— ”
C‘V MAX PLANCK INSTITUTE [

L= FOR SOFTWARE SYSTEMS CISTER

Research Centre in
Real-Time & Embedded
Computing Systems

Increasing Fixed-Priority Schedulability using
Non-Periodic Load Shapers

Mitra Nasri* Geoffrey Nelissen

RTSOPS 2017



Load Shaping

» Itis a technique that shapes the workload of each job of a task

» Can be implemented as a reservation server (for each task)

In this work: the budget is

replenished with a given pattern
that might not be periodic

Resemblance
Traffic shaping: a computer network traffic management technique which delays some or

all datagrams to bring them into compliance with a desired traffic profile [wiki].

Traffic shaping acts like a simple periodic reservation server.

_



Load Shaping vs. Simple Reservation

» Period transformation is based on dividing a task into “equal” sub-tasks which
have the same period and budget.

Normal workload t
Tq: (Cl - 10, Tl - 30, D1 = 30) l

Simple periodic reser;'lg:tig'zrj‘@ 6) T; T-z ﬁ ﬁ ﬁ l R

Load shaping
77:((3,0,10),(7,10,30))

s,

gilcijmij dij)

Each “sub-task” has a WCET,
relative release time, and deadline.




What can We Do with Load Shaping?

Improving schedulability of fixed-priority

scheduling algorithms (FPS)




Example

Normal FPS Deadline miss Deadline miss

T 18 T ; 12 12; ; 6 18
z,: (24, 40) ] R

7,:(12,30) h h h h 1 R

>

120
We use a shaper for 7, that has two sub-tasks
12 6 646 6 12 6
G B e — _ - .
T,: (24, 40) >
40 80

ﬁ + 8 4 + 8 4 +8 T4 t 8
7;:(12,30) i - . = = =
0 16 30 46 60 76 90 106 120

—



Example

If period transformation was used,

3 sub-tasks were needed per job

We use a shaper for 7, that has two sub-tasks

12 : 6 46
T, (24, 40) |- -
40
ﬁ + 8 4 + 8 4 +8 T4 +8
7,:(12,30) — - e = = =-
0 16 30 46 60 7 106 120




Open Problems

» Given:

o Uniprocessor
Periodic tasks

(@]

(¢]

Release offsets
Constrained (or arbitrary) deadline
Dependent (or independent)

(@]

(¢]

» Scheduled by FPS

» Problem 1: Find shaper parameters such that the task set
becomes schedulable and the number of sub-tasks is minimized.

_



What can We Do with Load Shaping?

Improving schedulability of fixed-priority
scheduling algorithms (FPS)

Optimizing/reducing the number of
preemptions




Optimizing/Reducing the Number of Preemptions

» Use FPS to schedule the tasks
» Run each sub-task non-preemptively

4 N )
If a task that too long is scheduled, We can break it such that it
other tasks with smaller period may does not cause long blocking to
miss their deadllne other tasks

o /
Normal workload / l
7;:(C; = 10,T; = 30,D; = 30) >

Load Shaping 3 ,
77:((3,0,10),(7,10,30)) T- h l




Load Shaping v.s. Fixed Preemption Point Placement

» Assume that each sub-task in load shaping is non-preemptive

FPS is work-conserving

Normal workload
Ti: (Cl = 10, Ti = 30, Di = 30)

Fixed Preemption Point
T;-: (Cl = {3, 7}, Ti = 30, Di = 30)

Deaé“ne
7:(C, =5,T, =10,D; = 7) T mA_l T
Load Shapi
- = :a(?;i,m),(z 10,30)) T3— L l

7:(C, =5,T, =10,D; = 7) A_l A_l T .
—



Load Shaping v.s. Fixed Preemption Point Placement

» Assume that each sub-task in load shaping is non-preemptive

With load shaping, we make FPS behave
like a non-work-conserving algorithm

Load Shaping
5:((3,0,10),(7, 10, 30)) T3- L l
71:(C; = 5Ty =10,D; = 7) h l hl T :
——-ﬂ




Open Problems, cont.

» Given:

o Uniprocessor
Periodic tasks

(@]

(¢]

Release offsets
Constrained (or arbitrary) deadline
Dependent (or independent)

(@]

(¢]

» Scheduled by FPS

» Problem 2: Find shaper parameters such that the task set
remains/becomes schedulable and each sub-task is potentially
executed non-preemptively.

—



Summary

» Load shaping is a technique to shape the workload using a
reservation server that is replenished with a given pattern.

» It is a generalization of periodic reservation servers

Improving FPS schedulability 0

Open problems are finding o
shapers’ parameters

A new approach for limited- 0
preemptive scheduling

—_—-M



/k'

) ;1 1,“ \ b/ { B\ A “‘ A 4 “"t\\ ‘ A _".. . ‘, ,\}q g sy Yo )‘, o ’ 4 i’ il N, b ’ y ; o r : )
, % :‘v;,\‘?{ g\ K 4 s_, & “ Vi \ Al \ oy vh 4l 4‘: “ R P o AL _&‘:’ s »‘M “/P“ Al
w . h '\‘{' ’ A 1 h i) A V 1 4 W, | 4 \ 7 / - y i ¥\ ,.":‘: 4

CISTER

Research Centre in
Real-Time & Embedded
Computing Systems

\
P ‘
MAX PLANCK INSTITUTE
- FOR SOFTWARE SYSTEMS
— éQ
” -~
-_

Thank you

| \‘ Ay ) ,./‘ /", \ '\ i



