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Load Shaping

» Itis a technique that shapes the workload of each job of a task

» Can be implemented as a reservation server (for each task)

In this work: the budget is

replenished with a given pattern
that might not be periodic

Resemblance
Traffic shaping: a computer network traffic management technique which delays some or

all datagrams to bring them into compliance with a desired traffic profile [wiki].

Traffic shaping acts like a simple periodic reservation server.
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Load Shaping vs. Simple Reservation

» Period transformation is based on dividing a task into “equal” sub-tasks which
have the same period and budget.
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Each “sub-task” has a WCET,
relative release time, and deadline.




What can We Do with Load Shaping?

Improving schedulability of fixed-priority

scheduling algorithms (FPS)




Example
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Example

If period transformation was used,

3 sub-tasks were needed per job

We use a shaper for 7, that has two sub-tasks
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Open Problems

» Given:

o Uniprocessor
Periodic tasks
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Release offsets
Constrained (or arbitrary) deadline
Dependent (or independent)
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» Scheduled by FPS

» Problem 1: Find shaper parameters such that the task set
becomes schedulable and the number of sub-tasks is minimized.
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What can We Do with Load Shaping?

Improving schedulability of fixed-priority
scheduling algorithms (FPS)

Optimizing/reducing the number of
preemptions




Optimizing/Reducing the Number of Preemptions

» Use FPS to schedule the tasks
» Run each sub-task non-preemptively

4 N )
If a task that too long is scheduled, We can break it such that it
other tasks with smaller period may does not cause long blocking to
miss their deadllne other tasks
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Load Shaping v.s. Fixed Preemption Point Placement

» Assume that each sub-task in load shaping is non-preemptive

FPS is work-conserving

Normal workload
Ti: (Cl = 10, Ti = 30, Di = 30)

Fixed Preemption Point
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Load Shaping v.s. Fixed Preemption Point Placement

» Assume that each sub-task in load shaping is non-preemptive

With load shaping, we make FPS behave
like a non-work-conserving algorithm

Load Shaping
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Open Problems, cont.

» Given:

o Uniprocessor
Periodic tasks

(@]

(¢]

Release offsets
Constrained (or arbitrary) deadline
Dependent (or independent)

(@]

(¢]

» Scheduled by FPS

» Problem 2: Find shaper parameters such that the task set
remains/becomes schedulable and each sub-task is potentially
executed non-preemptively.
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Summary

» Load shaping is a technique to shape the workload using a
reservation server that is replenished with a given pattern.

» It is a generalization of periodic reservation servers

Improving FPS schedulability 0

Open problems are finding o
shapers’ parameters

A new approach for limited- 0
preemptive scheduling
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