
  

 

 

 

 

 

 

Implementing Slot-Based Task-Splitting 
Multiprocessor Scheduling 

 
 
 

 

www.hurray.isep.ipp.pt 

Technical Report 

HURRAY-TR-100504 

Version:  

Date: 05-16-2010 

Paulo Baltarejo Sousa 

Björn Andersson 

Eduardo Tovar 
 



Technical Report HURRAY-TR-100504   

© IPP Hurray! Research Group 
www.hurray.isep.ipp.pt   

1 
 

Implementing Slot-Based Task-Splitting Multiprocessor Scheduling 
Paulo Baltarejo Sousa, Björn Andersson, Eduardo Tovar 

IPP-HURRAY! 

Polytechnic Institute of Porto (ISEP-IPP) 

Rua Dr. António Bernardino de Almeida, 431 

4200-072 Porto 

Portugal 

Tel.: +351.22.8340509, Fax: +351.22.8340509 

http://www.hurray.isep.ipp.pt 

 
Abstract 
Consider the problem of scheduling a set of sporadic tasks on a multiprocessor to meet deadlines even at high processor 
utilizations. We assume that task preemption and migration is allowed but because of their associated overhead, their 
frequency of use should be kept small. Task-splitting (also called semi-partitioning) is a family of algorithms that offers 
these properties. An algorithm in this class assigns most tasks to just one processor but a few tasks are assigned to two 
or more processors, and they are dispatched in a way that ensures that a task never executes on two or more processors 
simultaneously. A certain type of task-splitting algorithms, called slot-based split-task dispatching, is of particular 
interest because of its ability to schedule tasks at high processor utilizations. Unfortunately, no slot-based task-splitting 
algorithm has been implemented in a real operating system so far. 

In this paper, we discuss challenges and design principles for implementing slot-based task-splitting algorithms on 
multiprocessor systems and also present an implementation of such an algorithm; it is based on the Linux kernel 2.6.28. 
We have conducted a range of experiments with an 8-core multicore desktop PC utilized to 88% with real-time tasks 
executing empty for loops and we observe that the behavior of our implementation provides good correspondence 
between theory and practice. 
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Abstract—Consider the problem of scheduling a set of spo-
radic tasks on a multiprocessor to meet deadlines even at high
processor utilizations. We assume that task preemption and
migration is allowed but because of their associated overhead,
their frequency of use should be kept small. Task-splitting (also
called semi-partitioning) is a family of algorithms that offers
these properties. An algorithm in this class assigns most tasks to
just one processor but a few tasks are assigned to two or more
processors, and they are dispatched in a way that ensures that a
task never executes on two or more processors simultaneously.
A certain type of task-splitting algorithms, called slot-based
split-task dispatching, is of particular interest because of
its ability to schedule tasks at high processor utilizations.
Unfortunately, no slot-based task-splitting algorithm has been
implemented in a real operating system so far.
In this paper, we discuss challenges and design principles

for implementing slot-based task-splitting algorithms on mul-
tiprocessor systems and also present an implementation of such
an algorithm; it is based on the Linux kernel 2.6.28. We have
conducted a range of experiments with an 8-core multicore
desktop PC utilized to 88% with real-time tasks executing
empty for loops and we observe that the behavior of our
implementation provides good correspondence between theory
and practice.
Keywords-Multiprocessor scheduling, task-splitting, semi-

partitioned scheduling, Linux kernel.

I. INTRODUCTION
The real-time systems research community has developed

a comprehensive toolkit comprising scheduling algorithms
(RM and EDF), schedulability tests and implementation
techniques which have been very successful: they are cur-
rently taught at major universities world-wide; they are
incorporated in design tools and they are widely used in
industry. Unfortunately, the results were limited to computer
systems with a single processor only.
Today, a multiprocessor implemented on a single chip

(called multicore) is the preferred platform for many em-
bedded real-time applications however and this brings the
pressing need for developing an analogous toolkit for multi-
cores. Such a toolkit for multicore should ideally exhibit
the same properties as the uniprocessor toolkit exhibited
and that engineers valued: (i) high utilization bound; (ii) few
preemptions; (iii) dispatchers with low time-complexity; and
(iv) the ability to provide pre-run-time guarantees to sched-
ule sporadically arriving tasks to meet deadlines even with
deadlines much shorter than the minimum inter-arrival times.

Researchers have attempted to create real-time schedul-
ing algorithm with these properties. Partitioned scheduling
algorithms partition the task set and assign all tasks in one
partition to the same processor. This generates few preemp-
tions but unfortunately such algorithms have a utilization
bound of at most 50%. Global scheduling algorithms store
tasks in one global queue, shared by all processors. At
any moment, the m highest-priority tasks among those are
selected for execution on them processors. A class of global
scheduling algorithms, called job-static priority algorithms
offers few preemptions but unfortunately, such algorithms
have a utilization bound of at most 50%. Pfair is a class of
global scheduling algorithms which uses dynamic priorities;
some algorithms in this class have the utilization bound
100% but unfortunately, they generate a large number of
preemptions.
During recent years, the research community has therefore

created a family of real-time scheduling algorithms which
exhibit all the above mentioned properties. This family
of algorithms is called task-splitting or semi-partitioning
[1], [2], [3], [4], [5], [6], [7], [8], [9]. Recent evaluations
based on simulation experiments [3] and implementations in
real operating systems [10] have demonstrated the excellent
performance of this class of algorithms. The key idea of
these algorithms is that they assign most of the tasks
to just one processor but some of the tasks (called split
tasks) are assigned to two or more processors. Uniprocessor
dispatchers are used on each processor but they are modified
to ensure that a split task never executes on two or more
processors simultaneously.
One particularly interesting class of task-splitting algo-

rithms is those algorithms where time is subdivided into
timeslots such that within timeslots, processor reserves are
carefully positioned with a time offset from the beginning
of a timeslot. A split task is assigned to two or more
processor reserves located on different processors and the
positioning of the processor reserve in time is statically
assigned (relative to the beginning of a timeslot) so that no
two reserves serving the same split task overlap in time —
Fig. 2(a) depicts this. Among the types of split-task schedul-
ing algorithms, this is the class that provides the highest
utilization bound. In addition, its run-time dispatching does
not depend on any data structures that are shared among



all processors and therefore it has the potential to scale to
multicore processors with a very large number of processors.
For these reasons, we believe an implementation of a slot-
based task-splitting algorithm would be valuable.
Three implementations of multiprocessor scheduling algo-

rithms have recently been developed. LitmusRT [11], [12],
[13] provides a modular framework for different scheduling
algorithms (global-EDF, pfair algorithms) for the Linux
kernel 2.6.32. Kato et al. [10] has also created a mod-
ular framework, RESCH, for using other algorithms than
LitmusRT (partitioned, semi-partitioned scheduling) for the
Linux kernel. Faggioli et al. [14] has implemented global-
EDF in the Linux kernel and made it compliant with POSIX
interfaces. The implementation of LitmusRT and the POSIX
compliant implementation do not support the class task-
splitting at all and hence they are not in the scope of our
interest. The framework by Kato et al. [10] shares some
of our goals in that it provides an implementation of task-
splitting algorithms. But it uses another type of task-splitting
(that is not slot-based split-task dispatching) which cannot
guarantee to meet deadlines at high processor utilization.
Hence, the current research literature provides no answer to
the question whether slot-based task-splitting multiprocessor
scheduling can be implemented and whether it works in
practice.
Therefore, in this paper, we show that slot-based task-

splitting multiprocessor scheduling can be implemented and
it works in practice. We do so by implementing a recently-
proposed algorithm based on slot-based split-task dispatch-
ing [2] in the Linux kernel 2.6.281. It is a new scheduling
policy Sporadic Multiprocessor Scheduling (SMS) in the
modular scheduling framework in the Linux kernel and
we dub this implementation Sporadic Multiprocessor Linux
Scheduler (SMLS). We have conducted a range of experi-
ments with an 8-core multicore desktop PC utilized to 88%
with real-time tasks executing empty for loops. In order to
make the environment more controlled, we (i) set runlevel
to 1, (ii) disconnected the desktop PC from the network and
(iii) setup eight non-real-time tasks to ensure that the kernel
idle threads never start executing. With this experimental
setup, we observe that the behavior of our implementation
provides good correspondence between theory and practice.
Specifically, we observe that (i) no deadline misses occurred,
(ii) the release jitter was at most 33µs and (iii) the time
when so-called reserves began deviates with at most 20µs
from when they should occur.
The remainder of this paper is structured as follows.

Section II gives a background on task-splitting, in partic-
ular slot-based split-task dispatching and shows its related
challenges for implementation. Section III presents a new
task-splitting algorithm that is suited for implementation.

1The source code of the implementation is available at
http://www.cister.isep.ipp.pt/activities/RESCORE/Software.ashx

Local Timer Local Timer Local Timer Local Timer

P1 P2 · · · Pm

Counter register

Generate an interrupt to local
processor when the counter reaches

Figure 1: Each processor (Pi) has a local timer.

Section IV illustrates the new task-splitting algorithm that is
suited for implementation with an example. Section V shows
principles on how to implement slot-based task-splitting
and Section VI gives an overview of our implementation.
Section VII compares the actual behavior of SMLS to its
theoretical behavior. Section VIII gives conclusions.

II. BACKGROUND

A. System model

Consider n tasks and m identical processors. A task τi

is uniquely indexed in the range 1..n and a processor in
the range 1..m. Each task τi is characterized by worst-case
execution time Ci and minimum inter-arrival time Ti and by
the time that the execution must be completed, the deadline
Di. We assume 0 ≤ Ci ≤ Di. If we do not state Di then we
assume that ∀i : Di = Ti. For convenience we also define:

TMIN = min(T1, T2, ..., Tn) (1)

and let τi,k denote the k:th arriving job of task τi.
A processor p executes at most one task at a time and

no task may execute on multiple processors simultaneously.
The utilization of task τi, denoted ui, is defined as Ci

Ti
and

the system utilization, Us, is defined as 1
m ·

∑n
i=1 ui.

We assume that (i) all processors have the same instruc-
tion set and data layout (e.g. big-endian/little-endian), (ii) all
processors execute at the same speed and (iii) the speed at
which a task executes is independent of which processor
it executes on. We assume that the execution speed of a
processor does not depend on activities on another processor
(for example whether the other processor is busy or idle
or which task it is busy executing) and also does not
change at runtime. In practice, this implies that that (i) if
the system supports simultaneous multithreading (Intel calls
it hyperthreading) then this feature must be disabled and
(ii) features that allow processors to change their speed (for
example power and thermal management) must be disabled.
We assume that each processor has a local timer (see

Fig. 1). We assume that this timer provides two functions:
(i) one function allows reading the current real-time (that is
not calender time) as an integer; and (ii) another function
makes it possible to set up the timer to generate an interrupt
x time units in the future, where x can be specified.
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B. Task-splitting

Consider n=m+1 tasks with Ti=1 and Ci = 0.5+ε (where
ε is a positive number smaller 1/6) to be scheduled on m
processors. It is easy to see that if task migration is not
allowed then there is a processor which is assigned at least
two tasks. And on this processor, the utilization exceeds
100% and hence a deadline miss occurs. This is problematic
since Us = m+1

m · (0.5 + ε) which becomes 1/2 as m → ∞
and ε → 0; that is, a deadline miss can occur although only
50% of the entire processing capacity is requested.
Researchers observed [15], [1] that if the execution-

time of a task could be ”split” into two pieces then it is
possible to meet deadlines. For example, assign task τi with
i ∈ {1, 2, 3, . . . , m} to processor Pi and assign task τm+1 to
two processors (for example processor 1 and processor 2)
so that a job by τm+1 executes 0.25+ε/2 units on one of
the two processors and 0.25+ε/2 units on the other. This
makes it possible to meet deadlines, assuming that the two
”pieces” of task τm+1 are dispatched so that they never
execute simultaneously.
Many recent algorithms are based on this idea and they

differ in (i) how tasks are assigned to processors and split
before run-time and (ii) how tasks are dispatched, particu-
larly, how split tasks are dispatched at run-time. Anderson
et al. proposed [15] the idea that the second piece of a
job of a split task τi should arrive Ti time units later.
This ensures that the two pieces of such a job do not
execute simultaneously but unfortunately it requires that
Di ≥ 2Ti so it is recommended only for soft real-time tasks.
Andersson and Tovar [1] proposed the idea that time should
be subdivided into timeslots of unequal duration and within
each timeslot, the first piece of a split task is executed in
the beginning of the timeslot and the second piece of a split
task is executed in the end of the timeslot. This provides
hard real-time scheduling with Di = Ti and it allows good
utilization bounds to be attained and it provides bounds on
the number of preemptions but it works only for periodic
tasks. Levin et al. [16] proposed a related algorithm but
with the ability to schedule sporadic tasks. Both algorithms
[1], [16] require that when two absolute deadlines are close
in time, a task can be assigned a very short segment of
time and hence these algorithms [1], [16] are difficult to
implement in practice. Kato and Yamasaki [8] proposed
a suspension-based split-task dispatching approach where
the second piece of a split task is suspended whenever the
first piece is executing. This ensures that a split task never
executes on two or more processor simultaneously and it
provides hard real-time scheduling.
The two approaches for split-task dispatching that we

believe are the most promising for implementing and use
in practice are (i) job-based split-task dispatching [6], [9]
and (ii) slot-based split-task dispatching [2]. Job-based split-
task dispatching splits a job into two or more subjobs

and forms a sequence of subjobs and sets the arrival time
of a subjob equal to the absolute deadline of its pre-
ceding subjob. Job-based split-task dispatching provides a
utilization bound greater than 50% and few preemptions.
It has been implemented in a real operating system and
through experimental studies [10] of that implementation it
was found to outperform many other non-split approaches.
(Algorithms using slot-based split-task dispatching were not
part of the evaluation.) The main drawback of job-based
split-task dispatching is that utilization bounds greater than
69% have not been attained [9].
Slot-based split-task dispatching subdivides time into

equal-duration timeslots whose beginning and end are syn-
chronized across all processors; the end of a timeslot of
processor p contains a reserve and the beginning of a
timeslot of processor p+1 contains a reserve, and these
two reserves supply processing capacity for a split-task —
see Fig. 2(a). Slot-based split-task dispatching causes more
preemptions than job-based split-task dispatching but, in
return, it offers higher utilization bounds (higher than 69%
and configurable for up to 100%) [2] and a recent study
[3] of randomly generated task sets shows that it offers
the best performance (among all algorithms, not only task-
splitting algorithms) for providing pre-run-time guarantees
to arbitrary-deadline sporadic tasks. Despite the good per-
formance of slot-based split-task dispatching in theory, the
current research literature provides no answer to the question
whether slot-based task-splitting multiprocessor scheduling
can be implemented and whether it works in practice.

C. Challenges

From Fig. 2(a), we can identify three challenges for
implementing slot-based split-task dispatching:
C1. Timeslots must begin at the same time on all

processors;
C2. A split-task must migrate instantaneously in the

beginning of a timeslot;
C3. The reserves should begin and end at precisely

specified time instants.
Since each generation of multicore processors offers

greater core count than its preceding generation, we believe
it is also important that an implementation of a multiproces-
sor scheduling algorithm has a dispatching overhead that is
low as a function of the number of processors — ideally
independent of the number of processors. This poses no
challenges for scheduling non-split tasks. For split-tasks
however this brings the following two additional challenges:
C4. The run-time overhead of migration (manipulation

of data structures and concurrency control) should
be independent of the number of processors;

C5. The run-time overhead due to handling of timers
(reading the current value of a real-time clock;
setting up a timer to generate an interrupt signal
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Capacity reserved for τ2 on processor P2
(a) Original split-task dispatching

t0 S 2S 3S

P1

P2

τ2 τ2 τ2

τ2 τ2 τ2

Capacity reserved for τ2 on processor P1

Capacity reserved for τ2 on processor P2
(b) New split-task dispatching

Figure 2: An example of the operation of slot-based task-
splitting multiprocessor scheduling. Task τ2 is a split-task.
A non-split task executes only on its dedicated processor; it
can execute in a reserve but it does so with a lower priority
than a split task.

at a certain time) should be independent of the
number of processors.

We will address these challenges in the forthcoming
sections. Challenges C1 and C3 will be resolved using high-
resolution local timers to each processor. Challenges C4
and C5 will be resolved through carefully designed data
structures which avoids synchronization between processors
and the local timers will help us overcome C5. The challenge
C2 is fundamental however — we can resolve it only
by a minor redesign of the actual scheduling algorithm.
Section III does that.

III. SLOT-BASED SPLIT-TASK DISPATCHING SUITED FOR
IMPLEMENTATION

Consider Fig. 2(a) again. It shows that task τ2 must
migrate instantaneously at certain instants; this occurs at
time S, time 2S, etc. We can move the reserves on processor
2 so that they start slightly later in each timeslot — Fig. 2(b)
shows this.
Let us consider the reserve on processor p such that this

reserve is used for the split-task between processor p − 1
and p. We let M [p] denote the time from the beginning
of a timeslot until the beginning of this reserve. For the
dispatching algorithm in [2], it holds that ∀p : M [p] = 0.
In order to implement slot-based split-task dispatching, we
need to choose ∀p : M [p] > 0; we will now discuss how to
choose M [p].
Previous work [2] used a positive integer parameter δ

which can be selected by the designer. Based on this
parameter, the following definitions were made [2]:

S =
TMIN

δ
(2)

and
α =

1
2
−

√
δ · (δ + 1) + δ (3)

and
SEP = 4 · (

√
δ · (δ + 1) − δ) − 1 (4)

S is the duration of the timeslot. α is a parameter used
for sizing the reserves. SEP is a threshold such that tasks

with ui greater than SEP are assigned their own dedicated
processor. SEP also plays the role of being the utilization
bound of the algorithm in [2].
Consider Fig. 3 which shows a detailed view of a timeslot.

It shows that each processor p has a reserve of duration
x[p] and another reserve of duration y[p], and these reserves
are used for executing split tasks. The reserve x[p] is used
for executing the task split between processor p and p − 1.
The reserve y[p] is used for executing the task split between
processor p and p + 1. If the task which is assigned reserve
x[p] has finished execution at time t then processor p selects
for execution at time t, a non-split task, which was assigned
to processor p. Analogously for y[p]. On each processor,
there is also a reserve of durationM [p] early in the timeslot
and another reserve of duration N [p] in the middle of the
timeslot. These reserves are used for executing non-split
tasks; the split tasks are forbidden to execute there.
We will assign and split tasks just like in our previous

work [2] — we deviate only from our previous work [2] in
the way that dispatching of tasks is performed. From our
previous work [2], we obtain that (i) adding the duration of
the x and y reserve on the same processor gives us at most
(1 − 2 · α) · S and (ii) adding the duration of the x reserve
on processor p+1 and y reserve on processor p gives us at
most (1 − 2 · α) · S. Therefore, an appropriate choice is:

∀p : M [p] = α · S (5)

It ensures that there is a gap of at least α · S between
two reserves on the same processor and also that there is
a gap of at least α · S between two reserves on different
processors that serve the same split task. One can show that
the maximum amount of execution by a split-task in a time
interval t, is no higher for 0 < M [p] ≤ α · S than for
M [p] = 0 (see Appendix A in [17]). One can also show
that the minimum supply of processor time for a split-task
in a time interval t, is no lower for 0 < M [p] ≤ α · S than
for M [p] = 0 (see Appendix A in [17]). Basically, choosing
M [p] > 0 makes the execution of a split-task more smooth
over time. This gives us that the schedulability analysis in
previous work [2] applies also for the case when we choose
M [p] = α · S (see Appendix A in [17]). We pay the price
of having one extra preemption per timeslot per processor
whenM [p] > 0 though. (This is not visible in Fig. 2(b) but it
can be seen with an example with three processors and there
is one split-task between processors P1 and P2 and another
split-task between processors P2 and P3. A good illustration
of this is the preemption at time 1.25 on processor P3 in
Fig. 4 for task τ4).
Because of the robustness attained and schedulability

maintained by choosing M [p] = α · S, we will assume
M [p] = α · S in the remainder of this paper. We could use
any scheduling algorithm in the reserves but in order to stay
as close as possible to the previously proposed slot-based
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P2

P3

reserve for task split between P1 and P2

reserve for task split between P1 and P2 reserve for task split between P2 and P3

reserve for task split between P2 and P3

N [P1] = S − y[P1]

y[P1] = S · (α + hi split[P1])

S − M[P2] − x[P2] − y[P1] ≥ α · S

x[P2] = S · (α + lo split[P2]) y[P2] = S · (α + hi split[P2])

x[P3] = S · (α + lo split[P3])

M[P3] = α · S

M[P2] = α · S S − M[P3] − x[P3] − y[P2] ≥ α · S

N [P2] = S − M[P2] − x[P2] − y[P2] ≥ α · S

N [P3] = S − M[P3] − x[P3]

Figure 3: A detailed view of a timeslot, the reserves and their durations, used by our dispatching algorithm that is suited
for implementation. The reserves for the split task shared by P 1 and P2 and shared by P2 and P3 are shown by rectangles.

task-splitting algorithm [2], we choose preemptive EDF. The
reader can find detailed pseudo-code of the new dispatcher
in Appendix B in [17].

IV. AN EXAMPLE
In order to illustrate the behavior of the slot-based split-

task dispatching suited for implementation, let us consider an
example. We consider a system with four processors (m =
4) and seven tasks (n = 7) as specified by Table I. The
value of δ is four, which means that the processor utilization
should be at most 88.85% (SEP parameter is set to 0.8885),
except for the processors which have been assigned a task
with utilization exceeding SEP.

Table I: Task Set (time unit in
millisecond)

Task C T u

τ1 4.5000 5.0000 0.9000
τ2 3.5000 6.0000 0.5833
τ3 3.5000 6.5000 0.5385
τ4 4.0000 8.0000 0.5000
τ5 3.0000 7.0000 0.4286
τ6 3.0000 8.0000 0.3750
τ7 1.5000 8.5000 0.1765

Table II: Task assign-
ment and splitting

Processor Task(s)
P1 τ1

P2
τ2
Part of τ3

P3

Part of τ3
τ4
Part of τ5

P4
Part of τ5
τ6 and τ7

The task assignment works as follows: τ1 is assigned
a dedicated processor (P1) since the utilization of τ1 is
higher than SEP. τ2 is assigned to processor (P2), but
assigning task τ3 to processor P2 would cause the utilization
of processor P2 to exceed SEP (0.5833+0.5385 > 0.8885).
Therefore, task τ3 is split between processor P2 and proces-
sor P3. A portion of task τ3 is assigned to processor P2,
just enough to make the utilization of processor P2 equal to
SEP, that is 0.3052. This part is referred to as hi split[P2]
and the remaining portion (0.2332) of task τ3 is assigned
to processor P3, which is referred to as lo split[P3]. The
procedure continues until all tasks have been assigned (see
Table II).

0 t (ms)

S S

1.25 2.50

P1

P2

P3

P4

τ1 τ1
N N

τ2 τ2
N Ny y

τ3 τ3

τ3 τ3τ4 τ4 τ4 τ4
x xM MN Ny y

τ5 τ5

τ5 τ5
N Nx xM M

τ6 τ6 τ6 τ6

Figure 4: Execution timeline showing how tasks execute if
all tasks arrive at time 0.

Fig. 4 shows the execution timeline for the case that for
each task, its first job arrives at time 0. The execution of a
job is represented by a rectangle labeled with the identifier
of the task and above is identified the timeslot component.
Timeslot length is equal to S = TMIN

δ = 5ms
4 = 1.25 ms.

Recall that the online dispatching algorithm works over the
timeslot of each processor. As we can see from Fig. 4, for
instance, task τ3 is split between processors P2 and P3 and
hence it executes only on the x-reserve of processor P3 and
on the y-reserve of processor P2.
Non-split tasks τ6 and τ7 execute on processor P4 (within

M and N reserves), but task τ7 does not appear in the Fig. 4
because it executes after time 2.5, since its absolute deadline
is higher than absolute deadline of task τ6.

V. HOW TO IMPLEMENT SLOT-BASED TASK-SPLITTING
Recall the challenges listed in Section II. In order to cope

with them, we recommend that an implementation of a task-
splitting follows the following design principles:
P1. Each processor should have its own run-

queue (the queue that stores tasks which have
outstanding request for execution). The run
queue of processor p should store non-split
tasks assigned to processor p. The run-queue
of each processor should support the operations
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insert, peek_highest_priority_task
and extract_highest_priority_task
with low time-complexity (using for example a
red-black tree).

P2. For each processor p, there should be a data
structure with two variables hi_split and
lo_split. The variable hi_split of processor
p and the variable lo_split of processor p+1
should point to the process control block (called
task_struct in the Linux kernel) for the task
that is split between them. If no such task exist
then these pointers are NULL.

P3. Each processor should have a variable called
begin_curr_timeslot. It should hold a time
which is no larger than the current time and it
should never be less than current time minus S.
The variable begin_curr_timeslot should
be incremented by S to ensure this. This assures
that the beginning of the timeslot on each processor
is synchronized and avoids the lock mechanism
that would be necessary if this variable was global.

P4. Each processor should have a timer queue of
events in the future. This should always include
the time of the beginning of the next timeslot, that
is begin_curr_timeslot + S. If applicable,
it also contains the time when the reserve in the
beginning of the timeslot ends and also the time
when the reserve in the end of the timeslot begins.
Whenever the timer queue changes (for example an
event has expired and therefore should be removed
from the timer queue, or a new event is inserted
into the timer queue), the processor should disable
interrupts, set up a timer x time units in the future
where x is the time of the earliest event in the
timer queue minus current time, and then enable
interrupts. This is a standard approach for timers
and it ensures that cumulative drift because of finite
speed of the processor does not occur (see page 38
in [18] for discussion).

P5. The operating system should implement a
delay_until system call (see page 38 in [18])
which makes it possible for a task to sleep until an
absolute time. This is important for implementing
periodically arriving tasks without suffering from
cumulative drift [18].

VI. THE IMPLEMENTATION
We have implemented the scheduling algorithm as de-

scribed in Section III (which is a slight modification of
our previously proposed scheduling algorithm in [2]) in the
Linux kernel 2.6.28. We developed a new scheduling policy
(called SMS) in the modular scheduling infrastructure of
the Linux kernel and when doing so we followed the design
principles stated in Section V.

Currently, the Linux kernel has three native scheduling
modules: RT (Real-Time), CFS (Completely Fair Schedul-
ing) and Idle. These modules are hierarchically organized
by priority in a linked list and the dispatcher looks for a
runnable task of each module in a decreasing order priority.
We added SMS scheduling policy module on top of the

native Linux module hierarchy, thus it is the highest priority
module (see Fig. 13).

SMS RT CFS Idle

Figure 5: Priority hierarchy of scheduling policy modules

Before describing the SMS module implementation let
us give some details about the data structure used by the
SMS module. Note that, each processor holds a run-queue to
manage all active processes or tasks. In our implementation
we added the required data for the SMS algorithm to the
struct rq data structure (see Listing 1), which is the
data structure used for each run-queue. For instance, all
non-split tasks of each processor are organized in a red-
black tree by the absolute deadline. Red-black trees, which
are balanced binary trees whose nodes are ordered by a key
and most operations are done in O(log n) time, are already
implemented in the Linux kernel (lib/rbtree.c).
s t r u c t rq {
. . .
s t r u c t s p l i t t a s k {
s t r u c t t a s k s t r u c t ∗ l o s p l i t ;
s t r u c t t a s k s t r u c t ∗ h i s p l i t ;

} s p l i t t a s k ;

s t r u c t r b r o o t r o o t n o n s p l i t t a s k s ;

s t r u c t t i m e s l o t {
unsigned long long b e g i n c u r r t im e s l o t ;
unsigned long long m;
unsigned long long x ;
unsigned long long n ;
unsigned long long y ;
s t r u c t h r t im e r t im e r ;

} t i m e s l o t ;
. . .

} ;

Listing 1: Fields added to struct rq kernel data structure.
There is one struct rq for each processor.

The Linux kernel is currently tick-driven, the dispatcher
is invoked periodically (with a period of 1 ms if the macro
HZ is set to 1000). Recall however (from Section II-C)
that in slot-based split-task dispatching, reserves must begin
at precisely specified instants and the periodic tick is not
sufficiently precise for our purpose. The Linux kernel is cur-
rently provided by the high-resolution timers infrastructure
(kernel/hrtimer.c) that allow us to specify when a
timer should fire at nanosecond resolution. Therefore, we
use the high-resolution timers to invoke callback functions
for the beginning of a reserve and we also use them to wake
up tasks that have executed delay_until.
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The data of each active process or task in the sys-
tem is managed using a data structure called struct
task_struct (see Listing 5). We added also some fields
to this data structure required by the algorithm. For in-
stance, cpu1 and cpu2 fields are used to set the log-
ical identifier of processor(s) in which the task will be
executed. In order to organize SMS tasks by the absolute
deadline on a red-black tree we added struct rb_node
node_non_split_task field.
s t r u c t t a s k s t r u c t {
. . .
s t r u c t sms ta sk pa ram{
i n t cpu1 ;
i n t cpu2 ;
s t r u c t sms job param{
unsigned long long d e a d l i n e ; / / a b s o l u t e d e a d l i n e
unsigned long long r e l e a s e ; / / r e l e a s e t ime o f n e x t j o b
. . .

} ;
s t r u c t rb node n o d e n o n s p l i t t a s k ;

} ;
. . .

} ;

Listing 2: Fields added to struct task_struct kernel
data structure

According to the modular scheduling framework rules,
each module must implement the set of functions spec-
ified in the sched_class structure. Listing 7 shows
the definition of sms_sched_class, which implements
the SMS module. The first field (next) of this structure
is a pointer to sched_class which is pointing to the
rt_sched_class that implements the RT module.
The other fields are functions that act as callbacks to

specific events. The enqueue_task_sms is called when-
ever an SMS task becomes runnable. This function must
check if it is a non-split task or a split task. In the former
case it must insert a node in the red-black tree and in the
latter it does nothing. When an SMS task is no longer
runnable, then the dequeue_task_sms function is called
that undoes the work of the enqueue_task_sms func-
tion. As the name suggests, check_preempt_curr_sms
function, checks whether the currently running task must be
preempted. This function is called following the enqueuing
or dequeuing of a task and it only sets a flag that indicates
to the scheduling infrastructure that the currently running
task must be preempted. pick_next_task_sms function
selects the task to be executed by the processor. This
function is called by the scheduling infrastructure whenever
the currently running task is marked to be preempted.
task_tick_sms function is mostly called from time tick
functions. In the current implementation this function calls
the check_preempt_curr_sms function, to check, if
the current task must be preempted.
con s t s t r u c t s c h e d c l a s s sms s ch ed c l a s s = {
. n e x t = &r t s c h e d c l a s s ,
. e nqueue t a s k = enqueue ta sk sms ,
. d equeue t a s k = dequeue ta sk sms ,
. c h e ck p r e emp t cu r r = check preempt cu r r sms ,
. p i c k n e x t t a s k = p i c k nex t t a s k sms ,

. t a s k t i c k = t a s k t i c k sms ,
. . .

} ;

Listing 3: sms_sched_class definition

The dispatching algorithm is mainly implemented by
the check_preempt_curr_sms and pick_next_
task_sms functions. Next, the dispatching algorithm is
described assuming that processor p is executing the dis-
patcher.
One of the arguments of the check_preempt_curr

_sms function is a pointer (struct rq ∗ rq) to the run-
queue of processor p (see Listing 4), where all runnable
SMS tasks assigned to it are stored, as well as other
important data necessary for SMS scheduling algorithm,
such as begin_curr_timeslot, the timeslot composi-
tion reserves and also hi_split and lo_split pointers.
The relative time instant within the current timeslot is
given by invocation of the get_timeslot_reserve
function. Assuming that, get_timeslot_reserve in-
vocation returns RESERVE_X, which means that the current
time instant falls in the x reserves. Then, the next step
is to check if the split-task is in running state. If it is
(get_lo_split_task function returns pointer to the
split-task) and if it is not the currently running task on
processor p, then, there is the need to check if the split-task
is currently running on processor p-1 (which is identified by
the cpu1 field) by invoking the cpu_curr function. If it is,
an interprocessor interrupt is sent to force rescheduling2 on
processor p-1 to stop the execution of the split-task (invoking
the resched_cpu function), then, it checks if there is a
non-split task ready to execute on processor p. Otherwise,
resched_task function is invoked to mark the currently
running task on it to be preempted.
s t a t i c vo id check preempt cu r r sms ( s t r u c t rq ∗rq , s t r u c t

t a s k s t r u c t ∗p )
{
. . .
r = g e t t i m e s l o t r e s e r v e ( rq ) ;
swi tch ( r ){
. . .
case RESERVE X:
l o s p l i t = g e t l o s p l i t t a s k ( rq ) ;
i f ( l o s p l i t !=NULL){
i f ( l o s p l i t != rq−>c u r r ){
t a s k = cpu cu r r ( l o s p l i t−>cpu1 ) ;
i f ( t a s k == l o s p l i t ){
r e s c h ed cpu ( l o s p l i t−>cpu1 ) ;
goto c h e c k n o n s p l i t t a s k ;

} e l s e
r e s c h e d t a s k ( rq−>c u r r ) ;

}
} e l s e
goto c h e c k n o n s p l i t t a s k ;

break ;
case RESERVE M:
case RESERVE N:

2This should never happen since the two reserves for a split-task are
non-overlapping and there is a time gap (at least αcdotS) between them.
In our experiments we did not observe any occurrence of the event that
resched_cpu was invoked because a split task was already executing on
another processor.
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goto c h e c k n o n s p l i t t a s k ;
break ;

}
re turn ;
c h e c k n o n s p l i t t a s k :
t a s k = g e t e a r l i e s t d e a d l i n e ( rq ) ;
i f ( t a s k !=NULL)
i f ( t a s k != rq−>c u r r )
r e s c h e d t a s k ( rq−>c u r r ) ;

re turn ;
}

Listing 4: C code fragment of check_preempt_curr
_sms function.

The algorithm of the pick_next_task_sms function
is similar to the check_preempt_curr_sms function.
However, this function returns the pointer to the selected
task or NULL if there is no ready task to be executed.
Due to space restrictions, we refer the reader to Ap-

pendix C in [17] for an extensive description of the im-
plementation.

VII. EXPERIMENTAL EVALUATION
We are interested in experimentally assessing whether

the behavior of our implementation deviates from theory
(with changes described in Section III). For this purpose, we
present the experimental setup used and describe the con-
cepts used to characterize the discrepancy between theory
and practice. Finally, we present actual experimental results.

A. Experimental setup
The experimental machine is equipped with two

Intel!Xeon!(QuadCore) at 1.60 GHz processors and 4GB
of main memory. The experiment was conducted on the
Linux kernel 2.6.28 running on runlevel 1 with all interrupts
managed by the core 8. We also disabled the network
connection. We observed that the in-kernel idle task delays
the delivery of timer-expiry callbacks and therefore we setup
eight non-real-time tasks, executing idle loops in user space,
so that the in-kernel idle task never executes.
We will measure and record the time of occurrences of

important events and then compute bounds between the
times of these events. In order to characterize deviations
of the actual behavior from theory, we define quantities in
the next subsection.

B. Concepts used to characterize the outcome of experi-
ments
Fig. 6 showsmeas reserve Ji,k, which means measured

reserve jitter of job τi,k and denotes the discrepancy between
the time when the job τi,k should (re)start executing (at the
beginning of the reserve A, where A could be M , x, N or
y) and when it actually (re)starts. It should be mentioned
that the timers are set up to fire when the reserve should
begin, but unfortunately, there is always a drift between this
time and when actually the timer interrupt happens.

meas Ji,k, which means measured release jitter of job
τi,k, denotes the difference in time from when the job

τj,z

The reserve A
should begin

Timer interrupt
for beginning
the reserve A

τi,k (re)starts
executing

meas reserve Ji,k

τi,k

t

Figure 6: Measured reserve jitter.

τi,k should arrive until it is inserted in the ready queue.
Fig. 7 shows this and other related quantities. The mea-
sured response time of the job τi,k (meas RTi,k) is com-
puted as the time difference between the time the job
τi,k should arrive (this is computed according the input
parameter to delay_until) and when τi,k finishes its
execution. The measured tardiness of job τi,k is defined as
meas Tardi,k = max(0, meas RTi,k − Di).
Let meas Nr jobsi denote the number of jobs released

of task τi during an experiment. Then we define:

meas reserve Ji =max(meas reserve Ji,k)
k=1...meas Nr jobsi

The symbols meas Ji, meas RTi and meas Tardi are
defined analogously.

C. Task set generation
In order to generate the task sets we have to define the

number of tasks (n), the number of processor (m) and also
the target utilization of the task set (Utarget). With these
parameters we compute the utilization of each task (u i) as
follows: ui = (n − i + 1) ∗ (Utarget ∗ m)/(

∑n
i=1 i).

For generating Ti we need to define the minimum Ti,
denoted TMIN, and the maximum Ti, denoted TMAX.
Then, Ti, in ascending order, is computed as follows:
Ti = TMIN + (i − 1)/(n − 1) ∗ (TMAX − TMIN)
and in descending order, is computed as follows: T i =
TMAX − (i − 1)/(n − 1) ∗ (TMAX − TMIN). In some
cases after computing the Ti we shuffle it and this way we
get a random task set. We calculate Ci as Ci = Ti ∗ ui.
Table III shows 24 task sets and the input parameters used

to generate each task set. All task sets were generated with
m equal to eight and Utarget equal to 0.888 and δ equal to
four. There are task sets with 100 tasks and with 15 tasks.
TMIN is equal in all task sets and TMAX is either 15
or 100 ms. For the same experimental parameters we have
varied the Ti order (column Tsorted in Table III): (i) we set
Ti in ascending order (a) to get high utilization tasks with
lower Ti; (ii) we set Ti in descending order (d) to get high
utilization tasks with higher Ti and (iii) we shuffle (s) Ti to
obtain some random task sets. Our experiments are divided
into two groups, the first twelve experiments are periodic
and the other ones are sporadic. In these experiments, the
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Figure 7: Time intervals that we compute from logged events.

time between two consecutive job arrivals of the same task
τi is given by a random variable in [T i, factor ∗ Ti]. For
instance, if the minimal inter-arrival time of one task is five
ms and factor = 1.5 then the maximum inter-arrival time
of that task is 7.5 ms (5 multiply by 1.5).
The criterion used to stop the experiment was the number

of jobs, thus, when a task has released 100000 jobs the
experiment finishes.

D. Experimental results

Table IV presents the results. Note that, here we present
the maximum values of the task set. Therefore, we define:

meas Jτ = max(meas Ji)
i=1...n

and analogously meas reserve Jτ and meas Tardτ .
All task sets were generated with δ equal to four and

TMIN equal to five ms. The timeslot length (S) is equal
to 1.25 ms and α · S is equal to 0.035 ms. The latter
value is important because it defines the minimal length of
every timeslot reserves. And if the measured reserve jitter
(meas reserve Jτ ) is higher than this value could cause
misbehavior of the algorithm, because some reserves are
skipped.
We can see from Table IV that the maximum meas Jτ

of all experiments is equal to 0.033 ms and for
meas reserve Jτ the maximum value is 0.020 ms and
no deadline misses occur. The reason for this is that the
reserve jitter is 0.020 ms which is smaller than M [p] which
is 0.035 ms and hence the observed behavior is similar to
the theoretical behavior.
These good results are due to (i) the controlled experi-

mental environment (stated in Section VII-A), (ii) the use
of the local high-resolution timers and (iii) the fact that
our scheduling algorithm allows each processor to operate
without synchronizing with the other processors.

VIII. CONCLUSIONS

We have shown that slot-based task-splitting multiproces-
sor scheduling can be implemented and it works in practice.
We did so by implementing an algorithm based on slot-
based split-task dispatching [2] in the Linux kernel 2.6.28.
We have conducted a range of experiments with an 8-core
multicore desktop PC utilized to 88% with real-time tasks
executing empty for loops. In order to make the environment
more controlled, we (i) set runlevel to 1, (ii) disconnected
the desktop PC from the network and (iii) setup eight non-
real-time tasks to ensure that the kernel idle threads never
start executing. With this experimental setup, we observe
that the behavior of our implementation provides good
correspondence between theory and practice. Specifically,
we observe that (i) no deadline misses occurred, (ii) the
release jitter was at most 33µs and (iii) the time when so-
called reserves began deviates with at most 20µs from when
they should occur.
It should be noted that although this paper presents an

implementation and experimental evaluation of the algo-
rithm in [2], the same implementation ideas and the same
implementation can also be used for the algorithm in [3]
as well because it uses the same dispatch mechanism. This
is relevant since the algorithm in [3] was (and still is) the
algorithm that, in theory, has the best ability (among state-of-
art algorithms) to offer pre-run-time guarantees to arbitrary-
deadline sporadic tasks on a multiprocessor.
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APPENDIX A.
ALLEVIATING IMPLEMENTATION-RELATED ISSUES

In this section, we will show a previously known result, then modify our scheduling algorithm and then show that the
previously known result holds also for this modified algorithm.

A. Previously known result
Recall from previous work [2] that a slot-based split-task multiprocessor scheduling algorithm has been proposed. For

most tasks, it holds that a task is assigned to a single processor but for a few tasks, it holds that a task is assigned to two
processors (these tasks are called split-tasks). Split tasks execute in reserves. A split tasks may execute on an x-reserve,
which starts when the timeslot starts, or in an y-reserve, which finishes when the timeslot finishes. For such a setting, we
know from previous work (Appendix A in [2]) that:

Lemma 1. For any interval of length Λ ≥ δ · S, if tsp denotes the cumulative time within said interval belonging to split
task reserves x, z on some processor, then:

Λ− tsp

Λ
≥ δ · (S − x − z)

δ · S + (x + z)

Proof: Observe that, for any Λ, tsp (the cumulative time belonging to reserves for split tasks within the interval
considered) is maximal if the interval of length Λ starts at the same time as reserve z.
Hence

tsp ≤
⌊
Λ
S

⌋
· (x + z) + min(Λ−

⌊
Λ
S

⌋
· S, x + z) (6)

The right-hand side of Inequality 6
(
which we will denote as h(Λ)

)
is a continuous function of Λ ∈ [δ ·S..∞). It is piecewise

differentiable, non-decreasing in intervals (k · S, k · S + (x + z)) and constant in intervals (k · S + (x + z), (k + 1) · S),
∀k ∈ N.

dh(Λ)
dΛ

=

{
1, k · S < Λ < k · S + x + z

0, k · S + x + z < Λ < (k + 1) · S

Then we have
d

dΛ

(
h(Λ)
Λ

)
=

{
Λ−h(Λ)

Λ2 ≥ 0, k·S<Λ<k·S+x+z

−h(Λ)
Λ2 < 0, k·S+x+z<Λ<(k+1)·S

The global maximum for h(Λ)
Λ over [δ·S, ∞) then occurs for some L in the set {k·S+(x+z)}∩[δ·S, ∞), ∀k∈N which is

the same set as {k·S+(x+z)}, ∀k∈{δ, δ+1, δ+2, . . .}.

Additionally, for any integer k ≥ δ, it holds that

h(Λ)
Λ

∣∣∣
Λ=k·S+(x+z)

− h(Λ)
Λ

∣∣∣
Λ=(k+1)·S+(x+z)

=

(k + 1)(x + z)
k · S + (x + z)

− (k + 2)(x + z)
(k + 1) · S + (x + z)

=

(x + z) · (S − x − z)
(k · S + (x + z)) · ((k + 1) · S + (x + z))

≥ 0

therefore h(Λ)
Λ is maximised over [δ ·S, ∞) for Λ = δ ·S + (x + z). Equivalently, Λ−h(Λ)

Λ = 1− h(Λ)
Λ is minimised over

[δ · S, ∞) for Λ = δ · S + (x + z) and the respective minimum is δ·(S−x−z)
δ·S+(x+z) (which proves the lemma).

We also know that:
For any split task τi to always be schedulable, it must hold that:

δ · (x + y)
(δ + 1) · TMIN

δ − (x + y)
≥ Ci

Ti
(7)
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Figure 8: The reserves of a split task (a) ideally do not overlap but (b) this may occur in practice due to timeslot misalignment,
wasting part of the time budget for the task.

B. Modifying algorithm and prove that it does not jeopardize timeliness
As already mentioned at the end of Section II, a practical issue with our previously-proposed dispatching approach [2],

arises from the difficulty in achieving perfect temporal alignment of timeslot boundaries across processors. For example:
• If each processor reads the time from its own clock, then the crystals of those clocks may have slightly different
oscillation frequencies. The slight clock drift will eventually accumulate, leading to severely misaligned timeslots
accross processors, unless frequent forced resynchronisation of timeslots is performed.

• Even if all processors read the time from a single source (i.e. a system-wide clock or a global variable only updated
by a particular processor with the reading of its clock), slight misalignment may occur.

In turn, timeslot misalignment impairs the schedulability of split tasks. With misaligned timeslot boundaries across
“neighboring” processors p and p + 1, the reserves of the task split between them may overlap. During this time, the
split task can only use one of the two, thus part of its time budget is wasted (see Fig 8). Therefore, potential overlap of the
reserves of a split task must be precluded.
As we mentioned in Section III, we may achieve this bybreaking up the back-to-back execution of the y- and x-reserve of

a split task, by shifting its x-reserve later in time by an offsetM<2·α·S. This offset acts as a temporal “cushion”, preventing
reserve overlap (thus ought to be longer than the potential misalignment of reserves). The offset M may be identical for all
split tasks or, instead, each split task τi may use a different M [p] (p being the index of the processor where the x-reserve
of τi executes). Fig 9 depicts this modified dispatching.
We will prove that schedulability is not compromised by this modification.

Definition 1. The worst-case usable time ratio ρ(τi) for a split task τi is defined as the lowest observable ratio tsplit

∆t , over
all time windows of length ∆t ≥ Ti, where tsplit represents sum of the lengths of the subintervals of ∆t during which τ i

may execute

Definition 2. The worst-case usable time ratio ρ(τ [p]) for the set of non-split tasks τ [p] assigned to processor p is defined
as the lowest observable ratio tnon−split

∆t , over all time windows of length ∆t ≥ Ti, where tnon−split represents sum of the
lengths of the subintervals of ∆t during which the execution of tasks of τ [p] is allowed and the execution of split tasks is
disallowed on processor p.

Lemma 2. If, for a split task τi, it holds that ρ(τi) ≥ Ci
Ti
, then τi never misses a deadline.

Proof: By definition, from its arrival until its deadline T i a job by τi will have been granted no less than ρ(τi) · Ti ≥
Ci
Ti

· Ti = Ci time units of execution. Therefore, it will have completed by the time of its deadline.

Lemma 3. Assume that the reserves x, y of a split task τi have been sized according to the algorithm of Fig ?? and that
no spacing offset M has been applied for the dispatching. It then holds that:

δ · (x + y)
(δ + 1) · S − x − y

≥ Ci

Ti

Proof: Remember that, in the absence of any offsetM for the x-reserve, we had selected the amount of reserve inflation
α such that Inequality 7 is always met. In turn, the left-hand side of Inequality 7 corresponds to ρ(τ i).

Theorem 1. Shifting the x-reserve of a split task τi later by an offset of Mz < 2 · α · S (with z denoting the index of the
processor where the x-reserve of τi executes) does not compromise the schedulability of τ i.

Proof: Fig 10(a) depicts (drawn for δ=1) the time window for which ρ(τ i) is observable for split task τi, in the absence
of spacing between its reserves. But if such spacing is introduced (via an offsetM for its x-reserve), there are four candidates
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Figure 9: Example of dispatching, in (b) and (c), with x-reserves offset by M < 2 ·α ·S time units, vs the original dispatcher
(a). Reserves of different split tasks are colored differently.

for this “worst-case” time window. Each one starts just as a reserve becomes unavailable (either x or y) and ends just as
a reserve becomes available (again, either x or y). All four combinations are seen in Fig 10(b), with each time window
annotated by its length (L1 to L4) and the respective tsplit.
Let, ρsplit

1 to ρsplit
4 denote, respectively for each of the above cases, the ratio of time usable for the execution τ i

(respectively, tsplit
1 to tsplit

4 )to the overall interval length (respectively, L1 to L4). Since, for any split task τi, the ratio
tsplit

L (with the constraint that L ≥ δ · S) is minimal for one of those four candidate intervals, it follows that

ρ(τi) = min
k∈{1,2,3,4}

ρsplit
k

def= min
k∈{1,2,3,4}

tsplit
k

Lk
(8)

Then, from Lemma 2, a necessary condition for it to be possible for τ i to miss deadlines is

∃k ∈ {1, 2, 3, 4} : ρsplit
k <

Ci

Ti
(9)

We will prove that the above condition can never hold, by examining the four cases one by one:
Case 1: For it to hold that ρsplit

1 < Ci
Ti
it has to be that

tsplit
1

L1
<

Ci

Ti

Lem. 3=⇒

δ · (x + y)
(δ + 1) · S − x − y − M

<
δ · (x + y)

(δ + 1) · S − x − y
⇔ M < 0

which is impossible. Hence it holds that ρsplit
1 ≥ Ci

Ti
.
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Figure 10: Candidate intervals for most unfavorable supply of processor time to a split task

Case 2: For it to hold that ρsplit
2 < Ci

Ti
it has to be that

tsplit
2

L2
<

Ci

Ti

Lem. 3=⇒

δ · (x + y)
δ · S + M

<
δ · (x + y)

(δ + 1) · S − x − y

⇒ M > S − (x + y) = S − (
Ci

Ti
+ 2 · α) · S

⇒ M > S −
(
(1 − 4 · α) + 2 · α

)
· S = 2 · α · S (10)

which is impossible. Hence it holds that ρsplit
2 ≥ Ci

Ti
.

Case 3: For it to hold that ρsplit
3 < Ci

Ti
it has to be that

tsplit
3

L3
<

Ci

Ti

Lem. 3=⇒

δ · (x + y) + y

(δ + 1) · S − x
<

δ · (x + y)
(δ + 1) · S − x − y

⇒
(
δ · (x + y)

)
+ y

(
(δ + 1) · S − x − y

)
+ y

<

(
δ · (x + y)

)

(
(δ + 1) · S − x − y

) ⇒

y < 0

which is impossible. Hence it holds that ρsplit
3 ≥ Ci

Ti
.

Case 4: Similarly as with Case 3 (swap places for x and y in the proof). Hence, it holds that ρ split
4 ≥ Ci

Ti
.
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Figure 11: Candidate intervals for the most unfavorable supply of processor time to τ [p].

Thus, we have shown that the condition of Statement 9 (necessary for it to be possible for split task τ i to miss its deadline)
cannot be met. Hence, the schedulability of τ i is unaffected by moving the start of its x-reserve, relative to the timeslot
boundary, by an offset M < 2 · α · S.
Thus the schedulability of split tasks is not affected by the offset M . We show the same for non-split tasks: To show

this, we can reuse reasoning in our previously published paper [2] on the schedulability of non-split tasks (from Section
3.2, Observations), roughly from Equation 13 onwards).
By inspection, this reasoning is equally valid in the presence of an offset M up until Inequality 22, which is derived by

application of Lemma 1. If the statement of Lemma 1 can also be shown to hold in the presence of an offset M < 2 ·α ·S
for the x reserve on processor p, then it is possible to continue our reasoning from that point onwards and reach the same
conclusion (i.e. that non-split tasks cannot miss deadlines).
Thus, to prove that non-split tasks remain schedulable, it suffices to prove the same statement as that of Lemma 1 in the

presence of an offset M < 2 · α · S for the x-reserves.
Noting though that the left-hand side of the inequality in the statement of Lemma 1 corresponds to ρ(τ [p]), what we need

to prove can be equivalently formulated as:

Lemma 4. ρ(τ [p]) ≥ δ · (S − x − z)
δ · S + (x + z)

Proof: Fig 11(a) depicts (drawn to scale for δ = 1) the time window for which ρ(τ [p]) is observable for the set τ [p]
of non-split tasks scheduled on processor p, in the absence of any spacing between its x and y reserves. However, if such a
spacing is introduced (via an offset M for its x-reserve), there are four candidates for this “worst-case” time window. Each
of them starts just as a reserve begins (either x or y) and ends just as a reserve terminates (again, either x or y). The four
different combinations are shown in Fig 11(b), where each time window is annotated by its length (respectively, L 1 to L4)
and the respective amount of time (tnon−split

1 to tnon−split
4 ) for the execution of non-split tasks within it.

Let, ρnon−split
1 to ρnon−split

4 denote, for each respective case, a lower bound on the ratio of time usable for the execution
of τ [p] (respectively, tnon−split

1 to tnon−split
4 ) to the overall interval length (respectively, L1 to L4). The bounds are derived

by assuming that non-split tasks never get to execute within the reserves of any idle split tasks.
Since tnon−split

L is minimal for one of the four candidate intervals (with the constraint that L ≥ δ · S), it follows that

ρ(τ [p]) = min
k∈{1,2,3,4}

ρnon−split
k

def=
4

min
k=1

tnon−split
k

Lk
(11)

We will see that in all cases, ρnon−split
k ≥ δ·(S−x−y)

δ·S+x+y :
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Case 1: Assume that ρnon−split
1 < δ·(S−x−y)

δ·S+x+y . Then:

tnon−split
1

L1
<

δ · (S − x − y)
δ · S + x + y

⇒

δ · (S − x − y) + M

δ · S + x + y + M
<

δ · (S − x − y)
δ · S + x + y

⇒ M < 0

which is impossible. Hence ρnon−split
1 ≥ δ·(S−x−y)

δ·S+x+y .
Case 2: Assume that ρnon−split

2 < δ·(S−x−y)
δ·S+x+y . Then:

tnon−split
2

L2
<

δ · (S − x − y)
δ · S + x + y

⇒

δ · (S − x − y)
δ · S + y

<
δ · (S − x − y)
δ · S + x + y

⇒ x < 0

which is impossible. Hence ρnon−split
2 ≥ δ·(S−x−y)

δ·S+x+y .
Case 3: As in Case 2 (swap places for x and y). Hence ρnon−split

3 ≥ δ·(S−x−y)
δ·S+x+y .

Case 4: Assume that ρnon−split
4 < δ·(S−x−y)

δ·S+x+y . Then:

tnon−split
4

L4
<

δ · (S − x − y)
δ · S + x + y

⇒

(δ + 1) · (S − x − y) − M

(δ + 1) · S − M
<

δ · (S − x − y)
δ · S + x + y

Let λ denote x + y, for space considerations. Then:

(δ + 1) · (S − λ) − M

(δ + 1) · S − M
<

δ · (S − λ)
δ · S + λ

⇔
(
δ · (S − λ)

)
+ (S − λ− M)

(
δ · S + λ

)
+ (S − λ− M)

<

(
δ · (S − λ)

)

(
δ · S + λ

) ⇒

(S − λ− M) < 0 ⇔ x + y + M > S

which is impossible. Hence ρnon−split
4 ≥ δ·(S−x−y)

δ·S+x+y .
Thus, it holds that ρ(τ [p]) ≥ δ·(S−x−y)

δ·S+x+y .
Having proven Lemma 4, suffices for proving that the schedulability of non-split tasks is not compromised, if an offset

M < 2 · α · S is introduced for x-reserves.
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APPENDIX B.
DISPATCHING ALGORITHM

We presented in Section III a new dispatchnig algorithm where the x-reserve on processor p does not start when the
timeslot starts; instead the x-reserve on processor p starts M [p] time units after the timeslot starts. Figure 12 shows a
high-level overview this dispatching algorithm.

1. while TRUE do
2. if first iteration() then //some variables set just once
3. p:=get host processor();
4. hi task:=get hi task(p); //split task run at timeslot end
5. lo task:=get lo task(p); //split task run at timeslot start
6. y:=optimally size reserve(hi task,p,S); //using Eq. 3 in [2]
7. x:=optimally size reserve(lo task,p,S); //using Eq. 4 in [2]
8. M:=α · S
9. N:=S-x-y-M
10. end if
11.
12. t:=(current time()-t boot) mod S; //since timeslot start
13.
14. if 0≤t<M then //within first reserve for non-split task task
15. execute non split task with earliest deadline();
16. end if
17.
18. if M≤t<M+x then //within reserve for low split task
19. if has arrived but not completed(lo task) then
20. execute lo task(p);
21. else
22. execute non split task with earliest deadline();
23. end if
24. end if
25.
26. if M+x≤t<M+x+N then //not within a reserve of a split task
27. execute non split task with earliest deadline();
28. end if
29.
30. if M+x+N≤t<S then //within reserve for high split task
31. if has arrived but not completed(hi task) then
32. execute hi task(p);
33. else
34. execute non split task with earliest deadline();
35. end if
36. end if
37.
38. end while

Figure 12: A high-level overview of the new dispatching algorithm, which runs on every non-dedicated processor
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APPENDIX C.
IMPLEMENTATION IN THE LINUX KERNEL 2.6.28

Based on the design principles in Section V, we have implemented the algorithm [2] in the Linux kernel 2.6.28. We refer
to the algorithm in [2] as the Sporadic Multiprocessor Scheduler (SMS) and we refer to our implementation as Sporadic
Multiprocessor Linux Scheduler (SMLS). To differentiate these tasks from other native Linux tasks present in the system,
in this paper, these tasks will be referred as SMS tasks.

A. A primer on scheduling in the Linux kernel 2.6.28
The introduction of scheduling classes, in the Linux 2.6.23 kernel version, made the core scheduler quite extensible. The

scheduling classes encapsulate scheduling policies and are implemented as modules [19]. These modules are hierarchically
organized by priority in a linked list and the dispatcher will look for a runnable task of each module in a decreasing order
priority. Currently, Linux kernel has three native scheduling modules: RT (Real-Time), CFS (Completely Fair Scheduling)
and Idle.
The high resolution timers infrastructure were merged into Linux kernel 2.6.16. High resolution timers offer a nanosecond

time unit resolution and are not dependent on the periodic ticks. These timers can be set on per-cpu basis and the callback
can be executed in the hard interrupt context, which could avoid additional preemptions.
Red-black trees are balanced binary trees whose nodes are sorted by a key, the most operations are done in O(log n)

time. Linux kernel has already implemented red-black tree.

B. How to implement slot-based task-splitting
In the Linux operating system a process is an instance of a program in execution. To manage all processes, the kernel

uses an instance of struct task struct data structure for each process to store information about the run-state of a process,
for example, address space, list of open files, process scheduling class, just to mention some. All process descriptors are
stored in a circular doubly-linked list. This linked-list is not the ready queue and hence there is no need to remove or insert
elements in this list every time a process changes state; removal and insertion of elements in this linked list is only done
when a new process is created and terminated.
To support the SMS algorithm some additional fields were added to this data structure, wrapped in the

sms_task_param. Listing 5 shows the most important ones.
Each SMS task has a specific identifier, which is stored in the task_id field. Fields cpu1 and cpu2 are used to set

the logical identifier of processor(s) in which the task will be executed on. Note that, according to the SMS algorithm each
non-split task executes only on one processor, and each split-task executes on only two processors. In the former, these fields
are set with the same identifier, in the latter, the split-task is executed on processors whose logical identifiers are defined by
cpu1 and cpu2. The relative deadline of each task is set on the deadline field of the sms_rt_param data structure.
To manage the jobs, an SMS task uses the sms_job_param data structure. Note that, each SMS task is implemented as
a Linux process and jobs are an accounting abstraction and the nr field is used for this purpose. For the absolute deadline
and the release time of each job are used the deadline and the release fields, respectively.
In order to organize SMS tasks by the release time and by the absolute deadline time we defined two struct rb_node

node_job_release and struct rb_node node_non_split_task fields.
Following design principle P1, each processor holds a run-queue of all runnable tasks assigned to it. The scheduling

algorithm uses this run-queue to select the “best” process to be executed. In Linux, the information for these processes
is stored in a per-processor data structure called struct rq. Listing 6 shows new data structures required by the SMS
algorithm that were added to the Linux native struct rq.
Note that, each processor can be assigned at most two split tasks and many non-split tasks. As recommended on P2,

lo_split and hi_split pointers are used to point to the split-tasks. The non-split tasks are organized in a red-black
tree by the absolute deadline, whose root is root_non_split_tasks. The scheduler works as follows: if the current
time falls in the x or in the y reserves, it selects lo_split or hi_split to be executed on, respectively; otherwise, it
selects the non-split task with earliest absolute deadline from the red-black tree.
The original SMS algorithm defines at most two reserves x and y in the timeslot of each processor, and one split-task τ i

executes one portion on reserve y of the processor p and the other portion on reserve x of the processor p+1. Nevertheless,
looking for two consecutive timeslots we realize that whenever a split-task finishes the execution on processor p, the task
has to immediately resume execution on its reserve on processor p + 1. As we have stated on Section III this is impossible
in practice. So we divide the timeslot into four parts: M , x, N , and y. Note that, in spite of the length of the timeslot
being equal to all processors, the timeslot composition is different on different processors. So, each processor stores in
per-processor data structure the timeslot composition: struct timeslot (Listing 6). In order to get the control of the
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s t r u c t t a s k s t r u c t {
. . .
s t r u c t sms ta sk pa ram{
i n t cpu1 ;
i n t cpu2 ;
s t r u c t sms r t pa ram{
unsigned long long d e a d l i n e ;
. . .

} ;
s t r u c t sms job param{
unsigned long long d e a d l i n e ;
unsigned long long r e l e a s e ;
a t om i c t n r ;
. . .

} ;
s t r u c t rb node n o d e n o n s p l i t t a s k ;
s t r u c t rb node n o d e j o b r e l e a s e ;

} ;
. . .

} ;

Listing 5: Fields added to struct task_struct kernel data structure

s t r u c t rq {
. . .
s t r u c t s p l i t t a s k {
s t r u c t t a s k s t r u c t ∗ l o s p l i t ;
s t r u c t t a s k s t r u c t ∗ h i s p l i t ;

} s p l i t t a s k ;

s t r u c t r b r o o t r o o t n o n s p l i t t a s k s ;

s t r u c t t i m e s l o t {
unsigned long long b e g i n c u r r t im e s l o t ;
unsigned long long m;
unsigned long long x ;
unsigned long long n ;
unsigned long long y ;
s t r u c t h r t im e r t im e r ;

} t i m e s l o t ;
. . .

} ;

Listing 6: Fields added to struct rq kernel data structure. There is one struct rq for each processor.

system and mainly to invoke the scheduler, the operating systems use a periodic timer interrupt mechanism (called tick).
Since the period of the tick is usually set equal to 1 ms it could not fit for the timing requirements of the systems. On
the other hand, the length and the beginning of the each reserves must be multiple of the tick, which is a restriction
and consequently reduces flexibility of the system and also imposes some restriction to schedulability analysis. To solve
the identified problem we use a timer interrupt mechanism by which timer interrupts can be specified with nanosecond
resolution. struct timeslot (Listing 6) data structure has also a variable called struct hrtimer timer, that is
used to implement a timer mechanism that states the beginning of each timeslot part and in this way invoke the scheduler.
begin_curr_timeslot variable states the beginning of the current timeslot, which is fundamental to synchronize the
beginning of timeslot of all processors, as recommended in P3, and also to determine in which part of the timeslot a given
time instant fall.
Additionally, a global variable called timeslot_length is used to update the local begin_curr_timeslot

variable, as recommended on P3 and P4, and this way all processors are timely synchronized.
One of the most important feature of the real-time tasks is the periodicity. In order to achieve correct periods with small

delays, as recommended on P5, we implemented in the kernel a job release mechanism. This mechanism is supported by
red-black trees and also by high resolution timers and is triggered by the delay_until system call that will be described in
Section C-C. All fields required for this mechanism are wrapped in the struct job_release (Listing 6) data structure.
To add a new scheduling policy to the Linux kernel it is necessary to create a new module. In this implementation, the

SMS module was added on the top of the modules hierarchy, thus it is the highest priority module. Consequently, our system
is hierarchically organized as it is shown in the Fig. 13.
According to the modular scheduling framework rules, each module must implement the set of functions specified in
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SMS RT CFS Idle

Figure 13: Priority hierarchy of scheduler modules

con s t s t r u c t s c h e d c l a s s sms s ch ed c l a s s = {
. n e x t = &r t s c h e d c l a s s ,
. e nqueue t a s k = enqueue ta sk sms ,
. d equeue t a s k = dequeue ta sk sms ,
. c h e ck p r e emp t cu r r = check preempt cu r r sms ,
. p i c k n e x t t a s k = p i c k nex t t a s k sms ,
. t a s k t i c k = t a s k t i c k sms ,
. . .

} ;

Listing 7: sms_sched_class definition

the sched_class structure. Listing 7 shows the definition of sms_sched_class, which implements the SMS module.
The first field (next) of this structure is a pointer to sched_class which is pointing to the rt_sched_class that
implements the RT module.
The other fields are functions that act as callbacks to specific events.
The enqueue_task_sms is called whenever an SMS task enters in a runnable state (see Listing 8). This function

must check if it is a non-split task or a split task. If it is a non-split task, it updates the absolute deadline and inserts it
into the red-balck tree. In case of being a split task it checks if the current time falls within of the x or y reserve of the
other processor that this task is split. If it falls an interprocessor interrupt signal is sent to the other processor to force a
rescheduling.
When an SMS task is no longer runnable, then the dequeue_task_sms function is called that undoes the work of the

enqueue_task_sms function (see Listing 9.
As the name suggests, check_preempt_curr_sms function, checks whether the currently running task must be

preempted. This function is called following the enqueuing or dequeuing of a task and it only sets a flag that indicates to
the scheduler core that the currently running task must be preempted.
pick_next_task_sms function selects the task to be executed by the current processor (see Listing 10).. This function

is called by the scheduler core whenever the currently running task is marked to be preempted or when a task finishes

s t a t i c vo id enqueue ta sk sms ( s t r u c t rq ∗ rq , s t r u c t t a s k s t r u c t ∗p , i n t wakeup )
{

. . .
i f ( p−>sms ta sk pa ram . cpu1==p−>sms ta sk pa ram . cpu2 ){ / / i t i s a non s p l i t t e d t a s k
p−>sms ta sk pa ram . j ob . d e a d l i n e =p−>sms ta sk pa ram . j ob . r e l e a s e +p−>sms ta sk pa ram . r t p a r am . d e a d l i n e ;
i n s e r t n o n s p l i t t a s k ( rq , p ) ;

}
e l s e{

i f ( p−>sms ta sk pa ram . cpu1==rq−>cpu ){
r = g e t c p u t i m e s l o t r e s e r v e ( p−>sms ta sk pa ram . cpu2 ) ;
i f ( r ==RESERVE X){
r e s c h ed cpu ( p−>sms ta sk pa ram . cpu2 ) ;

}
}
e l s e{
r = g e t c p u t i m e s l o t r e s e r v e ( p−>sms ta sk pa ram . cpu1 ) ;
i f ( r ==RESERVE Y){
r e s c h ed cpu ( p−>sms ta sk pa ram . cpu1 ) ;

}
}

}
. . .

re turn ;
}

Listing 8: Code fragment of enqueue_task_sms function
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s t a t i c vo id dequeue ta sk sms ( s t r u c t rq ∗ rq , s t r u c t t a s k s t r u c t ∗p , i n t s l e e p )
{
. . .
i f ( p−>sms ta sk pa ram . cpu1==p−>sms ta sk pa ram . cpu2 ){ / / i t i s a non s p l i t t e d t a s k
r emov e n o n s p l i t t a s k ( rq , p ) ;

}
. . .

}

Listing 9: Code fragment of dequeue_task_sms function

s t a t i c s t r u c t t a s k s t r u c t ∗ p i c k nex t t a s k sms ( s t r u c t rq ∗ rq )
{
. . .
r = g e t t i m e s l o t r e s e r v e ( rq ) ;
swi tch ( r ){
. . .
case RESERVE X:
h i s p l i t = g e t l o s p l i t t a s k ( rq ) ;
i f ( l o s p l i t !=NULL){
t a s k = cpu cu r r ( l o s p l i t−>cpu1 ) ;
i f ( t a s k == l o s p l i t )
goto p i c k n o n s p l i t t a s k ;

re turn l o s p l i t ;
}
e l s e
goto p i c k n o n s p l i t t a s k ;

break ;
case RESERVE M:
case RESERVE N:
goto p i c k n o n s p l i t t a s k ;
break ;
case RESERVE Y:
. . .
break ;

}
re turn NULL;
p i c k n o n s p l i t t a s k :
t a s k = g e t e a r l i e s t d e a d l i n e ( rq ) ;
i f ( t a s k !=NULL)
re turn t a s k ;
re turn NULL;

}

Listing 10: Code fragment of pick_next_task_sms function

its execution. Assuming that, get_timeslot_reserve invocation returns RESERVE_X, which means that the current
time instant falls in the x reserves. Then, the next step is to check if the split-task is in running state by invoking the
get_lo_split_task function, which returns the pointer to split-task or NULL, if it is or if it is not, respectively.
If it is not in running state, the earliest deadline non-split task is selected to execute on processor by invoking the
get_earliest_deadline function. Note that if there is no non-split task ready to execute this function returns NULL.
If it is on running state and if it is not the currently running task on processor p-1 (which is identified by the cpu1 field)
by invoking the cpu_curr function) then split- task is selected to execute on processor.
task_tick_sms function is mostly called from time tick functions. In the current implementation this function calls

the check_preempt_curr_sms function, to check, if the current task must be preempted.

C. New system calls
System calls is one way provided by the Linux kernel to allow user space processes to access the kernel space. We introduce

new system calls and modify the Linux native sched_setscheduler system call, to support the new scheduling policy
identified by SCHED_SMS.
Initially, an SMS task is created as any task in the system, using the fork system call. After that, in order to be scheduled

according to the SMS scheduling policy, the sched_class field of the struct task_struct has to be set with the
address of sms_sched_class variable that implements the SMS scheduling algorithm in the kernel. The Linux native
sched_setscheduler system call sets the scheduling policy and also scheduling parameters of the task. So, this system
call was modified to support the new scheduling class, called SCHED_SMS, and also to set the specific SMS task parameters,
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task_id, cpu1, cpu2 and deadline, just to mention some.
The purpose of some of the new system calls is self-explanatory from their names, like sms_enable_stats,

sms_enable_trace, sms_set_timeslot_length and sms_set_begin_curr_timeslot.
The time precision of the job release is guaranteed by a timer interrupt mechanism supported by the struct

job_release (see Listing 6) data structure. The idea is the following: the task is put in the waiting state until the
release time and is inserted in a red-black tree ordered by the release time and also is set up a timer to expire at the
release time. When the timer expires the task is removed from the red-black tree and its state is changed to running and
consequently it becomes available to be selected by the scheduler to execute. However, in the implementation additional
details must be into account. This procedure is composed by two functions: system call delay_until and timer callback
wake_up_task.
This procedure is triggered by delay_until system call invocation (see Listing 11). In the Linux kernel, curr points

to the current executing task on the processor. So, the first step is to set up the next release of the task. Then, it must
be checked if the next release of the task is higher than the current time, returned by sms_clock function. If it is, no
deadline miss occurred and a set of steps must be done in order to relinquish the task from processor and set up the timer
expiration for the next release. Otherwise, a deadline miss occurred and the task continues in the running state. If no deadline
miss occurred, there is the need to disable interrupts in order to guarantee that the next code will be executed without any
interruption. Then, the curr task is inserted in the red-black tree ordered by release time. Next, the next task release will
be peeked from the red-black tree and if the next release is of the curr task, then the timer expiration must be set.
However, it must be checked if the next release is larger than the current time plus a safe time interval (EPSILON) - the

purpose of the EPSILON is to assure that when the delay_until returns the timer was not set to expire in the past, once
from here until the end of the function some processing time will be necessary - then the timer is set up for the release of the
task. Otherwise, the timer is set up to expire for the minimal time instant in future. After this, the interrupts are enabled again
and the task must be relinquished from processor. For that, the state of the task is changed to TASK_INTERRUPTIBLE
and schedule function is invoked.
When the release timer expires the wake_up_task callback is invoked. The first step is to get the task with the earliest

release from the red-black tree. After that, a loop will be executed, to activate all tasks whose release fall in the current
time plus a safe time interval (EPSILON). If there is at least one task on the tree, the timer is set up to expire according
to the release of the task with earliest release present in the red-black tree.
Note that, if at least one task is woke up it is necessary to check if the currently running task need to be preempted. This

is done by the check_preempt_curr_sms1 function, which algorithm is similar to the check_preempt_curr_sms
function. In the end of the function we set up the release timer to the next task release, if there is at least one task, or for
a large period that this timer will not expire.
D. How to use the new scheduler
Listing 12 and Listing 13 show the pseudo-code algorithm for the system boot and for the SMS task, respectively. The

system boot program reads the task set configuration from a text file and computes all parameters: the timeslot length, the
reserves of each processor and also task parameters. After that, using system calls, whose names starts by sms_, sets up
the system and creates all tasks, using Linux native fork system call. Then, using exec system call it launches all SMS
tasks.
Each SMS task with the arguments passed by the system boot program, sets the mask variable with the processor(s)

allowed to execute this task and invokes the sched_setaffinity system call to tell to the scheduler which processor(s)
is this task allowed to run on. After that, it sets param variable and invokes the sched_setscheduler system call to
change the scheduling policy to SCHED_SMS and also to pass the required parameters of the task to the scheduler. Finally,
the task will be in an infinite loop, where it is delayed until the release time instant, wake up at the release time instant,
executes its work (using do_work function) and so on.
E. Getting data
The SMLS provides two mechanisms to get data concerning the execution of the scheduler. One of them, called stats,

collects information about each job that reflects its “life” in the system and the other one traces all events in the system and
it is called trace. Before describing these mechanisms let us describe how to get data from kernel space to user space.
For that, we implemented a char device driver for each mechanism and a user space program. The char device implements a
circular queue to collect the correspondent information and the user space program reads this information to an array. When
the experiment finishes, the content of the array is written to a file. Each file is associated to one processor. These files are
off-line parsed in order to get global results of the execution of the task sets. To avoid lock mechanisms the required front
and rear indexes for the circular queue are manipulated using the atomic instructions.
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a sm l i nk age l ong s y s sm s d e l a y u n t i l ( con s t char u s e r ∗ r )
{
. . .
i f ( copy f rom use r (& r e l e a s e t im e , r , s i z e o f ( unsigned long long ) ) ){
re turn −EFAULT;

}
. . .
r q = cpu rq ( smp p ro c e s s o r i d ( ) ) ;
rq−>cu r r−>sms ta sk pa ram . j ob . r e l e a s e = r e l e a s e t i m e ;
i f ( r e l e a s e t i m e > sms c lock ( ) ){
l o c a l i r q d i s a b l e ( ) ;

i n s e r t j o b r e l e a s e ( rq , rq−>c u r r ) ;
p= p e e k e r f j o b r e l e a s e ( rq ) ;
now=sms c lock ( ) ;
i f ( p==rq−>c u r r ){
i f ( p−>sms ta sk pa ram . j ob . r e l e a s e > now + EPSILON2 ){
s e t j o b r e l e a s e t i m e r e x p i r e s ( rq , n s t o k t ime ( p−>sms ta sk pa ram . j ob . r e l e a s e ) ) ;

}
e l s e {
s e t j o b r e l e a s e t i m e r e x p i r e s ( rq , n s t o k t ime ( now + EPSILON2 ) ) ;

}
}

l o c a l i r q e n a b l e ( ) ;
rq−>cu r r−>s t a t e =TASK INTERRUPTIBLE;
s ch edu l e ( ) ;
re turn 0 ;

}
e l s e{
now=sms c lock ( ) ;
. . .

i f ( rq−>cu r r−>sms ta sk pa ram . cpu1==rq−>cu r r−>sms ta sk pa ram . cpu2 ){ / / i t i s a non s p l i t t e d t a s k
i f ( rq−>cpu==rq−>cu r r−>sms ta sk pa ram . cpu1 ){
r emov e n o n s p l i t t a s k ( rq , rq−>c u r r ) ;
rq−>cu r r−>sms ta sk pa ram . j ob . d e a d l i n e =rq−>cu r r−>sms ta sk pa ram . j ob . r e l e a s e +rq−>cu r r−>sms ta sk pa ram . r t p a r am .

d e a d l i n e ;
i n s e r t n o n s p l i t t a s k ( rq , rq−>c u r r ) ;

}
}
. . .
re turn −1;

}
}

Listing 11: Task release procedure

1) stats mechanism: The stats mechanism collects information about each job. Listing 14 shows an excerpt of the
file generated by stats mechanism for the task set presented on Section IV on processor P 2. In order to understand the
contents of the Listing 14, first, let us take a look at Fig. 14 that illustrated the“life” of the job τ i,k in the system.
The gray rectangles represent the time when job τ i,k was executing on the processor. During this time, this job is referred

to be the current task of the processor p. However, when the kernel code has to be executed on processor p the task
continues being current task. This is what happen, when the functions that manage the periodic interrupt mechanism
(called Tick) and when the scheduler core function and also when the functions that manage the arrival of the other SMS
jobs have to be executed. So, in practice, the job is not executing at all that time. So, we consider that the measured execution
time of a job τi,k (meas Ci,k) as the sum of all chunks of time when a job was the current task minus the time spent
to execute: (i) Tick functions; (ii) the scheduler core functions to do the context swicth (ctsw) and (ii) the functions that
manage the arrival of other SMS jobs. Thus, the execution time of job τ i,k is the sum of the time represented by gray
rectangles minus the time spent by the tick1, tick2, ctsw1, ctsw2 and ctsw3 and also minus arrival j,x. We define
the meas T icki,k as the sum of all chunks of time spent to execute the Tick functions, the meas CtSw i,k as the sum of
all chunks of time spent to do the context switch and the meas Arrival i,k as the sum of all chunks of time spent to wake
up and insert on the ready queue other SMS jobs when the job τ i,k was the current task. We also define meas Ti,k as the
interval between two consecutive job (of the same task) insertions on the ready queue.
Let us return our attention to the Listing 14. Each field is separated by comma. The first field is the number of the

line (208), the second one is the identifier of the task (3) and the thirty one is the job number (130). The meas C 3,130

(3419387 ns) appears in the fourth and in the fifth, sixth and seventh the meas T ick 3,130 (3919 ns), meas CtSW3,130
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. . .
r e a d c o n f i g f i l e ( ) ;
c ompu t e g l ob a l p a r ame t e r s ( ) ;
s o r t t a s k by U ( ) ;
c ompu t e t a s k s p a r ame t e r s ( p a r ame t e r s ) ;
c ompu t e cpu s p a r ame t e r s ( ) ;

/ / s y s t em c a l l s

sm s e n a b l e s t a t s ( ) ;
sm s e n a b l e t r a c e ( ) ;

f o r ( i =0 ; i<m; i ++)
sm s s e t c p u t im e s l o t c ompo s i t i o n ( i ,M, x ,N, y ) ;

sms c lock (& t ) ;
sm s s e t t im e s l o t l e n g t h ( S ) ;
sm s s e t b e g i n c u r r t im e s l o t ( t ) ;

f o r ( i =0 ; i<n ; i ++){
p= f o r k ( ) ;
i f ( p==0){
exec ( sms ta sk , p a r ame t e r s ) ;

}
}
. . .

Listing 12: SMS system boot algorithm

. . .

s e t c p u s a l l ow e d ( mask , cpu1 , cpu2 ) ;
s c h e d s e t a f f i n i t y ( 0 , mask ) ;

param . cpu1=cpu1 ;
param . cpu2=cpu2 ;
param . d e a d l i n e = d e a d l i n e ;
s c h e d s e t s c h e d u l e r ( 0 ,SCHED SMS,&param )

n e x t r e l e a s e = now ( ) + p e r i o d ;
whi le ( t r u e )
{
d e l a y u n t i l ( n e x t r e l e a s e ) ;
do work ( ) ;
n e x t r e l e a s e = n e x t r e l e a s e + p e r i o d ;

}
. . .

Listing 13: SMS task algorithm

(2990 ns) andmeas Arrival3,130 (0 ns), respectively. The eighth field states the meas RT3,130 (5492414 ns) and the ninth
field the meas T3,130 (6499688 ns). The tenth field states the meas J3,130 (516 ns) and the eleventh field the maximum
meas reserve J3,130 (1760 ns)
2) trace mechanism: The trace mechanism is an event oriented mechanism. It collects a set of events timely sorted.

Let us take a look at Listing 15. All fields are separated by commas and the general format is: in the first field is identified
the event and the on the second one the time (in ns) when the event happened. The remaining information is dependent
of the collected event. For example, the first line of Listing 15 specifies that job 100 of the task 5 was assigned to the

. . .
208 ,3 ,130 ,3419387 ,3919 ,2990 ,0 ,5492414 ,6499688 ,516 ,1760 ,10 ,0
209 ,5 ,121 ,2933485 ,3840 ,2495 ,464 ,6163878 ,7001578 ,2298 ,1532 ,10 ,0
210 ,4 ,106 ,3910685 ,5382 ,7071 ,647 ,6824156 ,8001381 ,1940 ,1515 ,12 ,0
. . .

Listing 14: Excerpt of a file generated by stats mechanism
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τi,k τi,k τi,k

ctsw1 ctsw2 ctsw3tick1 tick2
arrivalτj,x

τi,k inserted
in the ready
queue

τi,k finishes
execution

τi,k+1
inserted in
the ready
queue

t

meas Ti,k+1

Figure 14: stats measurements

. . .
2 ,2797045528195 ,5 ,100
1 ,2797045552209 ,4 ,88 ,2797045550955
5 ,2797045751851 ,2797045751088
3 ,2797045753306 ,5 ,100
2 ,2797045754512 ,4 ,88
6 ,2797045821438 ,2797045820748
3 ,2797045822754 ,4 ,88
2 ,2797045824085 ,3 ,108
7 ,2797046147881 ,2797046147141
3 ,2797046148918 ,3 ,108
2 ,2797046149749 ,4 ,88
8 ,2797046772829 ,2797046772142
. . .

Listing 15: Excerpt of a file generated by trace mechanism

processor to be executed on it (event 2) at 2797045528195 ns. Next, some time later, at 2797045552209 ns, the job 88
of the task 5 was released on the system (event 1). However, it is 1254 ns late for release because it should be release at
2797045550955 ns (last field on the line). Event 5 specify the beginning of the M part of the timeslot. This event happened
at 2797045751851 ns but it should happen at 2797045751088 ns, therefore with a drift of 763 ns. When a job relinquish
the processor is classified as event 3 and the begin of x, N and y parts of the timeslot are classified as event 6, 7 and 8,
respectively.
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