followed in different ways, by

integrating different robot physical aspects in 3D simulations as in eRobotics [6], or integrating

different levels of implementation abstraction as in meta-modelling simulation for robotics [7] and in

Cyber-Physical Systems (CPS) [8] or yet, by integrating a communication network simulation with a

desired application as in Networked Control Systems (NCS) [9], Wireless Sensor Network (WSN) [10],

Internet of Robotic Things (IoRT) [11], and in teams of mobile robots [10,12–14].

Simulation of integrated application and network models has been achieved in diverse ways:

co-simulating with two different simulators [12], expanding a network simulator with physical

models [1], or by expanding the physical simulator with network models [9]. Even though the referred

works represent advances in studying the impact of a network on robotic systems, they lack a systematic

method to build and evaluate a complex simulation study.

Several such methods do exist, though, aiming at different science domains such as general model

simulations [15], CPS [8], Digital Twins [16], Network Simulation Only [17], and Network Emulation

Only [3]. In the domain of robotics, methods often describe procedures related to a robotic task, e.g.,

a method for using a simulation framework to study mobile robots operating on uneven terrain [4] and

a method for abstracting expression techniques for diverse types of robots [18]. Other general methods

for robotics focus on different robot aspects, e.g., combining physical domains as in eRobotics [6], or

initial ideas that still need to be improved, as in IoRT [11].

In our domain of interest, namely networked control systems made of teams of cooperating

robots, an initial concept method has been shown by the authors, as a work in progress, to improve

the assessment of the network influence on cooperative strategies [1,19,20]. However, several

improvements could still be made, finally resulting in what we denominated as the Integrated Robotics

and Network Simulation (IRoNS) method, which incorporates known validation and documentation

techniques. Particularly, we make use of an initial method concept presented in [20] that relies on

using OMNeT++/INET for improved network simulation accuracy, and we extend it with a four-step

validation [21] combined with confidence interval statistical analysis [22], a factorial experimental

design with confidence interval analysis [22], and a communicative modelling process [23].

We demonstrate the proposed methodology in one detailed case-study that compares three

rendezvous control strategies under a faulty communication network. The resulting method

still maintains realistic simulations as initially shown in [1,19], but also improves the resulting

documentation, presentation and analyzability of the results.

The paper is organized as follows. The next section summarizes related works. Section 3 describes

the IRoNS method, detailing its critical points. Section 4 describes a simulation study using the method.

Section 5 presents final considerations.

2. Related Work

The use of methods to guide simulation studies is a well-known topic for general system modelling.

Works in this domain, as reviewed in [22], concentrate on providing lifecycle workflows and guides for

best practices during simulation development. The main idea, common to these methods, is to set the

study in several sequential stages consisting of: 1. Planning, problem modelling and documentation;

2. Simulation implementation; 3. Simulation validation; and 4. Experimentation and Analysis. The

last two steps are subjects of Validation, Verification, and Test (VV&T) techniques [24], which are often

used for establishing the credibility of the simulation study [15].

These works are suitable as a general guideline for common simulation studies, although they do

not contemplate applications particularities, lack technical depth and are harder to apply when dealing

with complex simulations. These characteristics motivated the appearance of new research lines to

deal, for example, with agents in Agent-Based Modeling and Simulation (ABMS) [21,22,25]. ABMS
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appeared as a reaction to the lack of formal basis in simulation studies, incomplete documentation and

missing results reproducibility [21,25]. However, as the concept of agent can appear in a wide selection

of applications, related works tend to focus on common aspects but only on specific topics inside a

simulation development lifecycle, e.g., choosing a validation technique for agent-based simulation [21],

proposing a formal modelling process [25], or a formal documenting process [23].

Even though the above-mentioned methods, procedures and recommendations give important

and useful insights about building a simulation study, there is another consideration that should be

taken into account when working with an integrated simulation of a cooperative robots team and its

communication network, i.e.,: it is a cross-domain simulation.

The work in eRobotics [6], a branch from eSystem Engineering, deals specifically with this type of

situation. At first, eRobotics targets the development of methods and concepts, refining engineering

processes and using semantic modeling techniques, to provide the necessary models for a robot

3D simulation. With this basis, a Virtual Testbed is built, consisting of a 3D simulation software

environment for the integrated cross-domain development of complex systems based on 3D models.

In another work related to eRobotics methodology [16], the authors combine the concept of Virtual

Testbeds with another approach from industry, namely the notion of Digital Twins, which consists of

real world objects with a corresponding virtual representation capable of communication and acting as

intelligent node in the Internet of Things. The authors use the resulting Experimentable Digital Twins

as a core of the simulation-based development process, enabling detailed simulations at system level

and realizing intelligent systems focused on 3D modeling of physical aspects of a robot.

These works are examples of methods used in robotics with the objective of improving robot

simulation characteristics, but in a different scope with respect to the work proposed in this paper.

Here, for a cooperative robotics simulation, the communication network is the object of interest and

robots detailed physical properties assume lower relevance [13].

Cooperative robotics and network simulation received more attention in recent years as the

development of network simulators advanced, enabling the implementation of complex interactions

inside the network simulator [1] and enabling cross-simulator communication [12]. Researches into

using this type of simulation are sparsely distributed along several lines, with the most recent ones

concentrating on Networked Robotic Systems (NRS) [20] and Internet of Robotic Things (IoRT) [11].

Another approach to deal with cooperative robots and networks is to use hardware and software

tools to enable assembling and studying swarms of general-purpose robotic systems [26]. The main

idea is to deploy the solution in hardware and see how all the algorithms work together. This approach

led to positive results as shown in [27] for swarm response and in [28] for topology dynamics, but it

requires hardware implementation and can be exhausting when several testing cases are required. Our

proposed approach differs from [26] because ours is simulation-based, addressing the case when there

is a need of exhaustive simulations or when the hardware testbed is unavailable. Moreover, the use of

both approaches can contribute to increase validity of the results.

In the case of simulations studies, in the same way as mentioned before for ABMS, they are

currently lacking a formal basis for techniques and documentation procedures. This problem motivated

our initial method concept [20], which already proved useful to assess simulations in [1,19]. The IRoNS

Method that we propose now extends previous related works by incorporating proven validation and

documentation techniques, making the simulation process more robust and useful, and with a better

result presentation.

3. IRoNS Method

The proposed method uses a workflow structure to guide the study simulation development,

dividing the study in three development stages: Problem definition, simulation framework, and

experimentation. The last two stages can be further divided following a ‘plan, execute and assess’

methodology, which leads to a final 10-steps procedure that is briefly described below (Figure 1).
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• Problem Formulation (1): The first part of the method is to state and define what kind of problem

is going to be the object of study. In general, this initial part derives from an initial study or a

demand that urges for a complex simulation for validation.

• Choosing Solutions (2): After defining the problem, it is necessary to choose the techniques

that allow solving the problem, i.e., techniques that will be simulated to emulate and assess the

situation referred in the problem study. It is important to note that the IRoNS Method does not

depend on any specific robotic or network techniques.

 

 

 

 

 

Figure 1. The Integrated Robotics and Network Simulation (IRoNS) method to build integrated robotics

and network simulation studies, represented in terms of actions (arrows) and results (boxes). The

underlined actions indicate critical points detailed in this paper.

• System—Specifying (Initial Documentation) (3): Consists in organizing all the information

decided so far, describing the concepts behind the chosen techniques and giving a special

attention to creating an assumptions document, which should be updated during the entire

development cycle.

• Base Simulation—Planning (4): The next step consists in planning the simulation framework

(Base Simulation—BS), which is also referred to as conceptual and communicative modelling.

This modelling includes documentation procedures with different objectives: firstly as a visual
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documentation to guide simulation implementation and secondly as textual documentation for

study reproducibility. The idea is to gather all necessary information about the simulation study

and framework before starting the implementation, including the system structure, expected

interactions, simulator selection, desirable simulation characteristics, initial parameters values,

and any other related information. The main documented topics are described in Section 3.1.

• Base Simulation—Implementing (5): after the documentation, the focus now is implementing

the simulation. In this case, we opted to continue extending a network simulator simulation with

cooperative robotics features, as shown in [20]. The OMNeT++/INET [29] network simulator

was selected for its modularity, graphical interface, community support, and easy code debug.

Moreover, we did not observe significant performance differences between network simulators

that could justify using another simulator.

• Base Simulation—Validating (6): The resulting simulation, as referred a priori, is a candidate

base simulation until it passes through a validation process, which verifies whether it keeps the

main characteristics of a real system or of the original simulation [30]. This part uses Verification,

Validation, and Test (VV&T) techniques, integrated with statistical analysis with confidence

interval, which is further detailed in Section 3.2.

• Case-Study—Experimentation Design (Planning) (7): Once the candidate simulation passes the

validation process, it becomes a Base Simulation that is ready for experimentation. However, it is

necessary to plan case studies to make sure they are aligned with the objectives defined in the

first step of the method, thus requiring an experimentation design. A suggestion of experimental

design is presented in Section 3.3.

• Case-Study—Experimenting (8): This step consists in implementing the planned studies,

executing simulations and gathering experimental results. The main concern, here, is to enforce

experimental rigor to avoid collecting incorrect data or producing incorrect behaviors.

• Case-Study—Data Analysis (9): Once data is collected, it must be analyzed and converted from

raw into useful information, also presenting it in an adequate form. Structuring these results as

defined in the experimentation design allows using statistical analysis with confidence intervals

to assess their significance. Detailed execution of this item for this type of simulation presented in

Section 3.4 is the main contribution of this paper as the use of confidence intervals integrated with

experimental design contribute to better results presentation and validation.

• Conclusion (10): The last step is to check if the obtained results are enough to satisfy the study

objectives, answering the problem study. If results are deemed not good enough, the method

cycle should be iterated.

The main objective of this method is to provide a systematic tool to develop a simulation study

in sequential steps, considering the particularities of this type of simulation, i.e., the cross-domain

complexity. Our main contribution lies in integrating techniques in four critical points, namely for

simulation planning, base simulation validation, case-study experimentation, and result analysis,

which we describe in the following subsections. An example use-case is presented in the next section.

3.1. Base Simulation—Planning

Due to its impact in the entire process, we consider this step a critical point, consisting in preparing

information to simplify simulation implementation and improve simulation reproducibility, a step also

known as conceptual and communicative modelling [22].

This type of modelling is usually simple and easy to use, but its complexity may grow quickly in

the following three situations: (1) If there are several developers working in the same implementation;

(2) when simulation is complex and involves several views; and (3) in the case of poor team knowledge

on the simulation topics. For integrated robotics and communication simulations, all three cases may

be true, requiring more details and explanations in the conceptual model. In practice, this implies
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a large and detailed documentation process that, yet, can be too complex to be used as guide in

implementation or too simple to help others understand the simulation topics.

A common recommendation is to maintain conceptual modelling simple and define a

communicative model that is more refined, with more detailed information. Therefore, the

computational model is not the main concern in this part and the generalized idea of how simulation

will work and its functionalities are the key points [31]. An extensive source of information of this

modelling is presented in [32]. We opt to adapt and use the recommendations of a simpler conceptual

modelling described in [25,31], which uses diagrams, figures, conceptual maps and other visual forms

to describe the simulation.

On the other hand, communicative modelling focuses on documentation, in a textual form, being

one of the most important aspects of the simulation, aiming at a better understanding of the simulation

by others. For this modelling, we adopt the ODD protocol [23], modifying some of its terminology

and adding particularities of the type of simulation we are addressing. The ODD protocol uses the

following documentation topics:

• Purpose: Consists of the same initial documentation already made within the IRoNS method,

indicating the simulation main motivation and what to expect from it.

• Entities, state variables, and scales: Consists in defining what is relevant for the study in terms of

algorithms, evaluation parameters, observation parameters, measurement units and, specifically

in this context, robot and cooperation characteristics.

• Process overview and scheduling: Defines how algorithms are organized, what they do and in

which order. In our context, it is especially important to define relationships between the network,

topology control and the robots cooperative control.

• Design concepts: There are eleven design concepts in the ODD protocol [23] describing the

application of an agent simulation. Using these concepts for robot simulation is straightforward if

we consider the robot as a particular physical agent and the set of cooperative robots as a physical

multi-agent simulation. All information regarding the simulation of robots, cooperative control

and cooperation is documented here.

• Initialization: Describes the simulation initial conditions, initial values and the expected effects

on the concrete simulation case.

• Input data: This topic is needed when using input data from external sources or another simulation

software, only.

• Submodels: Description of each submodel used in the simulation. Here we include all the

network and topology control aspects that were not described before. Any details about extra

modules and the simulation environment must also be included here.

3.2. Base Simulation—Validation

After finishing the first simulation implementation, referred as a candidate Base Simulation, the

simulation needs to pass a validation process. As there are diverse types of algorithms, it is not trivial

validating them all at the same time, and it would probably require a testbed [33] or real robots to

reproduce real-world results for validation, which may not be available.

One approach is to consider individual domain validations and assume composability, i.e., the

individual validations will remain valid upon integration. Thus, the resulting simulation should give

some indications of the overall behavior of the system and possible algorithms interactions, even if the

results are not precisely accurate.

There are several techniques already developed for simulation validation [30,33], but we adopt

a combination of a simple four-step ABMS validation technique [21] with a statistical analysis via

confidence intervals (CI) from VV&T research [22].

The four steps in [21] consist of face validation, sensitivity analysis, calibration, and statistical

validation. Face validation consists in a human expert analyzing the overall behavior of the system,
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making the necessary modifications to achieve expected results or to eliminate visibly bad results.

Sensitivity analysis aims at assessing the impact that parameter changes have on the simulation

behavior. The third step is the calibration, adjusting parameters to increase model accuracy and

reevaluate its final values.

The final step is the statistical validation, for which we use a confidence interval technique using

the errors between multiple simulation instances [22]. For this purpose, we formalize the technique

as follows: Let R1 and R2 be the statistical results from the same situation simulated on different

simulation frameworks, Simulator 1 and Simulator 2 respectively, Zj = R1j − R2j as the error achieved

in an experiment j. The mean Z(n) and variance ˆVar
[

Z(n)
]

are then computed for a given number n of

experiments (samples).

The confidence interval (CIz) is defined by (1) using Z(n) with ˆVar
[

Z(n)
]

used to determine the

half-length (Lz) of the interval (2) in terms of tn−1,1− α2
critical points of a t-student distribution, obtained

from a t-student table [22] as function of n − 1 samples and an auxiliary constant α, determined by the

desirable confidence Cd (3).

CIZ =
[

Z(n) + LZ , Z(n) − LZ

]

(1)

LZ = tn−1,1− α2

√

ˆVar
[

Z(n)
]

(2)

α = 2 · (1−
Cd

100
) (3)

The resulting interval can be assessed in two ways: statistical and scale significances. If the

confidence interval contains zero, it means that, with a determined confidence, the true mean of the

difference between both implementations (the error) can be zero, thus, it is not statistically significant.

However, when the confidence interval is too wide (low precision) or has low values when comparing

with the overall result, the difference can be insignificant even if the interval does not contain zero.

3.3. Case-Study—Experimentation Design

Once the Base Simulation passes the validation process, we assume that it is a valid simulation

model and it can be used for designing the experimentation, which is a process of planning simulation

cases to analyze the impact of changes in parameters and algorithms on simulation results.

The initial goal is to define evaluation and observation parameters. Observation parameters are

those used to track system states. Evaluation parameters are simulation performance criteria, which

generally depend on the nature of the cooperative task that we are analyzing, and it can also consist of

a combination of several observation parameters.

To do the case-study planning, we use a factorial 2K experimental design, where K is the number of

parameters used. This approach measures the impact on the results when changing one parameter

value or algorithm and can be combined with statistical analysis by confidence intervals when assessing

the results. The 2K factorial design has an increasingly demanding cost as the number of parameters

and experiments increases, but it is very straightforward when these numbers can be bounded to a

small size [22].

In this formulation, we must choose two levels (values) for a parameter or use two test algorithms,

adopting ‘−’ and ‘+’ for their representation. In this case, by convention, ‘−’ is used for the parameter

standard value or standard algorithm, i.e., the ones used in Base Simulation, and ‘+’ to indicate the test

value or test algorithm that we are comparing with.

These results can be organized in an experimentation table, as indicated in Table 1 for an example

with two factors (K = 2, indexed by f = 1 . . . K). In this case, there are four possible factor combinations,

indexed by k = 1 . . . 2K, and their respective results Rk
j. Moreover, we should explore j = 1 . . . n different

simulation situations (samples), under the same operational parameters, leading to n experimental

tables and, in this case, n× 2K simulations. For the cooperative robotic tasks addressed in this work, as
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an example, this can be achieved using different values for robots’ initial positions and by varying

their initial communication topology.

Table 1. Factorial experimental design with two factors (K = 2).

Factor Combination (k) Factor 1 (f = 1) Factor 2 (f = 2) Result (Rk
j)

1 − − R1j

2 + − R2j

3 − + R3j

4 + + R4j

The number of samples has a key role when building the statistical analysis by confidence interval,

thus it is recommended to simulate at least 15 different samples to obtain satisfactory results using

t-student distribution and 30 samples when a normal distribution behavior is desired [22]. A higher

number of samples may improve results, as it may reduce the confidence interval length, however it

can be time consuming and not always possible.

3.4. Data Analysis

After having the case-study planned and simulated, the last critical point is to assess the results.

This assessment consists in determining how much each change, in a parameter value or in a technique,

affected the task results, which is referred as ‘factor impact’. It is also possible to make this analysis

to determine how much these changes interact with each other, which in this case is referred to as

‘cross-factor impact’.

In other words, to determine the influence of each factor on the simulation results, we compute

each factor impact and the cross-factor impact. The factor impact ef measures how much impact a

change from state ‘−’ to ‘+’, in a specific factor combination k, has on results. The cross-factor impact

efafb indicates how much two or more factors results are dependent of each other values.

Each impact value is obtained by using data from the experimentation table (Table 1). The symbols

‘−’ and ‘+’ are taken as corresponding scalar numbers ‘−1′ and ‘+1′ that multiply the respective result

Rk
j for each factor. To determine the factor impact, i.e., the average impact from changing values, we

sum algebraically the results and divide by 2K−1 [22]. The cross-factor impact follows the same logic,

just crossing the factors, as the name says. For the two factors example in Table 1, the resulting impact

values are given by (4) for a sample j.

e1
j =
−R1

j
+ R2

j
−R3

j
+ R4

j

22−1
e2

j =
−R1

j
−R2

j
+ R3

j
+ R4

j

22−1
e12

j =
R1

j
−R2

j
−R3

j
+ R4

j

22−1
(4)

These impact values can be used in the same statistical formulation mentioned in the validation

process (1) to (3), thus obtaining the mean e f (n) and variance ˆVar
[

e f (n)
]

for j = 1 . . . n experimental

samples, and building the confidence interval CIe f for each factor f impact, built from a half-length of

LeK .

The resulting confidence intervals interpretation for each factor is similar as made in the validation.

If the interval includes zero, the change in the related factor value did not impact on simulation results.

However, if the interval does not contain zero, we can state that the change in this parameter had a

significant impact on the results. Besides these aspects, we can also observe the cross-factor impact,

which indicates if there is any significant interaction between simultaneous factor changes.

4. A Case-Study Illustrating the Use of the IRoNS Method

To show how the new method could improve results analysis with a set of algorithms of different

types, we present an example case-study of cooperative strategy comparison in which we follow the
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IRoNS Method. The main idea is to show how these algorithms can interact and how we can analyze

them before using a hardware setup.

4.1. Problem Formulation

The method workflow starts from a stated problem, which, in this context, involves cooperative

robots and communication network topics. We define the comparison of control strategies as the target,

including an assessment of their performance under network faults.

This problem needs to be further specified, as stated in the method first step. It is possible to

choose any combination of algorithms and parameters. In this case, for simplicity sake, we chose to

work with a limited group of 10 terrestrial and homogeneous mobile robots, executing a decentralized

rendezvous task. These conditions were determined by convenience and do not represent a limitation

of the framework. For example, considering more and heterogeneous robots can be accommodated at

the cost of increasing the simulation complexity and thus the time needed for its execution.

In cooperative robotics, the rendezvous is a cooperative task where robots must agree on

a meeting point and reach it without breaking communication links. This is a trivial problem in

centralized cooperation, however it may become challenging as a consensus problem with decentralized

cooperation, in which robots can only receive information through their direct communication

neighborhood [34].

From the communication network side, a decentralized solution is desired, too, given its flexibility

with respect to topology and resilience to network faults, which is particularly relevant for wireless

communication with a simple communication topology management. The network model is based

on OMNET++/INET IEEE802.11 (Wi-Fi). Other protocols can be used if available in the network

simulation framework. For example, OMNET++/INET also supports Zigbee [35] and LORA [36].

4.2. Choosing Solutions

After the problem formulation, the next step of the method is to choose techniques that can solve

the problem or can produce desired study circumstances. For this example, we will consider three

control strategies for the rendezvous problem, the network protocol involved, and the topology control

used, which are detailed bellow. The selection of these techniques considered the fact that, to the best

of the authors’ knowledge, they were never simulated together nor compared in the scope of a simple

robotics cooperative task. The objective here is to detect behaviors and interactions that do not show in

a simple simulation that does not consider the network idiosyncrasies.

4.2.1. Average Rendezvous

This is one of the simplest decentralized rendezvous techniques in the literature [37], in which the

reference point for each robot is determined as the average value of its neighbor’s positions. At each

time step k, each robot uses the received information to drive toward the updated average point (5),

where Xiref is the position vector reference for robot i, Xj is the positions vector received from neighbor

robot j, aij is adjacency matrix element that indicates whether there is a communication link between

robots i and j, and j is an index of robot i’s ni neighbors.

Xire f
(k + 1) =

∑ni

j=1
X j(k) · ai j

ni
(5)

4.2.2. Circumcenter Rendezvous

This technique consists in defining, at each instant k and in each robot i, the smallest enclosing

circle that includes all robot direct neighbors and uses its center as the robot reference meeting point [38]

(Figure 2).



Sensors 2019, 19, 4585 10 of 19

 

ܺೝ(݇ + 1) = ∑ ܺ(݇) ⋅ ܽୀଵ ݊  

 

Figure 2. Example of circumcenter rendezvous showing the smallest involving circle around robot 8

direct neighbors and its center as reference for that robot in that time instant.

4.2.3. MPC Rendezvous

The MPC (model prediction control) rendezvous [34] is an algorithm that uses a consensus

formulation with receding horizon stated as a quadratic optimization problem. The optimization

problem in robot i can be stated as finding the minimum of an objective function Ji constrained by

saturation velocities (6) [34].

The objective function is composed of a consensus function fi for robot i and its neighbors, a 2D

velocity vector Vi and auxiliary matrix Hi. This auxiliary matrix includes the adjacent matrix elements

and a ponderation factor that penalizes changes in control.

minimize

(

Ji =
1
2

[

Vx
i

V
y

i

]

[

Hi 0

0 Hi

][

Vx
i

V
y

i

]

+
[

f x
i

f
y

i

]

[

Vx
i

V
y

i

] )

s.t. vx
maxb

≤ vx
i
≤ vx

max f

v
y

maxb
≤ v

y

i
≤ v

y

max f

(6)

This technique is considerably more complex than the rest and it was selected to show that even

demanding algorithms that rely on optimization could be utilized in this type of complex simulation.

4.2.4. Mobile Ad-Hoc Network

A MANET is a wireless mobile local area network that does not rely on a central point to coordinate

message exchanges in the network, the nodes forward packets to and from each other on their own.

We chose the IEEE 802.11b standard for this simulation, given its robustness, which is part of the IEEE

802.11 series of WLAN standards. Devices using IEEE 802.11b experience interference from other

devices operating in the 2.4 GHz band, be it other IEEE 802.11 devices not engaged in the team or

Bluetooth devices, microwave ovens, and cordless telephones. These devices can be thought of as alien

uncontrollable network traffic generators, creating occasional collisions with the team transmissions

and consequent message delays and losses.

This wireless network model was selected as a worst-case scenario and with the purpose of

inserting complexity in the network part of the simulation. The network may be considered ideal or

with any other type of technology or protocol.

We also use an overlay protocol on top of IEEE 802.11b that organizes communications in periodic

rounds, i.e., communication cycles, within which the robots in the team transmit one at a time, evenly

spaced, such as proposed in [2]. As in this type of simulation we have total control of the network, we

opted for this protocol to demonstrate that additional adaptations and behaviors can be considered,

adding further complexity to the simulation. We used a communication cycle of 100 ms, which we

deem adequate for the dynamics of the robots.

4.2.5. Topology Control

When dealing with wireless communication with limited range and with nodes that are constantly

moving, the physical communication topology is naturally variable. However, it is possible to
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establish a logical communication topology, which goes beyond the physical topology, as it may ignore

communication links or create virtual links through message routing protocols. This communication

link management is called topology control.

The communication topology has a significant impact on cooperative behavior [28], not only in

network properties, but also on the dynamics of decentralized control algorithms. Each robot uses

information from its n neighbors and, as we increase the number of neighbors, it has more information

to deal with. We may then reach a point in which the algorithm receives too many messages, generating

too much information that does not contribute to the task, but increases overhead and may negatively

influence the network performance. On other side, limiting the number of neighbors, e.g., using a fixed

topology, reduces traffic in the network, which can be helpful in low bandwidth protocols. However,

decreasing it too much will negatively affect the cooperative task.

In this example, we use topology control to provide a fixed logical topology during the entire

simulation. This means that new communication links will not be created despite the robots approaching

each other in the course of the rendezvous task. We have already shown that topology changes strongly

impact the results when we compared fixed and dynamic topologies [19]. Thus, here we simply show

that different numbers of fixed links already have significant impact on the task performance.

4.3. System Specification

Concerning documentation, beyond the documentation of the problem itself, each technique

should be detailed with pseudo codes, possible interactions, important parameters and any other

valuable information.

In what concerns the assumptions, since this study has the objective of verifying the impact of

a specific set of techniques on the results, it is necessary to avoid any other influences and variables

in the simulation. This leads to the following set of assumptions: robots are finite points in space,

physical collisions are not considered, the environment is an open space without objects, the robot

motion is determined by first order dynamics without uncertainty and each robot knows its own

position with precision.

4.4. Base Simulation—Planning

The next step in the method is the simulation planning through conceptual and communicative

modelling. However, for the sake of conciseness of this paper, we will not detail this step here. In fact,

the conceptual model took 5 pages of figures and diagrams and the communicative modelling took 10

pages of detailed information.

The depth of the modelling may vary and will typically depend on the number of people involved

in the design process and simulation study. It is important to ensure the entire design team has the same

goals and simulation algorithms knowledge, thus the larger the team, the more detailed information

is need. Nevertheless, even for small teams a reasonably detailed documentation is important for

simulation reproducibility.

4.5. Base Simulation—Implementation and Validation

The base simulation was implemented in OMNeT++/INET [29] using 4.6 and 2.5 versions,

respectively. We also use an auxiliary library for quadratic optimization, called Quadprog++ 1.2.1 to

run the rendezvous algorithm presented in Section 4.2.3.

We applied the validation process to the control strategies referred above, which were originally

simulated in Matlab. For this validation, we chose two evaluation criteria: the error in the rendezvous

convergence time (Tf) and the error in the convergence distance (Df). We used the same simulation

conditions on Matlab and OMNeT++ and we built confidence intervals of the error between the results

achieved with both simulators.

We followed the referred 4-step verification process, with 99% confidence intervals (CI) for

the three control strategies, both assessment criteria and 15 samples, as indicated at Table 2. All
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CIs have relatively small length, indicating a good precision, and include zero, meaning that the

error true mean may be zero. Thus the differences between both simulation frameworks are not

significant, as we referred before, which is in agreement with our observations in [20] and validates

our OMNeT++ framework.

Table 2. Base simulation validation with confidence intervals.

Fixed Topology

MPC—CI 99%—Tf [−0.016; 0.041]

MPC—CI 99%—Df [−0.013; 0.0298]

Average—CI 99%—Tf [−0.01; 0.021]

Average—CI 99%—Df [−0.013; 0.022]

Circumcenter—CI 99%—Tf [−0.021; 0.016]

Circumcenter—CI 99%—Df [−0.023; 0.018]

4.6. Study Case—Experimentation Design

The experimentation objective is to compare the performance among the referred three rendezvous

algorithms in terms of how long it takes for each one to conclude the task, with and without message

losses. Fifteen initial conditions were sorted and applied in the same way to each algorithm, resulting

in 15 samples of convergence time.

We used the following notation for the rendezvous algorithms: A—Average (Section 4.2.1),

C—Circumcenter (Section 4.2.2) and MPC—Model Prediction Control (4.2.3). For the network

parameter, we used: I—ideal network without losses and C—network with message collisions/losses.

Initially, for the sake of simplification, we compare algorithms in pairs, defining three comparison

experiments: A × MPC, A × C and MPC × C. Formulating the experimentation we consider that

the first algorithm of each pair assumes the ‘−’ factor role and the second the ‘+’ role. Thus, in the

A ×MPC case, for example, we want to analyze the performance gain/loss when changing from the

Average to MPC technique.

4.7. Study Case—Experimentation and Data Analysis

After making any needed adjustments in the Base Simulation, we defined 15 different initial

conditions (samples) and obtained results each factor combination. For each sample, factor combination

results are transformed in factor and cross-factor impact.

The last step is to compute the mean and variance of the 15 samples of each impact factor and

cross-factor to finally build their confidence intervals (CI). The CIs were built with confidence of 99%

using (1), with α = 0.01 and t14,0.995 = 2.977, leading to the three CIs shown in Figure 3.

 

−

α

 

Figure 3. Differences in convergence time between the rendezvous techniques with 99%

confidence intervals.
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Figure 3 shows what happens to the rendezvous completion time when changing from the first

technique X to a second technique Y (‘X × Y’), without any message losses and using a fixed topology

control. In the first and last case, A ×MPC and MPC × C respectively, confidence intervals do not

include zero, indicating a significant performance difference. In particular, the convergence time

increases when using MPC over an average rendezvous and decreases when using the circumcenter

algorithm instead of the MPC. The confidence interval of the A × C experiment includes zero, meaning

that these techniques do not have a statistically significant difference, which is consistent with the other

two comparisons (A ×MPC and MPC × C).

On the other hand, even the difference in convergence time between A or C and MPC is small,

just around 1s, which may be considered negligible when compared with the absolute convergence

times that varied between 20 and 50 s. With this information, we can conclude that changing between

these rendezvous techniques does not impact significantly the convergence time under these network

parameters, which is consistent with the Matlab simulation, too.

In the second part of the experiments we considered the robots deployed in an environment with

network interference affecting the quality of robots communication through message losses. To create

this effect in the simulation framework, we added a fixed node in the simulation environment that

generates bursts of messages with a periodicity of 300 ms and duration of 100 ms, causing collisions

with the robots messages.

We used the same 15 initial conditions of the previous experiment to build another comparison

study between the first experiment, labelled ‘Ideal’ case, and the results achieved under message

collisions, labelled ‘Collision’ case. Moreover, we considered that each robot can hold a message for

200 ms (one communication cycle memory), thus tolerating one message loss. However, if two or

more consecutive messages are lost, the communication link is disabled until the robot receives a new

message from that neighbor (source).

The resulting CIs between control strategies in a network with message losses are shown in

Figure 4 and the comparison for each technique between the cases of without and with losses is shown

in Figure 5.

 

 

Figure 4. Differences in convergence time between the rendezvous techniques with 99% confidence

intervals and message losses, with one communication cycle memory.

 

 

Figure 5. Differences in convergence time for each rendezvous technique with and without message

losses, with one communication cycle memory, and with 99% confidence intervals.
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These results show an interesting behavior change when comparing the rendezvous techniques

with (Figure 4) and without (Figure 3) message losses. Now MPC takes significantly less time to

converge than A or C, as the resulting CIs from A ×MPC and MPC × C indicate. Again, the difference

between A and C is not statistically significant, which is also consistent with the other two comparisons.

When comparing each technique without and with message losses (Ideal – I × Collision – C)

(Figure 5), we see an increase of the convergence time for the three rendezvous techniques, being

much stronger for A and C, indicating that these techniques are more sensitive to message losses. This

explains the change in behavior observed when comparing the three techniques with and without

message losses (Figure 3 versus Figure 4). It is important to note that these results could not be obtained

with a simple robot control simulation in Matlab.

Given the observed impact of message losses, we carry out another comparison to answer the

following question: What is the impact of, upon losses, keeping using the information of the last received

message for a longer time (more communication cycles), thus tolerating more consecutive losses?

Another set of simulations were carried out using similar parameters as before, except for an

extended memory capacity, or in other words, when messages are lost, the last message information is

used for up to two communication cycles, i.e., messages were kept for up to 300 ms. The results are

shown in Figures 6 and 7.

 

 

Figure 6. Differences in convergence time between the rendezvous techniques with 99% confidence

intervals and message losses, with two communication cycles memory.

 

 

Figure 7. Differences in convergence time for each rendezvous technique with and without message

losses, with two communication cycles memory, and with 99% confidence intervals.

When comparing results of a longer information lifetime, from one cycle memory in Figure 4

to two cycles memory in Figure 6, we observe that an increased lifetime reduces the differences

in convergence times to values closer to the case without message losses (Figure 3), meaning that

the different techniques exhibit closer behaviors. Moreover, the relative behavior among the three

rendezvous techniques with increased information lifetime is still the same in the two cases with
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message losses, i.e., MPC takes less time to converge. However, there is now a more significant

difference between A and C, in favor of the Circumcenter (C) technique, and consequently a less

significant difference between MPC and C (note that the CI now includes zero).

This reduction in the impact of message losses is observed in Figure 7 too, when we compare

again each technique without and with message losses but now with longer information lifetime. Both

average and circumcenter rendezvous techniques show a moderate increase in convergence time,

slightly more pronounced for A, while the impact on the MPC technique is not statistically significant

(CI includes zero).

To further show how the method can be modular and how these parameters can affect the results,

we made a simulation case in which we increase the number of robots and use the change in the

topology (Linear × Grid, as indicated in Figure 8) as factor e1 and the change in control algorithm

(Average × Circumcenter) as factor e2.

 

  

Figure 8. Fixed communication topologies for 20 robots.

The results are presented in Figure 9, where we can clearly observe that the increasing number of

robots also increases the convergence time.

 

 

Figure 9. Results of varying the number of robots with two different control algorithms (Average ×

Circumcenter) and two fixed communication topologies (Linear × Grid).
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There is a notable difference between the linear and grid topologies results. The first one heavily

impacts the results as we include more robots, although in the second case, the variable number of

robots is mitigated as we maintain 2 to 4 communication links between them. Moreover, we can also

infer that both algorithms have similar performance under the grid topology, but under linear topology

the circumcenter algorithm has a better result.

Using confidence intervals as proposed in this work (Figure 10), we can obtain the same information

from Figure 8, where the first factor indicates that there is a significant reduction in the convergence

time when changing from linear topology to grid topology. As the difference between both cases is

constantly increasing as we increase the number of robots, the CI is larger than in the previous cases.

 

 

Figure 10. Differences in convergence time when varying the number of robots with two different

control algorithms e1 (average × circumcenter) and two fixed communication topologies e2 (linear ×

grid), and its cross-factor relationship, with 99% confidence intervals.

Concerning the second factor, we can observe a difference between circumcenter and average

rendezvous, which is significant for the linear topology but minimal for the grid topology. This

information is also obtained from analyzing the cross-factor CI “e12”, which shows that results

interpretation needs to consider each factor value. In other words, the convergence time in this study

varies with the chosen topology but also with the control algorithm. We can also understand that if we

want more information about one of these factors, we need to select a fixed value of the second one for

the simulation study.

5. Discussion and Conclusions

In this work, we discussed the process of building an integrated simulation case for networked

cooperative robots. We proposed a novel method, the IRoNS Method, featured with documentation

procedures and statistical analysis.

To illustrate the use of the IRoNS Method, we presented a case-study consisting on a comparison

of diverse control strategies for a rendezvous task, under the influence of message losses. We showed

how this method supports an objective comparison among the techniques under analysis in different

operational scenarios, highlighting their behaviors and testing alternatives to improve them. In this

case-study, we observed a change in the results of the techniques when comparing a fault-free with a

faulty network scenario and assessed the effectiveness of a possible method to mitigate such faults.

Based on this example study, we can state that the three considered rendezvous techniques

have similar performance in convergence time as long as message exchange is reliable. However,

the MPC technique showed to be less sensitive to message losses, performing better under such

network conditions. Moreover, we observed that the impact of message losses can also be mitigated by

increasing information lifetime, i.e., maintaining previous information whenever messages are lost.
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Obtaining this kind of information in a simulation phase was only possible with the integrated

simulation framework offered by the IRoNS Method that provided a quick comparison and assessment

using the confidence intervals statistical technique. Having this information in a simulation phase,

developers can decide if any of these behaviors is acceptable or preferable before starting a real robots

team implementation. Needed modifications can be done at simulation time, thus reducing transitions

between simulation to real implementations and consequently, reducing the project total time.

Moreover, the IRoNS method has proved helpful in simulation planning, organization,

implementation, and analysis, improving the accuracy of comparisons and helping the transition to the

implementation on real robots. Its use is not bound to any specific operational or simulation framework.

The results analysis can be uniformly made for any simulation parameter change, requiring only to

establish a task performance metric.

We are currently applying this method to carry out comparisons among more complex cooperative

tasks, such as advanced topology controls, using multiple operational scenarios and control strategies.
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