7~ N— ]

IPP HURRAY!

A y 4
www.hurraw.pt /

Technical Report

Handling Shared Resources and
Precedence Constraints in Open Systems

Luis Nogueira
Luis Miguel Pinho

TR-070704
Version: 1.0
Date: July 2007



Handling Shared Resources and Precedence Constraints in Open Systems

Luis Nogueira, Luis Miguel Pinho

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. Antonio Bernardino de Almeida, 431
4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509
E-mail: {luis, Ipinholi@dei.sep.ipp.pt
http://www.hurray.isep.ipp.pt

Abstract

There is an increasing demand for highly dynamic realtime systems where several independently developed
applications with different timing requirements can coexist. This paper proposes a protocol to integrate
shared resources and precedence constraints among tasks in such systems assuming no precise information
on critical sections and computation times is available. The concept of bandwidth inheritance is combined
with a capacity sharing and stealing mechanism to efficiently exchange bandwidth among needed tasks,
minimising the cost of blocking.



Handling Shared Resources and Precedence Constraints in Open Systems

Luis Nogueira, Luis Miguel Pinho
IPP Hurray Research Group
Polytechnic Institute of Porto, Portugal
{luis,lpinho } @dei.isep.ipp.pt

Abstract

There is an increasing demand for highly dynamic real-
time systems where several independently developed appli-
cations with different timing requirements can coexist. This
paper proposes a protocol to integrate shared resources and
precedence constraints among tasks in such systems assum-
ing no precise information on critical sections and com-
putation times is available. The concept of bandwidth in-
heritance is combined with a capacity sharing and steal-
ing mechanism to efficiently exchange bandwidth among
needed tasks, minimising the cost of blocking.

1 Introduction

A common approach to limit the effects of overruns is
based on a resource reservation approach, assigning a frac-
tion of the available resources and handling tasks through
dedicated servers, preventing the served tasks from de-
manding more than the reserved amount [1, 13, 4, 15, 12].

However, a more flexible overload control in highly dy-
namic open real-time systems, where is not possible to have
a precise knowledge of how many services will need to be
concurrently executed neither which resources will be ac-
cessed and by how long they will be held, can be achieved
with the combination of guaranteed and best-effort servers
and reducing isolation in a controlled fashion in order to
donate reserved, but still unused, capacities to currently
overloaded servers. The Capacity Sharing and Stealing
(CSS) algorithm [16] was proposed to efficiently handle
soft-tasks’ overloads by making additional capacity avail-
able from two sources: (i) reclaiming unused allocated ca-
pacity when jobs complete in less than their budgeted ex-
ecution time; and (ii) stealing allocated capacities to non-
isolated servers used to schedule best-effort jobs.

This paper relaxes the common assumption that all tasks
are independent and handles access to shared resources and
precedence constraints among services’ tasks, enhancing
CSS with the ability to work in more general real world

scenarios. We propose a simple protocol that integrates
the concept of bandwidth inheritance [11] with the efficient
capacity sharing and stealing mechanism of CSS to miti-
gate the cost of blocking. Preliminary results suggest that
without introducing any significant overhead in the original
CSS scheduler, the protocol outperforms currently available
solutions to handle shared resources in open systems and
introduces a new method to handle precedence constraints
without an offline knowledge of tasks’ execution times.

2 System model

Each task generates a virtually infinite sequence of jobs.
The jth job of task 7; arrives at time a;_;, is released to the
ready queue at time r; ;, and starts to be executed at time
s;,; with deadline d; ; = a; ; + T;, where Tj is the period
of 7;. The arrival time of a particular job is only revealed
during execution, and the exact execution requirements e; ;
and which resources will be accessed and by how long will
be held can only be determined by actually executing the job
to completion until time f; ;. These times are characterised
by the relations a; ; < ;5 < 855 < fij.

Jobs may simultaneously need exclusive access to one
or more of the system’s resources, during part or all of their
executions. If task 7; is using resource R;, it locks that re-
source. Since no other task can access R; until it is released
by 7;, if 7; tries to access R; it will be blocked by 7;. Block-
ing can also be indirect (or transitive) if although two tasks
do not share any resource, one of them may still be indi-
rectly blocked by the other through a third task.

A task 7; is said to precede another task 7 if 7, cannot
start until 7; is finished. Such a precedence relation is for-
malised as 7; < 7, and is guaranteed if f; ; < s ;. Prece-
dence constraints are defined in the service’s description at
admission time by a direct graph G, where each node repre-
sents a task and each directed arc represents a precedence
constraint 7; < 7 between two tasks 7; and 7. Given
a partial order < on the tasks, the release times and the
deadlines are said to be consistent with the partial order if
Ti < Tk = 7i; < andd; j <dyg ;.



Each task 7; is assigned to a server S; that is charac-
terised by a pair (Q;,T;), where @; is the maximum re-
served capacity and T; is the server period. Each server S;
records its current available capacity c;, its deadline d; and
a specific recharging time r;, implementing a hard reserva-
tion [17]. As such, capacity replenishment explicitly occurs
only at time 7; and not on every capacity exhaustion.

CSS allows to serve tasks with different isolation guaran-
tees. Isolated servers have a guaranteed execution capacity
every period that is independent of the behaviour of other
servers. On the other hand, inactive non-isolated servers
can have some or all of its reserved capacity stolen by active
overloaded servers. Non-isolated servers were proposed
to support the increasing use of of imprecise computation
models, anytime algorithms, and best-effort services in dy-
namic open real-time systems.

A server S; is active if (i) its served task is ready to ex-
ecute; (ii) it is executing; (iii) or it is supplying its residual
capacity to other servers until its deadline. S; is inactive
when the (i) it has no pending jobs and no available capac-
ity. Note that on an early completion of its current job, a
server remains active supplying its residual capacity until
its deadline, contributing to the global system’s activity.

CSS’s dynamic budget accounting mechanism considers
residual capacities, generated by early completions, as well
as inactive non-isolated capacities, as a common resource
that can be shared by active servers. The server to which the
budget accounting is going to be performed is dynamically
determined at the time instant when a capacity is needed.
A server starts to greedily reclaim residual capacities with
an earlier deadline than the one assigned to its current job,
then consumes its own reserved capacity, and finally steals
inactive non-isolated capacities while executing job. The
used capacity is correctly decremented from the reserved
capacity of the pointed server.

3 Sharing resources in open systems

A great amount of work has been addressed to minimise
the adverse effects of blocking when considering shared re-
sources among tasks. Resource sharing protocols such as
the Priority Ceiling Protocol [19], Dynamic Priority Ceil-
ing [7], and Stack Resource Policy [2] have been proposed
to provide guarantees to hard real-time tasks accessing mu-
tually exclusive resources. Solutions based on these proto-
cols were already proposed [10, 6, 5, 3] but require a prior
knowledge of the maximum resource usage for each task
and cannot be directly applied to dynamic open systems.

The Bandwidth Inheritance (BWI) [11] protocol allows
resource sharing between tasks without requiring any prior
knowledge about the tasks’ structure and temporal be-
haviour by extending CBS [1] to work in the presence of
shared resources, adopting the Priority Inheritance Protocol

(PIP) [19] to handle task blocking. The main drawback of
BWT1 is allow a blocking task to consume other servers’ ca-
pacity without any later compensation. As a consequence,
blocking tasks can consume more than their allocated ca-
pacities, while blocked tasks only get the remaining capac-
ities of their servers (if any) not used to execute blocking
tasks. This violation of the original capacity distribution
can have a huge negative impact in the overall system’s per-
formance.

Improvements to BWI were already proposed in BWE
[22] and CFA [18] to compensate the extra work on blocked
servers. Both algorithms try to fairly compensate blocked
servers in exactly the same amount of capacity that was
consumed by a blocking task while executing in a blocked
server. To achieve this, BWI maintains a global n *n matrix
(n is the number of servers in the system) in order to record
the amount of budget that should be exchanged between
servers, a budget list at each server to keep track of available
budgets, and dynamically manages resource groups at each
blocking and releasing of a shared resource. With CFA,
each server manages to task lists with different priorities
and a counter that keeps track of the amount of borrowed
capacity from a higher priority server. Contracted debts
are payed by blocking servers, until the blocked servers’
counter is successively decremented to zero

This paper follows a different approach and proposes
to exchange capacities between all the system’s servers by
merging the benefits of a smart greedy capacity reclaim-
ing with the concept of bandwidth inheritance. The in-
creased computational complexity of trying to fairly assign
consumed capacities to the servers a task blocked during
execution and the fact that CSS tends to fairly distribute
residual capacities in the long run, lead us to propose to
statistically achieve a fair bandwidth compensation through
an efficient greedy capacity reclaiming policy. Adding to
the lower complexity of our approach, preliminary results
demonstrate that taking advantage of all available resid-
ual capacity instead of only exchanging budgets within the
same resource group leads to a better system’s performance.

In the proposed protocol, every server maintains a list
of served tasks. Initially, each server S; has only its ded-
icated task 7; and, as long as no task is blocked, servers
behave as in the original CSS scheduler. Whenever a task
finishes, the remaining capacity of its dedicated server is
released as residual capacity and it is immediately available
to other servers. The next running server greedily consumes
available residual capacities with earlier deadlines than the
one assigned to its current job before consuming its own
reserved capacity. With blocking, the following rules are
introduced.

1. Rule A: When a high priority task 7; is blocked by
a lower priority task 7; when accessing a resource R,
7; inherits server S;. The execution time of 7; is now



accounted to the currently pointed server by S;. If task
7; has not yet released the shared resource R when S;
exhausts all the capacity it can use, 7; continues to be
executed by the earliest deadline server with available
capacity that needs to access R, until 7; releases IR.

2. Rule B: If at time ¢, no active server with pending jobs
can continue to execute by reclaiming residual capaci-
ties or consuming its own reserved capacity, and there
is at least one active server S, with residual capac-
ity greater than zero, available residual capacities with
deadlines greater than the one assigned to the current
job jp i of the earliest deadline server S, with pending
work can be used to execute jp ; through bandwidth
inheritance.

Rule A describes the integration of bandwidth inheri-
tance in the dynamic budget accounting of CSS. Rule B
maximises the amount of capacity that can be exchanged
between hard reservation servers. Bandwidth inheritance
can be used by any active server to execute unfinished tasks,
including those from servers that do not directly or indi-
rectly share any resource with the selected server, if at a par-
ticular time no active server in the system is able to reclaim
new residual capacities or steal inactive non-isolated capac-
ities to continue executing its pending work after a capacity
exhaustion. Rule B is easily incorporated in CSS with a
minimum overhead. Since the queue of active servers is or-
dered by deadlines, when CSS is traversing it to select the
next running server, it keeps track of the earliest deadline
server with pending work and no capacity left S, as well
as the earliest deadline server with available residual capac-
ity S,.. If the end of the queue of active servers is reached
without finding a server with pending work and available
capacity, S, is selected as the running server. S, then in-
herits the first task of .S),” list and executes it consuming its
own residual capacity. Since in CSS a server always starts
to consume the earliest residual capacity available, no mod-
ification to the budget accounting mechanism is needed to
correctly account for the consumed capacity.

Note that CSS ensures that residual capacities originated
by earlier completions can be reclaimed by any active el-
igible server. Blocked servers can then take advantage of
any residual capacity, even if it is released by a server that
does not share any resource with the reclaiming server. Al-
though a greedy reclamation of residual capacities is used,
excess capacity always tends to be exchanged in a fair man-
ner among needed servers across the time line [13, 16].

4 Precedence constraints in open systems

It is well known that precedence constraints can be guar-
anteed in real-time scheduling by priority assignment. With
dynamic scheduling, any task will always precede any other

task with a later deadline. This suggests that precedence
constraints that are consistent with the tasks’ deadlines do
not affect the schedulability of the task set. In fact, the idea
behind the consistency with the partial order is to enforce a
precedence constraint by using an earlier deadline.

Formal work exists, showing how to modify deadlines
in a consistent manner so that EDF can be used without vi-
olating the precedence constraints. Garey et al. [9] show
that the consistency of release times and deadlines can be
used to integrate precedence constraints in the task model.
Spuri and Stankovic [21] introduce the concept of quasi-
normality to give more freedom to the scheduler so that
it can also obey shared resource constraints, and provide
sufficient conditions for schedules to obey a given prece-
dence graph. The authors prove that with deadline modifi-
cation and some type of inheritance it is possible to integrate
precedence constraints and shared resources. Mangeruca
et al. [14] consider situations where the precedence con-
straints are not all consistent with the tasks’ deadlines and
show how schedulability can be recovered by considering
a constrained scheduling problem based on a more general
class of precedence constraint.

However, all these works are based on a previous knowl-
edge of tasks’ execution times. To make use of those previ-
ous results in open systems, we have to enforce the consis-
tency of release times and deadlines with the partial order
at admission time using a technique similar to those which
have already appeared in several works [9, 20, 14, 8], but
considering average execution times and handle overloads
of the precedent tasks at runtime.

Considering average execution times implies to handle
situations where tasks require more than the declared ca-
pacity and their current servers cannot use any available ca-
pacity to complete their works, disabling their successors
to start. The capacity exchange mechanism proposed in
the previous section can be used to handle blocking due to
precedence violations in the same way as for a critical sec-
tion blocking, minimising the impact of misbehaved tasks
on the overall system’s performance. We base our approach
on the idea that if task 7; < 7; has not yet finished at time
8; k» when the k™ instance of 7; is selected to execute, it is
blocking its successor.

The problem of knowing if the set of precedent tasks has
already finished is easily solved with CSS. A server that
has completed its job only remains in the Active state until
its deadline if it is supplying residual capacity to the other
servers. As such, if the dedicated server of a task 7; < 7;
is still active, .S; must only check the current value of S;’s
residual capacity. If its equal to zero, then 7; has not yet
been completed at time s;. Otherwise, the job has already
been completed and the server is supplying residual capac-
ity. Since precedence constraints are imposed by earlier
deadlines, the dynamic budget accounting of CSS ensures



that no additional verifications are needed than the ones al-
ready being performed.

S Conclusions and ongoing work

This paper combines bandwidth inheritance with a
greedy capacity sharing and stealing mechanism to effi-
ciently handle shared resources and precedence constraints
among tasks in dynamic open real-time systems. The ap-
proach allows a server to reclaim residual capacities al-
located but unused when jobs complete in less than their
budgeted execution time and to steal capacity from inac-
tive non-isolated servers used to schedule best-effort jobs to
mitigate the costs of blocking.

The protocol is currently being validated through exten-
sive simulations in highly dynamic scenarios. Preliminary
results clearly justify the use of a capacity exchange mecha-
nism that reclaims as much residual capacity as possible and
does not restrict itself to exchange capacities only within a
resource sharing group.

A theoretical validation of the protocol is currently un-
der development, detailing the conditions under which it is
possible to guarantee hard real-time tasks.

Acknowledgements

This work was partly supported by FCT, through the CIS-
TER Research Unit (FCT UI 608) and the Reflect project
(POSC/EIA/60797/2004), and the European Comission through
the ARTIST2 NoE (IST-2001-34820).

References

[1] L. Abeni and G. Buttazzo. Integrating multimedia applica-
tions in hard real-time systems. In Proceedings of the 19th

IEEE RTSS, page 4, Madrid, Spain, December 1998.
[2] T.P. Baker. A stack-based resource allocation policy for re-

altime processes. In Proceedings of the IEEE Real-Time Sys-
tems Symposium, pages 191-200, Lake Buena Vista, Florida,

USA, December 1990.
[3] S. K. Baruah. Resource sharing in edf-scheduled systems:

A closer look. In Proceedings of the 27th IEEE Real-Time
Systems Symposium, pages 379-387, Rio de Janeiro,Brazil,

December 2006.
[4] M. Caccamo, G. Buttazzo, and L. Sha. Capacity sharing for

overrun control. In Proceedings of 21th IEEE RTSS, pages

295-304, Orlando, Florida, 2000.
[5] M. Caccamo, G. C. Buttazzo, and D. C. Thomas. Efficient

reclaiming in reservation-based real-time systems with vari-
able execution times. [EEE Transactions on Computers,

54(2):198-213, February 2005.
[6] M. Caccamo and L. Sha. Aperiodic servers with resource

constraints. In Proceedings of the 22nd IEEE Real-Time Sys-
tems Symposium, pages 161-170, London, UK, December
2001.

(7]

8

—_—

(9]

[10]

(11]

(12]

(13]

(14]

(15]

(16]

[17]

(18]

(19]

(20]

(21]

(22]

M.-I. Chen and K.-J. Lin. Dynamic priority ceilings: a con-
currency control protocol for real-time systems. Real-Time

Systems, 2(4):325-346, 1990.
H. Chetto, M. Silly, and T. Bouchentouf. Dynamic schedul-

ing of real-time tasks under precedence constraints. Real-

Time Systems, 2(3):181-194, 1990.
M. R. Garey, D. S. Johnson, B. B. Simons, and R. E. Tar-

jan. Scheduling unit-time tasks with arbitrary release times
and deadlines. SIAM Journal on Computing, 10(2):256-269,

Ma}/ 1981.

K. Jeffay. Scheduling sporadic tasks with shared resources
in hard-real-time systems. In Proceedings of the IEEE Real-
Time Systems Symposium, pages 89-99, Phoenix, Arizona,

USA, December 1992.
G. Lamastra, G. Lipari, and L. Abeni. A bandwidth inher-

itance algorithm for real-time task synchronization in open
systems. In Proceedings of the 22nd IEEE Real-Time Sys-
tems Symposium, pages 151-160, London, UK, December

2001.
C. Lin and S. A. Brandt. Improving soft real-time perfor-

mance through better slack reclaiming. In Proceedings of

the 26th IEEE RTSS, pages 410-421, 2005.
G. Lipari and S. Baruah. Greedy reclamation of unused

bandwidth in constant-bandwidth servers. In Proceedings of

the 12th ECRTS, pages 193-200, Stockholm, Sweden, 2000.
L. Mangeruca, A. Ferrari, and A. L. Sangiovanni-Vincentelli.

Uniprocessor scheduling under precedence constraints. In
Proceedings of the 12th IEEE Real-Time and Embedded
Technology and Applications Symposium, pages 157-166,

San Jose, CA, USA, April 2006.
L. Marzario, G. Lipari, P. Balbastre, and A. Crespo. Iris:

A new reclaiming algorithm for server-based real-time sys-
tems. In Proceedings of the 10th IEEE RTAS, page 211,

Toronto, Canada, 2004.
L. Nogueira and L. M. Pinho. Capacity sharing and steal-

ing in server-based real-time systems. In Proceedings of the
21th IEEE International Parallel and Distributed Processing

Symposium (to appear), Long Beach,CA,USA, March 2007.
R. Rajkumar, K. Juvva, A. Molano, , and S. Oikawa. Re-

source kernels: A resource-centric approach to real-time and
multimedia systems. In Proceedings of the SPIE/ACM Con-

ference on Multimedia Computing and Networking, 1998.
R. Santos, G. Lipari, and J. Santos. Scheduling open dy-

namic systems: The clearing fund algorithm. In Proceed-
ings of the 10th International Conference on Real-Time and
Embedded Computing Systems and Applications, pages 114—

129, Gothenburg, Sweden, August 2004.
L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance

protocols: an approach to real-time synchronisation. /EEE

Transaction on Computers, 39(9):1175-1185, 1990.
M. Spuri and G. Buttazzo. Efficient aperiodic service un-

der earliest deadline scheduling. In Proceedings of the 15th

IEEE RTSS, pages 2—11, San Juan, Puerto Rico, 1994.
M. Spuri and J. A. Stankovic. How to integrate prece-

dence constraints and shared resources in real-time schedul-
ing. IEEE Transactions on Computers, 43(12):1407-1412,

1994.
S. Wang, K.-J. Lin, and S. Peng. Bwe: A resource shar-

ing protocol for multimedia systems with bandwidth reser-
vation. In Proceedings of the 4th IEEE International Sympo-
sium on Multimedia Software Engineering, pages 158-165,
New-port Beach,CA,USA, December 2002.



